
AOP on the C-side

Bram Adams

Bram.Adams@UGent.be

SEL, INTEC, Ghent University, Belgium

ABSTRACT
Although aspect-oriented programming originally emerged to over-
come fundamental modularity problems in object-oriented applica-
tions, its ideas have long been backported to legacy languages like
Cobol, C, . . . As systems written in these languages are prime tar-
gets for re(verse)-engineering efforts, aspects can now be used for
these purposes. Before applying dynamic analysis techniques on
an industrial case study (453 KLOC of C) using aspects, we de-
vised a list of requirements for possible aspect frameworks. In this
paper we explain why no existing framework for C fulfilled all our
requirements. We discuss the problems we encountered with As-
picere, our own aspect language for C. We also suggest points of
improvement for future reverse-engineering efforts.

Keywords
aspect-oriented programming, legacy software, C, reverse-engineering,
comparison study

1. INTRODUCTION
Like any new technology, aspect-oriented programming (AOP) came
to life to solve problems inherent to the current state-of-the art, in
this case object-orientation (OO), and more in particular Java [15].
Crosscutting concerns were indeed fundamentally ignored in the
OO paradigm, so together with their accompanying terminology,
aspects revitalized general purpose language research.

As the first waves of enthusiasm set off, people [11, 16] noticed
that AOP’s ideas were not necessarily tied to OO (and Java). Phe-
nomena like scattering and tangling, the usual indicators for cross-
cutting concerns, equally (or probably likelier) arise in other OO-
languages and less modular paradigms like procedural program-
ming. Soon, every self-respecting language started to get its aspect
language, even legacy languages like Cobol [16] and C.

Nearly every organisation is stuck with a battery of mission-critical
software written in these old languages. These systems’ internal
structure and operations are typically no longer known, as the ori-
ginal developers, experienced maintainers or up-to-date document-
ation are not available anymore. They are inevitably hard to evolve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

as is, making it nearly impossible to cope with new requirements
without prior re-engineering efforts. As aspect technology is get-
ting more widespread in these areas, it can be leveraged to enable
reverse-engineering techniques.

In a concrete reverse-engineering case study [23], we used aspects
to apply dynamic analysis techniques to a medium-sized (453 KLOC)
legacy system written in a mix of K&R- and ANSI-C. Although
the role of the aspects there was very light (mere tracing), we envi-
sioned applying AOP for more complex tasks. That is why we did
not settle with some ad hoc AOP solution, but thought about relev-
ant requirements for both our purpose back then as well as future
efforts.

As it turned out, no aspect language fit the bill completely and we
decided to roll our own. Eventually, we succeeded in our experi-
ments, but new requirements came up along the way.

In this paper, we present our requirements gathered thusfar (sec-
tion 2), as well as their applicability on all currently existing AOP-
frameworks for C (section 3). Afterwards (section 4), we discuss
possible points of improvement, before concluding (section 5).

2. REQUIREMENTS
To find the most suitable aspect framework for the case study of [23],
we devised a set of requirements the preferred aspect framework
needed to comply with. Although the functionality expected from
the aspects came down to plain tracing, future re(verse)-engineering
case studies would be more demanding. Our requirements were de-
signed with this in mind and try to expect the worst.

There are two groups of requirements. The first one deals with
specific properties of the whole tool chain, which immediately ap-
plies to the aspect framework used. The second one has to do with
the specific reverse-engineering techniques used. Some of them are
irrelevant here, but others indirectly demand certain functionality
from the underlying aspect framework.

These are the tool chain requirements (T1–T5):

T1. Besides “nice” ANSI-C code, the legacy environments we
will tackle obviously contain lots of non-ANSI (or K&R1) C
code, and maybe compiler-dependent extensions too.

T2. The semantics of the original applications should remain in-
tact.

T3. We do not want to delve into the original source code to gain
knowledge before deploying our tools, as knowledge mining
is exactly what we are after in the first place. I.e. the tools
should not require special preparation or exploration of the
source code.

1Kernighan & Ritchie-style code, after their seminal work [14].

T1 T2 T3 T4 T5 A2 A3

AspectC ? + - - + - +
AspectC++ - + + - + + +
Aspicere + + + - + + +
C4 + + - - + - +
WeaveC ? + ? - + + +

µDiner - + - - - - +
TinyC N/A + - + - - +
Arachne N/A + - + - - +
TOSKANA N/A + - + - - +

TOSKANA-VM + ? ? - - ? ?

Table 1: Overview of existing aspect frameworks for C and
their relation to our requirements. A1 and A4 do not apply
here, while T1 does not for the dynamic weaving mechanisms
(except for µDiner), as these operate on binary code. A ques-
tion mark means we could not decide due to a lack of tools,
documentation or both.

T4. The existing build system should remain in place, with only
minimal alterations. To refactor it, considerable knowledge
of its current internals is needed, which again is lacking.

T5. The tools should be deployable in other environments (op-
erating systems, platforms, compilers, . . .), so that it can be
validated against other case studies.

Requirement T2 only depends on the particular advice code used
in the experiments, as obliviousness is one of AOP’s hallmarks.
This remark also partially affects T3, but we will see there is more
involved here.

Each of the analyses of [23] had the following number of re-
quirements (A1–A4):

A1. We need a well-covering execution scenario in order to ob-
tain a representative result set.

A2. The data fed into the analyses needs to be sufficiently fine-
grained. In the context of C this means individual procedure
calls. We also need context information, e.g. on the relevant
source modules.

A3. We need information about the call- and return-sequences of
procedure calls, in order to get an accurate picture of the dy-
namic behaviour of the applications.

A4. The analyses should be able to deal with initially unknown
amounts of trace data in a reasonable amount of time (i.e.
they need to be scalable).

When rephrasing these requirements for reverse-engineering tech-
niques in general, similar demands would arise. We can immedi-
ately exclude A1 and A4 from further discussion, as these apply
to the specific analysis techniques used. This leaves us with seven
requirements.

Based on these two groups of requirements, we will discuss the
state-of-the-art aspect languages and mechanisms for C known to
us at the time of writing.

3. CURRENT AOP-FRAMEWORKS FOR C
There are various ways to classify aspect frameworks, but we will
do this per type of weaving mechanism in a chronological way.
Table 1 gives a general overview of all the aspect frameworks men-
tioned and their relation to the seven requirements.

3.1 Compile-time weaving
All compile-time weaving aspect frameworks operate on the level
of source code and transform in some way the advised source code
and relevant aspects into regular C code before handing the woven
code off to a normal C compiler. Their weaver acts as a source code
preprocessor, fullfilling T5 because source code is one of the most
portable things in the context of C. All compile-time weavers ex-
cept for AspectC++ (section 3.1.2) expect a working Java run-time
environment, while AspectC++’s PUMA-framework is written in
(Aspect)C++.

This scenario has one important drawback, one we unfortunately
experienced and had to deal with ourselves [23]: the aspect frame-
work itself crosscuts the existing build system. In order to use
a weaver in combination with existing compilers and other pro-
cessors (for embedded SQL, . . .), the existing makefile hierarchy
has to be severely altered, violating T4. Directories with include-
files, linking dependencies, . . . can make things really hard. Un-
less there is only one compiler or tool used or the makefiles are
automatically generated and have not been modified manually af-
terwards (very unlikely), this issue can not be solved easily with
some clever trick or one single pass through the build process.

Without special tools like makefile refactorers, rewriters, . . . manual
adaptation of the build system is inevitable. Or maybe an aspect
framework for makefiles could prove useful?

3.1.1 AspectC
The original AspectC [6] was targeted at tackling crosscutting con-
cerns in operating system code. To do so, the designers started from
the original AspectJ [15] and stripped it down by removing all un-
necessary (OO-related) features. The resulting language has [5]
a special aspect construct, function call/execution join points and
pointcuts (A2), before/after/around-advice (A3) consisting of nor-
mal C code and well-known pointcuts like “cflow” and “within”.
Arguments of advised procedures can be assigned to variables and
used in advice (not in the remainder of the pointcut expression
though, cf. AspectJ).

Although variable argument lists can be abbreviated using “..”, re-
turn types or procedure names can not (even not using regular ex-
pressions). Other means of selecting the right join points, like
pointcuts based on structural, semantical, dynamic, . . . informa-
tion [19] are not provided. Hence, all procedures one wishes to
advise must be declared by their exact name in the pointcut, as il-
lustrated in [4]. Also, for every possible return and argument type a
separate pointcutandadvice have to be written down, which is un-
practical (T3). Due to performance reasons, there is no thisJoinPoint-
struct, so advices cannot access any join point context uncaught in
the pointcut (A2).

Equally important, AspectC seems unmaintained since 2003 without
any official releases, ruling it out as a viable aspect framework.
That is why we do not know much regarding T1.

3.1.2 AspectC++
As (nearly) every compilable C program is also a valid C++ ap-
plication, AOP languages for C++ could be applied to C base code.
AspectC++ [21] is the most mature and general-purpose aspect lan-
guage for C++ to date, with join point, advice and pointcut types
comparable to AspectJ (A3), although more structural pointcut types
like “callsto” and “reachable” are available. Advising variable ac-
cesses is not supported, because of C/C++’s pointer mechanism.

The aspect construct is in fact the C++ class construct with added
pointcut and advice abilities. InterType Declaration (ITD) of new

members in classes, structs and unions is also possible. Both advice
and ITD are declared in the same way.

As templates have been a part of C++ for years, AspectC++ offered
generic (and generative) advice much earlier than AspectJ did [18]
(T3). Join point context (A2) like types and values of advised func-
tion calls, is easily accessible by a join point API (both static and
dynamic parts) and applicable in the advice body.

AspectC++’s weaver2 is based on the PUMA-framework, a C++
source code transformation system [21] (T5). It processes the whole
program at once, demanding drastic changes to the existing build
system (T4). Theoretically, ANSI-C code can be advised and sub-
sequently compiled using a (sufficiently template-capable) C++-
compiler (with some glitches), but tests with K&R-code failed how-
ever (T1). Full C support will only be provided starting from a
release near the end of january 2006, feature by feature.

3.1.3 Aspicere
At the time of our case study, only tools for AspectC (alpha), As-
pectC++ and Arachne (section 3.2.3) were available. As both Arachne’s
(section 3.2) and AspectC’s pointcut and advice model were too re-
strictive and AspectC++ only partially supported C, we were forced
to design and implement our own framework. Since we did not
realize the extent of the problems related to T4, we opted for a
straightforward preprocessor approach, as C code itself guarantees
the best portability of our weaver to other architectures.

Aspicere [1, 23] originally started out as WICCA [22], an AspectC-
clone without an explicit aspect construct: aspects are simple com-
pilation units with the extra power of containing advice. Exper-
iments pointed out the T3 shortcomings of AspectC’s aspect lan-
guage, i.e. the inability to write down sufficiently, “generic” ad-
vice. Also, our (slow) parser did not cope with T1 and the fixed set
of low-level pointcut primitives like execution and args prohibited
easy addition of new pointcut types for other research efforts.

We decided to build a new aspect framework based on Logic Meta-
Programming (LMP) [13], a template mechanism and a mature
ANTLR C parser capable of parsing both K&R- and ANSI-code
(T1). Basically, all pointcuts are made up of Prolog predicates and
can be mapped one-to-one onto a Prolog rule. The predicates’ lo-
gic variables can be bound to context information and reused within
the pointcut expression to express certain constraints (unification).
These bindings can then be applied within the advice body and the
advice signature as some sort of template parameter (like C++ has)
to denote types, caught arguments, weaving metadata, . . . This res-
ults in simple, generic advice for C (T3). The around advice type
and thisJoinPoint-like struct support A3 and A2. Lexical order of
aspects and advice determines their precedence.

Besides the makefile anomaly, the case study of [23] showed that
Aspicere’s weaver currently works too slow and that its type infer-
encing capabilities are not perfect yet. Also, the ability of extend-
ing the collection of join point types was not really pursued in the
current prototype3, which currently only supports call join points.
For the moment, we are experimenting with LLVM in a less naive
preprocessor-setup, without the heavy demands of TOSKANA-VM
(see also sections 3.3.1 and 4).

3.1.4 C4
AspectC’s ideas of aspectizing UNIX-like operating systems us-
ing a static (preprocessing) weaver, live on in the aspect language
called C4 (CrossCutting C Code) [10]. It aims at replacing the

2
http://www.aspectc.org/

3
http://users.ugent.be/ ∼badams/aspicere/

traditional patch system by a simplified AOP-driven, semantic ap-
proach. Aspects describe “modifications” to a base system on a
higher level than the pure lexical patch(1)-tool does. However,
chances of adoption are reversely proportional to C4’s complexity.

Basically, the idea is that a programmer writes down advice (so-
called woven C4) in situ (A2) in the base program, without any
quantification. The C4 unweaver extracts the changes into a separ-
ate unwoven C4 file (a semantic patch) which can be freely distrib-
uted to everyone or (if needed) converted to a plain patch first. At
compile-time, the unwoven C4 is physically woven with the base
code.

This unwoven C4 file is in fact a (tweakable) classic aspect writ-
ten in an AspectC-based dialect capable of ITD in structs/unions
and advising global variables, but lacking the “call” and “cflow”
pointcuts. The rationale here, is that one can always extract code
blocks and encapsulate them into their own methods, which can be
advised directly. It is clear that the woven C4 severely violates T3,
while the unwoven version suffers from the same disadvantages as
AspectC (T3, T4 and A2). No special thisJoinPoint-construct ex-
ists.

C4 is based on the XTC-framework [12], an advanced macro facil-
ity for C, that takes care of the physical weaving. Domain-specific
language extensions like the C4-language (AOP domain) are de-
clared as macro’s and mapped onto specific plain C structures and
extra type information. C4’s unweaver and (logical) weaver are still
under construction4.

3.1.5 WeaveC
WeaveC5 is a very recent aspect language, in which both pointcuts
and advice are written in XML-files. As it aims at becoming a
general-purpose language, it has the same join point types as As-
pectC. Pointcuts are name-based (and wildcarded) and the dynamic
pointcut types like “cflow” are only provided in the advanced ver-
sion of WeaveC. Advice is prioritized to handle conflicts at joint
join points using a priority level mechanism. Advice bodies or ITD
of types or functions are written down in CDATA-elements of the
XML-file. Currently, there is no around-advice yet.

Some predefined context variables (function name, argument types,
. . .) are available, and variables appearing near the join point shadow
can be used freely in the advice body (A2). It is unclear whether
generic advice is possible using these context variables (T3).

WeaveC’s weaver is implemented in Java, and transforms the AST
of the base program. In the advanced version, CodeSurfer6 is used
to perform the necessary analyses.

3.2 Run-time weaving
Then, there are a number of aspect languages with dynamic weavers,
based on instrumentation libraries or binary rewriting techniques.
As they act on binary code, they fulfill T4 (except forµDiner) and
T1, but not necessarily T5, as platform-independence is question-
able. Different operating systems use other binary formats and each
processor’s instruction set potentially needs a modified weaver.

All dynamic approaches provide some sort of around advice or
a combination of before and after (A3). They support procedure
calls and variable access join point types, but typically there is not
enough context information available at the binary level (A2). Gen-
eric advice is impossible as all these approaches’ languages require
duplication of advice and a priori knowledge of return types (T3).

4
http://c4.cs.princeton.edu/

5
http://weavec.sourceforge.net/

6
http://www.grammatech.com/products/codesurfer/

3.2.1 µDiner
µDiner [20] requires that declarations of advisable funtions and
global variables are annotated as “hookable”, and that a support
library is linked with the created (base) executable, so T4 poten-
tially shows problematic.

Aspects are compiled into shared libraries which are loaded into
the advised base application at run-time. Hooks are then construc-
ted to connect advised join point shadows with the right advices,
and measures are taken to avoid freezing the base application. The
weaving process is processor architecture-dependent (T5).

µDiner’s aspect language features around advice (written in C)
which can access the arguments of an advised procedure call, the
current value of a global variable and (for variable assignment) the
assigned variable. Types are hard-coded in the pointcut (T3). The
familiar cflow-pointcut is replaced by an explicit nested call hier-
archy, always ended either by a function call or by a variable access.

As Arachne supersedesµDiner (see section 3.2.3), no tools are
available forµDiner.

3.2.2 TinyC2

TinyC2 [24] was developed independently fromµDiner, and re-
lies on the DynInst-instrumentation library instead, which uses the
UNIX debugging API (ptrace). Aspects are transformed into self-
contained C++ programs driving DynInst. Once compiled, one can
dynamically advise a running C application.

Disadvantages of this approach, are the relatively high cost due to
DynInst’s use of trampolines and ptrace, and the impossibility of
modifying arguments and return values.

The pointcut language of TinyC2 only supports function call join
points. There is both onentry- and onexit-advice (comparable to
before and after), containing regular C code (A3). Pointcuts use
prefix- or regular expression-based matching of procedure names.
Available context includes explicitly bound function arguments and
global variables, but no thisJoinPoint-construct (A2). When spe-
cified, return and argument types need to be hardcoded (T3).

No implementation of TinyC2 is freely available on the Internet.

3.2.3 Arachne
Arachne [7] improves on theµDiner framework, as annotating the
base code is now obsolete. Dependence on a particular architecture
is now localised in so-called “rewriting strategies” which guide in-
sertion of hooks for a particular join point type on a specific ar-
chitecture. For some reason, Arachne did not function on our ma-
chines, but the prototype weaver is still under heavy development7.

The pointcut language has been reworked, inspired by Prolog (uni-
fication). There is also a new join point type: sequences of function
call and/or (in)direct variable access join points. This is a natural
means for advising protocol-like behaviour, as each element of the
sequence can be advised individually (A2).

Unfortunately, advice is just a normal C procedure, so bound vari-
ables cannot be used in the advice body like Aspicere allows, nor is
there an explicit proceed()-statement. Worse, a procedure’s return
type cannot be hidden behind a predicate, nor is there any context
data available, apart from captured arguments which are passed to
the advice (A2). This means that advice needs to be repeated for
all possible return and argument types (T3).

On the other hand, Arachne’s pointcut and join point model should
be easily extensible and some issues could be ironed out eventually.

7
http://www.emn.fr/x-info/arachne/

3.2.4 TOSKANA
TOSKANA (Toolkit for Operating System Kernel Aspects with
Nice Applications) [8] is another aspect language for C with a dy-
namic weaver (appearing more or less at the same time as Arachne),
but targeted solely at NetBSD’s kernel mode. The weaving mech-
anism is similar to Arachne’s (i.e. “code splicing”), but aspects are
compiled into kernel modules. No prototype is available.

Due to the low-level nature of kernel code, TOSKANA’s aspect
language is very limited. Basically, advice is a C procedure with a
special return type (“ASPECT”) and it can call special macro’s to
proceed with the advised code, access stack state, . . . In general,
this is too low-level for reverse-engineering purposes (A2). In an
initialising function, the advice is then instantiated as e.g. around
advice and applied to a specific procedure execution. There are no
name patterns or other means to advise many procedures at once.

3.3 VM-weaving
The dynamic weaving approaches of the previous section are re-
stricted by the available information in the advised binaries. As
such, richer join point models are hard to provide. What is more,
the dynamic weaving approaches result in unoptimized woven ap-
plications, as the weaving process happens way after the last com-
piler optimization passes.

3.3.1 TOSKANA-VM

The folks of TOSKANA decided to take a look at virtual machines
and came up with the TOSKANA-VM approach [9]: on top of
an L4 microkernel, a bunch of LLVM (Low-Level Virtual Ma-
chine) [17] instances and a weaver are running. LLVM is a com-
piler framework with a universal IR (Intermediate Representation)
and life-long analysis facilities. It can be extended with optional
components to emulate a real virtual machine. So, the LLVM in-
stances are virtual machine instances, in which applications (or
operating systems) are running which have been compiled in the
LLVM bytecode format. This way, the optimization problem is
fixed and more advanced join point types are possible, as LLVM’s
IR stands on a higher level than mere binary code.

A downside of this approach, especially in older environments,
are the relatively high infrastructural requirements like the micro-
kernel and suitable operating system personalities (T5).

No information on the aspect language is available, except for the
available join point types: call, execution, variable assignment and
access. Likewise, no prototype is available on the Internet.

4. POINTS OF IMPROVEMENT
It is important to stress again the fact that our requirements con-
sidered worst case scenarios. E.g. if the case at hand is situated on
a modern Linux environment on top of a standard Intel processor,
T5 is not an issue. If one can fall back on an expert to refactor the
build system, then T4 is not important either.

In the general case, work is needed to address T4. Many Java
projects are using Ant or other XML-based build systems which
can more easily be transformed. Even genuine makefiles are much
more recent there than is the case for C systems. Although T4 is
not a unique issue for C, it will show up more often.

Besides T4, T3 remains the principal problem when using AOP
on crosscutting concerns affecting thoroughly scattered, unrelated
join points. Reverse-engineering is one example, especially during
the initial phases where one tries to narrow down the focus to the
places of interest. Programming conventions [4, 2] are another one.

Only AspectC++ (section 3.1.2), once these features are supported
in C, and Aspicere (section 3.1.3) provide both generic pointcuts
(i.e. beyond mere pattern matching) and advice. The other frame-
works have been designed with more specific crosscutting concerns
in mind, where advice reuse is not the issue.

Finally, although all approaches use the terminology and lots of
features originally introduced by AspectJ [15], typical C features
(or problems) like pointers, dealing with macro’s, slightly different
dialects (T1), . . . have not yet been addressed extensively. This is
unlike the Java world, where one can experiment e.g. with the abc-
workbench [3]. Built on a solid analysis framework, basic weaving
functionality is already provided and people just need to focus on
new features which eventually can loop back to the real AspectJ.

Although AOP in C goes back to 2001 [6], no such mature, ex-
tensible and general-purpose AOP-framework really took off. This
is probably due to C’s higher complexity and the lack of a natural
higher-level IR like bytecode. As a practical consequence, people
need to create a new aspect language like Aspicere from scratch,
facing the same low-level groundwork others came across.

5. CONCLUSION
We reviewed the ten currently known AOP-frameworks for C in the
context of seven requirements set out for a reverse-engineering case
study. Compared to the Java scene, no framework really stands out.
Most of the problems are related to the impact on the existing build
system and the absence of generic advice.

6. ACKNOWLEDGEMENTS
We would like to thank Kris De Schutter, Andy Zaidman, Marc
Fiuczynski (C4) and Pascal Dürr (WeaveC) for their input. Bram
Adams is supported by a BOF grant from Ghent University.

7. REFERENCES
[1] Bram Adams, Kris De Schutter, and Andy Zaidman. AOP

for Legacy Environments, a Case Study. In2nd European
Interactive Workshop on Aspects in Software, 2005.

[2] Bram Adams and Tom Tourẃe. Aspect Orientation for C:
Express yourself. In3rd Software-Engineering Properties of
Languages and Aspect Technologies Workshop (SPLAT),
AOSD, 2005.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ond̃rej Lhot́ak, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: an extensible aspectj compiler. InAOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 87–98, New
York, NY, USA, 2005. ACM Press.

[4] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. An
initial experiment in reverse engineering aspects. InWCRE,
pages 306–307. IEEE Computer Society, 2004.

[5] Yvonne Coady and Gregor Kiczales. Back to the future: a
retroactive study of aspect evolution in operating system
code. InAOSD, pages 50–59, 2003.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to improve the modularity of
path-specific customization in operating system code.
SIGSOFT Softw. Eng. Notes, 26(5):88–98, 2001.

[7] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc
Menaud, Marc Śegura-Devillechaise, and Mario Südholt. An
expressive aspect language for system applications with
Arachne. InAOSD, pages 27–38. ACM Press, 2005.

[8] Michael Engel and Bernd Freisleben. Supporting autonomic
computing functionality via dynamic operating system kernel
aspects. InAOSD ’05, pages 51–62. ACM Press, 2005.

[9] Michael Engel and Bernd Freisleben. Using a LowLevel
Virtual Machine to improve dynamic aspect support in
operating system kernels. In4th AOSD workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), AOSD, 2005.

[10] Marc Fiuczynksi, Robert Grimm, Yvonne Coady, and David
Walker. patch (1) Considered Harmful. InProceedings of the
10th Workshop on Hot Topics in Operating Systems, 2005.

[11] Jeff Gray and Suman Roychoudhury. A technique for
constructing aspect weavers using a program transformation
engine. InAOSD, pages 36–45. ACM Press, 2004.

[12] Robert Grimm. Systems need languages need systems! In
2nd Workshop on Programming Languages and Operating
Systems (ECOOP-PLOS’05), ECOOP, 2005.

[13] Kris Gybels and Johan Brichau. Arranging language features
for more robust pattern-based crosscuts. InAOSD, pages
60–69. ACM Press, 2003.

[14] B. Kernighan and D. Ritchie.The C Programming
Language.Prentice-Hall, 1978.

[15] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect oriented programming. InECOOP, volume 1241,
pages 220–242. Springer-Verlag, 1997.

[16] Ralf Lämmel and Kris De Schutter. What does Aspect
Oriented Programming mean to Cobol? InAOSD ’05, pages
99–110, New York, NY, USA, 2005. ACM Press.

[17] Chris Lattner and Vikram S. Adve. LLVM: A compilation
framework for lifelong program analysis & transformation.
In CGO, pages 75–88. IEEE Computer Society, 2004.

[18] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk.
Generic advice: On the combination of AOP with generative
programming in AspectC++. In Gabor Karsai and Eelco
Visser, editors,Proc. Generative Programming and
Component Engineering: Third International Conference,
volume 3286, pages 55–74. Springer, October 2004.

[19] Klaus Ostermann, Mira Mezini, and Christophe Bockisch.
Expressive pointcuts for increased modularity. InECOOP,
2005.

[20] Marc Śegura-Devillechaise, Jean-Marc Menaud, Gilles
Muller, and Julia Lawall. Web cache prefetching as an
aspect: Towards a dynamic-weaving based solution. In
AOSD, pages 110–119. ACM, 2003.

[21] Olaf Spinczyk, Andreas Gal, and Wolfgang
Schr̈oder-Preikschat. AspectC++: An aspect-oriented
extension to the C++ programming language. InProceedings
of the Fortieth International Conference on Tools Pacific,
pages 53–60. Australian Computer Society, Inc., 2002.

[22] Stijn Van Wonterghem. Aspect-oriëntatie bij procedurele
programmeertalen, zoals C. Master’s thesis, Ghent
University, 2004.

[23] Andy Zaidman, Bram Adams, Kris De Schutter, Serge
Demeyer, Ghislain Hoffman, and Bernard De Ruyck.
Regaining lost knowledge through dynamic analysis and
Aspect Orientation - an industrial experience report. In
CSMR, 2006. Accepted for publication. To Appear.

[24] Charles Zhang and Hans-Arno Jacobsen. TinyC2:towards
building a dynamic weaving aspect language for c. InFOAL
2003, Boston, MA, USA.

