
How Much does integrating this Commit Cost?
-A Position Paper

Yujuan Jiang, Bram Adams
MCIS, Polytechnique Montreal,

Email: {yujuan.jiang, adams.bram}@polymtl.ca

Daniel M. German
University of Victoria, Canada

Email: dmg@uvic.ca

Abstract—Integration is a common development activity that
fuses multiple pieces of source code together, either developed
in-house or acquired from a third-party (e.g., Git commit).
Integration essentially combines software that was developed in
parallel by different developers in different teams or organiza-
tion. Thus it requires to iron out inconsistent and conflicting
changes. Inconsistencies are costly and can only be identified a
posterior. It is very hard to judge if it is worth integrating a
code commit, or which of two equivalent commits or libraries to
integrate. If there is an indication about the effort the integration
will take, it will help the integrators to make dicisions easier.
In this paper, we propose the ISOMO model to quantify the
projected cost of integrating a code commit. This will help people
to evaluate how much effort a commit will cost and decide if it
is worth being integrated.

I. INTRODUCTION

Consider the following two scenarios. On the one hand,
Marius is a Debian package maintainer tasked with the job
of packaging version 3.0 of the BLOB open source project.
Having found two security holes in version 2.0 that have not
been acknowledged by the project, Marius is anxious about the
new version. Will it incorporate the Debian-specific fixes he
made or will he have to modify and re-integrate them himself?
For sure, he is reluctant to glance through this version’s diffs
to analyze every possible change compared to the old version.
On the other hand, John is a Linux kernel developer who
would like to adopt recent optimizations made to the Linux
kernel memory subsystem by an Android vendor. The Android
project’s changes are not automatically ported back into the
main kernel version, and John is foreseeing many integration
issues caused by hardcoded dependencies to Android code.
Fixing those inconsistencies may be too expensive. Although
both cases are different, they share the same problem: how to
estimate the cost of software integration?

Integration is the common activity in software developement
that merges multiple pieces of source code into an existing
project to result into consistent whole. Integration is necessary
to reuse a library or change in a project, as illustrated by
the Debian and Linux kernel examples. Instead, source code
developed in one particular context must be adapted to work
in another context. As such, integration must make this adap-
tation to avoid incompatibilities or, in the worst case, failure
of the host project.

To achieve this, integrators (i.e., anyone performing some
kind of integration activity) potentially might need to spend

a lot of effort in seemingly mundane activities like trying to
understand changes to a particular region in the code (Marius)
or the dependencies of an interesting code change (John).
Before spending this effort, they would like to know how much
effort they should expect? In this paper, we assume that the
business case for integration has been made and the project
has been convinced that a particular commit’s functionality and
implementation deserves a look. However, is this integration
worth the effort, i.e., are the expected benefits higher than the
cost? Will this integration cause problem like, for example,
additional library dependencies?

Currently, the answers to these questions are unknown
before integrating a commit. The developer can only judge
by her personal experience, which is not a measurable and
reproducible source. There is some work on predicting the risk
of software changes [2], but those techniques can only tell an
integrator whether or not a commit may be risky, but not how
much exactly this integration will cost and why. In addition,
risk is a much more general concept, encompassing bugs,
integration effort, and other kinds of impact like customer
happiness. Hence, even though an integration may be risky,
a developer might still decide to do it because it brings more
benefit in the long term. However, the current techniques
cannot measure such kind of cost and benefit quantitatively.

In this paper, we propose a cost model that quantifies how
much integration will cost. As such, it captures the effort of
integrating a commit (integration concerns various “artifacts”
like external libraries, components, code changes, we are
going to talk about the case of “commits”) into a project.
The outcome is a number based on which the integrator can
predict his workload and trade-off between the cost and benefit
of integrating a new piece of code change (a positive value
indicates the cost while a negative value indicates the benefit).
To our knowledge, our work is the first to quantify the effort
of integration activity. Apart from the cost model and its
uses, we discuss challenges that we encountered in making
a concrete implementation of the model. For this is a position
paper, we look forward feedback by the workshop participants
to find solutions for these challenges and further develop the
cost model.

II. ISOMO MODEL

To evaluate the cost of integrating a commit into a project,
we propose the ISOMO model (Integration of Software cOst



Fig. 1. Rebasing two commits in the bottom branch to update them to the
new state of the project after merging the top branch’s commits.

MOdel). When a particular commit has to be integrated,
ISOMO computes the expected integration cost by analyzing
the characteristics of the commit and the host project. The
resulting cost gives a quantitative indication of whether it is
worth further pursuing the integration (e.g., there might be
“cheaper” alternatives).

ISOMO computes the cost of a commit based on the follow-
ing four cost categories (see Table I) covering ten sub-factors.
The ten cost sub-factors are based on previous work about
integration conflict detection [2], risky software evolution [7],
and guidelines to users of version control systems [6].

• Merge cost (MG). This cost happens at the start of
integrating a new commit, such as analyzing the possible
risk, changing the integrated commit to adapt it to the
host project (cherry-picking and–or making a local patch)
or changing the host project (i.e., updating the platform
version) to adapt it to the integrated change (rebasing,
see Figure 1).

• Update cost (UD). After integrating a commit, newer
versions might require revising the integration and (in
the worst case) updating local patches or cherry-picking
parts. For example, the cherry-picking parts have de-
pendencies to the original whole patch, so we need to
complete more parts of the patch to update the integrated
commit.

• Maintenance cost (MT). This cost is about the effort
of maintaining the integrated code as the host project
evolves (in contrast to update cost).

• Removal cost (RM). It is possible that an integrated
change will be removed either because it caused too many
problems or the project evolved in time. Depending on
how strongly coupled an integrated change is to the host
project, the cost of removal might be high or low.

Table I lists each of these cost factors and their sub-factors
in more detail. To calculate the total cost, we propose to use
the following formula:

C =

10∑
i=1

ai × Fi

Fi are the factors in Table I and ai are the weights of the
cost factors. This formula is an initial proposal, we still need
to improve our model in future.

III. ISOMO, WHAT IS IT GOOD FOR?

With the ISOMO model, we can quantify multiple activities
in the software development process.

Merge	  cost	   Update	  cost	   Maintenance	  cost	   Removal	  cost	  

6	  
3.5	   2.5	  

3.8	  

5.8	  

1.4	  
0.8	  

1.5	  

3.5	  

1.2	  

(a) The cost profile of a commit of high merge cost.

Merge	  cost	   Update	  cost	   Maintenance	  cost	   Removal	  cost	  

0.8	  

4.5	  
3.5	  

2.7	  
2.1	  

4.4	  

3	  
5.5	  

1.5	  

0.2	  

(b) The cost profile of a commit of high update cost.

Fig. 2. Profiles of two commits.

A. Building an Integration Profile

For each commit that an integrator wants to integrate, we
could predict its cost profile by ISOMO, i.e., the effort for
the integrator integrating it into his project, measured in terms
of the ten cost sub-factors. Such a profile not only allows
the integrator to have an initial impression of the effort of
integration for a particular commit, but also to compare the
effort of integrating two different commits.

Figure 2(a) and Figure 2(b) show two different integration
profiles. On the one hand, the one in Figure 2(a) has a higher
merge cost up front but lower maintenance and update costs:
the initial integration may need a lot of work but the integrated
code does not require many updates or maintenance. On the
other hand, the profile in Figure 2(b) has a lower initial merge
cost but rather high maintenance and update costs. It is easily
adapted into the project, but is potentially incompatibile in
the long run and will continuously force the integrator to fix
future issues. For example, if a commit adds new dependencies
on five libraries, it is coupled with these external libraries.
Afterwards, if the functions of an external library change,
then every related statement in this commit source code should
change.

If the integrator can foresee the effort, she could make
different decisions at the beginning to avoid future loss. For
example, in the motivational example in the introduction, if
Marius had predicted the cost of his local patch, he could
have decided to put more effort into getting his local patch
accepted upstream by the BLOB project.



TABLE I
FOUR CATEGORIES OF INTEGRATION COST.

Cost category Sub-factor Description

Merge cost

Risk Analysis Physical analysis of a commit (typically during reviewing) to check whether it is worth
being integrated into the project.

Cherry-Picking Picking up only part of a change for integration, the other part is abandoned.
Rebasing Ongoing (i.e., uncommitted) changes to the project have to be adapted to make use of the integrated change

and be compatible with any local changes.
Local Patch Local modifications to a commit to make it work with the project at hand.

Update cost

Local Patch Each time an integrated commit is updated upstream (i.e., by its owner), the host project’s
local patches might be invalidated and require modifications

Cherry-Picking
Each time an integrated commit is updated upstream (i.e., by its owner), the parts cherry-picked
(i.e., selected) by an integrator might have evolved and become dependent on the abandoned part.
Hence, the integrator must reconsider the selected and abandoned parts.

Maintenance cost Local Patch Submit a new commit to make up for the flaws after discovering the problems caused by the previous commit.
Adaptation Cost Adapting/updating the way in which the commit is integrated.

Removal cost

Roll-Back If crucial issues are identified shortly after integration, it is often still possible to some degree to roll back
the integration (and other activities like rebasing) to avoid further loss.

Refactoring If rollback is not possible (e.g., a lot of changes have been made based on the commit), the project must be
refactored to eliminate or neutralize the integrated changes.

collecting commits of a project

collect commits of a project

grouping commits per subsystem

computing integration cost for 
each subsystem

profiling the project

Fig. 3. The process of building a subsystem-level cost model.

B. Evaluating the Integration Cost of a Project

With the ISOMO model, we can also help a project evaluate
its overall integration costs. This enables integrators to use
concrete numbers when talking to their managers, even broken
down across concrete cost sub-factors. If the project has a high
merge cost, it indicates that it focuses especially on adding new
functionality by merging continuously new commits, whereas
if a project has a high maintenance cost, it indicates that
integrated code plays a very important role in the project
and its future evolution. Such a breakdown of costs may help
a project rearrange its development and integration strategy
according to a trade-off between benefit and effort.

In practice, the cost of a project is the sum of the cost of
all integrated changes into a project. Similarly, the total cost
of a subsystem is the sum of the cost sub-factors across all
integrated changes.

C. Predicting the Cost of Reuse

Reusing part of an existing project can save time and
take advantage of a lot of stable features. However, anyone

trying to integrate part of a project during reuse also pays the
effort of fixing integration issues when adapting the reused
part to a new context. Knowing the integration cost that one
should expect when integrating a particular subsystem may
help integrators to judge which part is easier to integrate.
If organizations who previously integrated a subsystem of a
library could submit their integration profiles to the library’s
organization, the latter could advertise these profiles for future
customers, and even make concrete predictions of integration
effort for these customers.

Again, computing such a subsystem-specific cost only re-
quires summing up the cost of all code changes previously
integrated in the subsystem, as is shown in Figure 3.

IV. HOW TO IMPLEMENT THE ISOMO MODEL?
A. Collecting Integrated Commits

To implement the ISOMO model, we must obtain informa-
tion about the commit to integrate (e.g., from version control
system). If we want to build models for individual integrators,
we collect all previous integrated changes of a particular
integrator. If we want to build models for subsystems, then
we must collect the related data and break it down for each
subsystem.

B. Extracting Characteristics

To analyze the cost of an integration across different sub-
factors, we must understand the background, the characteris-
tics, and all related information of the integrated code and the
host project, such as the size, the author, the commit date, the
impacted subsystem and so on.

C. Calculating the Integration Cost

After collecting all the required characteristics, we could
build the ISOMO model according to the intended usage
scenario (see Section III) and different requirements, such as
building models to predict the effort of an integrator or to
measure the integration effort of a subsystem. In the latter
case, for example, the specific steps of building the ISOMO
model are:



• Grouping all past integrations of multiple integrators
according to the impacted subsystems.

• Extracting the characteristics from each integration.
• Analyzing the possible cost in ten different sub-factors.
• Assigning weights to each sub-factor’s total cost, gener-

ating the resulting total cost value.

D. Quantitative and Qualitative Analysis

After building cost models for the required context, we
could do more quantitative and qualitative analysis based on
the output depending on the specific use case.

V. CHALLENGES ENCOUNTERED

Implementing the ISOMO model faces multiple challenges.
• Determing the metrics for measuring the costs. The

biggest challenge currently is how to determine the
metrics to measure the four different kinds of costs. We
propose to measure different cost factors with different
metrics. For example, for “Cherry-Picking” and “Rebas-
ing” of “Merge cost”, we propose to use the number of
changed lines of code (LOC) to measure the cost. For the
“Roll Back” and “Refactoring” of “Removal Cost” we
propose to use the number of impacted files to measure.
However, there still exist some sub-factors that we cannot
measure, such as the risk analysis sub-factor.

• Assigning the weights to each sub-factor. There are ten
sub-factors to make up the whole integration cost. Each
sub-factor might play a different role in the integration
cost. Some may be more important while some are less
important and commits may interact with each other, e.g.,
each commit may depend on others, which may impact
the sub-factors. Hence, we must determine the weights
of the different sub-factors.

• Evaluating the ISOMO model. A final challenge is how
to measure the performance of our model. To evaluate a
model, generally speaking, it needs a training set and
a testing set, which is an oracle containing the known
cost of a set of integrations. However, to the best of our
knowledge, our research is the first to quantify the cost of
the integration process, there is no existing data set yet.
To solve this problem, we expect to get help from this
workshop, hoping that some institution may have such
kind of data or their own evaluation mechanism.

VI. RELATED WORK

The related work mainly includes work on software inte-
gration and cost models.

Jiang et al. [4] analyzed the integration process of Linux
kernel. They found that the integration process usually takes 1-
6 months to integrate a commit into the official release branch
and only around 33% of the commits can be accepted into an
official release. This work showed the relatively low efficiency
of the integration activity, motivating us to propose a model to
help integrators early on to identify potentially risky commits
to merge.

Brun et al. [2] studied different kinds of merging conflicts,
and concluded reasons why integration can be risky: (1) The
integrator is only in charge of integrating, not developing the
code, (2) the integrated change is too large and complex,
(3) merging typically happens a relatively long time after the
actual development, and (4) most of the serious conflicts are
due to semantics instead of textual issues.

Bird et al. [1] proposed a what-if analysis that allows to
distinguish harmful, redundant branches that could impact
software quality. This simplification can avoid merge conflicts
such as incompatibility in the integration process, which
inflates integration time and brings trouble. Their empirical
evaluation proved that such a simplification can reduce inte-
gration time by up to nine days. They only consider time as
a cost, while our model considers a wider variety of metrics.

Research about cost models in software engineering has a
long history. The classical model COCOMO [5] for evaluating
the cost of the development process is a widely used paramet-
ric model estimating the cost at the beginning of a project.

Cost models are also used in many other fields such as
software testing. Dalal et al. [3] conducted a large empirical
study analyzing the effect of cost model-driven testing in
software infrastructure and proved its performance. Our model
is the first to quantitatively measure the integration activity for
a project.

VII. CONCLUSION

In this paper, we propose the ISOMO model to compute
the cost of software integration divided into four different
dimension and ten sub-factors. To our knowledge, this model
is the first one that quantifies the integration cost. Currently,
this model is in a very early stage and must be improved
further as well as evaluated in practice.

ACKNOWLEDGEMENT

A special thank you goes to the reviewers and workshop
participants for their valuable feedback.

REFERENCES

[1] C. Bird and T. Zimmermann. Assessing the value of branches with
what-if analysis. In Proc. of the ACM SIGSOFT 20th intl. symp. on
the Foundations of Software Engineering (FSE), pages 45:1–45:11, 2012.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of
collaboration conflicts. In Proc. of Foundations of Software Engineering
(FSE), pages 168–178, 2011.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 21st International Conference on Software Engineering,
ICSE ’99, pages 285–294, New York, NY, USA, 1999. ACM.

[4] Y. Jiang, B. Adams, and D. M. German. Will my patch make it? and
how fast? – case study on the linux kernel. In Proc. of the 10th IEEE
Working Conf. on Mining Software Repositories (MSR), pages 101–110,
2013.

[5] C. F. Kemerer. An empirical validation of software cost estimation
models. Commun. ACM, 30(5):416–429, 1987. Corrigendum: CACM
30(9): 770 (1987).

[6] J. Loeliger. Version control with git - powerful tools and techniques for
collaborative software development, 2009.

[7] T. Mens and S. Demeyer. Software Evolution. Springer, 2008. ISBN
978-3-540-76439-7.


