
ERCIM 2006

Aspect-orientation for revitalising legacy
business software

Kris De Schutter, Bram Adams

{Kris.DeSchutter,Bram.Adams}@UGent.be
Ghislain Hoffman Software Engineering Lab, INTEC

Ghent University, Belgium

Abstract

This paper relates on a first attempt to see if aspect-oriented programming (AOP) and logic
meta-programming (LMP) can help with the revitalisation of legacy business software.
By means of four realistic case studies covering reverse engineering, restructuring and
integration, we discuss the applicability of the aspect-oriented paradigm in the context of
two major programming languages for legacy environments: Cobol and C.

Key words: AOP, LMP, legacy software, evolution.

1 Introduction

This paper addresses the question of whether a combination of aspect-oriented
programming (AOP) [8] and logic meta-programming (LMP) [16] techniques can
really help with the revitalisation of legacy business software. The hypothesis that
this might be so (details in section2) is not a new one. It is, for instance, at the
heart of the ARRIBA1 project, which the authors are associated with. The reas-
oning is that using aspects one might instrument, transform, or otherwise modify
the original legacy applications from the outside without having to prepare them
in any special way. This opens up the road —or ratheranotherroad— to reverse
engineering, restructuring, integration, bug-fixing, maintenance in general, etc.

While the idea of applying AOP to real-life legacy applications is a compelling
one, no real case studies exist (sofar) doing exactly this. Though there have been
experiments on “legacy” OO code (such as JHotDraw [5]), none exist which have
dealt with any kind of Cobol application. We believe this to be most likely due
to the lack of usable instantiations of AOP for such environments. While the first
author has made progress towards an “AspectCobol” (see [9], work done in associ-
ation with Ralf L̈ammel), a version that is generally usable in practice is not there

1 ARRIBA: Architectural Resources for the Restructuring and Integration of Business Applications; a GBOU project
sponsored by the IWT-Flanders. Seehttp://arriba.vub.ac.be/ for more info.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://arriba.vub.ac.be/

De Schutter and Adams

yet. The situation for legacy C applications is somewhat better given the many dif-
ferent available AOP incarnations [1], but here too the application of AOP to real
problems with industrial legacy code is still in its infancy.

Therefore this paper takes a different approach at finding a validation for our
hypothesis: we try to write down aspects for several fictitious (though realistic)
cases. The idea is that we should at least be able to tackle this step if the hypothesis
is to hold true. As such this paper considers the validity of anecessaryrequirement,
rather than asufficientone. In order for this experiment to work best, the examples
presented here will each have very different scopes, corresponding to ARRIBA’s
fields of interest. The first (section3) will be on reverse engineering, in which as-
pects are used as an enabling technology. The second (section4) will be on the
recovery of business logic. The third example (section5) will tackle the encapsu-
lation of business applications, something which should be of use when wanting
to integrate these legacy applications into service-oriented (SOA) environments.
The fourth and final example (section6) will focus on a maintenance/bug-fixing
problem, using the Y2K bug as an example.

It should be noted that we have been able to test out the first problem on a real
case study, and that we will report on some of the major findings in this text. The
other ones have not yet had this validation.

2 Hypothesis

Business applications are instantiations of specific business processes, and as such
they are highly susceptible to the evolution thereof. With increased globalisation
of enterprises, and ever greater demand for interconnectivity between companies,
comes increasing pressure to scale up and integrate business applications. Aside
from difficulties in integrating the different businessmodelsand their associated
businessprocesses, getting the businessapplicationsto cooperate is a major hurdle:
in all but a few cases the documentation and support of these applications is insuf-
ficient (or even absent).

In general, the data repositories and the running programs provide the only true
description of the information structures and applications they implement. Hence,
the actual data and the source code of those applications form the only dependable
documentation.

Merging business applications will always require the application of human ex-
pertise. Unfortunately, in an environment where its assets are so poorly understood
this expertise can never be fully exploited.

As part of the ARRIBA project, we focus on how the emerging paradigm of
AOP (combined with LMP) can be applied to this problem. AOP recognizes the
problems caused by so-called crosscutting concerns (CCCs) and tries to solve them.
Put briefly, some concern A is crosscutting w.r.t. another one (B) if A’s implement-
ation is “scattered” throughout the software system and at some point is “tangled”
(mixed) with the implementation of B (more details in [14], among others). These
symptoms can’t be treated natively in traditional paradigms like OO or procedural

2

De Schutter and Adams

programming, such that programs end up as complex, brittle constructions which
are hard to maintain, evolve or even understand. Apart from pinpointing the ex-
istence of CCCs, AOP addresses them using so-called aspects. These are separate
modules (typically) dedicated tooneCCC. They contain one or more smaller “ad-
vice” constructs whose bodies can be written in the base language, constituting the
CCC’s full implementation. The key issue here is that the advice code will need
to be attached to (“woven into”) the “base” code at the right places (“join points”
identified by the advice’s “pointcut”) by the time the program execution reaches
these. This is taken care of by an “aspect weaver”, e.g. at compile time. In short,
AOP promises clean modularisation of CCCs using aspects.

LMP on the other hand is a particular form of declarative meta-programming,
in which meta-programs can be written based on logic rules and facts representing
programs, metadata or any other useful knowledge [16]. As such, LMP can be
complementary to AOP and we exploit this by using LMP in our advices’ pointcuts.

We claim that this combination of LMP and AOP aids in the recovery of busi-
ness architectures, as well as in the restructuring and integration of business applic-
ations, based on two observations. First, by embedding AOP in existing business
environments we can empower software developers with a flexible toolchain while
avoiding a steep learning curve. In using this toolchain, there is no requirement to
move away from the existing development techniques; there is only the incentive to
work with something that augments them. This can make for a faster turn-around
based on available expertise.

Second, LMP can be used for expressing business concepts and architectural
descriptions of business applications in a declarative way. This makes it possible
to work with applications at a higher level of abstraction, which will allow better
architectural descriptions to emerge. By making these descriptions available for
practical use we can actively encourage development and understanding thereof.

In the next four sections, we will now investigate whether the combination of
AOP and LMP indeed is able to express solutions to realistic problems in legacy
systems.

3 Enabling dynamic analyses of legacy software

In order to help legacy systems evolve, one needs a thorough understanding of the
systems at hand. As in these environments there is most often a lack of (up-to-
date) documentation, one is forced into applying reverse engineering techniques.
Dynamic analyses offer one approach to this, by analysing traces of the dynamic
run-time behaviour of systems [6,17]. The role for AOP which we will be discuss-
ing here is to enable such techniques by applying some tracing aspect to existing
applications.

3

De Schutter and Adams

1 static FILE * fp;

3 Type around tracing (Type) on (Jp):
call(Jp,"ˆ(?!. * printf$|. * scanf$). * $")

5 && type(Jp,Type) && !is_void(Type)
{

7 Type i;

9 fprintf (fp, "before (%s in %s)\n",
Jp->functionName, Jp->fileName);

11

i = proceed ();
13

fprintf (fp, "after (%s in %s)\n",
15 Jp->functionName, Jp->fileName);

17 return i;
}

Fig. 1. A generic tracing aspect: tracing advice.

int around cleanup (Name) on (Jp):
20 execution(Jp,"main")

&& logfile(File) && stringify(File,Name)
22 {

int i;
24

fp = fopen (Name, "a"); / * open in append mode * /
26 i = proceed ();

fclose (fp);
28

return i;
30 }

Fig. 2. A generic tracing aspect: initialisation and cleanup.

3.1 The code

Figure1 shows part2 of a generic tracing aspect written in Aspicere3 , an aspect
language for C we developed [18]. In Aspicere, an aspect is a C module which can
also contain advice (e.g. lines3–18). An advice consists of a signature (line3),
a pointcut (lines4–5) and a body containing C code (lines6–18). The advice of

2 We do not show advice for void procedures, as this is equivalent to the advice of figure1, minus the need for a temporary
variable to hold the return value.
3 Website:http://users.ugent.be/˜badams/aspicere/ .

4

http://users.ugent.be/~badams/aspicere/

De Schutter and Adams

figure1 is activated on calls to all procedures except for theprintf - andscanf -
families (line4), and only for those procedures which do return a value (pointcut
condition on line5 on the type not beingvoid). The advice will stream tracing in-
formation to a filefp (declared on line1) before and after these events (fprintf
calls on lines9 and14 respectively). In between the tracing advice code, one can
invoke the events themselves through theproceed call on line12. Opening and
closing of the file pointerfp is achieved by advising the sole execution of the
main -procedure (figure2) in a similar way.

There are two things to note here which are of importance. The first is the
use of an AspectJ-likethisJoinPoint construct ([7]) on lines 10 and 15 to
retrieve context-specific information on the current runtime event being advised
for output to the trace. The second is the use ofType as a kind of generic type
specifier. It is used inside the tracing advice (line7) to deal with the various possible
return types which may occur, and which C is not able to handle in a uniform way.
The value of this type specifier is something which gets extracted by the aspect
weaver during the matching of join points in the base program (type predicate on
line 5), and which is instantiated in the advice like a C++ template parameter. These
two additions provide reflective and context information lacking in the legacy base
language. Without them, AOP would not be viable in legacy languages, whereas
many modern OO languages already offer these features by themselves.

3.2 Evaluation: pro

Applied to reverse-engineering contexts, the use of AOP and a template mechan-
ism allows non-invasive and intuitive extraction of knowledge hidden inside legacy
systems,without prior investigation or exploration of the source code [18]. One
does not have to first extract all available types and write down the tracing advice
for all of them, as was experienced in [3].

3.3 Evaluation: contra

As source code is the most portable representation of C programs across several
platforms, Aspicere relies on a source-to-source weaving strategy, which corres-
ponds to an extra preprocessing pass before the normal C compilation. More spe-
cifically, aspects are transformed into genuine C compilation units by converting
the advices into (multiple) procedures. This enables the normal C visibility rules in
a natural way, i.e. the visibility offp on figure1 is tied to the module containing
the aspect. To fully accomplish this modularisation, this single transformed aspect
also needs to be linked into each advised application. Because the makefile system
building all applications is a very complex chain of dependencies between object
files, libraries and executables produced by a myriad of tools and preprocessors
(e.g. embedded SQL), and all of these potentially process advised input, it turns
out thatAspicere’s weaver crosscuts the makefile system4 . However, we need to

4 This problem is far more widespread than just the application of an aspect weaver: anytime one needs to add a new build
step or new resources to a build system, similar issues arise.

5

De Schutter and Adams

find out what is produced at every stage of the build and unravel accompanying
linker dependencies.

In case all makefiles are automatically generated using, for instance, automake,
one could try to replace (i.e. alias) the tools in use by wrapper scripts which invoke
the weaving process prior to calling the original tool. The problem here is that this
is an all-or-nothing approach. It may be that in some cases weaving is needed (e.g.
a direct call togcc), and in others not (e.g. whengcc is called from withinesql).
Making the replacement smart enough to know when to do what is not a trivial task.

In [18], we applied the tracing aspect of figure1 to a large case study (453
KLOC of ANSI-C) to enable dynamic analyses. The system consisted of 267
makefiles, not all of which were generated. Without intimate knowledge of the
build system, it was hard to tell whether source files were first compiled before
linking all applications, or (more likely) whether all applications were compiled
and linked one after the other. As such, our weaving approach was not immedi-
ately applicable and we had to resort to an ad hoc solution, resulting in (slightly)
degraded performance of the woven application.

While dynamic analyses can be enabled using aspects without the need to pre-
pare the source code of legacy applications in any way, one is still faced with having
to prepare the build system for these applications (once). As many such applica-
tions rely on custom defined and sometimes complex makefile hierarchies (or sim-
ilar), any real use of AOP for revitalising legacy software (see e.g. section4) will
depend on a solution to this problem.

4 Mining business rules in legacy software

When implemented in software, business knowledge, information and rules tend
to be spread out over the entire system. With applications written in Cobol this
is even more the case, as Cobol is a language targeted at business processing5

but without modern day modularity mechanisms. This information tends to get
lost over time, so that when some maintenance is required one is again forced into
reverse engineering. We argue that AOP can provide a flexible tool for such efforts.

We will now revisit a case from [10], in which Isabel Michiels and the first
author discuss the possibility of using dynamic aspects for mining business rules
from legacy applications. The case, put briefly, is this:

“Our accounting department reports that several of our employees were accred-
ited an unexpected and unexplained bonus of 500 euro. Accounting rightfully
requests to know the reason for this unforeseen expense.”

We will now revisit this case, showing the actual advices which may be used to
achieve the ideas set forth in that paper. The code shown here is written in Cobble6 ,
an implementation of an “AspectCobol” language designed by Ralf Lämmel and
the first author [9].

5 Cobol = CommonBusinessOriented Language
6 Website:http://users.ugent.be/˜kdschutt/cobble/ .

6

http://users.ugent.be/~kdschutt/cobble/

De Schutter and Adams

4.1 The code

We start off by noting that we are not entirely in the dark. The accounting depart-
ment can give us a list of the employees which got “lucky” (or unlucky, as their
unexpected bonus did not go by unnoticed). We can encode this knowledge as
facts:

META-DATA DIVISION.
2 FACTS SECTION.

LUCKY-EID VALUE 7777.
4 LUCKY-EID VALUE 3141.

* > etc.

This code reads as “Employees 7777, 3141, etc. got an unexpected bonus”. Fur-
thermore, we can also find the definition of the employee file which was being
processed, in the copy books (roughly similar to header files in C):

1 DATA DIVISION .
FILE SECTION.

3 FD EMPLOYEE-FILE.
01 EMPLOYEE.

5 05 EID PIC 9(4).

* > etc.

Lastly, from the log output we can figure out the name of the data item holding an
employee’s total end-of-year bonus. This data item,BNS-EUR, turns out to be an
edited picture. From this we conclude that it is only used for pretty printing the
output, and not for performing actual calculations. At some time during execution
the correct value for the bonus was moved toBNS-EUR, and subsequently printed.
So our first task is to find what variable that was. We go at this by tracing all moves
to BNS-EUR, butonly while processing one of our lucky employees:

FIND-SOURCE-ITEM SECTION.
2 USE BEFORE ANYSTATEMENT

AND NAMEOF RECEIVER EQUAL TO"BNS-EUR"
4 AND BIND LOC TO LOCATION

AND IF EID EQUAL TOLUCKY-EID.
6 MY-ADVICE.

DISPLAY EID, ": ", LOC.

In short, this advice states that before all statements (line 2) which haveBNS-EUR
as a receiving data item (line 3), and ifEID (id for the employee being currently
processed; see data definition higher up) equals a lucky id (runtime condition on
line 5), we display the location of that statement as well as the current id. Amongst
several string literals (which we can therefore immediately disregard) we find a
variable namedBNS-EOY, whose name suggests it holds the full value for the end-
of-year bonus.

Our next step is to figure out how the end value was calculated. We set up
another aspect to trace all statements modifying the variableBNS-EOY, but again

7

De Schutter and Adams

only while processing a lucky employee. We do this in three steps. First:

1 TRACE-BNS-EOY SECTION.
USE BEFORE ANYSTATEMENT

3 AND NAMEOF RECEIVER EQUAL TO"BNS-EOY"
AND BIND LOC TO LOCATION

5 AND IF EID EQUAL TOLUCKY-EID.
MY-ADVICE.

7 DISPLAY EID, ": statement at ", LOC.

Before execution of any statement (line 2) havingBNS-EOYas a receiving data
item (line 3), and when processing a lucky employee (line 5), this would output the
location of that statement. Next:

1 TRACE-BNS-EOY-SENDERSSECTION.
USE BEFORE ANYSTATEMENT

3 AND NAMEOF RECEIVER EQUAL TO"BNS-EOY"
AND BIND SENDING TO SENDER

5 AND BIND SENDING-NAMETO NAMEOF SENDING
AND IF EID EQUAL TOLUCKY-EID.

7 MY-ADVICE.
DISPLAY SENDING-NAME, " sends ", SENDING.

This outputs the name and value for all sending data items (lines 4 and 5) before
execution of any of the above statements. This allows us to see the contributing
values. Lastly, we want to know the new value forBNS-EOYwhich has been
calculated.

TRACE-BNS-EOY-VALUESSECTION.
2 USE AFTER ANYSTATEMENT

AND NAMEOF RECEIVER EQUAL TO"BNS-EOY"
4 AND IF EID EQUAL TOLUCKY-EID.

MY-ADVICE.
6 DISPLAY "BNS-EOY = ", BNS-EOY.

We now find a data item (cryptically) namedB31241 , which is consistently
valued 500, and is added toBNS-EOYin every trace. Before moving on we would
like to make sure we are on the right track. We want to verify that this addition of
B31241 is only triggered for our list of lucky employees. Again, a dynamic aspect
allows us to trace execution of exactly this addition and helps us verify that our
basic assumption holds indeed. We start by recording the location of the “culprit”
statement as a usable fact:

META-DATA DIVISION.
2 FACTS SECTION.

CULPRIT-LOCATION VALUE 666.
4 * > other facts as before

The test for our assumption may then be encoded as:

8

De Schutter and Adams

TRACE-BNS-EOY-SENDERSSECTION.
2 USE BEFORE ANYSTATEMENT

AND LOCATION EQUAL TOCULPRIT-LOCATION
4 AND IF EID NOT EQUAL TOLUCKY-EID.

MY-ADVICE.
6 DISPLAY EID, ": back to the drawing board.".

This tests whether the culprit statement gets triggered during the process of any of
the other employees. If it does, then something about our assumption is wrong. Or
it may be that the accounting department has missed one of the lucky employees.

Given the verification that we are indeed on the right track, the question now
becomes: why was this value added for the lucky employees and not for the others?
Unfortunately, the logic behind this seems spread out over the entire application. So
to figure this out we would like to have an execution trace of each lucky employee,
including a report of all tests made and passed, up to and including the point where
B31241 is added. Dynamic aspects allow us to get these specific traces. First,
some preliminary work:

WORKING-STORAGE SECTION.
2 01 FLAG PIC 9 VALUE 0.

88 FLAG-SET VALUE 1.
4 88 FLAG-NOT-SET VALUE 0.

The FLAG data item will be used to indicate when tracing should be active and
when not. For ease of use we also define two “conditional” data items:FLAG-SET
andFLAG-NOT-SET. These reflect the current state of our flag. Our first advice
is used to trigger the start of the trace:

TRACE-START SECTION.
2 USE AFTER READSTATEMENT

AND NAMEOF FILE EQUAL TO "EMPLOYEE-FILE"
4 AND BIND LOC TO LOCATION

AND IF EID EQUAL TOLUCKY-EID.
6 MY-ADVICE.

SET FLAG-SET TO TRUE.
8 DISPLAY EID, ": start at ", LOC.

I.e., whenever a new employee record has been read (line 2 and 3), and that record
is one for a lucky employee (line 5), we set the flag to true (line 7). We also do
some initial logging (line 8). The next advice is needed for stopping the trace when
we have reached the culprit statement:

TRACE-STOP SECTION.
2 USE AFTER ANYSTATEMENT

AND LOCATION EQUAL TOCULPRIT-LOCATION.
4 MY-ADVICE.

SET FLAG-NOT-SET TO TRUE.
6 DISPLAY EID, ": stop at ", LOC.

9

De Schutter and Adams

Then it is up to the actual tracing. We capture the flow of procedures, as well as
execution of all conditional statements:

TRACE-PROCEDURESSECTION.
2 USE AROUND PROCEDURE

AND BIND PROCTO NAME
4 AND BIND LOC TO LOCATION

AND IF FLAG-SET.
6 MY-ADVICE.

DISPLAY EID, ": before ", PROC, " at ", LOC.
8 PROCEED.

DISPLAY EID, ": after ", PROC, " at ", LOC.
10

TRACE-CONDITIONS SECTION.
12 USE AROUND ANYSTATEMENT

AND CONDITION
14 AND BIND LOC TO LOCATION

AND IF FLAG-SET.
16 MY-ADVICE.

DISPLAY EID, ": before condition at ", LOC.
18 PROCEED.

DISPLAY EID, ": after condition at ", LOC.

From this trace we can then deduce the path that was followed from the start of pro-
cessing a lucky employee, to the addition of the unexpected bonus. More import-
antly, we can see the conditions which were passed, from which we can (hopefully)
deduce the exact cause.

This is where the investigation ends. For those curious, we find thatB31241
is part of the following business rule: it is a bonus an employee receives when he
or she has sold at least 100 items of the product with number 31241. Apparently
this product code had been assigned to a new product the year before. It was once
associated to another product which had been discontinued for several years. The
associated bonus was left behind in the code, and was never triggered until employ-
ees started selling the new product.

4.2 Evaluation: pro

AOP+LMP provided us with a flexible and powerful tool to perform our investiga-
tion. Dynamic aspects allow for easy inspection of the behaviour of applications by
enabling smart tracing, verification of assumptions and mining of business logic.
LMP adds to this the capability of recording and exploiting recovered knowledge.

4.3 Evaluation: contra

First of all, it is required (see section3.3) that the Cobble weaver has been in-
tegrated into the build system. During the weaving process, every new aspect re-
quires reweaving, recompiling, relinking and redeployment of the entire base sys-

10

De Schutter and Adams

1 DISPATCHING SECTION.
USE AROUND PROGRAM

3 AND BIND PARA TO PARAGRAPH
AND BIND PARA-NAMETO NAMEOF PARA

5 AND IF METHOD-NAMEEQUAL TOPARA-NAME.
MY-ADVICE.

7 PERFORMPARA.

9 ENCAPSULATIONSECTION.
USE AROUND PROGRAM.

11 MY-ADVICE.
PERFORMERROR-HANDLING.

13 EXIT PROGRAM.

Fig. 3. Aspect for basic procedure encapsulation.

tem, which so far comes at a higher cost than, for instance, debugging tools or
instrumentation techniques such as DTRACE [4] or ATOM [13]. DTRACE for in-
stance is a scriptable tracing system built into the (Solaris) operating system and is
able to extract user-defined information from a running program.

5 Encapsulating procedures

In [12], Harry and Stephan Sneed discuss creating web services from legacy host
programs. They argue that while tools exist for wrapping presentation access and
database access for use in distributed environments,

“accessing [...] the business logic of these programs, has not really been solved.”

In an earlier paper [11], Harry Sneed discusses a custom tool which allowed the
encapsulation of Cobol procedures, to be able to treat them as “methods”, a first
step towards wrapping business logic. Part of that tool has the responsibility of cre-
ating a switch statement at the start of the program, which performs the requested
procedure, depending on the method name passed as a program argument. We will
look at an aspect-based solution.

5.1 The code for the basic problem

Figure3 shows how encapsulation of procedures (or “business logic”) can be achie-
ved, in a generic way, using AOP and LMP. The aspect shown here, written in
Cobble, consists of two advices liberally exploiting LMP features.

The first advice,DISPATCHING(lines 1–7), takes care of the dispatching. It
acts around the execution of the entire program (line 2), and once for every para-
graph in this program (line 3). The latter effect is caused by the ambiguity of the
PARAGRAPHselector. This can be any of a number of values. Rather than just
picking one, what Cobble does ispick them all: the advice gets activated for every

11

De Schutter and Adams

possible solution to its pointcut, one after the other. However, theDISPATCHING
advice will only get triggered whenMETHOD-NAMEmatches the name of the se-
lected paragraph (extraction of this name happens on line 4). This is encoded in a
runtime condition on line 5. Finally, the advice body, when activated, simply calls
the right paragraph (PERFORMstatement on line 7).

The second advice,ENCAPSULATION(lines 9–13), serves as a generic catch-
all. It captures execution of the entire program (line 10), but replaces this with a
call to an error handling paragraph (line 12) and an immediate exit of the program
(line 13). The net effect is that whenever the value inMETHOD-NAMEdoes not
match any paragraph name in the program, the error will be flagged and execution
will end. This, together with the first advice, gives us the desired effect.

We are left with the question of whereMETHOD-NAMEis defined, and how
it enters our program. The answer to the first question is simply this: any argu-
ments which get passed into a Cobol program from the outside must be defined in
a linkage section. I.e.:

1 LINKAGE SECTION.
01 METHOD-NAMEPIC X(30) VALUE SPACES.

Furthermore, the program division needs to declare that it expects this data item as
an input from outside:

PROGRAM DIVISION USINGMETHOD-NAME.

This begs the question as to how this input parameterMETHOD-NAMEwas added to
the base program in an AOP-like way. Simply: it wasnot. We tacitly assumed our
aspect, and the accompanying input parameters, to be definedinsidethe target pro-
gram (a so-called “intra-aspect”). Of course, for a truly generic “inter-aspect” we
need to remedy this. Definition of theMETHOD-NAMEdata item would be no big
problem. We could simply define it within an aspect module, which, upon weav-
ing, would augment the target program (modulo some alpha-renaming to prevent
unintended name capture):

1 IDENTIFICATION DIVISION .
ASPECT-ID. PROCEDURE-WRAPPING.

3

DATA DIVISION .
5 LINKAGE SECTION.

01 METHOD-NAMEPIC X(30) VALUE SPACES.

From this, it becomes pretty obvious thatMETHOD-NAMEwill be used as an input
parameter of thebase program. The concept of a linkage section makes no sense
for the external aspect module itself, as an aspect will never be called in such a way.

5.2 The code for the extended problem

The complexity of the problem increases when we consider the fact that paragraphs
usually contain various variables used as in- and output. Sneed’s tool takes care of

12

De Schutter and Adams

{ IDENTIFICATION DIVISION .
2 ASPECT-ID. PROCEDURE-WRAPPING.

4 DATA DIVISION .
LINKAGE SECTION.

6 01 METHOD-NAMEPIC X(30) VALUE SPACES. },

8 findall(
[Name, Para, Wss],

10 (paragraph(Name, Para),
slice(Para, Slice),

12 wss(Slice, Wss)
),

14 AllInOut
),

16

max_size(AllInOut, VirtualStorageSize),
18 { 01 VSPACE PIC X(<VirtualStorageSize>). },

20 all(member([Name, Para, Wss], AllInOut), (
{ 01 SLICED-<Name> REDEFINES VSPACE.},

22 all((record(R, Wss), name(R, RName)), (
clone_and_shift(R, "<RName>-<Name>", SR),

24 { <SR> }
))

26)),

Fig. 4. Full procedure encapsulation (part one).

this in the following way:

“For each [encapsulated] method a data structure is created which includes all
variables processed as inputs and outputs. This area is then redefined upon a
virtual linkage area. The input variables become the arguments and the output
variables the results.” [11]

Put another way, one must find all data items on which the encapsulated procedures
depend. These are then gathered in new records (one per procedure), all of which
redefine the same “virtual linkage area” (in C terms: a union over all newly gener-
ated typedefs). This linkage area must then also be introduced as an input data item
of the whole program.

Such a requirement seems far out of the scope of AOP. While it has a crosscut-
ting concern in it (cfr. “foreachmethod”), this concern can not be readily defined
using existing AOP constructs. Instead, the code in figures4 and5 shows a differ-
ent approach to the problem. It is encoded neither in Cobble or Aspicere, opting
for a different view on the AOP+LMP equation. Whereas the previous examples

13

De Schutter and Adams

28 { PROGRAM DIVISION USINGMETHOD-NAME, VSPACE.
DECLARATIVES. },

30

all(member([Name, Para, Wss], AllInOut), (
32 { WRAPPING-FOR-<Name> SECTION.

USE AROUND PROGRAM
34 AND IF METHOD-NAMEEQUAL TO"<Name>".

WRAPPING-BODY.
36 },

all((top_record(R, Wss), name(R, RName)),
38 { MOVE<RName>-<Name> TO <RName>.}

),
40 { PERFORM<Name>.}

all((top_record(R, Wss), name(R, RName)),
42 { MOVE<RName> TO <RName>-<Name>.}

)
44)),

46 { ENCAPSULATION SECTION.
USE AROUND PROGRAM.

48 MY-ADVICE.
PERFORMERROR-HANDLING.

50 EXIT PROGRAM.
END DECLARATIVES. }

Fig. 5. Full procedure encapsulation (part 2).

were based on LMP embedded in AOP, this code is based on a generative program-
ming approach, similar to that in [2]. The code can be read as follows. Anything
enclosed in curly brackets ({. . .}) is (aspect-)code which is to be generated. This
can be further parameterized by placing variables between angle brackets (<. . .>),
which will get expanded during processing. Everything else is Prolog, used here to
drive the aspect generation.

Let us apply this knowledge to the code in figures4 and5. Lines 1 and 2 on fig-
ure4 declare the header of our aspect, while lines 4–6 define the linkage section as
discussed before. Lines 8–15 calculate all base program slices [15] (slice/2 on
line 11) for all paragraphs (paragraph/2 on line 10). From each of these we ex-
tract the working-storage section (wss/2 on line 12), which gives us the required
in- and output parameters, collected inAllInOut (line 14). From this we extract
the size of the largest one (max size/2 on line 17) which is used next in the defin-
ition of the virtual storage space (line 18). Then, for each paragraph (i.e. for each
member ofAllInOut), we generate a redefinition of the virtual space to include
all data items on which that paragraph depends (lines 20–26). The redefinition can
be seen on line 21, where it is given a unique name (i.e.SLICED- paragraph-
name). Its structure is defined by going over all records in the working-storage

14

De Schutter and Adams

section for that paragraph (line 22), cloning each record under a new, unique name
while updating the level number (line 23), and then outputting this new record
(line 24). This concludes the data definition. Next (on figure5), the procedure di-
vision is put down, declaring the necessary parameters (line 28). We then generate
advice similar to that in figure3, but now they need to perform some extra work.
First, they must transfer the data from the virtual storage space as redefined for
the paragraph, to the original records defined for the program (lines 37–39). The
original paragraph may then be called without worry (line 40). Afterwards, the cal-
culated values are retrieved by moving them back to the virtual storage space, again
as redefined for the paragraph (lines 41–43). All that is left is the generic catch-all
(lines 46–50), and the closing of the aspect (line 51).

5.3 Evaluation: pro

Despite the inherent complexity of the problem, AOP+LMP allowed us to write
down our crosscutting concern in a generic way with certain ease. LMP was lever-
aged to define our aspect by reasoning over the program, while AOP was used to
tackle the actual modification of the application. Granted, we quite happily made
use of a slicing predicate to do most of the hard work (line 11). Still, the use of
libraries which hide such algorithms is another bonus we can get from LMP.

5.4 Evaluation: contra

The hard part of the above aspects lies with the semantics of declaring extra input
data items on another program. What do we expect to happen?

• Does the introduction of an input data item by the aspect replace existing input
items in the advised program, or is it seen as an addition to them?

• If it is added to them, then where does it go into the existing list of inputs? At
the front? At the back?

• What happens when multiple aspects define such input items? In what order do
they appear?

• How do we handle updating the sites where the woven program gets called? The
addition of an extra input item will have broken these.

Consider the C or Java equivalent of this: what does it mean to introduce new
parameters on procedures or methods? More to the point,shouldwe allow this?

The need for a generative approach gives a firm hint that we are touching on
the boundaries of current AOP language technology here, but it is not yet clear
whether this means that current language research has not advanced enough or that
AOP does not lend itself to solve this problem.

15

De Schutter and Adams

6 Year 2000 syndrome

The Y2K-bug is probably the best-known example of unexpected change in legacy
systems, somewhere ahead of the conversion to the Euro currency. It is important to
understand that at the heart of this was not a lack of technology or maturity thereof,
but rather the understandable failure to recognize that code written as early as the
sixties would still be around some forty years later. So might AOP+LMP have
helped solving the problem? The problem statement certainly presents a cross-
cutting concern: whenever a date is accessed in some way, make sure the year is
extended.

6.1 The code

This presents our first problem: how do we recognize data items for dates in Cobol?
While Cobol has structured records, and stringent rules for how data is transferred
between them, they carry no semantic information whatsoever. Knowing which
items are dates and which are not, requires human expertise. The nice thing about
LMP is that we could have used it to encode this. In C, where a disaster is expected
in 20387 (hence Y2K38), the recognition problem is less serious because of C’s
more advanced typing mechanisms. A date in (ANSI-)C could be built around
the standard time provisions (in “time.h”), or otherwise some (hopefully sensibly
named) custom typedef. In the former case, recompiling the source code on a
system using more than 32 bits to represent integers solves everything immediately.
In the latter case, C allows variables to be declared as instances of user-defined
types, whereas in Cobol, variables have to be declared in terms of the same, low-
level Cobol primitives (e.g. a sequence of ten digits). These user-defined types
in C are most likely sufficiently modularized, allowing for a localized (non-AOP)
solution.

Second problem for Cobol: given the knowledge of which data items carry
date information, how do we know which part encodes the year? It may be that
some item holds only the current year, or that it holds everything up to the day.
A data item may be inGregorian form (i.e. “yyddd”) rather than standard form
(“yymmdd”). Of course, that “standard” may vary from locale to locale (the au-
thors would write it as “ddmmyy”). But again, we could use LMP to encode this
knowledge.

Let us assume we can check (based on design information) for data items which
hold dates, and that these have a uniform structure (in casu “yymmdd”). Then we
might write something like:

A-YYMMDD-FIX SECTION RETURNINGMY-DATE.
2 USE AROUNDSENDING-DATA-ITEM

AND SENDING-DATA-ITEM IS DATE.
4 MY-ADVICE.

MOVE PROCEED TOMY-DATE(3:8).

7 More details onhttp://www.merlyn.demon.co.uk/critdate.htm .

16

http://www.merlyn.demon.co.uk/critdate.htm

De Schutter and Adams

6 IF MY-DATE(3:4) GREATER THAN50 THEN
MOVE19 TO MY-DATE(1:2)

8 ELSE
MOVE20 TO MY-DATE(1:2).

This advice has two problems. One is the definition ofMY-DATE(referred to as
a return value on line 1, and assumed to have a “yyyymmdd” format). In Cobol,
all data definitions are global. Hence,MY-DATEis a unique data item which gets
shared between all advices. While this is probably safe most of the time, it could
lead to subtle bugs whenever we have nested execution of such advice.8 The same
is true for all advices in Cobble. It is just that the need for a specific return value
makes it surface more easily. Of course, in this case, the fix would be to require
duplication of this data item for all advice instantiations, e.g. using the generative
approach of section5.2.

The biggest problem lies in the weaving. When committed to a source-to-source
approach, as we are with Cobble, weaving anything below the statement level9

becomes impossible. As Cobol lacks the idea of functions10 , we can not replace
access to a data item with a call to a procedure (whether advice or the original
kind) as we could do in C. The remedy for this would be to switch to machine-code
weaving, but we are reluctant to do so, as we would lose platform independence.
Common virtual machine solutions (e.g. as with ACUCobol) are not widespread
either.

6.2 Evaluation: pro

If design information is available about the various date formats and if aspect weav-
ing technology would be more mature, application-specific aspects could solve un-
expected change problems like Y2K or the conversion to Euro.

6.3 Evaluation: contra

As illustrated by the first two problems of section6.1, getting access to design
information clearly is a prerequisite in weakly typed legacy environments. Even
then, vendor dependence locks AOP implementations into specific language dia-
lects, making the last two problems mentioned even worse. This is also one of the
main reasons that only the case of section3 has been put into practice. Other barri-
ers encountered when building an aspect weaver for (some dialect of) Cobol, are its
ambiguous grammar, the large variety of statement types and clauses, etc. In this
respect, an AOP solution for C is more easily provided and supported.

17

De Schutter and Adams

Problem OK? How/Why?

Reverse-engineering OK (LMP in) AOP

Business rule mining OK LMP in AOP

Encapsulation of logic (basic) OK LMP in AOP

Encapsulation of logic (extended) OK AOP in LMP

Y2K38 (ANSI-C) N/A modular already

Y2K (Cobol) NO too weakly typed

Table 1
Summary of our findings.

7 Conclusion

Table1 summarizes our findings. Briefly put, we discussed reverse engineering,
restructuring and integration problems using four issues related to (classic) legacy
software, and showed how three of these might be aided through a mixture of AOP
and LMP. Reverse engineering based on tracing in C and business rule mining in
Cobol went smoothly, employing LMP as a pointcut mechanism in AOP. Encap-
sulation of procedures in Cobol, a typical legacy integration scenario, required a
more generative approach embedding AOP in LMP as we clearly touched some
boundary here.

As for the Y2K restructuring problem, the semantics of Cobol, especially its
lack of typing, present too much of a limitation for an AOP solution. In C, the
Y2K38 problem can still be managed reasonably, precisely because it does feature
better typing support. Also, the limited number of C dialects makes it much easier
to build a widely useful aspect weaver.

All in all, AOP+LMP proves a useful, flexible and strong tool to tackle the
ills of legacy software, limited only by the base language’s typing support. As
C and Cobol are two ends of the procedural programming spectrum, other legacy
languages will likely yield similar results.

8 Future Work

So far, only the dynamic analysis approach using aspects has been tried in practice.
In order to perform more elaborate case studies in Cobol, a solution has to be found
for the relative disparity between the various major Cobol dialects. Otherwise, one
is tied to the applications written in the sole targeted dialect, both for experimental
and real use. Likewise it will be needed to investigate other restructuring and in-

8 Though not in this case, as the structure of the advice bodyonly refers to the data itemafter thePROCEEDstatement.
9 I.e. subexpressions like senders and receivers, etc.
10 Functions can be written in later versions of Cobol. Our focus on legacy systems, however, rules these out for use here.

18

De Schutter and Adams

tegration problems, as well as the general need for generative AOP programming
solutions. The question here would be to find when the generative approach is
really required and when/how it can be avoided. Finally, another problem which
merits attention is the heterogeinity of legacy systems, not only in the program-
ming languages used, but also in the tools used to build the applications and other
software development artifacts like database schemas, etc.

References

[1] B. Adams. AOP on the C-side. InLATEr ’06: Proceedings of the 2nd Linking Aspect
Technology and Evolution Workshop, Bonn, Germany, 2006.

[2] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages with logic metaprogramming. In D. S. Batory, C. Consel, and W. Taha,
editors,Generative Programming and Component Engineering (GPCE), volume 2487
of Lecture Notes in Computer Science, pages 110–127. Springer, 2002.

[3] M. Bruntink, A. van Deursen, and T. Tourwé. An initial experiment in reverse
engineering aspects. InWCRE ’04: Proceedings of the 11th Working Conference on
Reverse Engineering, volume 00, pages 306–307. IEEE, 2004.

[4] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation of
production systems. InProceedings of the USENIX Annual Technical Conference,
General Track, 2004.

[5] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A qualitative
comparison of three aspect mining techniques. InIWPC ’05: Proceedings of the 13th
International Workshop on Program Comprehension, pages 13–22, Washington, DC,
USA, 2005. IEEE Computer Society.

[6] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering behavioral
design models from execution traces. InCSMR ’05: Proceedings of the 9th European
Conference on Software Maintenance and Reengineering, pages 112–121. IEEE
Computer Society, 2005.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. InECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, pages 327–353, London, UK, 2001. Springer-
Verlag.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. InECOOP ’97: Proceedings of the 11th
European Conference on Object-Oriented Programming, pages 220–242, 1997.

[9] R. Lämmel and K. De Schutter. What does aspect-oriented programming mean to
Cobol? In M. Mezini and P. L. Tarr, editors,AOSD ’05: Proceedings of the 4th
International Conference on Aspect-Oriented Software Development, pages 99–110.
ACM, 2005.

19

De Schutter and Adams

[10] I. Michiels, T. D’Hondt, K. De Schutter, and G. Hoffman. Using dynamic aspects
to distill business rules from legacy code. In R. Filman, M. Haupt, K. Mehner, and
M. Mezini, editors,DAW ’04: Proceedings of the Dynamic Aspects Workshop, pages
98–102, Mar. 2004.

[11] H. M. Sneed. Encapsulating legacy software for use in client/server systems. In
WCRE ’96: Proceedings of the 3rd Working Conference on Reverse Engineering,
pages 104–120. IEEE, 1996.

[12] H. M. Sneed and S. H. Sneed. Creating web services from legacy host programs. In
WSE ’03: Proceedings of the 5th International Workshop on Web Site Evolution, pages
59–65. IEEE Computer Society, 2003.

[13] A. Srivastava and A. Eustace. ATOM — A system for building customized program
analysis tools. InPLDI ’94: Proceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation, pages 196–205, 1994.

[14] K. van den Berg and J. M. Conejero. Disentangling crosscutting in AOSD: A
conceptual framework. InEIWAS ’05: Proceedings of the European Interactive
Workshop on Aspect-Orientation, EIWAS 2005, Brussels, 2005.

[15] M. Weiser. Program slicing. InICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[16] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel,
2001.

[17] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining
techniques to execution traces to support the program comprehension process. In
CSMR ’05: Proceedings of the 9th European Conference on Software Maintenance
and Reengineering, pages 134–142. IEEE Computer Society, 2005.

[18] A. Zaidman, S. Demeyer, B. Adams, K. De Schutter, G. Hoffman, and B. De Ruyck.
Regaining lost knowledge through dynamic analysis and Aspect Orientation. In
CSMR ’06: Proceedings of the 10th European Conference on Software Maintenance
and Reengineering, volume 0, pages 91–102, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

20

	Introduction
	Hypothesis
	Enabling dynamic analyses of legacy software
	The code
	Evaluation: pro
	Evaluation: contra

	Mining business rules in legacy software
	The code
	Evaluation: pro
	Evaluation: contra

	Encapsulating procedures
	The code for the basic problem
	The code for the extended problem
	Evaluation: pro
	Evaluation: contra

	Year 2000 syndrome
	The code
	Evaluation: pro
	Evaluation: contra

	Conclusion
	Future Work
	References

