
Aspect Orientation in the Procedural Context of C
Ir. Bram Adams

Promoter(s): Prof. Dr. Ir. Ghislain Hoffman, Prof. Dr. Ir. Herman Tromp

Abstract—Since the rise of Information Technology, companies have in-
vested fortunes in software systems, to the extent that they are now totally
reliant on them. Paradoxically, as time goes by and business requirements
are adjusted every day, ever fewer people seem to know how and why this
legacy software still works. Aspect Oriented Programming (AOP), an emer-
ging programming paradigm, has been identified as an important technique
to aid in re-engineering these systems, because it modularizes crosscutting
concerns without actually modifying the original source code (“oblivious-
ness”). Our research focuses on the integration of AOP in C. To get a
handle on current industrial conditions, we applied our new aspect lan-
guage (calledAspicere), tools and the AOP methodology to a realistic case
study. This provided us with valuable feedback regarding common legacy
C practices and integration issues of AOP tools to existing build processes.

Keywords—AOP, legacy systems, C

I. I NTRODUCTION

HAVING invested massively in the digital revolution, the in-
dustry now faces the dramatic consequences. Indeed, in

an attempt to become more competitive, companies have virtu-
alized most of their (critical) business processes in costly soft-
ware systems. The initial intent was to rule out as much hu-
man errors and indeterminism as possible. However, to recover
from these large expenses, the acquired systems need to serve
far more years than originally foreseen. In the meantime, they
must manage somehow to cope with new technologies like the
Internet, web services, . . .

Unfortunately, the initial designers and programmers of these
“legacy” systems have long since vanished. The current main-
tainers do not understand large portions of the code and they do
not want to touch it either, as the company’s core operations rely
on it. To fulfil new requirements, however, billions of lines of
code are still added each year to these existing code silos.

Due to the critical nature of the legacy problem, new techno-
logies like Aspect Oriented Programming (AOP) are evaluated
in light of this. In the remainder of this paper, we will elaborate
on AOP and its implications on procedural languages like C and
the legacy problem (section II). Then, we move on to our aspect
language,Aspicere1, in section III and its application to a real-
istic case study in section IV. We conclude with a summary of
our current findings in section V.

II. A SPECTORIENTED PROGRAMMING

ORIGINALLY , AOP has been developed to overcome
apparent shortcomings in the Object Oriented (OO)

world [1]. When mapping a system design to source code, a cer-
tain class structure has to be chosen. Common OO practices re-
commend to decompose things from the perspective of the main
concern, i.e. with regard to the actual objectives of the whole

B. Adams is a proud member of the Ghislain Hoffman Software Engin-
eering Lab (GH-SEL), a subset of the Department of Information Tech-
nology (INTEC), Ghent University (UGent), Ghent, Belgium. Website:
http://users.ugent.be/˜badams/. E-mail: bram.adams@ugent.be.

1“aspicere” means “to look at” in Latin. Its root is “aspect”.

system. If a bank account system is developed, typical business
objects are customers, accounts, saving formulas, . . . Additional
concerns like security, persistence, logging, . . . however, are not
modularized well in this skeleton structure, but have to be added
somewhere inside the main decomposition. Typical properties
of these systems, are:

scattering Invocations of these auxiliary concerns are
spread throughout the whole system.
tangling Main concern code is intermingled with other con-
cerns’ implementations, making things hard to keep track of.

A scattered concern tangled between another concern, is said
to be “crosscutting” with respect to the latter (the reverse does
not necessarily hold). It is important to notice that crosscutting
is inherent to the modeling of concerns and as such is not tied
to OO systems. The legacy systems and languages of section I
face the same problems.

AOP not only identifies the crosscutting problem, it also pro-
poses a new methodology to resolve these issues. Briefly, in-
stead of manually invoking a crosscutting concern’s code in the
constructed program (the “base” program), the concern’s core
functionality is encapsulated into its own module (an “aspect”):
the base program is “oblivious” to this concern. Of course,
this aspect code should be linked to (“woven in”) the base pro-
gram somehow, guided by conditions specified on the base code
(“quantification” by “pointcuts”). If these are met during the ex-
ecution of the base program (“join point”), the relevant crosscut-
ting code (“advice”) inside an aspect is automatically invoked.

Applying these ideas to legacy languages like Cobol and C,
we get a much cleaner separation of concerns, resulting in easier
to understand software systems. Equally important is the oblivi-
ousness of aspects. Prior to re-engineering an application, one
can apply aspects to it to gather all kinds of information for re-
verse engineeringwithout modifying any code.

As a first step in exploring the interaction between AOP and
traditional, procedural languages, K. De Schutter designed the
AspectCobol language [2]. Building further on the resulting
framework, our aspect languageAspicere tries to apply the AOP
ideas on C. We will explore this in the next section.

III. A SPICERE

A. Join point model

THE first thing to consider when designing an aspect lan-
guage, is an appropriate join point model: the circum-

stances when and where aspects are allowed to interact with the
base program. In procedural programming languages like C,
procedure calls and variable accesses seem prime candidates for
this. We can interpret both variable reads and writes as proced-
ure invocations, which simplifies everything.

1 static FILE * fp2=0;
2 static void close_file(void) { ... }
3 static FILE * init_file(char * name) { ... }
4 RetType around tracing (RetType,FileStr) on (Jp):
5 call(Jp,"ˆ. * $")
6 && type(Jp,RetType)
7 && !str_matches("void",RetType)
8 && logfile(FileName)
9 && stringify(FileName,FileStr) {

10 RetType i;
11 FILE * fp=(fp2==0)?init_file(FileStr):fp2;
12

13 fprintf (fp,"before (%s in %s) \n",
14 Jp->functionName,Jp->fileName);
15 fflush(fp);
16 i = proceed ();
17 fprintf (fp,"after (%s in %s) \n",
18 Jp->functionName,Jp->fileName);
19 fflush(fp);
20

21 return i;
22 }

Fig. 1. Simple tracing aspect for non-void procedures. We omitted the relevant
#include -statements and some procedure implementations.

B. Advice

IN Fig. 1, we show an aspect with an advice called “tracing”
(lines 4—22), which dumps messages into a file around every

(non-void) procedure call2. We will now explain all components
of this aspect. To start off,Aspicere’s aspects can be considered
as normal C modules. This entails that aspects can declare and
define both variables and procedures (lines 1—3), and that the
usual C visibility rules apply (static versusexternal).

Of course, we needed to add an advice construct. We modeled
it after AspectJ’s “around” advice [1], which means that the ad-
vice decides by one or more calls toproceed (line 16) when
the execution of the original join point (or other advices) should
continue. The advice’s return type (RetType on line 4) corres-
ponds to that of the advised procedure call or variable access.

The body of an advice (lines 10—21) resembles that of a pro-
cedure, except for accesses to a join point context struct3 (Jp)
and the use of binding variables (RetType and FileStr). Both
types of variables are “exposed” in the advice signature (line 4)
and “bound” in the advice’s pointcut (lines 5—9).

A pointcut expression specifies the conditions join points
must meet to be advised.Aspicere maps a pointcut onto a Prolog
rule composed of various predicates like call/2, type/2, . . . The
reasoning for this is twofold:
• Thanks to Prolog’s Turing-completeness and encapsulation
capabilities, the user can write more robust pointcuts [3], [4],
based on program structure and semantics (e.g. metadata in Pro-
log facts).
• Variables bound during join point matching (“bindings”)
provide meta-information that can be used to make advice more
generic (e.g. RetType on lines 4 and 11).

It is important to realize that the exposed bindings are treated
as C++ template variables. As a final remark, a particular join
point can be advised more than once at a time, in which case all
applicable advices are chained in a user-imposed order.

2We leave the advice for void-procedures as an exercise to the reader.
3Contains argument values, name of called procedures, . . .

C. Weaving framework

LIKE Cobble [2], Aspicere’s weaver is a preprocessor to a
normal compiler. Preprocessed C code is transformed into

a more manageable XML representation. Using a Prolog en-
gine and XPath, we match join points with the relevant advice,
before modifying the XML-structure using DOM-manipulation.
Finally, everything is transformed again to (woven) source code
and fed into a C compiler.

IV. CASE STUDY

TO evaluate our language and weaver prototype, we applied
them to an industrial code base of 407 C modules, ported

from an ancient architecture to a more modern Linux platform
[5]. As an initial experiment, we applied Fig. 1’s tracing aspect.

It turned out that the largest part of the code was still written
in traditional (pre-ANSI) C. This means e.g. that procedure de-
clarations (in header files) don’t need to specify any arguments
yet. As a consequence, our weaver needs to guess the right argu-
ment types from the calling context. Due to C’s complexity, this
is not that trivial. That is why we currently need to “skip” certain
join points if we can’t make up the right typing information.

Aside from this complexity, our weaver’s join point match-
ing slows the weaving process considerably down. Scalability
obviously needs closer examination.

Finally, because our weaver serves as a preprocessor to a real
C compiler, the existing makefile hierarchies arenot oblivious
to our tools. Automatically patching the build scripts should
address this issue.

V. CONCLUSIONS

WE argued why legacy systems could be killer applica-
tions for AOP, based on obliviousness and quantification.

Then we mapped the AOP ideas on the C language and briefly
explainedAspicere, our aspect language for C. All work thusfar
has been evaluated on a realistic case study, of which we showed
the most relevant results. Our weaver needs to be refined more
before performing a second, more complex case study.

ACKNOWLEDGEMENTS

We would like to dedicate this paper, in memoriam, to pro-
fessor dr. ir. Ghislain Hoffman, who passed away on August
25th, 2005. The author also wants to thank Kris De Schutter
and professor dr. ir. Herman Tromp for their support and know-
ledge sharing.

REFERENCES

[1] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold, “An overview of AspectJ,”LNCS, vol. 2072, pp.
327–355, 2001.

[2] Ralf Lämmel and Kris De Schutter, “What does Aspect Oriented Program-
ming mean to Cobol?,” inAOSD ’05, New York, NY, USA, 2005, pp.
99–110, ACM Press.

[3] Kris Gybels and Johan Brichau, “Arranging language features for more
robust pattern-based crosscuts,” inAOSD. 2003, pp. 60–69, ACM Press.

[4] Bram Adams and Tom Tourẃe, “Aspect Orientation for C: Express your-
self,” in SPLAT 2005, 2005.

[5] Bram Adams, Kris De Schutter, and Andy Zaidman, “AOP for Legacy
Environments, a Case Study,” in2nd European Interactive Workshop on
Aspects in Software, 2005.

