
Multi-layer Software Configuration: Empirical
Study on Wordpress

Mohammed Sayagh, Bram Adams
Polytechnique Montreal, Canada

{mohammed.sayagh, bram.adams}@polymtl.ca

Abstract—Software can be adapted to different situations
and platforms by changing its configuration. However, incorrect
configurations can lead to configuration errors that are hard
to resolve or understand, especially in the case of multi-layer
architectures, where configuration options in each layer might
contradict each other or be hard to trace to each other. Hence,
this paper performs an empirical study on the occurrence of
multi-layer configuration options across Wordpress (WP) plugins,
WP, and the PHP engine. Our analyses show that WP and its
plugins use on average 76 configuration options, a number that
increases across time. We also find that each plugin uses on
average 1.49% to 9.49% of all WP database options, and 1.38%
to 15.18% of all WP configurable constants. 85.16% of all WP
database options, 78.88% of all WP configurable constants, and
52 PHP configuration options are used by at least two plugins
at the same time. Finally, we show how the latter options have
a larger potential for questions and confusion amongst users.

I. INTRODUCTION

Configuration is the means to adapt a software application
to different contexts and environments. For example, the Linux
kernel can be customized to different users by selecting only
the features that are of interest. Similarly, the kernel can
be customized to a specific hardware platform by providing
the details of processor, hard disk, and other devices. Each
software system has its own mechanism for configuration,
ranging from hardcoded constants to global variables, property
files or dedicated databases, typically with a graphical user
interface to hide the underlying storage mechanism.

An incorrect value of a configuration option could result
in incorrect behavior of a system, which we refer to as
configuration errors. Such errors occur often, typically are
severe in nature, hard to debug, but they are actionable [1].
Such bugs are severe because they can have a catastrophic
impact. For example, due to a misconfiguration, Facebook
was left inaccessible for about two hours1, depriving more
than 500 million users from access to the Facebook website.
Configuration errors are also hard to debug, since they need
expertise in the failing application. However, if one is able
to track down the cause of such an error, then the error
is actionable since a maintainer just needs to update the
configuration, usually without recompiling.

The major challenge for resolving software configuration
errors is to find the violating configuration options, a chal-
lenge that is aggravated in multi-layer systems. Multi-layer

1https://www.facebook.com/notes/facebook-engineering/more-details-on-
todays-outage/431441338919

systems consist of multiple layers, each of which hides the
complexity of a lower layer, and has its own objects and
configuration mechanisms. Since the behaviour of the system
as a whole requires neighbouring layers to collaborate, one
needs to understand each layer’s configuration as well as how
configuration options in each layer interfere with each other.

Let’s consider the case of WP (Figure 1), which is currently
the most popular content management system, and a typical
example of a multi-layer system consisting of a LAMP stack
(Linux, Apache, MySQL and PHP), the WP PHP application
and a myriad of WP plugins. One example of a cross-layer
configuration error was the inability of WP plugins to send
emails, due to a misconfiguration in lower layers related
to the PHP configuration option sendmail path2. A second
example was the case where the NextGen plugin was no longer
able to upload images3 until someone pointed out that the
script downloading the images was blocked by a configuration
option in the PHP layer (memory limit). In both examples,
configuration options in lower layers impacted the behaviour
of the top layer plugins.

Whereas existing work focuses on software configuration
and configuration errors within a single layer of a software
system, this paper represents a first empirical study towards
understanding the configuration options used by and shared
between different layers in the WP multi-layer system, as well
as potential links with comprehension problems of users. The
results can then be used in a follow-up study on multi-layer
configuration errors. In particular, we address two preliminary
research questions to understand the evolution of configuration
options across time, and two questions analyzing the usage of
options across the studied layers:

RQ1: What is the proportion of usage of each configu-
ration mechanism in each layer?
WP uses configurable constants and database con-
figuration options equally, while WP plugins prefer
(87%) configuration options stored in the database.

RQ2: How does configuration mechanism usage evolve
across time in each layer?
Generally, the number of configuration options grows
across time, especially when new features are added

2https://wordpress.org/support/topic/plugin-contact-form-7-wont-connect-
to-smtp-server

3https://wordpress.org/support/topic/plugin-nextgen-gallery-error-exceed-
memory-limit

978-1-4673-7529-0/15 c© 2015 IEEE SCAM 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

31

in a layer. Configuration options that are not used
anymore are removed after a while.

RQ3: How many configuration options defined in lower
layers are used by WP plugins?
On average, 1.49% to 9.49% of all WP database
configuration options and 1.38% to 15.18% of all
WP configurable constants are used by the plugins.
Furthermore, 1.30 PHP configuration options are
used by plugins, but only 0.40 ones are modified.
These large numbers are confirmed by the Stack-
Overflow and WP Exchange fora, where 12.19%
of all plugin conversations and 9.49% of all WP
conversations related to configuration mention multi-
layer configuration options.

RQ4: How many plugins share the same configuration
options of lower layers?
78.88% of all WP configurable constants and 85.16%
of all WP database options are used by at least two
plugins. For PHP, 52 PHP configuration options are
used by at least two plugins. We found a strong
correlation of up to 0.55 between the number of
plugins using a configuration option and the number
of fora conversations mentioning it.

The paper is organized as follows: section II presents the
background and related work, and section III presents our
methodology. Section IV provides the results of our study,
while section V discusses the threats to validity. Finally,
section VI concludes the paper and presents future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information about
software configuration, multi-layer systems, and the WP
ecosystem, and we discuss related work.

A. Software Configuration

Configuration is a mechanism to adapt software systems
to a context or an infrastructure and is used to customize a
system’s behaviors. A configuration option is a pair consisting
of an option name and its value, where the value has a specific
type (typically boolean or categorical, but sometimes numeric
or even a string). For example, a PHP configuration option
file uploads, which is used to allow file upload or not, could
have a value of either On or Off, while an option like error log
could have any string as its value.

Different configuration mechanisms exist, which typically
differ in binding time and storage mechanisms. Values could
be bound to configuration variables at compile-time, load-
time (virtual machines) or run-time, while the values could be
stored in the source code (macro constant or global variable),
database, property files or in other supports.

A configuration error then is a set of configuration options
that lead to unexpected behaviour, typically causing errors,
even though the source code itself is correct. Yin et al. [2]
provide an empirical study of a commercial storage system
and four open source systems on configuration errors, and
were able to classify 546 configuration errors into five major

categories. Arshad et al. [3] provide a characterization of
configuration problems for two Java EE application servers,
GlassFish and JBoss, by analyzing 281 bugs-reports. Hubaux
et al. [4] conduct two surveys respectively among Linux and
eCos users to understand configuration challenges. Jin et al.
[5] analyze two open source applications and one industrial
application to quantify the challenges that configurability
creates for software testing and debugging. Other studies focus
on predicting configuration bugs. Using textual information in
bug reports, Xia et al. [6] built a model to predict whether a
bug is a configuration error or not.

Many studies have been conducted to resolve configuration
errors. Keller et al. [7] proposed the tool ConfErr that aims at
quantifying the resilience of a software system to configuration
errors caused by spelling mistakes, structural errors, and
semantic errors. Zhang et al. [8] built a tool to identify the
root cause of a configuration error in Java programs. Zhang
et al. [1] provide the tool ConfSuggester, which suggests
the configuration option responsible for introducing a bug
in a new version. The suggestion is generated based upon
the control flow of a system. Elsner et al. [9] propose a
framework to detect configuration inconsistencies. It allows
a user to specify the possible inconsistencies in a software
application, which will be combined with a model built from
the configuration files to find the inconsistencies. Attariyan et
al. [10] built the tool ConfAid, which aims at pointing out
the root cause of configuration errors, again by analyzing the
control flow. Tartler et al. [11] propose an approach to resolve
the inconsistencies between the configuration model and its
implementation in the Linux source code.

While the above research provides a set of configuration op-
tions that should be changed in order to fix a bug, Wang et al.
[12] present an ordered set of configuration options to change
in order to fix a configuration error, based on user feedback.
Similarly, Xiong et al. [13] propose an approach that yields
the configuration options to change and a range of possible
values. Lillack et al. [14] evaluate the tool Lotrack, which
explains for each code fragment which load-time configuration
options should be active for it to be executed. Nadi et al. [15]
propose a static approach to extract and validate configuration
constraints from C code, which would be hard for non-experts
of a system to do manually. They also evaluate the approach’s
accuracy on four highly configurable open source systems.
Rabkin et al. [16] use logs and traces to map each program
point to the configuration options that could introduce an error.
Jin et al. [17] built PrefFinder, using an NLP engine to provide
the possible values of a configuration option. However, none
of these related papers study multi-layer configurations.

While we do not study multi-layer configuration errors,
we do a preliminary study of the prevalence of multi-layer
configuration options. High prevalence would suggest that
corresponding errors are likely and hence should be studied.

B. WP Ecosystem

Similar to Drupal and Joomla, WP is one of the most
popular and powerful [18] Content Management Systems

32

Figure 1: The layers of a typical WP installation. We focus on the
configuration options of the top three layers.

(CMS) for creating blogs. It powers more than 60 million
websites, i.e., 61% of all websites created by a CMS4, and
23.3% of all websites in existence5. One of the most important
factors in WP’ success is its variety of plugins. WP plugins
(such as NextGen, and Contact Form) allow users to add to
their websites any functionality that they can imagine, since a
plugin basically consists of PHP scripts that can access any of
the lower layers of the WP architecture. WP has thousands of
plugins, together downloaded more than 748 million times6.

WP typically runs on top of a multi-layer LAMP stack
(Figure 1), consisting of a Linux operating system, Apache
web server, MySQL relational database and PHP scripting
language7. The vertical layout of Figure 1 shows how the
different layers communicate with each other. The plugin layer
communicates with the Web framework layer, which relies on
the lower layer Scripting language that is used to connect to
the database and web server. These elements in turn rely on
the operation system, which hides the hardware complexity.

Some studies have focused on multi-language or multi-layer
web applications. As PHP is a dynamic language used to create
web pages, Nguyen et al. [19] propose a static analysis to find
undefined variables and functions in all web pages generated
by any HTML, JS, PHP, or SQL script. Eshkevari et al. [20]
study the problem of interference (conflicting entity names,
hooks, database code, variables, and risky includes) between
WP and 10 plugins, and propose an approach to resolve it.
Nguyen et al. [21] elaborated a prototype PHP interpreter to
detect WP plugin conflicts out of the large number of possible
combinations (250) of activated WP plugins. They found that
among all plugin combinations, 29% of WP statements and
89% of WP variables’ values are shared. None of these papers
study configuration options.

C. WP Configuration Mechanisms

WP and its plugins use two mechanisms for configuration.
The first one consists of storing the configuration options in

4http://w3techs.com/technologies/overview/content management/all/
5http://w3techs.com/technologies/details/cm-wordpress/all/all
6https://wordpress.org
7http://searchenterpriselinux.techtarget.com/definition/LAMP

if (! defined(’FTP FORCE’)) define (’FTP FORCE’, true);
————————————————————-

$method = defined(’FS METHOD’) ? FS METHOD : false;

Figure 2: Two examples of configurable constants that can be
redefined in wp-config.php

Table I: WP and plugins of the Small Data Set used in RQ1 and
RQ2.

WP/Plugin Versions (#) # Downloads Popularity
Rank of
Last Version

WP (platform itself) 1.5 - 4.0 (26)
all-in-one-seo-pack 0.6.2.6 - 2.2.4.1 (232) 21.23M 2
updraftplus 0.7.4 - 1.9.5 (175) 1.70M 11
Google XML Sitemaps 2.5 - 4.0.8 (46) 16.20M 12
NextScripts 1.6.1 - 3.2.3 (11) 1.44M 15
wp-pagenavi 1 - 2.87 (23) 5.28M 27
Page Builder by SiteOrigin 1.2.10 - 2.0.3 (32) 1.15M 29
MailPoet 2.5.2 - 2.6.9 (26) 3.29M 33
Redirection 2.1.29 - 2.3.11 (19) 2.09M 34
The Events Calendar 1.5 - 3.9.1 (44) 1.35M 48
BBPress 2 - 2.5.4 (37) 1.66M 57
Download Manager 2.1.3 - 2.7.5 (7) 0.92M 58
broken-link-checker 0.1 - 1.10.4 (118) 3.14M 72
Captcha 2.12 - 4.0.7 (87) 2.42M 77
Flyzoo 1.4.2 - 1.4.5 (4) 0.32M 117
WP-Members 2.1.0 - 2.9.7 (49) 0.64M 132

a database, while the second one consists of overriding PHP
constants in the WP source code. We respectively refer to them
by ”database options” and ”configurable constants”.

Database options are stored in the table wp options, while
configurable constants are PHP constants that can be overrid-
den by a user in a central configuration file wp-config.php.
Every usage of the latter constants in the source code is
preceded by an if-check (as shown in Figure 2) that checks
whether the constant has been defined already. If not, it defines
the constant with a default value. Since the wp-config.php file
is loaded first by WP, any constant defined in that file by the
user will have precedence over the default value.

III. APPROACH

This section presents the methodology used to answer the
research questions of the introduction.

A. Data Selection

Since RQ1 and RQ2 require manual analysis to complement
the quantitative findings, we used a more focused data set for
it (”Small Data Set”). For RQ3 and RQ4, we rely less on
qualitative analysis and are able to study a larger-scale data
set (”Large Data Set”).

1) Small Data Set (RQ1 and RQ2): For RQ1 and RQ2, we
analyzed the source code of the WP layer (in the remainder of
the text, we refer to ”WP”) and 15 WP plugins. The selection
of plugins is based on the following two criteria:

• Criterion 1: Plugins should have a dedicated set of meth-
ods to extract configuration options from the database.

• Criterion 2: To avoid the need for intra- or inter-
procedural data flow analysis, the parameter of the meth-
ods used to extract a plugin’s configuration options should
be specified as a literal.

33

While all plugins use the same methods to access the
database options of the WP layer, each plugin can have its own
methods to access its own configuration options. Since these
methods are not known a priori (basically requires manual
analysis), and these methods could change across time, the
manual validation of criteria 1 and (especially) 2 took a
substantial amount of time.

Based on these criteria, we randomly selected plugins for
analysis from the popular plugins listed in the ”add plugins”
administrator page of a WP website, and obtained 15 plugins
that satisfied the criteria (see Table I). Although these plugins
do not cover the top 15 most popular plugins, we can see
that all plugins have at least 320,000 downloads, with a
maximum of 21.23 million downloads for all-in-one-seo-pack.
The plugins have between 4 and 232 versions.

2) Large Data Set (RQ3 and RQ4): To analyze the in-
teraction between different layers in the third and the fourth
research questions, we use the last version of WP at the time
of writing (4.0) and the 484 most popular plugins. This list of
plugins can be obtained by any WP user from the administrator
pages of a WP website. As we obtained in the first and second
research questions the names of all WP configuration options,
we just have to check the usage of those names in the plugins’
source code. Furthermore, we found that for the methods used
to access WP database options, the WP option name is passed
as a literal argument in 98% of all the method calls. Therefore,
we were able to use the 484 most popular plugins without
limitations or specific criteria.

B. Identification of Configuration Options and Their Usage

1) Data Sources: We obtained the versions of WP and each
plugin selected for the Small Data Set from the corresponding
Subversion (SVN) repositories. In those repositories, WP and
its plugins make all their versions accessible via SVN tags.

To obtain the 484 most popular plugins, we selected and
installed the top 484 popular plugins (at the time of writing
the paper) in our WP administrator environment.

2) Manual Identification of Access Methods:: Each plugin
can have its own method to access the configuration options
from the database. To understand these methods, we installed
and activated each plugin, then looked at the database options
added by the plugins of the Small Data Set, as well as how
these configuration options are accessed in the source code
of the plugin. Some plugins use the same methods as WP to
access their own database configuration options, while others
have their own methods. The number of methods differs from
one plugin to another, and ranges from one to five.

As the plugins could change their methods across versions,
we analysed the last version of each plugin, computed the
number of configuration options for all plugins, then we
checked manually for the previous versions if there was a
big difference in the number of configuration options between
two versions, which could be due to the modification of the
methods to access database options. If so, we took the change
in access methods into account.

C. Measuring The Proportion of Usage of Each Configuration
Mechanism (RQ1/RQ2)

To obtain the configuration options used in the WP layer
and the plugins layer, we performed the following two steps.
First, to get the configurable constants of the plugins and WP,
we scanned the source code for constants for which there is an
if-check, as shown in Figure 2. For WP itself, we also scanned
any constant already defined in wp-config-sample.php.

Second, to get the database configuration options of the
plugins, we scanned the source code to find method calls to the
methods that we know are being used by the plugin to access
options (from our manual analysis in the previous section).

D. Measuring Direct Usage of Configuration Options
(RQ3/RQ4)

To find the WP configuration options used by the plu-
gins, and the PHP configuration options used by WP and
the plugins, we used two approaches. The first approach
measures direct usage of configuration options, i.e., textual
occurrences of any of the known WP configurable constants
(based on the list that we obtained in the two previous
research questions) or explicit calls from a plugin or WP to
obtain the value of a specific database option. This analysis
uses regular expressions. The second approach (discussed in
the next subsection) measures options accessed indirectly via
nested method calls (e.g., a plugin calls a method of WP that
accesses a configuration option).

To find accesses to PHP configuration options, we check the
source code of WP and each plugin for calls to the methods
ini get or ini set.

E. Measuring Indirect Usage of Configuration Options
(RQ3/RQ4)

Given the gap in layers between the definition and usage of
an option, RQ3 and RQ4 also need to deal with indirect usage
of options. For example, instead of accessing a configuration
option inside the source code of a plugin, the plugin might
call a function of another plugin or maybe WP that accesses
the configuration option.

We use the open source PHP-Parser8 to build control flow
graphs of all methods inside WP and each plugin, then perform
a filtering of the control flow graphs. The filtering retains
only statements that read or write configurable constants and
database options of any of the three layers. Methods that are
called but do not manipulate configuration options themselves
are filtered out as well.

At the end of this filtering, the graphs contain all the data
about configuration options and indirect access via method
calls that we need. For each method, we can transitively follow
the graph’s edges to find all WP and PHP options that it reads
or writes. For example, if the function x calls y and z, and
y calls w, then by using the graph generated in this step, we
return all the configuration options used in x, y, w, and z.

8https://github.com/cwi-swat/PHP-Parser

34

Note that direct usage of configuration options represents a
lower bound of option usage for a given plugin or WP, with
indirect usage corresponding to the worst case of additional
options that could be accessed. We expect real usage to be
closer to the lower bound, but included both bounds for
completeness.

F. Measuring Configuration Options’ Occurrences in Discus-
sion Fora (RQ3/RQ4)

To understand the actual impact of the findings of RQ3
(usage of options of deeper layers) and RQ4 (multiple plugins
using the same options), we analyzed the StackOverflow
and WP Exchange9 fora respectively from July 2008 and
November 2011 to March 2015, amounting to 7,259,572 and
46,509 conversations in total. We got the data of these fora in
the form of xml files from the StackExchange archives10.

We used StackOverflow and WP Exchange fora, because
StackOverflow is one of the most popular fora for developers
across all programming languages, while WP Exchange is
a popular forum with WP developers. We did not analyze
the WP support forum11, because we could not distinguish
conversations related to WP from those related to WP plugins.

For RQ3, we analyzed whether multi-layer configuration
represents a real problem in practice, by measuring the per-
centage of conversations related to multi-layer configuration
issues. For this, we searched for the names of WP and PHP
configuration options inside forum conversations on plugins.
We used the conversations’ tags to distinguish between con-
versations related to WP and conversations related to plugins.
A conversation related to WP plugins typically contains the
keyword ”plugin” like ”Wordpress-plugin”.

For RQ4, we analyzed the same fora to find if there is a
correlation between the number of plugins using a configura-
tion option and the number of conversations about the option,
which could give an indication about the existence of multi-
layer configuration problems or confusion by users.

IV. RESULTS

In this section, we present for each research question the
motivation, the approach used, and the results.

(RQ1) What is the proportion of usage of each configura-
tion mechanism in each layer?

Motivation. We analyze in this research question the use of
each configuration mechanism, with the goal of understanding
which one is the most popular and hence needs closer analysis.

Approach. We used the approach of Section III-C.
Results. The average number of configuration options

across all plugins and WP is 76. FlyZoo and Page Builder
have the lowest number of options (less than 10), followed by
Redirection and Captcha. NextScripts and WP have more than
300 options, followed by updraftplus and all-in-one-seo-pack.

On average 87% of a plugin’s configuration options are
stored in the database. Figure 3 shows the distribution of the

9http://wordpress.stackexchange.com
10https://archive.org/download/stackexchange
11https://wordpress.org/support/view/all-topics

161	

5	

5	
 1	
 11	

1	
 1	
 3	

3	

15	

2	

38	

0	

1	

0	

7	

155	

21	

50	
 26	
 79	

51	
 14	
 44	

9	

22	

349	

57	

15	

6	

13	

51	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Wo
rdp
res
s	

Ma
ilP
oe
t	

BB
Pre
ss	

Do
wn
loa
d	
 M

an
ag
er	

all
-­‐in
-­‐on
e-­‐s
eo
-­‐pa
ck	

Go
og
le	

XM
L	
 S
ite
ma
ps
	

wp
-­‐pa
ge
na
vi	

bro
ke
n-­‐l
ink
-­‐ch
ec
ke
r	

Pa
ge
	
 Bu
ild
er	

by
	
 Si
teO

rig
in	

WP
-­‐M
em
be
rs	

Ne
xtS
cri
pts
	

up
dra
Op
lus
	

Ca
ptc
ha
	

Fly
zo
o	

Re
dir
ec
To
n	

Th
e	
 E
ve
nts
	
 Ca
len
da
r	

Database	

Constants	

Figure 3: Distribution of the number of configurable constants and
database options for WP and the 15 analyzed WP plugins.

Table II: Categories of database options.

Categories Examples
General siteurl, blogname, admin email
Writing use smilies, mailserver url
Reading posts per page
Discussion show avatars, comment registration
Media thumbnail size w, large size h
Permalinks permalink structure, category base

number of configuration options across both mechanisms, for
each plugin. It shows that WP uses 161 configurable constants
as configuration option, and stores 155 configuration options
in its database. In contrast, all WP plugins mostly use the
database as a configuration mechanism, with an average of
87%, compared to 13% for configurable constants.

While the plugins use database options more than con-
stants to configure their behavior, the percentage of usage of
each mechanism differs from one plugin to another. There
are some plugins where the configurable constants present
40% of all configuration options, such as WP-Members and
updraftplus. Other plugins use the constants mechanism to
configure around 20% and 25% of their configuration options,
like MailPoet and Page Builder by SiteOrigin. The plugin
Flyzoo uses constants as configuration mechanism for 14%
of its configuration options, approximately the same as the
plugin The Events Calendar. Finally, we have nine plugins
where the configurable constants represent less than 10% of
all configuration options. The plugins Captcha and Redirection
do not use configurable constants at all, they use only the
database as a mechanism to store configuration options.

Discussion. To understand the dominance of database con-
figuration options, we manually analyzed the documentation

Table III: Categories of WP configurable constants with examples by
wpengineer.com 12.

Categories Examples
General AUTOSAVE INTERVAL, WPLANG
Status APP REQUEST, DOING AJAX
Path, dirs, and links WP LANG DIR, ABSPATH
Database DB HOST, DB USER
Multisite MULTISITE, DOMAIN CURRENT SITE
Cache and script compressing COMPRESS SCRIPTS, ENFORCE GZIP
Filesystem and connections FTP HOST, WP PROXY PORT
Themes HEADER IMAGE, TEMPLATEPATH
Debug SCRIPT DEBUG, WP DEBUG
Security and cookies COOKIE DOMAIN, NONCE KEY

35

of the plugins and categorized the database options among dif-
ferent use case categories. We used the existing categorization
of WPengineer.com12 for configurable constants (Table III), as
inspiration for our categorization of database options.

Overall, the database configuration options are those that
are shown in a plugin’s public web interface, i.e., they are
meant to be changed and customized by plugin users via the
administrator pages. For example, we found a commit that
removed a configuration option from the database13, because
it didn’t have any UI anymore to change it. On the other hand,
the constants, by definition, require changes to the code. While
those constants conveniently can be overridden in the wp-
config.php file, they require manual exploration of the source
code to be detected and to understand the default value.

As presented in Table II, we identified six database op-
tion categories. The first category represents the ”general
configuration options”, which refer to configurations used all
over a website, such as the blogname or siteurl. The second
category corresponds to ”writing” options used to write the
website pages and posts, such as the option use smilies, which
is a boolean variable used to display emoticons as graphic
icons. The third category is ”reading”, which presents all
options related to displaying the posts, such as the number of
posts per page (option posts per page). The fourth category
corresponds to ”discussion” options for the articles published
on the website, such as comment registration, which is a
boolean variable used to decide whether commenters need to
be registered. The fifth category corresponds to ”media” op-
tions, i.e., the allowed dimensions of images. The last category
corresponds to ”permalinks”, which allows to customize the
URL structure of blog posts and archives.

On the other hand, if we compare to the categorization by
WPengineer.com for configurable constants in WP (Table III),
configurable constants instead tend to manage more technical
behavior, or correspond to configuration options that do not
change regularly. For example, the general category contains
technical options such as DOING AUTOSAVE, which is used
to specify whether ”WordPress is doing an autosave for
posts”12. There are other configurable constants that refer
to development tasks, such as a category for debug mode,
security, paths, directories, and links.

(RQ2) How does configuration mechanism usage evolve
across time in each layer?

Motivation. The goal of this research question is to un-
derstand whether WP layers change the mechanism used to
specify configuration options, or whether new options tend
to prefer one mechanism or the other. It also sheds light on
whether the number of configuration options plateaus early on,
or whether the number keeps on increasing. The latter case
would not only result into more options, but also potentially
into more interactions between options, which could introduce
more configuration errors.

12http://wpengineer.com/2382/wordpress-constants-overview/
13https://core.trac.wordpress.org/changeset/27916

● ● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

1.5 1.5.2 2.3 2.8 3.2 3.6 4

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

● ● ● ● ● ●

●

●

●

●

●

●

● ● ●
● ●

● ●

●

● ● ● ● ● ●

(a) WP

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●

●●●●●

●

●

●●●

●●
●●

●●●

●●●●
●●●●

●●●●
●●●●●●●

●●●●●●●

0.7.4 1.1.0 1.2.25 1.3.24 1.7.0 1.9.45

0

5

10

15

20

25

30

35

40

45

50

55

●●

●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●

●●●●●

●

●●●●

●
●●●●●●

●●
●●●●●●

●●

●

●●
●●●

●●●●●●●●●●

(b) Plugin: updraftplus

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
● ● ● ●

2.5 3.0.3 3.1.3 3.2 3.2.7 4 4.0.6

0

5

10

15

20

25

30

35

40

45

50

55

60

●

● ● ●

●

●

● ●
● ● ● ● ● ●

●
● ● ●

● ●
●

● ● ● ● ● ● ●
●

● ●
● ● ● ● ●

●
● ● ● ●

●
● ● ● ●

(c) Plugin: Google XML Sitemaps

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2.1.29 2.2.9 2.2.13 2.3.4 2.3.9

0

1

2

3

4

5

6

7

8

9

10

11

12

13 ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ●

(d) Plugin: Redirection

Figure 4: Evolution of the number of configuration options for both
mechanisms across WP and the studied WP plugins versions, i.e.,
database (red) and configurable constants (blue), Our full results are
online15.

Approach. For both configuration mechanisms, we use the
same approach as in RQ1 for each plugin’s version.

To analyze the results, we performed a number of activities.
First, we used SLOCcount [22] to compute the number of
lines of code of WP and its plugins to find if the increased
number of options is related to large amounts of code (and
hence features) being added. We also analyzed the names
of the configuration options added in those versions with
the goal of understanding whether or not the configuration
options are related to new features. Finally, we also used the
tool DiffMerge14 to compare the source code of a version
introducing many configuration options with its predecessor.

Results. For 60% of the plugins, the number of configu-
ration options grows across time for both mechanisms. As
presented in Figure 4 (the full plots for all plugins can be found
online15), the number of database options in the last version of
a plugin is higher than in the first version, except for the plugin
Redirection where the number remained the same. Similar
observations hold for the configurable constants, except for
those of the six following plugins (not shown): MailPoet,
BBPress, NextScripts, Captcha, Flyzoo, and Redirection.

As we saw for RQ1, the number of configuration options
stored in the database is higher than the number of config-
urable constants, and Figure 4 shows that this number remains
higher across all versions of the plugins, except for WP, where

14http://www.diffmerge.net
15http://mcis.polymtl.ca/∼msayagh/Paper/SCAM15/Figures/

36

the number of database options eventually dropped below the
number of configurable constants.

Each plugin, except for Redirection, sees growth in its usage
of at least one of the two configuration mechanisms. For WP,
the number of options grows rapidly for both mechanisms,
similar to the plugin updraftplus and WP-Members. For the
other plugins, the number of configuration options stored
in the database grows more rapidly than the number of
configurable constants. The Redirection plugin sees no growth,
and temporarily even lost one database configuration option
between version 2.3.2 and version 2.3.5.

For some versions, we can observe that the number of con-
figuration options has an important decrease. For example, the
number of configuration options decreases between versions
3.4.1 and 4 of the plugin Google XML Sitemaps for database
configuration options. The same happens between versions 1.1
and 1.2.2 of the plugin broken-link-checker.

Discussion. To understand the above findings better, we
studied the Spearman correlation between the evolution of the
number of configuration options and the size (i.e., number
of source code lines) of WP and plugins versions. Table IV
shows that the correlation results are strong for WP and all
plugins cases, except for MailPoet (moderate) and Redirection
(moderate and negative). In the latter case, the number of
configuration options is stable across all versions except two,
one of which shows a decrease. We also plotted the number of
options per line of code16, which showed us that nine plugins
have a decreasing trend, i.e., the size of these plugins increases
more rapidly than their number of options. On the other hand,
Download Manager, NextScripts, Page Builder by SiteOrigin,
and WP-Members proportionally add more options than they
increase in size and features, while Flyzoo and Redirection
more or less retain a constant proportion.

As examples of these strong correlations, we found that
between versions 2.0.3 and 2.1 of the plugin BBPress, its
developers added 11 configuration options, since many fea-
tures were added, represented by 7738 new lines of code. Just
the addition of the component bbConverter17 to the plugin
introduced seven configuration options. In the plugin all-in-
one-seo-pack, its developers added the following components:
Sitemap and Social Meta module. Furthermore, some informa-
tion was made configurable in the plugins WP-Members and
The Events Calendar. For example, instead of hardcoding the
different parts of an email like the body, or the mail footer,
these now became configurable.

The growth of the number of configurable constants is due
to making additional constants configurable or adding new
components (containing configurable constants). By analyzing
the difference between versions 2.8.10 (2 configurable con-
stants) and 2.9.0 (16 configurable constants), we found that
version 2.9.0 makes certain PHP constants of version 2.8.10
configurable, by testing if they are defined before their existing

16http://mcis.polymtl.ca/∼msayagh/Paper/SCAM15/LOC vs Options/
17https://wordpress.org/plugins/bbconverter/

Table IV: Correlation between number of configuration options and
number of lines of code of WP and the analyzed plugins.

WP/Plugin Correlation
Flyzoo 0.9933902
The Events Calendar 0.9884512
NextScripts 0.9860491
Download Manager 0.9814041
broken-link-checker 0.9762101
WP 0.9643059
updraftplus 0.9582439
BBPress 0.9447637
Captcha 0.937967
WP-Members 0.9121678
Google XML Sitemaps 0.8971884
all-in-one-seo-pack 0.8252223
Page Builder by SiteOrigin 0.728631
wp-pagenavi 0.7014725
MailPoet 0.491287
Redirection -0.3714881

definitions (cf. Fig. 2). For the updraftplus plugin, we found
that newly added components have 16 configurable constants.

There is one important case of decrease of configuration
options between versions 3.4.1 and 4 of the plugin Google
XML Sitemaps. Analysis of the source code showed the
following comment: ”restores some default options which were
not needed anymore in v4.”.

(RQ3) How many configuration options defined in lower
layers are used by WP plugins?

Motivation. Now that we better understand the scale and
evolution of configuration option usage within layers, RQ3
analyzes the usage across different layers (see Figure 1).
Such usage potentially can be error-prone, since configuration
options of lower layers need to be defined in a different
location than the plugins’ options, and a change to the value
of a lower layer option could impact multiple plugins at once.
This RQ focuses on the plugins’ usage of lower layer options,
whereas RQ4 measures the amount of lower layer options used
by more than one WP plugin.

Approach. We calculate the plugins’ direct and indirect
usage of WP and PHP options using the approach of Section
III-D and III-E. For database options of WP and for PHP
options, we split up ”usage” of an option into reading and
writing (based on the names of access methods), whereas
for constants we only consider reading (since by definition
a constant can only be defined once). Note that for RQ3 and
RQ4 we use the Large Data Set.

Results. Each plugin reads on average 1.49% to 9.49%
of all WP database options, and 1.38% to 15.18% of all WP
configurable constants. While WP plugins read on average
2.32 WP database options directly, they read 13.73 options
indirectly, corresponding respectively to 1.49% and 9.49% of
the WP database options. Similarly, they read on average 2.41
WP configurable constants directly and 22.22 ones indirectly
(i.e., 1.38% and 15.18%). Figure 5 confirms that the plugins
read more configuration options indirectly than directly (both
database options and constants). Note that the set of direct
reads is not a subset of the set of indirect reads (although

37

●
●
●
●
●

●

●
●●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

Direct Indirect

0
2
0

4
0

6
0

(a) Database options

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●

●

●

direct indirect

0
1
0

2
0

3
0

4
0

5
0

(b) Configurable constants

Figure 5: The number of WP options read by plugins.

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●●

●●●

●●●●

●●●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●●

direct indirect

0
5

1
0

1
5

2
0

(a) Reading

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

● ●●●●●●●●●●●●●●●●●

direct indirect

0
2

4
6

8
1
0

(b) Writing

Figure 6: The number of PHP options used by plugins.

overlap is possible), since options in the latter category need
to be read at least once in an indirect way to be considered as
indirectly read.

The maximum number of WP database options read directly
by one plugin is 59 (JetPack plugin), whereas for the indirectly
read ones it is 57 (Worker plugin). The maximum number
of WP configurable constants read directly by one plugin is
31 for BuddyPress. The plugin JetPack indirectly reads 70
configurable constants, which represents the highest number
of configurable constants read indirectly.

Each plugin directly writes on overage 0.11 WP database
configuration options, and indirectly on average 0.32. While
441 plugins out of 484 do not directly write any configuration
option, 35 plugins directly write one WP database option, five
plugins write two WP database options, two plugins write
three, and only one plugin writes five.

89 plugins (18% of all the plugins analyzed) indirectly write
one or more WP database configuration options, where the
maximum number of written WP configuration options is nine.

The plugins also read on average 1.30 PHP configuration
options, and write 0.40 options, whereas WP reads 20 PHP
options, and writes 8 options. Figure 6 shows that the plugins
read the PHP options more indirectly than directly. It also
shows that the number of writes is low (median of 0).

Discussion. Database options and configurable constants are
mostly being read by their own plugins. This can be seen by
the fact that the plugins use just 1.42% of the WP database
options directly, and just 1.49% of the configurable constants.

Moreover, few PHP configuration options are read by plugins,
just 1.30 on average, and few of them (0.40) are modified. The
use of PHP configuration options by WP is also negligable.

Although this seems good news, the number of configu-
ration options used indirectly is significantly higher than the
number of options used directly. Hence, the modification of
one configuration option could impact the behavior of many
plugins at once, possibly without developers being aware
(since the dependencies are indirect). Figure 5 also shows that
configurable constants are used more indirectly than database
options. We study this in more detail in the next RQ.

To better understand the degree to which cross-layer config-
uration option usage could cause problems to users in terms of
understanding and maybe errors, we analyzed the StackOver-
flow and WP Exchange fora. Out of 60,502 StackOverflow
conversations related to only WP (not plugins), 5,907 (9%)
are related to configuration issues, and 816 of these 5,907
conversations (13%) are related to PHP configuration options.
Stackoverflow also contains 8,417 conversations related to WP
plugins, where 679 conversations (8%) contain at least one
WP or PHP configuration option, i.e., are related to multi-layer
configuration issues. The WP Exchange forum9 contains 9,756
conversations related to WP configuration issues out of 46,509
(21%), where 504 (5%) are related to PHP configuration
options. From the 8,426 conversations related to plugins in the
WP Exchange forum9, 1,375 conversations (16%) are related
to WP or PHP configuration.

Although the percentages of plugin conversations related
to multi-layer configuration (8% and 5%) seem low, it is
important to keep in mind that we do not know the number
of plugin conversations talking about configuration in general
(as the plugins’ options follow different naming conventions).
Since this number will be much lower than 8,417 or 8,426,
the percentage of *configuration* discussions that consider
options across layers will be much higher than 8% or 5%.

Therefore, an important percentage of conversations in
both fora is related to multi-layer configuration issues, which
suggests that it is an important issue for WP users.

(RQ4) How many plugins share the same configuration
options of lower layers?

Motivation. In this research question, we analyze interfer-
ence between plugins caused by dependency on a common
configuration option of WP or PHP. Such interference could
indicate risky configuration options of lower layers that might
impact many plugins at once.

Approach. Similar to the previous research question, we
measure both direct and indirect configuration option usage.
Since here we are interested in any usage of configuration
options by one or more plugins, we do not distinguish between
reading and modification of options, but merge both into
”usage”. For our study of Spearman correlations of forum
conversations, we merged the data of both fora into one.

Results. 78.88% of all WP configurable constants and
85.16% of all WP database options are used by at least
two plugins. In Figure 7, 25 out of 161 WP configurable
constants are used directly by more than 10 plugins, while

38

0	

50	

100	

150	

200	

250	

1	
 7	
 13	
 19	
 25	
 31	
 37	
 43	
 49	
 55	
 61	
 67	
 73	
 79	
 85	
 91	
 97	

(a) direct

0	

100	

200	

300	

400	

500	

1	
 5	
 9	
 13	
 17	
 21	
 25	
 29	
 33	
 37	
 41	
 45	
 49	
 53	
 57	
 61	
 65	
 69	
 73	
 77	
 81	

(b) indirect

Figure 7: The number of plugins (Y axis) using a given configurable
constant (ordered on the X axis).

0	

20	

40	

60	

80	

100	

120	

1	
 7	
 13	
 19	
 25	
 31	
 37	
 43	
 49	
 55	
 61	
 67	
 73	
 79	
 85	
 91	
 97	

(a) direct

0	

100	

200	

300	

400	

500	

1	
 7	
 13
	

19
	

25
	

31
	

37
	

43
	

49
	

55
	

61
	

67
	

73
	

79
	

85
	

91
	

97
	

10
3	

(b) indirect

Figure 8: The number of plugins (Y-axis) sharing the same database
configuration option (ordered on the X axis).

75 configurable constants are used indirectly by more than
16 plugins (29 even by more than 104 plugins). The highest
number that we found were the 231 different plugins that
directly use the configurable constant ABSPATH. For indirect
usage, WP DEBUG is used by 447 different plugins out of
the 484 plugins in the Large Data Set, and the VHOST,
MULTISITE, and SUNRISE options are used by 445 different
plugins. At the other extreme, 21 configurable constants are
used directly by just two different plugins, and five are used
indirectly by two different plugins.

Turning now to WP database options, Figure 8 shows how
24 out of 155 database options are used directly by more
than 10 plugins, whereas 59 are used indirectly by more than
10 plugins. The option used directly by the highest number
of plugins is active plugins, which is used by 97 different
plugins out of 484 plugins, and the second most important
configuration option is siteurl (used by 78 plugins). The option
blog charset is used indirectly by the highest number of
plugins (458 different plugins). At the other extreme, 28 WP
database configuration options are used directly and seven ones
are used indirectly by only two different plugins.

52 PHP configuration options are used by at least
two different plugins. In Figure 9, 13 PHP configuration
options are used directly by more than 10 plugins, while

0	

20	

40	

60	

80	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	
 49	

(a) direct

0	

50	

100	

150	

200	

250	

300	

350	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

(b) indirect

Figure 9: The number of plugins using the same PHP configuration
option (ordered on the X axis).

Table V: The correlation between the number of plugins using an
option and the number of conversations mentioning it.

Configuration options of Case Correlation
WP configurable constants Direct use 0.5533475
WP configurable constants indirect use 0.2268492
WP Database options Direct use 0.3643119
WP Database options indirect use 0.2795615
PHP configuration options Direct use 0.5593974
PHP configuration options Indirect use 0.4427347

five PHP configuration options are used indirectly (across WP
functions) by more than 28 different plugins. The PHP config-
uration memory limit is used directly by 75 different plugins,
safe mode is used by 71 plugins. However, the most used
options are arg separator.output and mbstring.func overload,
which are used respectively by 300 and 297 different plugins.
There are also three PHP configuration options used by just
three different plugins, and nine PHP configuration options
that are used indirectly from the WP source code.

Discussion. As 101 (62%) out of 161 of WP configurable
constants are used directly and 81 (50%) are used indirectly
by at least two different plugins, the modification of a con-
figurable constant inside the WP layer might impact many
other plugins indirectly. For example, the configurable constant
ABSPATH is used directly by 47% of the plugins studied, and
indirectly by 78%. If its value would become corrupt, it could
impact the behavior of at least 78% of the plugins.

Similarly, there are some WP configuration options stored
in the database that are used by many plugins, which means
that their modification could impact the plugins’ behavior as
well. For example, blog charset is used indirectly by 94% of
the plugins studied. An error with this option could impact
what the plugins display on the screen. The above of course
holds for the PHP configuration options as well, which come
from an even deeper layer.

We found that there is a weak to moderate correlation
(between 0.22 and 0.55) between the number of times a WP
configuration option is being used directly by plugins and the
number of conversations discussing the option, as shown in
Table V. The correlation results for indirect usage of WP
configurable constants and WP database options are weaker.
All correlations are positive, hence the more plugins use an
option of a deeper layer, the more discussions there are about
the option, hence the more information people require about it.
This suggests that the reuse of configuration options of deeper
layers can pose problems for WP users and hence requires
more research.

V. THREATS TO VALIDITY

Regarding threats to external validity, since we analyzed
only the WP ecosystem, and within this ecosystem only a
limited amount of plugins, we cannot generalize the results
to other systems. However, our results provide a first large
analysis of the use of configuration options in multi-layer
systems, since in total we considered 484 plugins, 15 of which

39

were manually analyzed across time. In future work, we plan
to analyze other multi-layer systems, in the same as well as
other domains.

Regarding threats to internal validity, we analyzed only 15
plugins for the first and the second research question due to
the manual analysis required, especially due to the criterion for
literals in the method calls used to access the plugins’ database
options for RQ1 and RQ2, and the need to manually find these
methods. However, these plugins are all popular plugins from
a variety of organizations and domains.

VI. CONCLUSION

Multi-layer systems like WP have a potential for con-
figuration errors due to interference between configuration
options in different layers. As a first step towards analyzing
such errors, this paper performed an empirical study on the
prevalence of multi-layer configuration options in WP, WP
plugins and the PHP system. We found that except for WP
itself, WP plugins prefer storing configuration options in a
database, in order to make them easily available to the end
user for configuration. Furthermore, configuration options and
usage evolve across time, especially when new features are
added. Across layers, we found that each plugin uses on
average 1.30 PHP configuration options and modifies 0.40
options, while it uses on average 1.49% to 9.49% of all
WP database options and more than 1.38% to 15.18% of all
WP configurable constants. Furthermore, 78.88% of all WP
configurable constants and 85.16% of all WP database options
are used by at least two plugins at the same time, which can be
between two and 447 plugins for configurable constants, two
and 458 plugins for WP database configuration options, and
between two and 300 plugins for PHP configuration options.

Finally, there is more indirect use of configuration options
than direct use, which could make the detection and fixing of
configuration errors more difficult. We indeed found initial
evidence of this potential through the relatively high per-
centage of conversations in Stackoverflow and WP Exchange
fora talking about options of deeper layers. Hence, we would
suggest Wordpress to provide a mechanism to warn plugin
developers or users for the impact of cross-layer configuration
modifications. Future work needs to build on these results
to help users detect and fix configuration problems across
multiple layers.

REFERENCES

[1] S. Zhang and M. D. Ernst, “Which configuration option should i
change?” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. ACM, 2014, pp. 152–163.

[2] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. ACM,
2011, pp. 159–172.

[3] F. Arshad, R. Krause, and S. Bagchi, “Characterizing configuration
problems in java ee application servers: An empirical study with
glassfish and jboss,” in Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on, Nov 2013, pp. 198–207.

[4] A. Hubaux, Y. Xiong, and K. Czarnecki, “A user survey of configuration
challenges in linux and ecos,” in Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, ser.
VaMoS ’12. New York, NY, USA: ACM, 2012, pp. 149–155.

[5] D. Jin, X. Qu, M. B. Cohen, and B. Robinson, “Configurations ev-
erywhere: Implications for testing and debugging in practice,” in Com-
panion Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014. New York, NY, USA: ACM,
2014, pp. 215–224.

[6] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated configuration
bug report prediction using text mining,” in Computer Software and
Applications Conference (COMPSAC), 2014 IEEE 38th Annual, July
2014, pp. 107–116.

[7] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing
resilience to human configuration errors,” in Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, June 2008, pp. 157–166.

[8] S. Zhang, “Confdiagnoser: An automated configuration error diagnosis
tool for java software,” in Software Engineering (ICSE), 2013 35th
International Conference on, May 2013, pp. 1438–1440.

[9] C. Elsner, D. Lohmann, and W. Schroder-Preikschat, “Fixing config-
uration inconsistencies across file type boundaries,” in Software Engi-
neering and Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference on, Aug 2011, pp. 116–123.

[10] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. USENIX Association, 2010, pp. 1–11.

[11] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem,” in Proceedings of the Sixth Conference
on Computer Systems, ser. EuroSys ’11. ACM, 2011, pp. 47–60.

[12] B. Wang, L. Passos, Y. Xiong, K. Czarnecki, H. Zhao, and W. Zhang,
“Smartfixer: Fixing software configurations based on dynamic priori-
ties,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. ACM, 2013, pp. 82–90.

[13] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes
for software configuration,” in Software Engineering (ICSE), 2012 34th
International Conference on, June 2012, pp. 58–68.

[14] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time config-
uration options,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. ACM,
2014, pp. 445–456.

[15] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration
constraints: Static analyses and empirical results,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
ACM, 2014, pp. 140–151.

[16] A. Rabkin and R. Katz, “Precomputing possible configuration error diag-
noses,” in Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, Nov 2011, pp. 193–202.

[17] D. Jin, M. B. Cohen, X. Qu, and B. Robinson, “Preffinder: Getting the
right preference in configurable software systems,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014, pp.
151–162.

[18] S. K. Patel, V. Rathod, and J. B. Prajapati, “Performance analysis of con-
tent management systems-joomla, drupal and wordpress,” International
Journal of Computer Applications, vol. 21, no. 4, pp. 39–43, 2011.

[19] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and
T. Nguyen, “Dangling references in multi-configuration and dynamic
php-based web applications,” in Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, Nov 2013, pp. 399–
409.

[20] L. Eshkevari, G. Antoniol, J. R. Cordy, and M. Di Penta, “Identifying
and locating interference issues in php applications: The case of word-
press,” in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. ACM, 2014, pp. 157–167.

[21] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Exploring variability-
aware execution for testing plugin-based web applications,” in Proceed-
ings of the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp. 907–918.

[22] D. A. Wheeler, “Sloc count user’s guide,” 2004.

40

