i

. Aspect Orientation in the %] &

GENT GH-SEL INTEC

o OF ENGy,, Ghent University
| § ura Ntext O '
S %, Department of Information Technology

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

@ 11‘. BI‘am AdamS http://www.intec.ugent.be
bram.adams(@ugent.be http://users.ugent.be/~badams

scattered concerns N PrOblem Statement

" tracing
- authentication

Enterprise software systems ...

/s . DB access | o A .
= "virtualized” business processes
tangled L. L
application * massive investments
CoOncerns
\ e acceptable ROI only after long deployment periods
|| ... should be highly and safely evolvable.
h o BUT:
base application e first generation maintainers are gone
- e legacy hardware and programming languages (Cobol, C, ...)
pointcut <\I 2y | WeaVing e huge, ever-growing, undocumented code base
/] 1 h aspects with advice o o
| - Aspect Orientation (AO)
modularized crosscutting concerns
Fig. 1: The essence of Aspect Orientation. A new(ish) paradigm tackling the problem of crosscutting concerns,
i.e. scattered concerns which are tangled between others. [Fig. 1]
Terminology:
static FILE* fp2=0; h e advice: crosscutting functionality, part of aspect
static void close_file(void) { ... } /* atexit */ |A e join point: interesting event in control flow of base program
static FILE* 1nit file(char* name) { ... } P e pointcut: defines set of join points by quantification on

base program’s properties

RetType ar?E\md tfac1ng (RetType,rilests) on (Jp) e 5 e aspect: advice linked to join points by pointcut
call(Jdp,"".*/S$") .
&& type(Jp,RetType) Benefits:
&& !str matches("void" ,RetType) C e better SoC, irrespective of paradigm (OO, procedural, ...)
&& logfile(FileName) e obliviousness: base program unaware of any aspects
&& stringify(FileName,ileStr) — = Unintrusive reverse engineering of legacy systems

RetType 1;

FILE* fp=(fp2==0)?init file(FileStr):fp2; Aspicere, AQO f()r C

fprintf(fp, "before (%s in %s) \n",
Jp->functionName, Jp->fileName) ;
ttlush(tp); Combines multiple languages / paradigms: [Fig. 2]

Eligible join points: procedure calls and wvariable accesses

1 = proceed(); D o C: -
fprintf (fp, "after (%s in %s) \n", _

Jp->functionName, Jp->fileName) ;
fflush(fp);

leverage existing concepts and scoping rules ‘A
less steep learning curve D

e Prolog: - bindings enable generic advice bodies (D
- robust pointcuts C using structure & semantics

. e AO: - advice signature B , pointcut 'C and body D
return 1;

} Weaver transforms base program and aspects into ANSI C code,

-

by chaining relevant advice. [Fig. 3]

Validation

Case Study:

e industrial system with 407 C-modules and 269 Makefiles
DB access callee Goal:

Fig. 2: A generic tracing aspect for non-void methods in Aspicere.

caller tracing
| I
' I

e generate traces with tracing aspect + check pointer args

| |
| |
: : Results:
| : e all modules were woven and relevant traces obtained

>y

> without altering the original source code
e we could replace some hacks with clean, modular code
Problems:

o slow, complex type inference (large pre-ANSI C chunks)

e slow join point matching == scalability or implementation?

e deployment requires altering existing makefile-hierarchy

Fig. 3: Advice chain for the three crosscutting concerns of Fig. 1. Legacy systems are killer apps for Aspect Orientation (AO).

