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On average we 
deploy new code fifty times 

a day.
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Work fast and 
don’t be afraid to break 

things.

http://goo.gl/UlCW



Even Desktop Apps Release 
More Frequently
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... yet Software Systems 
keep on Growing!
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>5k developers

>2k projects

>50k builds/day

>50M tests/day

20 code 

changes/min.
compilation 
in the cloud

build cache with 
>50TB memory

<150k tests/
commit
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Process
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Build Systems
are Complex

Our record so far is a project we inherited with an Ant script weighing in at 10,000 lines of XML. Needless to say, this project required an entire team devoted to keeping the build working—a complete waste of resources.[Jez Humble & David Farley]

KDE 4 is leaving the aging 
"autotool" build chain behind. 
Some developers, not only in 
KDE, like to nickname the 
autotools as "auto-hell" 
because of its difficulty to 
comprehend architecture.
[http://lwn.net/Articles/188693/] 14



>5 MLOC & ~20 Years of History
[ICSM '07,ECEASST '08]
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original game

expansion

pack

Quake 3 conditional compilation
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[ICSM '07,ECEASST '08]
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[ICSM '07,ECEASST '08]
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Linux 2.6.16.18

0.01 0.11 1.0

1.2 2.0 2.2

2.4 2.6.0 2.6.21.5

Build Systems Grow in 
Complexity



Build Systems Require 12%
of a Developer’s

Time (on average)

19

Kumfert, G., and Epperly, T.
Software in the DOE:  The 

Hidden Overhead of the “Build”

Build maintenance
slows development!



>36 MLOC & ~120 Years of History
[MSR '10,ICSE '11]
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Build Files Change Relatively 
More than Source Code Files
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ArgoUML Hibernate Eclipse GCC Git Linux Mozilla PLPlot PostgreSQL
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The Build System Requires 
Significant Maintenance
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Source ⇒ Build
Test ⇒ Build

12%



The Build System Requires 
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4%

16%

27%
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20%

44%

Low coupling thanks 
to higher-level build 

abstractionSource ⇒ Build
Test ⇒ Build

12%
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Our Build Systems need HELP
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The Integration Process
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Integrators are 
Gatekeepers

end users
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>180k Packages & ~28 Years of History
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Software Evolves

Upstream Sync
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Software Evolves

Mozilla Delivers New 
Version of Firefox – 
First Web Browser to 

Support Do Not Track on 
Multiple Platforms! 

[Mozilla Blog]

Upstream Sync
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Library Transitions Ripple 
through the whole System Dependency 

Management
Empir Software Eng (2009) 14:262–285 279
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Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

"Macro-level software evolution: a case study of a large software compilation" (Gonzalez-Barahona et al.)
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Package        : openssl
Vulnerability  : predictable random number generator
Problem type   : remote
Debian-specific: yes
CVE Id(s)      : CVE-2008-0166
Date           : 2008-05-13

Luciano Bello discovered that the random number generator in Debian's 
openssl package is predictable. This is caused by an incorrect 
Debian-specific change to the openssl package (CVE-2008-0166). As a 
result, cryptographic key material may be guessable.

It is strongly recommended that all cryptographic key material which 
has been generated by OpenSSL versions starting with 0.9.8c-1 on 
Debian systems is recreated from scratch. Furthermore, all DSA keys 
ever used on affected Debian systems for signing or authentication 
purposes should be considered compromised; the Digital Signature 
Algorithm relies on a secret random value used during signature 
generation.

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable 
distribution on 2006-09-17, and has since propagated to the testing 
and current stable (etch) distributions. The old stable distribution 
(sarge) is not affected.

Local Patch
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>=44 distributions ;-)

Local Patch
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Open Challenges
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Improving Software and 
Build Comprehension
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Where are the Tools?
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RELEASE IDE

test your 
build!

refactor 
your makefiles!

what did the 
other team break 

now ;-)

keep poking those 
upstream guys until they 

give in :-)
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