
Made in MAKAO

Forum demonstration proposal

Bram Adams∗

Bram.Adams@UGent.be
GH-SEL, INTEC, Ghent University

Sint-Pietersnieuwstraat 41, 9000 Belgium
Tel.: +3292643318

http://users.ugent.be/˜badams/makao

ABSTRACT
Besides source code, a software system consists of a myriad of
other artifacts, of which the build process has a prominent role.
Without it, the system is useless. This means it needs to evolve in
parallel with the source code in order to build, and hence deploy
and test, the whole system. As such, the build system closely mim-
ics the architecture of the system under consideration. Yet, as it lies
at the meta-level, it has to deal with totally different, lower-level
(build) concerns. And here lies the catch: little tool support exists
to help people bridge the gap between the source-code dimension
and the build process. We present MAKAO (Makefile Architecture
Kernel for Aspect Orientation), a re(verse)-engineering framework
for build systems. Its goals are to represent a build’s dependency
graph in a digestible way, to enable flexible querying of all build-
related data and to allow efficient re-engineering of the build and
even of configuration scripts. For the latter, we applied the aspect-
oriented notions of join point, advice, pointcut and weaving to the
build domain. MAKAO can deal with a wide range of build-related
problems, but this demo focuses on the integration of new tools in
a legacy system.

1. PROBLEM SPACE
Until 1977, ad hoc build and install scripts were used to auto-

mate the build process of software systems. Feldman changed ev-
erything with “make” [1], which turned out to be the most influ-
ential software build tool ever. He proposed to declaratively spec-
ify the dependencies between targets (executables, object files, li-
braries, source files, etc.) in so-called “makefiles”, where the recipe
to build a target is written as an imperative list of commands and
macros. Figure 1 shows an example makefile snippet. On line 1,
a makefile variable named make OBJECTS is defined as a list of
required object files for use in the dependencies of a target called
make$(EXEEXT) in the rule on line 3.

Makefiles run on top of an interpreter relying on the simple ob-
servation that a target T only needs to be (re)built by its recipe if at
least one of its dependencies is newer. This mechanism is transi-
tive: for each dependency D of T, a corresponding rule is searched
where D is now the target. The resulting scheme greatly improves
incremental compilation of software projects and the quality of
builds. If one or more of the dependencies of the rule on line 3 in
Figure 1 do not exist or are newer than target make$(EXEEXT),
the build recipe on lines 4–7 will be executed to create an up-to-date
version of this target.

Later on, portability of software required configurability of both
source code and build scripts. Figure 1 illustrates this with variables
∗Both contact person and presenter.

1 make_OBJECTS = ar .o arscan .o \
commands .o dir .o . . . hash .o

3 make$ (EXEEXT) : $ (make_OBJECTS)
@rm −f make$ (EXEEXT)

5 $ (LINK) $ (make_LDFLAGS) \
$ (make_OBJECTS) \

7 $ (make_LDADD) $ (LIBS)
. . .

Figure 1: Example makefile.

$(EXEEXT), $(LINK), etc. that represent platform-specific char-
acteristics like the extension of binaries, the name of the linker pro-
gram used, etc. A summary of the resulting system can be found
in Figure 2. Both the (re)source(s) and build scripts are in fact
templatised to abstract away from platform-specific configuration
issues. The right value for these options is determined by config-
uration scripts written e.g. using GBS (GNU Build System)1. In
the most general case, these generate the actual build scripts that
will perform the ground work as well as fill in the remaining gaps
in the (re)source(s). The combination of all this is called the build
system.

Build systems play a crucial role, as various stakeholders interact
with it, each with their own concerns and problems:
developers Assess the effects of their code or, if the build did not

succeed, try to find out what error was the culprit. When
adding new source code, they want to find out where they
need to change something.

maintainers Want to learn the inner mechanics of a new system,
check if there is dead code, profile things, find recent addi-
tions, etc.

deployers Try to find out what library dependencies are needed to
compile and run the software.

QA division Wants to add feature and regression tests and run them
as easily as possible.

researchers Try to quickly integrate experimental tools.
As a consequence, the build process implicitly contains valuable

information about all facets of software, enhancing the data gained
by existing reverse-engineering techniques for source code. In fact,
all people interacting with the software system from the design
phase on will have to deal with the build system at some time. This
means that adequate tool support is required to cater for all those
stakeholders’ needs. More specifically, both reverse-engineering
and re-engineering features are needed. User-level concerns like
“what error did halt the build” or “find dead code” need to be

1
http://sources.redhat.com/autobook

1

Figure 2: High-level view of build systems.

mapped on build concerns like targets and build recipes in possi-
bly templatised build scripts. Likewise, assistance is welcome to
facilitate build modifications in the event of e.g. source code refac-
toring.

These observations led us to the idea of an extensible visualisa-
tion and re(verse)-engineering framework for build systems, which
we named the Makefile Architecture Kernel for Aspect Orientation
(MAKAO).

In the remainder of this proposal, we will explain the relevance
of MAKAO to AOSD (section 2), elaborate on its design (section 3)
and implementation details (section 4). We will give an outline of
the demo we propose (section 5), followed by a discussion of re-
lated work (section 6). Finally, we list our presentation require-
ments (section 7) and conclude (section 8).

2. RELEVANCE TO AOSD
There are three reasons why we named our tool suite the “Make-

file Architecture Kernel for Aspect Orientation” (MAKAO) and not
just MAK. First, AOSD is all about separation of concerns (SoC),
be it at the requirements gathering level or e.g. at build-time. At
the latter level, we are talking about typical build concerns like bi-
naries, libraries, Java files, etc. As build systems are very complex
and consist of hundreds of text files spread across a similar num-
ber of locations, the visualisation and exploration of these concerns
becomes an important task, especially when one takes into account
the close relationship with source code. Badly modularised build
scripts severely constrain software evolution, so detecting and iden-
tifying critical spots is of utmost importance.

On the other hand, it is also interesting to explore the useful-
ness of an aspect language for build scripts to accommodate re-
engineering, i.e. some sort of “AspectMakefile”. Interesting join
points are targets, dependencies and commands in build recipes,
whereas useful advice can be the removal or addition of rules and/or
dependencies, modifications of build recipes, etc. When e.g. some
tool is to be replaced by another one in a context-dependent way
and its usage is spread across dozens of rules, a simple query (point-
cut) on the dependency graph can pinpoint the right targets where

commands need to be modified. Then, weaving takes place both
logically (modifying dependency graph) and physically (altering
build scripts or even configuration scripts).

Finally, we would like to point out possible usage of MAKAO
for aspect mining. We haven’t looked into this yet, but we suspect
that e.g. fan-in analysis [3] could be applied to the build process’s
dependency graph to identify possible crosscutting targets (compo-
nents). Of course, it remains to be seen whether the mined infor-
mation would not be too coarse-grained.

3. UNIQUENESS OF MAKAO’S DESIGN AND
IMPLEMENTATION

MAKAO’s philosophy is to make the implicit explicit. The declar-
ative nature of dependency specifications is a good thing, but these
are typically spread over hundreds of files and composed in some
unclear way (e.g. recursively [4]). An easily visualisable represen-
tation combined with a powerful querying facility were two impor-
tant requirements for MAKAO. However, more invasive problems
like the addition of new tools (see sections 2 and 5) also require re-
engineering of the build system. This involves e.g. introducing new
build targets, adding extra dependencies to existing targets or mod-
ifying targets’ recipes. The design of MAKAO needs to take both
the reverse as well as the re-engineering functionality into account,
unlike e.g. Ant Explorer and the BTV Toolkit (see section 6).

Knowing all this, we opted for a Directed Acyclic Graph (DAG)
as the underlying data model of a build run (i.e. a concrete build),
based on the following observations:

• DAGs form the underlying model of “make” [1], and hence
of most of its successors. Nodes are build targets, while
edges represent dependencies between two targets.

• Graphs have a natural visual representation and can be easily
modified.

Providing only static views of a build system would not be use-
ful, as the templates are too general and hence too hard to navigate
or understand. As stakeholders are mostly confronted with instan-
tiated, platform-specific build scripts and code, we chose to process
dynamic traces of concrete builds, but with links back to the static
build data (e.g. the commands dictionary in section 5).

On a higher level, we conceptually subdivided MAKAO into the
following four components:
Explorer (Visually) Explore a representation of the build system.
Finder Query for targets, dependencies and commands based on

properties.
Adviser Write modifications for targets, their dependencies and/or

recipes.
Weaver Apply modifications both logically (in-memory) and phys-

ically (build and configuration scripts).

4. UNDERLYING TECHNIQUES AND TECH-
NOLOGIES USED

Basically, while performing a typical build, the build tool’s inter-
nally constructed dependency graph is extracted. In practice, this
can be obtained by using a modified “make” like “remake” or “BTV
Toolkit” (see section 6) or e.g. by capturing and post-processing the
debug output produced by the build tool. Currently, we use the lat-
ter option, and we implemented some converter scripts to extract
the right data from the obtained build trace.

Figure 3 shows such a dependency graph for a full build of As-
picere [6], as seen in MAKAO’s main panel. We implemented
MAKAO on top of GUESS2, a graph exploration tool with an em-
2
http://graphexploration.cond.org

2

class
java

g

all

Figure 3: Dependency graph of build of Aspicere.

bedded Jython-based scripting language (called Gython). All nodes,
edges and hulls are objects with their own user-definable attributes
(name, concern, line number in makefile, etc.), which enables easy
manipulation, navigation and transformation of the graph. One can
load scripts or interactively try out some commands in the scripting
console (not shown in Figure 3).

After loading, we assign a color to all targets (nodes) based on
their concern. An additional “legend” panel, pasted on Figure 3
here for the reader’s convenience, outlines all known build concerns
in use (“.java”, “.o”, etc.). To correlate the various targets, a colored
hull is drawn around all targets of a given makefile, unless the hull
degenerates to e.g. one node. Unknown concerns are colored black
by default3.

5. DESCRIPTION OF THE DEMO
During the demo, we want to show how MAKAO should typi-

cally be used by applying it on an issue we encountered during a
reverse-engineering experiment [6] using Aspicere, our aspect lan-
guage for C. To weave a tracing aspect into the code base, we had
to integrate Aspicere’s weaver into the build system to let it pre-
process each source file right before its compilation. Doing this
by replacing the relevant commands by a wrapper script around
all compilers and source processors did not resolve subtle issues
like two or more wrappers invoking each other. A simple regu-
lar expression find-and-replace script did not suffice either due to
irregularities in the usage of variables, commands, comments and
white-space. Manually verifying and correcting the makefiles af-
terwards seemed inevitable back then, but we will now revisit this
case with MAKAO.

First, we perform an unaltered build while we extract the con-
structed dependency graph. Figure 4 shows the generated build
trace, while Figure 5 reveals the .gdf graph file extracted from it.
After loading this graph into MAKAO, the Explorer-component
(Figure 6) allows us to verify that there are indeed C source files,
but also ec-files (Embedded SQL), reports, etc. To give an idea
of MAKAO’s versatility, we can use a short query to highlight all
paths in the build where an error occurred and we can easily iden-
tify all offending targets (Figure 7). For the graph shown, they
correspond to unused components that have not been removed yet
from the system.

3As an aside, the dark blue targets of Figure 3 really represent the same concern as
the square (starting) node’s one.

Getting back to the main discussion, we are interested in those
targets T directly depending on (i.e. processing) C files and we
want to insert calls to Aspicere’s weaver in T’s recipe right before
the (sole) source-processing command. To accomplish this, we will
write some aspects. We write the following queries for the Finder-
component (part A of Figure 8):

T_list=(concern==”c”) . inEdges .node1 .findNodes ()
2 base=[(command ,tool ,T) for T in T_list

for command in commands [T .name]
4 for tool in [”gcc” , ”CC”]

i f command .find (tool)!=−1]

On line 1, we select all source nodes of edges leading to C tar-
gets4, presuming that there are no duplicates (to keep the demo
more focused). Then we try to find each T’s sole source-processing
command in its recipe using a Gython list comprehension. As men-
tioned in section 3, the commands dictionary links back to the com-
mands found in the static representation of the build system. The
tools we mention in this query (line 4) could have been discovered
earlier on by querying too. Now, we can write advice for the Ad-
viser (part B of Figure 8):

6 before_advice=
[”\n” .join ([c .replace (t ,t+” −E −o ${<}”) ,

8 ”aspicere . sh ${<}”])
for (c ,t ,ta) in base]

The join function concatenates invocations of the selected tool
t (in preprocessing mode) and of Aspicere’s weaver to get the de-
sirable effect. Finally, the Weaver should weave all these concate-
nated commands at the right place c in the recipes of the targets T
as before advice, both in MAKAO’s memory representation as in
the proper build and/or configuration scripts (part C in Figure 8):

10 cc_weaver=weaver (”aspicere−cc” ,1)
cc_weaver .weave_before ([T for (c ,t ,T) in base] ,

12 [c for (c ,t ,T) in base] ,
before_advice)

For demonstration purposes, we pick out two targets of one par-
ticular build script (Figure 9) that each will be affected by another
aspect (one for the C files, another one for Embedded SQL files).
Their build recipe before logical weaving is shown in Figure 10.
Now, we perform the (logical) weaving (Figure 11) and check back
the woven build recipes of our two reference targets (Figure 12).
We see that the in-memory build recipes have been updated with
extra lines marked with special comments. To verify things, we
could now issue some new queries on MAKAO’s memory model
to see whether any relevant targets were skipped.

In order to do the physical weaving (Figure 13), we use two
Perl scripts that were generated during logical weaving. Figure 14
shows the build script of Figure 9 after physical weaving. The
makefile rules have been modified as intended. If desired, we can
also unweave aspects. Figure 15 e.g. shows the build script of Fig-
ure 14 after unweaving the aspect for Embedded SQL files.

This demo illustrates how MAKAO could have helped us tremen-
dously doing our case study back then, but also that it is flexible
enough to be used in a whole range of other applications.

6. RELATION TO OTHER INDUSTRIAL OR
RESEARCH EFFORTS

Personally, we got involved in research about build systems when
applying Aspicere, our aspect weaver for C, on an industrial code
base [6] (see section 5). We spent a great deal of our time finding
4In the same vein, we also wrote an analogous aspect for embedded SQL files (.ec).

3

out the right place to insert our tools in the build system, writing
an ad hoc makefile transformer and manually verifying the trans-
formation results. Detecting all source code processing tools also
required scanning manually through the whole build trace.

Other people have done dome research about build systems be-
fore. Qiang Tu and Michael W. Godfrey [5] have proposed the build
time architectural view as an addition to Kruchten’s “4+1” view
model [2], together with a proper notation. They backed this claim
by identifying a new architectural style found e.g. within GCC5 and
the Perl interpreter6. The Build Time View (BTV) Toolkit7 is a tool
kit they developed to interpret the build-time architecture of a sys-
tem. It is merely targeted at visualizing the build system, without
support for any modification or manipulation.

yWorks’ Ant Explorer8 is similar in this regard, but targeted at
Ant9 processes. Finally, we mention Remake10, this is an improved
GNU Make with extra tracing capabilities and even a dedicated
makefile debugger. One can set breakpoints, step through the build,
etc.

We can remark that MAKAO is the only tool allowing manipu-
lation of dependency graph and/or build scripts.

7. HARDWARE AND PRESENTATION RE-
QUIREMENTS

We only need a beamer with good color support (see Figure 6),
as we bring our laptop with us.

8. CONCLUSION
Build systems are inherently part of and coupled to software sys-

tems, and they offer valuable architectural information to various
stakeholders. To facilitate quick understanding and clever modifi-
cations, MAKAO offers visualisation, querying and flexible manip-
ulation of both build structure and behaviour, inspired by aspect-
oriented techniques. This demo shows MAKAO in action while
integrating new tools into an existing build system, identifying er-
roneous build paths, etc.

Acknowledgements
The author wants to thank Kris De Schutter and Andy Zaidman for
their support.

9. BIBLIOGRAPHY
[1] S. I. Feldman. Make - a program for maintaining computer

programs. Software - Practice and Experience, 1979.
[2] P. Kruchten. The 4+1 view model of architecture. IEEE Softw.,

12(6):42–50, 1995.
[3] M. Marin, A. van Deursen, and L. Moonen. Identifying

aspects using fan-in analysis. In WCRE, pages 132–141. IEEE
Computer Society, 2004.

[4] P. Miller. Recursive make considered harmful, 1997.
[5] Q. Tu and M. W. Godfrey. The build-time software

architecture view. In ICSM, pages 398–407, 2001.
[6] A. Zaidman, B. Adams, K. De Schutter, S. Demeyer,

G. Hoffman, and B. De Ruyck. Regaining lost knowledge
5
http://gcc.gnu.org

6
http://www.perl.com

7
http://swag.uwaterloo.ca/˜xdong/btv

8
http://www.yworks.com/en/products_antexplorer_about.htm

9
http://ant.apache.org

10
http://bashdb.sourceforge.net/remake

through dynamic analysis and Aspect Orientation - an
industrial experience report. In CSMR, 2006.

4

Figure 4: Small part of the generated build trace.

5

Figure 5: Extracted dependency graph.

6

Figure 6: Full dependency graph opened in MAKAO.

7

Figure 7: Subgraph of dependency graph corresponding to erroneous build paths.

8

ABC

Figure 8: Aspect for C files. The parts labeled “A”, “B” and “C” correspond to the code snippets of section 5.

9

Figure 9: Makefile containing the two reference targets.

10

Figure 10: Original build recipes of the two reference targets as seen in-memory.

11

Figure 11: Invoking the logical weaving.

12

Figure 12: Modified (in-memory) build recipes of the reference targets.

13

Figure 13: Running the physical weaving scripts.

14

Figure 14: Example makefile after physical weaving of both aspects.

15

Figure 15: Example makefile after unweaving of aspect for Embedded SQL files.

16

