
Aspect Orientation for C: Express yourself

Position paper

Bram Adams
INTEC, Ghent University

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

Bram.Adams@ugent.be

Tom Tourwé
Centrum voor Wiskunde en Informatica

P.O. Box 94079
1090 GB Amsterdam, Netherlands

Tom.Tourwe@cwi.nl

ABSTRACT
In this paper, we propose Aspicere, our effort to bring aspect-
oriented software development to the C programming lan-
guage. We focus primarily on the pointcut language offered
by Aspicere, as it differs significantly from other aspect lan-
guages, for C as well as for Java. We illustrate the need for
a more complex pointcut language, by means of a simple
and prototypical concern, present in a real-world applica-
tion, that can not be captured adequately with current-day
aspect technologies.

Keywords
Aspect-Oriented Programming, legacy languages, C, logic
programming.

1. INTRODUCTION
The current success of aspect-oriented software development
(AOSD) is largely due to the AspectJ programming lan-
guage. A simple proof of this are the many emails with
questions about AspectJ -features sent to the AOSD-mailing
list, as people keep on mixing the two up. Why aspect-
oriented programming (AOP) in Java? Researchers tend
to experiment and build on the current state-of-the-art, in
this case Java or, more generally, OO-languages. It’s only
when the industry commits itself to a new technology, that
these efforts propagate into older, established technologies.
That’s why only recently AOP starts to show up in non-OO
languages like C, Cobol, Lisp, . . .

In this paper, we will talk about an effort, called Aspicere, to
bring AOP to the realm of C. Aspicere started as a spin-off
from Cobble [10], an AOP-language for Cobol. Aspicere was
the perfect opportunity to leverage the designed framework
for Cobble in the context of another legacy language, C. An
initial prototype of the tool [13] featured a (limited) pointcut
language inspired by AspectC [4].

AOSD’05 Chicago, Illinois USA

Our goal in this paper is two-fold. First, we will show that
these limited pointcut languages, as defined by current as-
pect languages such as AspectJ or AspectC, are incapable of
capturing the pointcuts for some simple and prototypical as-
pects. Second, we present an alternative pointcut language,
based on Prolog, that allows us to express a richer and more
expressive set of pointcuts.

The next section introduces the concern that we will use
as a running example through the paper. Section 3 shows
that current pointcut languages are incapable of capturing
the concern adequately, while Section 4 describes Aspicere’s
alternative pointcut language. Section 5 discusses related
work, Section 6 presents future work, and we conclude in
Section 7.

2. PARAMETER CHECKING CONCERN
In [2] and [3], Bruntink et al. present their experiences in
migrating crosscutting concerns from embedded C code to
aspects. Although it is not the primary focus of their papers,
the authors discuss the difficulties they face when imple-
menting a seemingly simple concern (parameter checking)
in current-day, general-purpose aspect languages. We will
use their example in this paper as well, as we feel it is both
interesting and appealing: although most people would con-
sider it a typical aspect, it appears to be difficult to capture
adequately with current-day technologies.

The requirement for the concern stated in [3] is that each
parameter of type pointer that is defined by a non-static
function should be checked before its value is used. Param-
eter checks ensure that a NULL value is never dereferenced,
which would lead to an error. Typically, such checks are
placed at the beginning of a function. The implementation
of a check consists of a simple if test, whose then clause
assigns an error value to a special-purpose error variable,
and logs that value in a global log file. See [3] for more
details. Clearly, this concern is crosscutting and leads to a
large amount of duplication.

In sections 3 and 4 we’ll look at two aspect implementations
of this crosscutting concern. The first one will be described
using AspectC, the other one in a more expressive language,
i.e. Aspicere.

3. THE ASPECTC WAY
3.1 Introduction to AspectC
In [4], the authors present AspectC, an AOP-language for
C, which is conceptually a non-OO version of AspectJ [9].

1

It resembles AspectJ, except that:

• C functions are treated as static functions in Java;

• a limited joinpoint model is defined (only method calls);

• all aspects are singletons;

• no introduction facilities exist

Nevertheless, AspectC proved itself capable of modularising
some path-specific customizations in the FreeBSD kernel.
When looking closer at this crosscutting concern, we see
that it is a very specific one. After checking out the original
FreeBSD kernel code thoroughly (not a trivial task), the pre-
cise locations along the targeted paths first were pinpointed.
The different aspects were then explicitly expressed in terms
of these points in the source code. AspectC is totally capable
of this highly specialized task.

Like AspectJ itself, AspectC heavily relies on name based
matching of method calls, enriched by some limited incar-
nation of regular expressions. We will show in the next
subsection that this is insufficient to capture a simple as-
pect adequately, even though this aspect is considered to be
a prototypical aspect by many people.

3.2 Parameter checking concern in AspectC
When defining pointcuts for the parameter checking con-
cern, the authors of [2] took considerable care such that:

• code duplication present in the original source code is
reduced to a minimum in the aspect code;

• understandability of the (base and aspect) code is im-
proved, or in other words, the intention behind the
pointcuts is as clear as possible;

• the pointcuts are as robust as possible with respect
to evolution, of the base code as well as of the aspect
itself.

A generic parameter checking aspect is thus preferred, but
is hard, if not impossible to define in AspectC. It is diffi-
cult to capture all functions that need parameter checking
in a single pointcut, or even in a small number of pointcuts,
because the signature of the functions differ. Some func-
tions define only two parameters, others define three, and
still others define five or six. Even if functions define the
same number of parameters, these parameters are of differ-
ent types, most of the time, and not all parameters are of
pointer type. AspectC does not allow us to define a pointcut
that generalises these differences.

A naive way for implementing a parameter checking aspect
would be to define a pointcut for each non-static function
separately, as follows:

aspect parameterCheckingAspect {
...
pointcut pc1(queue *queue, void *data) :

args(queue, data),
execution(* queue_add(queue *queue, void *data));

pointcut pc2(queue *queue, void **data) :
args(queue, data),
execution(* queue_pop(queue *queue, void **data));

...
before(queue *queue, void *data) : pc1(queue,data) {

if(queue == (queue *) NULL) {
LOG(PARAMETER_ERROR);

}
if(data == (void *) NULL) {

LOG(PARAMETER_ERROR);

}}
before(queue *queue, void **data) : pc2(queue,data) {

if(queue == (queue *) NULL) {
LOG(PARAMETER_ERROR);

}
if(data == (void *) NULL) {

LOG(PARAMETER_ERROR);
}
if(*data != (void **) NULL) {

LOG(PARAMETER_ERROR);
}}

...
}

These pointcuts each pick out the execution of a particular
function, by means of the execution pointcut, and expose
all its parameters, by using the args join point. Clearly, such
pointcuts will not improve the source code quality. First of
all, the aspect is tightly coupled to the base code, because
it hard codes the function names. If functions are added or
removed, or the signature of existing functions is changed,
the aspect is no longer correct. Second, since advice code
needs to be specified for each non-static function, it still
contains a lot of duplication that can not be factored out
easily. Last, the understandability of the aspect can still
be improved upon, because it is not explicitly apparent now
that all parameters of the same type should perform the
same check.

A more advanced way of defining a parameter checking as-
pect is to exploit the fact that parameters of the same type
implement the same check. The aspect can thus pick out all
non-static functions that define a parameter of a particular
type in a single pointcut:

aspect parameterCheckingAspect {
...
pointcut pc1(queue *queue) :

args(queue) &&
(execution(* queue_add(..)) ||
execution(* queue_pop(..)));

pointcut pc2(void *data) :
args(data) &&
(execution(* queue_add(..)));

pointcut pc2(void **data) :
args(data) &&
(execution(* queue_pop(..)));

before(queue *queue) : pc1(queue) {
if(queue == (queue *) NULL) {

LOG(PARAMETER_ERROR);
}}

before(void *data) : pc2(data) {
if(data == (void *) NULL) {

LOG(PARAMETER_ERROR);
}}

before(void **data) : pc3(data) {
if(*data != (void *) NULL) {

LOG(PARAMETER_ERROR);
}}

...
}

In this way, each parameter type has its own pointcut and
associated advice code. As such, advice code for a particular
type of parameter is specified only once and reused. This
solution is still not satisfactory, however. For different types
of parameters, the advice code can still not be reused, since
it differs slightly in the type cast that is being used. As a
result, there is still a certain amount of code duplication.
Additionally, the pointcuts are still a simple enumeration of
functions, which tightly couples the aspect to the base code,
and hampers evolvability of that base code.

4. ASPICERE

2

4.1 Rationale
Since AspectC’s pointcut language is not expressive enough
to capture the parameter checking concern in a satisfactory
way, the authors in [3] developed a domain-specific language
(DSL) for parameter checking. Although they show that
their solution greatly improves the source code quality, it
remains an ad-hoc solution. The DSL is only able to cap-
ture the parameter checking concern, so other concerns need
other DSLs, and the construction of such DSLs is not at all
trivial.

In order to express aspects such as the parameter checking
aspect, a pointcut language should be based on more so-
phisticated mechanisms than mere name matching. In [8],
the following language characteristics were distilled, based
on pattern matching on the structure of the base program,
in order to allow robust pointcut definitions:

• Prolog-like unification to make pattern matching and
variable binding available in a very clean way.

• A range of predicates to select joinpoints with the right
properties, and some general-purpose predicates ex-
pressing conditions on the properties themselves. Ex-
amples of the latter kind include standard Prolog pred-
icates for list handling, mathematical operations, string
manipulation, . . .

• the ability to access joinpoints shadows and to express
certain conditions on them. This effectively allows
navigating through the (static) structure of the base
program.

• Parameterisable pointcut definitions to allow reuse.

• Recursion to render the pointcut language computa-
tionally complete.

AspectJ’s or AspectC’s variable binding mechanism and reg-
ular expression matching are definitely weaker than true
unification. Furthermore, the existing pointcut designators
don’t allow reusing bound variables. there are no static
general-purpose predicates, only dynamic if-tests. Reuse of
custom pointcut definitions is allowed, but recursion lacks.

The family of logic programming languages on the other
hand, satisfies all of these proposed features. Using such
a language for reasoning about a program is called Logic
Meta-Programming (LMP), so in fact pointcut languages
are just a special case of LMP. [1] and [7] discuss this in
more detail with respect to OO-environments, together with
the creation of DSALs (Domain-Specific Aspect Languages).
These are DSLs expressed (in)directly in terms of a more
primitive aspect language.

4.2 Design decisions
Based on the findings above, we adopted Prolog as the un-
derlying vehicle of our pointcut language. As explained, this
makes it much more expressive and also allows to hide com-
plexity behind DSALs. Aspicere will consist of several layers
of predicates with varying levels of complexity, which we will
now present.

4.2.1 Hyperprimitive layer
Aspicere’s weaver operates on the abstract syntax tree of
a program, described in XML [10]. The pointcut language
should thus be able to pick out specific AST nodes. The
lowest layer of our weaver provides the appropriate predi-
cates for doing just that, and shields higher levels from the
details involved.

Besides an AST-based representation, our weaver can expose
several graph-based representations as well, such as control-

and data-flow graphs. This allows us to include a cflow
predicate, for example. Additionally, the use of function
pointers corresponds to some sort of dynamic dispatching,
which makes decent pointer analysis a must-have. These
specialised representations and analyses are hidden behind
a predicate façade.

Both types of predicates are illustrated in Figure 1 (un-
der the “HYPERprimitive layer”-label). createJPs/2 is
an example of the first kind of hyperprimitive predicates:
it instantiates joinpoints out of the (XML-)AST of a base
program. A prototype of an analysis predicate is given by
controlFlowGraph/1. This provides access to a graph rep-
resentation of the control flow in the application at hand.

Although we strive to make the set of joinpoint types offered
in Aspicere as complete as possible, we should also provide
the possibility of extending it. Power users could define
special-purpose joinpoints, such as memory access joinpoints
for example. These could have particular requirements on
the AST or, more generally, the structure of a base pro-
gram. This can be easily solved by writing a new predciate,
regardless of which layer it’s in.

4.2.2 Primitive pointcut layer
The primitive pointcut layer defines the equivalent predi-
cates of the regular AspectC-keywords like call, execution,
cflow, . . . This way, we make sure that the functionality of
AspectC is implied by our new pointcut language.

Additionally, the layer includes “structural” predicates, such
as caller/2, enclosingExecution/2, . . . These allow us to
navigate through the (static) structure of the base program
and to express structural patterns instead of relying solely
on name patterns. Aspects become more robust and less
dependent on (or: more oblivious to) a base program.

Both sets of predicates should be expressed in terms of
the hyperprimitive layer and a collection of more general-
purpose Prolog predicates like member/2, nth/3, pointer/2,
. . . Figure 1 shows some sample implementations for these
predicates, with the semantics of most of them intuitively
clear. enclosingExecution/2 gives the “parent” joinpoint
of e.g. a call joinpoint. Analogously, the general-purpose
predicates are quite easily understood.

4.2.3 Aspect-specific language layer
Using the basic building blocks defined in lower layers, the
aspect-specific language layer allows the user to design DSALs
tailored to a specific concern, as explained in [1]. In the
next section, we will show such a language for the parame-
ter checking concern.

Unlike [1], we currently maintain more or less the lexical
advice structure of AspectC. What we mean by this, is that a
dedicated advice structure has been added to the C-language
(shown in Figure 3), specifying:

• the return type in case of around-advice;

• the type of advice (before, around and after);

• the name of the advice followed by exported bound
variables;

• the bound joinpoint variable where advice has to be
woven;

• a pointcut designator;

• the advice code.

3

/* HYPERprimitive layer */
createJPs (XPathQuery , JpList):− /* perform query , instantiate joinpoints and cache results */ .
controlFlowGraph (Graph):− /* connection to analysis tool */ .

/* PRIMITIVE layer */
c a l l (Name , Jp , QualifierList , Params , ReturnType):−

createJPs (/* ... */ , List) , /* additional analysis needed */
member (Jp , List)
.

e x e c u t i o n (Name , Jp , QualifierList , Params , ReturnType):− /* analogous */ .
e n c l o s i n gE x e c u t i o n (Jp_enc , Jp):− /* ... */ .
d e r e f e r e n c e s I nBody (Jp , DeReferencedVars):− /* recursively defined or using dedicated analysis */ .
c a l l e r (Jp_caller , Jp_callee):−

e x e c u t i o n (Name , Jp_callee , Qualifiers , Params , ReturnType) ,
c a l l (Name , Jp_caller , Qualifiers , Params1 , ReturnType) ,
compatible (Params , Params1) % match types
.

/* GENERAL - purpose */
nth (N , Element , List):− /* Find N-th Element of List */ .
member (Element , List):− /* Element is member of List */ .
p o i n t e r (Type , BaseType):− /* ... */ .
d o ub l ePo i n t e r (Type , BaseType):− /* ... */ .

Figure 1: Illustration of the (hyper)primitive layers.

This makes our aspects a hybrid of pure C and a Prolog-
based pointcut language. Although this somehow minimizes
the transition from C to Aspicere, we lose the natural ap-
proach of [1] to tackle advice composition and interaction.
This aspect of Aspicere still needs further investigation. The
approach used e.g. in [12], using genuine methods instead
of special advice constructs, is also a possible alternative.

4.3 Parameter checking concern in Aspicere
In Figure 2, we propose a solution for the parameter check-
ing concern. We only need to define a mini-DSAL, since we
build on the (hyper)primitive pointcuts included with the
Aspicere system in Figure 1

4.3.1 Pointcut definitions
The algorithm we implemented to calculate the appropriate
pointcuts is the following:

Algorithm 1. For each dereferenced pointer argument of a
public (i.e. non-static) function g, look if there is an unpro-
tected path leading from the real definition of the pointer
variable to its dereference in g. This basically means we
have to

1. crawl up from the execution of a function to each call
site1;

2. get the enclosing execution joinpoint jp at the call site;

3. • if the pointer is dereferenced in the body of jp
and it was passed as an argument to jp, then the
current path is clean (no new check needed) as it
was jp’s responsibility to check;

• otherwise:

(a) if the variable was passed as an argument to
jp, then we must further investigate this path
in step 1;

(b) otherwise, we’ve found a previously unchecked
path, such that a check is needed in g and the
algorithm stops.

1Note that we navigate through the control flow in reverse,
i.e. from a function to its callers (recursively).

Looking at ioCheck/2 and unprotectedPath/3 in Figure 2,
we see that this algorithm can be expressed fluently and
intuitively in our new pointcut language. ioCheck/2 will
select all non-static functions having a pointer argument,
and hands control to unprotectedPath/3. This one will
do the path checking as explained in the three steps of our
algorithm.

The semantics of this crosscutting concern are now explic-
itly available and don’t contain any reference to named func-
tions: the algorithm filters out the right joinpoints solely by
looking at the structure of a base program. Of course, this
depends on the concern at hand, but the point is that con-
cerns can now be described more robustly and using only
static reasoning on the base program. Apart from the con-
cern’s checks themselves, there is no additional overhead
imposed by residues of the weaving process.

4.3.2 Advice
Figure 3 shows the actual advice, using our ioCheck/2-
predicate. The corresponding base type of the captured
pointer parameter is a bound variable of the before-advice
and can be used freely in its implementation. So, again we
see an improvement on the solution given in 3.2. The advice
only has to be described once, using an advice variable as a
stand-in for the particular type of the intercepted function
argument in each single case. This enhances maintainabil-
ity. Next to this, as ioCheck/2 doesn’t differentiate between
single or double pointers, we can also reuse it for other pur-
poses. To illustrate this, we implemented a hypothetical
extra check on double pointer arguments (the second advice
shown).

5. RELATED WORK
Contrary to the Java situation, there aren’t that many AOP-
languages for C, let alone mature ones2. Some seem to
be abandoned, like AspectC [4] and TinyC2 [14]. Other-
wise, there are also some C++ alternatives like AspectC++3

2http://janus.cs.utwente.nl:8000/twiki/bin/view/
Composer/AspectC gives a nice overview and is also the
home of ComposeC
3http://www.aspectc.org

4

/* DSAL */
ioCheck (Jp , [Po in te r , Type]) : −

e x e c u t i o n (Name , Jp , Qualifiers , Params , _) ,
\+member (’ s t a t i c ’ , Qualifiers) , % only public functions
de r e f e r e n c e s I nBody (Jp , DeReferencedVars) ,
member (Po in te r , DeReferencedVars) , % explicit dereference of Pointer ...
nth (Index , [Po in te r , Type] , Params) , % ... which is a parameter
unprotectedPath (Jp , Jp , Index)
.

unprotectedPath (Jp_orig , Jp_current , Index):−
c a l l e r (Jp_caller , Jp_current) ,
c a l l (_ , Jp_caller , _ , Params , _) , % get Params
nth (Index , Params , [Po in te r , Type]) , % get alias on caller - side
de r e f e r e n c e s I nBody (Jp_caller , DeReferencedVars) ,
e n c l o s i n gE x e c u t i o n (Jp_execution , Jp_caller) ,
\+Jp_orig==Jp_execution , % avoid (in) direct recursion
e x e c u t i o n (_ , Jp_execution , Qualifiers , ParamsExec , _) , % get ParamsExec
\+(

member (Po in te r , DeReferencedVars) ,
member ([Po in te r , _] , ParamsExec) ,
member (’ s t a t i c ’ , Qualifiers)

) , % unprotected dereference
(

nth (NextIndex , ParamsExec , Po i n t e r) , %is Pointer a parameter ?
! ,
unprotectedPath (Jp_orig , Jp_execution , NextIndex) % yes : crawl up

;
%no parameter : check needed
) ,

! % stop as soon as one unprotected path found
.

Figure 2: Encapsulating the parameter checking concern in an aspect written in Aspicere

/∗ User−defined predicates are fed separately to the weaver to avoid tight coupling
of aspects to predicate definitions .∗/

/∗ Advice for all pointer arguments ∗/
b e f o r e inout (BaseType) on (Jp) : ioCheck (Jp , [Pointer , Type]) && pointer (Type , BaseType){

/∗ check in/out/ outpointer−parameters using bound BaseType ∗/
}

/∗ Extra advice for double pointers ∗/
b e f o r e inoutptr (BaseType) on (Jp) : ioCheck (Jp , [Pointer , Type]) && doublePointer (Type , BaseType){

/∗ extra check on double pointer−parameters using bound BaseType ∗/
}

Figure 3: The actual checking code encapsulated in two advice definitions.

5

[11] and C++/CF [6], but those produce and/or are writ-
ten in C++. ComposeC builds further on Compose*, the
composition filter approach applied on Microsoft’s .NET-
environment, but is just starting up.

This makes Arachne4 currently the only existing related
work. In [5], an expressive aspect language for Arachne is
presented based on CLP (Constraint Logic Programming).
As such, it has the power of unification, but pointcut des-
ignators and advice can’t be named for the moment. So,
recursion and incremental definition of predicates aren’t pro-
vided yet. All constructs seem to be hardcoded keywords.
The seq-construct would in Aspicere just be a higher-level
predicate with a list-argument. Apart from seq, no other
(static) structural navigation is included in the language.

6. FUTURE WORK
Currently, we have coupled a Prolog engine to our existing
framework5 and now we are defining and implementing the
(hyper)primitive layer. To provide the analysis predicates
mentioned in Section 4.2.1, one or more specialized analysis
tools in our back-end are indispensable.

Topics like introduction (ITD in AspectJ), interaction of as-
pects and performance implications of our expressive point-
cut language have to be examined in depth, as well as a
sufficiently extensible weaving mechanism.

7. CONCLUSIONS
Although AspectJ-like AOP-languages are very popular, they
lack certain expressive qualities. We showed this in the con-
text of a realistic case study using Aspicere, an aspect lan-
guage for C. The use of a logic programming language as
evangelized by others in OO-contexts, really pays off for
legacy environments like C as well. These logic program-
ming languages allow us to express more robust pointcut
definitions in a more semantical way, and likewise promote
compehensibility and reuse of aspects. Full implementation
of the presented system is on-going work, such that impli-
cations on performance are still unclear, as is the usability
for truly dynamic crosscutting concerns.

Acknowledgments
We’d like to thank Kris De Schutter and Stijn Van Won-
terghem for proofreading. Kris did also give a lot of good
advice and helped to write down our algorithm.

8. REFERENCES
[1] J. Brichau, K. Mens, and K. D. Volder. Building

composable aspect-specific languages with logic
metaprogramming. In GPCE ’02: The ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering, pages
110–127. Springer-Verlag, 2002.

[2] M. Bruntink, A. van Deursen, and T. Tourwé. An
initial experiment in reverse engineering aspects from
existing applications. In Proceedings of the Working
Conference on Reverse Engineering (WCRE), pages
306–307. IEEE Computer Society, 2004.

[3] M. Bruntink, A. van Deursen, and T. Tourwé.
Isolating Crosscutting Concerns in System Software.
Technical report, Centrum voor Wiskunde en
Informatica, 2005.

[4] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using aspectc to improve the modularity of
path-specific customization in operating system code.
SIGSOFT Softw. Eng. Notes, 26(5):88–98, 2001.

4http://www.emn.fr/x-info/arachne/
5http://allserv.ugent.be/∼kdschutt/aspicere/

[5] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura, and M. Südholt. An expressive aspect
language for system applications with Arachne. In
Proceedings of 4th International Conference on
Aspect-Oriented Software Development (AOSD’05),
March 2005. To appear.

[6] M. Glandrup. Extending C++ using the concepts of
composition filters. Master’s thesis, University of
Twente, November 1995.

[7] K. Gybels. Using a logic language to express
cross-cutting through dynamic joinpoints. In
Proceedings of the Second German Workshop on
Aspect-Oriented Software Development, Technical
Report IAI-TR-2002-1. Universität Bonn, 2002.

[8] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 60–69. ACM Press, 2003.

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[10] R. Lämmel and K. De Schutter. What does
aspect-oriented programming mean to Cobol? In
Proceedings of 4th International Conference on
Aspect-Oriented Software Development (AOSD’05),
March 2005. To appear.

[11] D. Lohmann, O. Spinczyk, and A. Gal.
Aspect-Oriented Programming with C++ and
AspectC++. Tutorial held during the AOSD 2004
conference (Lancaster, UK), March 2004.

[12] H. Rajan and K. Sullivan. Classpects: Unifying
aspect- and object-oriented language design. In
Proceedings of the 27th International Conference on
Software Engineering (ICSE 2005), St. Louis,
Missouri, USA, May 2005. To appear.

[13] S. Van Wonterghem. Aspect-oriëntatie bij procedurele
programmeertalen, zoals C. Master’s thesis, Ghent
University, 2004. In Dutch.

[14] C. Zhang and H.-A. Jacobsen. TinyC2:towards
building a dynamic weaving aspect language for C.

6

