Aspect Orientation in the Procedural Context of C

Ir. Bram Adams
Promoter(s): Prof. Dr. Ir. Ghislain Hoffman, Prof. Dr. Ir. Herman Tromp

Abstract—Since the rise of Information Technology, companies have in- System. If a bank account system is developed, typical business
vested fortunes in software systems, to the extent that they are now totally objects are customers, accounts, saving formulas, ... Additional

reliant on them. Paradoxically, as time goes by and business requirements . . . p
are adjusted every day, ever fewer people seem to know how and why this concerns like security, persistence, logging, ... however, are not

legacy software still works. Aspect Oriented Programming (AOP), anemer- modularized well in this skeleton structure, but have to be added
ging programming paradigm, has been identified as an important technique  somewhere inside the main decomposition. Typical properties
to aid in re-engineering these sys_tems, bega_use it modularlzes“cro;gcuttlngof these systems, are:

concerns without actually modifying the original source code (“oblivious- ) ) -
ness”). Our research focuses on the integration of AOP in C. To get a Scattering Invocations of these auxiliary concerns are

handle on current industrial conditions, we applied our new aspect lan- spread throughout the whole system.

guage (calledAspicere), tools and the AOP methodology to a realistic case . . . . . B
study. This provided us with valuable feedback regarding common legacy tangling Main concern code is intermingled with other con

C practices and integration issues of AOP tools to existing build processes. C€rns’ implementations, making things hard to keep track of.

Keywords—AOP, legacy systems, C A scattered concern tangled between another concern, is said
to be “crosscutting” with respect to the latter (the reverse does
I. INTRODUCTION not necessarily hold). It is important to notice that crosscutting

AVING invested massively in the digital revolution, the in4S inherent to the modeling of concerns and as such is not tied

dustry now faces the dramatic consequences. IndeedtcfnOo systems. The legacy systems and languages of section |
an attempt to become more competitive, companies have viriﬁge the same p_roble_rr_15. ) _
alized most of their (critical) business processes in costly soft-"OP notonly identifies the crosscutting problem, it also pro-
ware systems. The initial intent was to rule out as much hiSeS @ new methodology to resolve these issues. Briefly, in-
man errors and indeterminism as possible. However, to recovifad Of manually invoking a crosscutting concern’s code in the
from these large expenses, the acquired systems need to s%?vnéFrUCt‘?d program (the bgse _program), the con(ierns c?re
far more years than originally foreseen. In the meantime, th ctionality is encapsulated into its own module (an “aspect’):

must manage somehow to cope with new technologies like fh Pase program is “oblivious” to this concern. Of course,
Internet, web services, ... this aspect code should be linked to (*woven in”) the base pro-
Unfortunately, the initial designers and programmers of the?ﬁam S(_)rnehovxi, gw“de(_j by Co,i"‘dltlons specified on the base code
“legacy” systems have long since vanished. The current ma nqugmtlflcanon by pomtcuts“_). .Ifthe.se”are met during the ex-
tainers do not understand large portions of the code and theye_&b‘t'on of t“he b_as? program (join point”), the relevant crosscut-
notwant to touch it either, as the company’s core operations rdfjd code (‘advice”) inside an aspect is automatically invoked.
on it. To fulfil new requirements, however, billions of lines of APPIlying these ideas to legacy languages like Cobol and C,
code are still added each year to these existing code silos. W€ gétamuch cleaner separation of concerns, resulting in easier
Due to the critical nature of the legacy problem, new techn8? Understand software systems. Equally important is the oblivi-
logies like Aspect Oriented Programming (AOP) are evaluat@4Sness of aspects. Prior to re-engineering an application, one
in light of this. In the remainder of this paper, we will elaboraté2n apply aspects to it to gather all kinds of information for re-
on AOP and its implications on procedural languages like C a8'Se engineeringithout modifying any code
the legacy problem (section I1). Then, we move on to our aspect?S a first step in exploring the interaction between AOP and
language Aspiceré, in section Ill and its application to a real-traditional, procedural languages, K. De Schutter designed the

istic case study in section IV. We conclude with a summary éspectCobol language [2]. Building further on the resulting
our current findings in section V. framework, our aspect languagsepicere tries to apply the AOP

ideas on C. We will explore this in the next section.
II. ASPECTORIENTED PROGRAMMING

RIGINALLY , AOP has been developed to overcome lll. A'SPICERE
apparent shortcomings in the Object Oriented (OO)
world [1]. When mapping a system design to source code, a cAr- Join point model
tain class structure has to be chosen. Common OO practices re- ) ) _ o
commend to decompose things from the perspective of the mAify YHE first thing to consider when designing an aspect lan-

concern, i.e. with regard to the actual objectives of the whole- 9Uag€, IS an appropriate join point model: the circum-
stances when and where aspects are allowed to interact with the
B. Adams is a proud member of the Ghislain Hoffman Software Engildase program. In procedural programming languages like C,

eering Lab (GH-SEL), a subset of the Department of Information Tec r lls and variabl m orim ndi for
nology (INTEC), Ghent University (UGent), Ghent, Belgium. Websitetp)—rocedu e calls and variable accesses see prime ca didates fo

http://users.ugent.be/"badams/. E-mail: bram.adams@ugent.be. thiS.. We can interpr.et b‘?th \{qriable read.s and writes as proced-
L«aspicere” means “to look at” in Latin. Its root is “aspect”. ure invocations, which simplifies everything.



© ® N o A W N R

11
12
13
14
15
16
17
18
19
20
21
22

static ~ FILE » p2=0; C. Weaving framework

static void close_file( void ){ ... }
static  FILE « init_file( char » name){ .. } . IKE Cobble [2], Aspicere’s weaver is a preprocessor to a
Reg‘l’l?fp’..f’.‘ro“”d* $f;a°'”g (RetType,FileSt) on (Jp): normal compiler. Preprocessed C code is transformed into
&& type(Jp,RetType) a more manageable XML representation. Using a Prolog en-
&& Istr_matches("void",RetType) gine and XPath, we match join points with the relevant advice,
ig gﬁ‘:gg&ﬁg’;‘\g& Filestn) ( before modifying the XML-structure using DOM-manipulation.
RetType i; ’ Finally, everything is transformed again to (woven) source code
FILE * fp=(fp2==0)?init_file(FileStr):fp2; and fed into a C compiler.
e i)
fflush(fp); O evaluate our language and weaver prototype, we applied
i = proceed () . them to an industrial code base of 407 C modules, ported
fprintf (fp,"after ( %s in %s ) \n", . . .
Jp->functionName, Jp->fileName); from an ancient architecture to a more modern Linux platform
filush(fp); [5]. As an initial experiment, we applied Fig. 1's tracing aspect.
) It turned out that the largest part of the code was still written
retun 1 in traditional (pre-ANSI) C. This means e.g. that procedure de-

} clarations (in header files) don't need to specify any arguments
Fig. 1. Simple tracing aspect for non-void procedures. We omitted the relevifil: AS @ consequence, our weaver needs to guess the right argu-
#include -statements and some procedure implementations. ment types from the calling context. Due to C's complexity, this

is not that trivial. That is why we currently need to “skip” certain
) join points if we can’'t make up the right typing information.

B. Advice Aside from this complexity, our weaver's join point match-

N Fig. 1, we show an aspect with an advice called “tracind™d slows the weaving process considerably down. Scalability

(lines 4—22), which dumps messages into a file around evétyviously needs closer examination.
(non-void) procedure c&ll We will now explain all components ~ Finally, because our weaver serves as a preprocessor to a real
of this aspect. To start off\sspicere’s aspects can be consideréd compiler, the existing makefile hierarchies aat oblivious
as normal C modules. This entails that aspects can declare Bh@ur tools. Automatically patching the build scripts should
define both variables and procedures (lines 1—3), and that @ifidress this issue.
usual C visibility rules applydtatic ~ versusexternal ).

Of course, we needed to add an advice construct. We modeled
it after AspectJ’s “around” advice [1], which means that the a E argued why legacy systems could be killer applica-
vice decides by one or more callsjiooceed (line 16) when tions for AOP, based on obliviousness and quantification.
the execution of the original join point (or other advices) shoulthen we mapped the AOP ideas on the C language and briefly
continue. The advice’s return type (RetType on line 4) corregxplainedAspicere, our aspect language for C. All work thusfar
ponds to that of the advised procedure call or variable accesdias been evaluated on a realistic case study, of which we showed

The body of an advice (lines 10—21) resembles that of a pridie most relevant results. Our weaver needs to be refined more
cedure, except for accesses to a join point context St{up) before performing a second, more complex case study.
and the use of binding variables (RetType and FileStr). Both
types of variables are “exposed” in the advice signature (line 4)
and “bound” in the advice’s pointcut (lines 5—9). We would like to dedicate this paper, in memoriam, to pro-

A pointcut expression specifies the conditions join poinfessor dr. ir. Ghislain Hoffman, who passed away on August
must meet to be advisefspicere maps a pointcut onto a Prolo@5th, 2005. The author also wants to thank Kris De Schutter
rule composed of various predicates like call/2, type/2, ... Tlad professor dr. ir. Herman Tromp for their support and know-
reasoning for this is twofold: ledge sharing.
« Thanks to Prolog’'s Turing-completeness and encapsulation
capabilities, the user can write more robust pointcuts [3], [4], REFERENCES

based on program structure and semantics (e.g. metadata in RtoGregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
lo facts) and William G. Griswold, “An overview of AspectJ[NCS vol. 2072, pp.
g 1acts). . .. 327-355 2001
« Variables bound during join point matching (*bindings”)2] Ralf Lammel and Kris De Schutter, “What does Aspect Oriented Program-
provide meta-information that can be used to make advice more génglgeigl\tﬂopcoml?f’ irAOSD '03 New York, NY, USA, 2005, pp.
. . — y ress.
gen(_an_c (e.g. RetType (_)I’] lines 4 and 11). o [3] Kris Gybels and Johan Brichau, “Arranging language features for more
It is important to realize that the exposed bindings are treated robust pattern-based crosscuts, A@SD 2003, pp. 60-69, ACM Press.
as C++ template variables. As a final remark. a particular ioil Bram Adams and Tom Touy “Aspect Orientation for C: Express your-
S emplate b ark, a partic J self,” in SPLAT 20052005.
point can be advised more than once at a time, in which case[@}IIBram Adams, Kris De Schutter, and Andy Zaidman, “AOP for Legacy

applicable advices are chained in a user-imposed order. Environments, a Case Study,” #nd European Interactive Workshop on
Aspects in Softwar005.

V. CONCLUSIONS

ACKNOWLEDGEMENTS

2We leave the advice for void-procedures as an exercise to the reader.
3Contains argument values, name of called procedures, ...



