
On
Software Release

Engineering

Bram Adams

M
C IS

On average we
deploy new code fifty times

a day.

M
C IS

Continuous Delivery

http://goo.gl/qPT66

Continuous Delivery

http://goo.gl/qPT6

CVS

6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration 6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration

test

6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration

9 min.

15k tests

test

6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration

9 min.

15k tests

test

staging/production

6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration

9 min.

15k tests

test

staging/production

6

Continuous Delivery

http://goo.gl/qPT6

CVS

continuous
integration

9 min.

15k tests

6 min.

test

staging/production

6

Work fast and
don’t be afraid to break

things.

http://goo.gl/UlCW

Even Desktop Apps Release
More Frequently

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
0

8

16

24

32

40

#releases

?

8 ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/H

is
to

ry
_o

f_
Fi

re
fo

x

... yet Software Systems
keep on Growing!

http://tim
s-ideas.blogspot.com

/2011/05/live-blog-from
-icse-view

-of-icses.htm
l9

... yet Software Systems
keep on Growing!

http://tim
s-ideas.blogspot.com

/2011/05/live-blog-from
-icse-view

-of-icses.htm
l

>5k developers

>2k projects

>50k builds/day

>50M tests/day

20 code

changes/min.
compilation
in the cloud

build cache with
>50TB memory

<150k tests/
commit

9

Release Engineering

10

Release Engineering

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

integration

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

integration

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

deployment

integration

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

Release Engineering

deployment

integration

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

reduce cycle time!

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

integrate

buildtestreduce cycle time!

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

10

integrate

buildtestreduce cycle time!

11

The Build
Process

12

+

Build SystemSource Code

13

Build Systems
are Complex

Our record so far is a project we inherited with an Ant script weighing in at 10,000 lines of XML. Needless to say, this project required an entire team devoted to keeping the build working—a complete waste of resources.[Jez Humble & David Farley]

KDE 4 is leaving the aging
"autotool" build chain behind.
Some developers, not only in
KDE, like to nickname the
autotools as "auto-hell"
because of its difficulty to
comprehend architecture.
[http://lwn.net/Articles/188693/] 14

>5 MLOC & ~20 Years of History
[ICSM '07,ECEASST '08]

15

quake3.exe

network

d(a)emon

client UI

client renderer

server

game logic

Quake 3

16

original game

expansion

pack

Quake 3 conditional compilation

17

[ICSM '07,ECEASST '08]

18

Linux 2.6.16.18

0.01

[ICSM '07,ECEASST '08]

18

Linux 2.6.16.18

0.01 0.11 1.0

1.2 2.0 2.2

2.4 2.6.0 2.6.21.5

Build Systems Grow in
Complexity

Build Systems Require 12%
of a Developer’s

Time (on average)

19

Kumfert, G., and Epperly, T.
Software in the DOE: The

Hidden Overhead of the “Build”

Build maintenance
slows development!

>36 MLOC & ~120 Years of History
[MSR '10,ICSE '11]

20

Build Files Change Relatively
More than Source Code Files

21

ArgoUML Hibernate Eclipse GCC Git Linux Mozilla PLPlot PostgreSQL
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

#changed source lines/source file
#changed build lines/build file

[ICSE '11]

The Build System Requires
Significant Maintenance

22

Source ⇒ Build
Test ⇒ Build

12%

The Build System Requires
Significant Maintenance

22

4%

16%

27%

8%

20%

44%

Low coupling thanks
to higher-level build

abstractionSource ⇒ Build
Test ⇒ Build

12%

23

Our Build Systems need HELP

Release Engineering

deployment

integration

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

24

integrate

buildtestreduce cycle time!

The Integration Process

25

Integrators are
Gatekeepers

end users

26

Integrators are
Gatekeepers

end users

maintainer

26

>180k Packages & ~28 Years of History

27

A B C D E F

%
pa

ck
ag

e
ve

rs
io

ns
0

10
20

30
40

50
60

New Package

Upstream Sync

Dependency
Management

Build Change

Product-wide
Concern

Local Patch

28

A B C D E F

%
pa

ck
ag

e
ve

rs
io

ns
0

10
20

30
40

50
60

New Package

Upstream Sync

Dependency
Management

Build Change

Product-wide
Concern

Local Patch

28

Software Evolves

Upstream Sync

29

Software Evolves

Mozilla Delivers New
Version of Firefox –
First Web Browser to

Support Do Not Track on
Multiple Platforms!

[Mozilla Blog]

Upstream Sync

29

Software Evolves

Mozilla Delivers New
Version of Firefox –
First Web Browser to

Support Do Not Track on
Multiple Platforms!

[Mozilla Blog]

Necessary?

Buggy?

Secure?Upstream Sync

29

Risk Analysis & Cherry-picking

Upstream Sync

30

Risk Analysis & Cherry-picking

Upstream Sync

UNIX diff

30

Risk Analysis & Cherry-picking

Upstream Sync

UNIX diff

maintainer

30

Risk Analysis & Cherry-picking

Upstream Sync

UNIX diff

maintainer

30

A B C D E F

%
pa

ck
ag

e
ve

rs
io

ns
0

10
20

30
40

50
60

New Package

Upstream Sync

Dependency
Management

Build Change

Product-wide
Concern

Local Patch

31

Library Transitions Ripple
through the whole System Dependency

Management
Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

"Macro-level software evolution: a case study of a large software compilation" (Gonzalez-Barahona et al.)

Library Transitions Ripple
through the whole System Dependency

Management
Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

"Macro-level software evolution: a case study of a large software compilation" (Gonzalez-Barahona et al.)

Library Transitions Ripple
through the whole System Dependency

Management
Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

"Macro-level software evolution: a case study of a large software compilation" (Gonzalez-Barahona et al.)

Library Transitions Ripple
through the whole System Dependency

Management
Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

"Macro-level software evolution: a case study of a large software compilation" (Gonzalez-Barahona et al.)

2-way Impact Analysis
Dependency
Management

Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

Did
someone
break my
package?

33

2-way Impact Analysis
Dependency
Management

Empir Software Eng (2009) 14:262–285 279

libz1 zlib1g

gconv–modules

libc6

debianutils

libstdc++2.10

libglib1.2
ldso

libgtk1.2

xlib6g

libjpeg62

libpng2

mozilla

libnspr4

xcontrib xfree86–common

Fig. 7 Most popular instance of the Inter-Dependency Graph for mozilla in Debian 2.2. Each of the
two abstract dependencies have only one child

In Debian 2.0 the packages with more dependencies had 19 (python-gdk-imlib,
boot-floppies and libhdf4-altdev). In Debian 4.0 the package with the largest number
of dependencies is kde, with 561, followed by gnome, with 486. kde and gnome are
sets of GUI applications for the Unix desktop, none of them is present in Debian 2.0.

Both kde and gnome are bundles of packages. In practical terms this means that
they do not have any source code associated: when these packages are installed, the
bundle is installed. This raises three noteworthy issues: first, from the point of view
of the user installing such bundles, these collections of packages operate as a single
software product; second, it can be argued that these packages inflate the average
number of dependencies without adding any new source code themselves; and third,
they can be considered a great demonstration of the power of component-oriented
software engineering, where a “new” application, the bundle, can be created from
many components without writing a single line of code.

As the number of dependencies of packages evolves, their dependency graphs are
likely to change too. For example, Fig. 6 shows the pIDG of mozilla in Debian 4.0,
which can be compared to its dependency graph in Debian 2.2, depicted in Fig. 7.
Mozilla required 13 packages in 2.2 (the first version of Debian to include it), and
72 in 4.0. This growth is expected as applications evolve and grow to satisfy newer
requirements.

Table 7 Evolution of the
number of all dependencies for
some selected binary packages,
for the studied Debian releases

2.0 2.1 2.2 3.0 3.1 4.0

Apache1.3 6 7 11 45 57 64
Mozilla N/A 7 13 21 75 72
PostgreSQL 9 16 9 23 54 42

Did I break
someone's
package?

Did
someone
break my
package?

33

A B C D E F

%
pa

ck
ag

e
ve

rs
io

ns
0

10
20

30
40

50
60

New Package

Upstream Sync

Dependency
Management

Build Change

Product-wide
Concern

Local Patch

34

upstream

maintainer

35

upstream

maintainer

Upstream
Sync

35

upstream

maintainer

Upstream
Sync

Local Patch
35

upstream

maintainer

Upstream
Sync

Local Patch
35

upstream

maintainer

Upstream
Sync

Local Patch
35

upstream

maintainer

Upstream
Sync

Local Patch

Upstream
Sync

35

upstream

maintainer

Upstream
Sync

Local Patch

Upstream
Sync

Local Patch
35

upstream

maintainer

Upstream
Sync

Local Patch

Upstream
Sync

Local Patch

patch
accepted

35

upstream

maintainer

Upstream
Sync

Local Patch

Upstream
Sync

Local Patch

Upstream
Sync

patch
accepted

35

upstream

maintainer

Upstream
Sync

Local Patch

Upstream
Sync

Local Patch

Upstream
Sync

patch
accepted

35

Package : openssl
Vulnerability : predictable random number generator
Problem type : remote
Debian-specific: yes
CVE Id(s) : CVE-2008-0166
Date : 2008-05-13

Luciano Bello discovered that the random number generator in Debian's
openssl package is predictable. This is caused by an incorrect
Debian-specific change to the openssl package (CVE-2008-0166). As a
result, cryptographic key material may be guessable.

It is strongly recommended that all cryptographic key material which
has been generated by OpenSSL versions starting with 0.9.8c-1 on
Debian systems is recreated from scratch. Furthermore, all DSA keys
ever used on affected Debian systems for signing or authentication
purposes should be considered compromised; the Digital Signature
Algorithm relies on a secret random value used during signature
generation.

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable
distribution on 2006-09-17, and has since propagated to the testing
and current stable (etch) distributions. The old stable distribution
(sarge) is not affected.

Local Patch

36

Package : openssl
Vulnerability : predictable random number generator
Problem type : remote
Debian-specific: yes
CVE Id(s) : CVE-2008-0166
Date : 2008-05-13

Luciano Bello discovered that the random number generator in Debian's
openssl package is predictable. This is caused by an incorrect
Debian-specific change to the openssl package (CVE-2008-0166). As a
result, cryptographic key material may be guessable.

It is strongly recommended that all cryptographic key material which
has been generated by OpenSSL versions starting with 0.9.8c-1 on
Debian systems is recreated from scratch. Furthermore, all DSA keys
ever used on affected Debian systems for signing or authentication
purposes should be considered compromised; the Digital Signature
Algorithm relies on a secret random value used during signature
generation.

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable
distribution on 2006-09-17, and has since propagated to the testing
and current stable (etch) distributions. The old stable distribution
(sarge) is not affected.

Local Patch

>=1.5 years 8-(

36

Package : openssl
Vulnerability : predictable random number generator
Problem type : remote
Debian-specific: yes
CVE Id(s) : CVE-2008-0166
Date : 2008-05-13

Luciano Bello discovered that the random number generator in Debian's
openssl package is predictable. This is caused by an incorrect
Debian-specific change to the openssl package (CVE-2008-0166). As a
result, cryptographic key material may be guessable.

It is strongly recommended that all cryptographic key material which
has been generated by OpenSSL versions starting with 0.9.8c-1 on
Debian systems is recreated from scratch. Furthermore, all DSA keys
ever used on affected Debian systems for signing or authentication
purposes should be considered compromised; the Digital Signature
Algorithm relies on a secret random value used during signature
generation.

The first vulnerable version, 0.9.8c-1, was uploaded to the unstable
distribution on 2006-09-17, and has since propagated to the testing
and current stable (etch) distributions. The old stable distribution
(sarge) is not affected.

>=44 distributions ;-)

Local Patch

>=1.5 years 8-(

36

Open Challenges

37

Improving Software and
Build Comprehension

3840

Where are the Tools?

39

RELEASE IDE

test your
build!

refactor
your makefiles!

what did the
other team break

now ;-)

keep poking those
upstream guys until they

give in :-)

On average we
deploy new code fifty times

a day.

M
C IS

On average we
deploy new code fifty times

a day.

M
C IS

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

The Build System Requires
Significant Maintenance

21

8%

20%

44%

4%

16%

27%

Source ⇒ Build
Test ⇒ Build

12%

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

The Build System Requires
Significant Maintenance

21

8%

20%

44%

4%

16%

27%

Source ⇒ Build
Test ⇒ Build

12%

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

The Build System Requires
Significant Maintenance

21

8%

20%

44%

4%

16%

27%

Source ⇒ Build
Test ⇒ Build

12%

Risk Analysis & Cherry-picking

Upstream Sync

diff

maintainer

On average we
deploy new code fifty times

a day.

M
C IS

Release Engineering

deployment

in-house/3rd party
development

http://behrns.files.wordpress.com/2008/03/ikea-car.jpg

7

integrate

buildtest
keeping cycle time down

The Build System Requires
Significant Maintenance

21

8%

20%

44%

4%

16%

27%

Source ⇒ Build
Test ⇒ Build

12%

Risk Analysis & Cherry-picking

Upstream Sync

diff

maintainer

