
The Impact of Cross-Distribution Bug Duplicates,
Empirical Study on Debian and Ubuntu

Vincent Boisselle, Bram Adams
MCIS, Polytechnique Montréal, Québec, Canada

Abstract—Although open source distributions like Debian and
Ubuntu are closely related, sometimes a bug reported in the
Debian bug repository is reported independently in the Ubuntu
repository as well, without the Ubuntu users nor developers being
aware. Such cases of undetected cross-distribution bug duplicates
can cause developers and users to lose precious time working
on a fix that already exists or to work individually instead of
collaborating to find a fix faster. We perform a case study on
Ubuntu and Debian bug repositories to measure the amount
of cross-distribution bug duplicates and estimate the amount
of time lost. By adapting an existing within-project duplicate
detection approach (achieving a similar recall of 60%), we find
821 cross-duplicates. The early detection of such duplicates could
reduce the time lost by users waiting for a fix by a median of 38
days. Furthermore, we estimate that developers from the different
distributions lose a median of 47 days in which they could have
collaborated together, had they been aware of duplicates. These
results show the need to detect and monitor cross-distribution
duplicates.

I. INTRODUCTION

Early January 2011, a developer reported bug #697498 in
the Ubuntu bug repository, after which the triager confirmed
the validity of the bug, checked for duplicate bug reports
in the Ubuntu bug repository, then dispatched the bug to
the assignee best suited to fix the bug. However, nobody
noticed that the bug was already reported 3 months earlier in
the mother distribution Debian (bug #599582). Unknowingly,
developers in both distributions kept on working in parallel
on a patch. Eventually, the Debian developers figured out a
patch at the end of July 2011 (fixed, but not released). At
this point, developers in Ubuntu were still stuck with the bug,
until 9 months later, when they finally found the fix at the end
of April 2012. In this situation, the Ubuntu users who were
victim of the bug lost 9 months of useless time waiting for a
fix because the people involved were not aware of the bug fix
presence in Debian. Developers in both distributions also lost
a potential collaboration time of 8 months, where they worked
in isolation on a fix for the same issue instead of being able
to join forces.

The above is a typical example of time loss occurring when
dealing with bug duplicates across bug repositories of open
source systems, yet finding duplicates across an organization’s
border is hard. Indeed, whereas 44% of Ubuntu bug reports
have been linked to a within-project (i.e., Ubuntu) duplicate,
an analysis of the Debian and Ubuntu bug repositories shows
that less than 2% of the Ubuntu bug reports have been linked
manually to at least one Debian bug. This gap could either
be explained by the fact that cross-organization duplicates

are rare or that people are actually good at finding within-
project duplicates, but not detecting duplicates across an
organization’s borders.

Indeed, to help triagers find duplicates inside their organi-
zation’s bug repository [3], various researchers have proposed
duplicate bug report detection tools [2], [13], [19], [17], [14],
[18], [12], [20]. These approaches, upon submission of a
new bug report, provide a recommendation about similar bug
reports based on the subject, description or even characteristics
of the affected code. Triagers then need to check the top
recommendations, potentially recording identified duplicates
inside the bug report. These techniques are starting to become
ready for real-life usage, for example Ubuntu’s bug repository
has such a technique built-in for new bug report submissions.
However, the above techniques have not been designed for
finding duplicates across repositories of different organiza-
tions. Organizations typically use different bug repository
technologies, which have some overlapping data fields, but
also unique data fields on either side.

This paper aims to empirically study the performance
of an existing bug duplicate detection approach on cross-
distribution duplicates, as well as to estimate the time lost
due to missed cross-distribution duplicates. For this, we first
build a cross-project duplicate detection model based on an
existing information retrieval (IR) approach, then we apply it
on two large, popular open source distributions (Debian and
Ubuntu) to answer the following RQs:

RQ1: What is the performance of an IR-based duplicate
detection technique across two distributions? Our approach
detects duplicates across distributions with a maximum recall
of 60% using a threshold of 60% (with precision of 5%),
while we get an optimal precision and recall of 43% when
using a threshold of 88%.

RQ2: How much time is lost by users and developers
during the fixing process? While fixing a bug typically takes
a median time of 29 days, developers lose a median of 47 days
of potential collaboration and users lose 38 days waiting for
fixes already made in the other distribution.

II. BACKGROUND AND RELATED WORK

Ray et al. perform a case study on cross-system porting (i.e.
applying patches to other products) in the open source BSD
ecosystem [16], in which they found that porting occupies a
significant portion of the BSD family evolution and involves
a significant portion of the active committers. Part of the

978-1-4673-7529-0/15 c© 2015 IEEE SCAM 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

131

patches ported to other BSD products consist of bug fixes,
implying that similar bugs are reported across distributions.
Crowston et al. study the social interactions of developers
fixing bugs in OSS projects and found a lack of coordi-
nations between developers, where, as a consequence, work
load is not equally distributed among developers and some
of them work on the same patch without collaborating and
exchanging productive information that could empower the
bug fixing process[8]. Lack of coordination between devel-
opers and other stakeholders is a typical OSS bug fixing
challenge that also holds for OSS distributions, which share
multiple packages requiring coordination across organizations,
and hence introduce significant maintenance cost caused by the
integration activities. Considering OSS distributions, Adams
et al. identified seven major integration activities such as the
Local Patch, which consists of patching an upstream source
code locally. Doing local patching with a lack of collaboration
with the related upstream organization can cause major issues,
for example there is a well known case of OpenSSL security
breach1. Since bug repositories are the principal tools used to
manage patching activities, optimizing the bug fixing process
can reduce the cost of integration and maintenance activities,
and decrease time loss by stakeholders working with cross-
distribution projects.

Multiple studies show an interest for bug repositories to
attack the problem of software maintenance. Anvik et al. were
among the first to study open source bug repositories and to
report on the major challenges faced by triagers and developers
of these projects. These challenges consist of dealing with
a high volume of bug reports, part of which are invalid or
duplicates. To ease the work of triagers, many researchers
propose automated techniques based on information retrieval
to recommend a top list of potential bug duplicates within bug
repositories [12], [18], [14], [13]. All those works share the
same basic technique to recommend a top N bug duplicates
list by extracting textual features (e.g, title and description),
then compare those features using techniques such as TF-IDF
or BM25F [9], which yields a similarity value ranging from
zero (totally not similar) to one (exactly the same). Sun et al.
propose a multiple features approach, which combines textual
features and numerical features comparing two reports (e.g.,
delta of bug priority numerical values), then get better results
than traditional textual approaches obtaining a maximal recall
of 71% [18].

Other researchers observe that most of the duplicates are
reported within a certain time scope around the first duplicate
publish date, thus they focus the recommendation of bug
duplicates on a specific time period, which can provide a gain
up to 24% on the recall compared on a basic TF-IDF approach
encompassing the whole bug repository [11], [14]. Most of
these previous studies analyze open source bug repositories
based on the Bugzilla platform.

To the best of our knowledge, no research so far has
dealt with cross-project duplicates, or analyzed how those

1http://lwn.net/Articles/282038/

techniques could impact the time wasted by end users and
software maintainers.

III. METHODOLOGY

A. Study Setup

Our study takes place on the Ubuntu and Debian Linux
distribution bug repositories. A Linux distribution packages an
operating system kernel (Linux) with thousands of open source
end user applications in order to distribute an integrated work
environment to its users. The reason why we perform our study
on cross-project duplicate detection on Linux distributions
in general, and Ubuntu and Debian specifically, is because
distributions can be derived from other distributions. In this
case, Ubuntu inherits the tools and packages of the Debian
distribution, then adds and customizes additional packages on
its own. As such, Ubuntu depends heavily on Debian, such that
being aware of duplicate bugs in Debian is an important goal.
Furthermore, according to the unofficial distribution popularity
ranking of distrowatch.com, Ubuntu and Debian are the second
and third most popular distributions at the time of writing
(behind Mint, which is derived from Ubuntu but performs
substantially less customization on Ubuntu than Ubuntu does
on Debian).

The Ubuntu community uses the Launchpad web platform
to create bug reports and keep track of them. The Debian
community uses a more basic approach using a mail server.
The launchpad platform provides trackers to track bugs from
another provider such as a related distribution like Debian or a
package provider. Such trackers need to be enabled manually,
which means that a human first needs to become aware of a
duplicate bug report before being able to use a tracker.

We mined the Debian bug repository from 2009 to 2013
and the Ubuntu bug repository from 2011 to 2013. We select a
wider dataset for Debian because Debian bug reports tend to be
older (i.e., were reported earlier) than their Ubuntu duplicate.
We have selected datasets that are recent enough to develop
an approach applicable on actual bug reports and old enough
to have most of the bugs fixed.

B. Identifying Common Bug Report Fields

In general, bug reports are characterized by a set of different
fields that capture different kinds of information about a bug.
Each bug duplicate detector tool uses a subset of these fields
to compare a new bug report to existing ones to know whether
the reports are similar or not. Hence, as a first step, we need
to find a set of representative fields that are common across
both distributions under study.

The most common bug report fields are the description, title,
date, and the author’s name. Sun et al. [18] added a variety of
more specialized fields to build a bug report similarity model,
including product, component, version, priority, and type of
bug report. These new fields can enhance a detector’s simi-
larity model, however they require the fields to be available
in both bug repositories, which represents a challenge in the
case of cross-project duplicate detection. Figure 1 and 2 show
bug report examples for Ubuntu and Debian respectively.

132

1

5

4

3
2

Figure 1: Ubuntu bug report #846280

On the Ubuntu bug report (Figure 1), we have access
to a variety of fields in zone #1, where we find the title,
bug number, author name, creation date, affected packages,
status, and importance. Zone #2, contains links to related
duplicates within the same bug repository, while zone #3 is the
general description field of the bug. Zone #4 contains multiple
fields (some already in zone #1) that provide more precise
information about the bug, and zone #5 contains links to
different trackers listening to a bug reported elsewhere (Debian
in this example). Fields in zone #4 are delimited by the “:”
character, where the left part is the field’s name and the right
part its value, e.g., in Figure 1 “Architecture” is a field’s name
and “i386” its value.

The Debian bug report (Figure 2) has the same kind of infor-
mation as Ubuntu in the delimited zones #1, #3, and #4, while
zone #2 contains links to bug duplicates inside the Debian
repository. The Debian bug report contains less information
than Ubuntu, especially in zone #3. This represents one of the
essential problems of cross-project duplicate detection. To find
the fields that are common to both repositories, we counted
the number of occurrences of non-empty fields that are present
in the analyzed bug reports of each repository, then manually
mapped the most frequent ones to each other as shown in
Table I. To avoid losing too much information when parsing
report text into pre-selected fields, we leave out other less
frequent sub-fields in the “misc” field.

C. Bug Report Similarity Model

To build a cross-distribution duplicate detection approach,
we first need to extract the bug report data and build a model
to calculate the level of similarity between bug reports. Later
on, such a model can then be used to determine whether a
new bug report in one distribution is similar enough to a bug
report of another distribution. This section describes step by
step the process to generate the model, in which we first

1

2

4

3

Figure 2: Debian bug report #677191

Table I: Selected bug report fields common to both repositories

Field Description Example Value
Description Bug general description “This is an...”
Misc Fields in zone #4 not “InstallationMedia:

common to both distributions Ubu...”
Title A short bug summary “It crashes!”
Date Bug creation date 2013-06-05
Package Problematic package emacs
Version Package version 1.0
Architecture Processor architecture amd64
Severity Bug severity level important

extract bug report fields for comparison, then generate an
oracle, and finally build the bug report similarity model. The
whole process is shown in Figure 3.

1) Attribute Extraction:

a) Repository Updater and Ubuntu/Debian Parsers: The
repository updater continuously fetches new bug reports from
both Debian and Ubuntu distributions. Because the bug reports
of both repositories do not have the same format, we need to
parse them using a specialized parser for each distribution to
parse the information provided by the bug report into multiple
fields. For the Ubuntu distribution, we use the Launchpad
API2, while for Debian the only way to extract fields is using
regular expressions on the bug report emails. The parser also
retrieves information about already reported bug duplicates.
In Debian, duplicates are most of the time from the same
distribution. However, in Ubuntu one can track duplicates

2Launchpad API: https://launchpad.net/+apidoc/

133

Ubuntu
parser

Debian
parser

Bucket Generator

Attribute
Generator

Repository
Updater

Text Fields TF-IDF
Indexer

Model
Builder

Similarity
Model

fetches
report

fetches
report

feeds to the
right parser

Ubuntu
Bug Repository

Debian
Bug Repository

Duplicate
Buckets

Ubuntu/Debian
Bug Reports DB

parses each
report into
fields

indexes bug report
text fields

generates

get duplicates

+
gets other
related info

Training Set with
Attributes

discretizes
attributesextracts non-

literal fields

extracts field
tf-idf vectors

gets

builds

Oracle
Generator

Discretizer

gets

gets generates

Attribute Extraction1
3

0.1
0.9
...

2 Oracle Generation

Model Building

Figure 3: Approach to generate bug report similarity model.

to other distributions, provided developers became aware of
these. To distinguish Ubuntu bug report identifiers (id) from
the Debian ones, we add a small letter to the bug id, i.e., the
Debian bug #677191 is now #d677191 and the Ubuntu bug
#846820 is now #u846820. Once a bug report is parsed into
its fields, we push it to the Ubuntu/Debian database.

b) TF-IDF Indexers: Using extracted fields, we adapt a
well-established within-project duplicate detection approach
for cross-distribution detection. Most of the studies so far use
text similarity to compare textual fields such as the description
and the title of a bug [19], [13], [14]. To do so, they use
the popular Term Frequency-Inverse Document Frequency
(TF/IDF) weighting technique [9], which “is a numerical
statistic that is intended to reflect how important a word is
to a document in a collection or corpus” [15].

For each textual field, we create a corpus containing all
the values for the field stored in the database, after applying
tokenization, stemming, and stop words removal. We then
apply the TF/IDF, which generates one term weighting vector
for each textual field of a bug report. We can then measure
the traditional similarity between field vectors of different
bug reports by calculating the cosine distance between both
vectors: a value of 0 means that the fields have nothing
in common and 1 means that the fields are the same. We
developed the indexers using the text feature extraction tools
from the Scikit-Learn Python package3.

c) Attributes, Attributes Generator, and Discretizer: For a
given pair of Debian and Ubuntu bug reports, the Attribute
Generator compares each report’s fields, then generates one
attribute with the outcome of each comparison. For example,
there is one generated attribute for the title comparison, date
comparison, etc. For most of the fields, this comparison is

3http://scikit-learn.org/stable/

straight-forward. For textual fields, we use the cosine distance
between the corresponding TF/IDF vectors. For the date field,
we compare two dates by getting the absolute value of their
time delta, e.g., 2012-04-06 - 2012-04-04 = time delta of 2
days.

Eventually, each pair of reports yields one row of
comparison metrics in a CSV file. Because our bug report
similarity model works better with discretized data (see
subsection F), we also need a Discretizer that takes numerical
attributes and converts them into categorical data. For this,
we use Weka’s4 equal-frequency algorithm. This algorithm
automatically clusters numeric data into K groups containing
a 1/K proportion of the data. We discretize our data in five
groups (K = 5) labeled from “L1” to “L5”, which makes the
data easy to understand for the machine learning algorithm
that we use.

2) Oracle Generation:

d) Buckets and Bucket Generator: Sun et al. [18] use the
bucket technique with which it is possible to generate an oracle
to train the similarity model. This technique, as shown in
Table II, consists of finding all the bug reports in the repository
that are already reported as duplicates and putting those in the
same group (“bucket”). In each bucket, we use one responsible
master bug report as identifier of the bucket. The master bug
reports in Ubuntu track duplicates from all distributions (see
zone #2 and #5 on Figure 1). Such reports can be identified
by looking whether they have trackers or reported bugs in the
“Duplicate of this” field. Ubuntu bugs that are duplicates of
another bug report do not possess links to the other duplicates,
they only link back to their master report. In Debian, all

4http://www.cs.waikato.ac.nz/ml/weka/

134

Table II: Bug duplicate buckets example, based on Sun et al. [18] technique

Bucket Masters u846280 u789706
Duplicates u860208, d649427 d619367, d619367

d619367, d670292 u917601, u976781

Table III: Example oracle for a part of bucket #u846280 in Table II. The green
rows contain pairs of duplicates, whereas the white rows contain random pairs.
There are missing pairs for #d619367 and #d670292.

id 1 id 2 desc misc title date pack. vers. arch. sev. dup
u846280 u860208 L4 L3 L3 L2 L2 L2 L2 L2 1
u846280 u789706 L2 L1 L2 L3 L1 L1 L1 L1 0
u860208 d649427 L4 L3 L3 L2 L2 L2 L2 L2 1
u860208 d619367 L1 L1 L2 L3 L1 L1 L1 L1 0
d649427 d619367 L4 L3 L3 L2 L2 L2 L2 L2 1
d649427 d619367 L2 L2 L2 L2 L1 L1 L1 L1 0

...

duplicate bug reports possess links to their duplicates, hence
we do not have to select a master for them.

For example, the Ubuntu bug report in Figure 1 and the De-
bian bug report on Figure 2 are cross-distribution duplicates.
The Debian report #649427 has 2 duplicates (#619367 and
#670292) as shown in zone #2 and the master Ubuntu report
has a duplicate in the same distribution (#860208) and one
in Debian (#649427). To build the cross-distribution bucket,
we first look for the duplicates in the Ubuntu master report,
we create a new bucket with its id, then put the other bug
duplicates in it. We see on the Debian report that there are
two other duplicates listed in zone #2, hence we also put them
in the same bucket, where we get the final bucket as depicted
in Figure 1 for #u846280.

e) Oracle and Oracle Generator: Using buckets, we can
build an oracle for our bug report similarity model. We use
the same algorithm as Sun et al. [18], where we iterate through
each bucket that is not used in our test set (see section IV)
to obtain the generated attributes for pairs of duplicates in
the bucket (see Attribute Generator). For each duplicate, we
generate two such pairs, i.e., a first one containing another
duplicate in the same bucket, and a second one containing a
randomly picked bug report id from outside the bucket. By
doing this, we balance our training set 50/50 with duplicates
and non-duplicates, which is a common practice in machine
learning.

Table III shows an example oracle that we obtain by
running the algorithm only on bucket #u846280 of Table II
(in practice, we consider almost all buckets). In the table,
each report of the bucket is compared to another duplicate
(green rows) and a randomly picked bug in the database
(white rows). When a bug report is a duplicate, we set the
“dup” attribute to 1, otherwise to 0. As discussed before, the
Attribute Generator generates discrete attributes from “L1” to
“L5” on an ordinal scale (low to high).

3) Model Building:

f) Similarity Model and Model Builder: We use logistic
regression to build a bug report similarity model based on

the oracle [10]. This machine learning technique is used to
predict a binary value (i.e., duplicate or not) from independent
variables (i.e., bug report attributes), as represented by the
following formula:

Similarity =
1

1 + exp(β0+
∑8

i=1 βiai)
(1)

Here β0 is a constant and the βi are the weights learnt
for the attributes ai using Weka’s Simple Logistic Regression
algorithm. The logistic regression model yields a probability
value ranging from 0 to 1, and hence does not automatically
decide whether a bug report is a duplicate or not. To decide
whether a bug report is a duplicate, we use the methodology
of the next subsection.

D. Bug Duplicate Recommender

To recommend bug duplicates (Figure 4), we use the At-
tribute Extraction and Similarity Model of Figure 3. A triager
submits a new bug report query to the system to retrieve a top
rank list of recommended reports that are the most prone to be
duplicates. The Attribute Extraction takes care of everything
related to the processing of the submitted bug report from
parsing to the generation of discretized attributes on each bug
report available in the Debian/Ubuntu database. For example,
if someone submits a report query while there are 300,000
bugs in the Debian/Ubuntu, there will be 300,000 sets of
attributes generated for a new bug report.

The Recommender then generates a top rank list of possible
duplicates by first calculating the similarity level of each bug
report in the repository with the new report. For this, each
generated set of attributes (one at a time) is given as input
to the similarity model, then the outcome of the model (a
probability of similarity) is ranked in descending order to
obtain the top rank list of duplicate bug candidates. We set
a limit of 15 bug reports and use a selective threshold to
refine the results, based on prior works (average limits from
1 to 20 bug reports are common [13], [14], [19]. The triager
then manually analyzes the top list until a relevant duplicate
is found and the new bug is recorded as duplicate, or until the
triager decides that the new report is not a duplicate and she
discards the top rank list.

IV. RESULTS

Using the data and approach presented in the previous
section, we now address the research questions of the intro-
duction. For each RQ, we provide a motivation, approach and
our findings.

A. RQ1: What is the performance of an IR-based duplicate
detection technique across two distributions?

Motivation:
Before we can study the impact for users and developers

of not being aware of cross-duplication duplicates, we first
need to identify such duplicates. In addition to an existing
set of recorded duplicates (used as oracle for the similarity

135

Attribute Extraction
(Fig. 3)

Triager

Similarity
Model

submits
query

Bug
Report

generates

gets

1. #d1235
2. #d6547
3. #d2315
4. #d1224
5. #d7653
6. #d3577
7. #d5479

Top Rank List
of Detected Duplicates

Recommender
generates

checks gets

Attributes

Figure 4: Bug Duplicate Recommender

model), we want to use the duplicate detection technique pre-
sented in the previous section to find additional (un-recorded)
duplicates. However, this requires that the approach does
not generate too many false alarms (i.e., has high precision)
and that it finds a large enough number of all un-recorded
duplicates (i.e., has high recall). For this reason, this RQ
evaluates the precision/recall of the detection approach for
retrieving Debian bug report duplicates of Ubuntu bug reports
using multiple thresholds, after which we pick a threshold that
we believe is the best to provide relevant new duplicates for
RQ2.

Approach:
Although our approach is able to find duplicates from both

distributions, we focus our evaluation on the perspective of the
Ubuntu users, where we submit queries related to Ubuntu bug
reports and we retrieve their Debian duplicates. We do this
because we have access to more information about the cross-
distribution duplicates with Ubuntu Launchpad than with the
Debian mail server. However, the approach could equally work
the other way around, starting with a new Debian bug report
and trying to find possible Ubuntu duplicates.

Hence, we submit existing Ubuntu bug reports as a query to
the Bug Duplicate Recommender, retrieve the list of Debian
bug reports suggested as duplicates, then compare these results
with an oracle of known cross-distribution duplicates. The
outcomes of this comparison are the precision and recall of
the approach, given by the following formulas:

Precision =
Correctly identified duplicates

Recommended duplicates
(2)

Recall =
Correctly identified duplicates

All duplicates known by the oracle
(3)

Our technique to evaluate precision/recall in the cross-
distribution context is different from the one used in prior
works on within-project duplicates detection [18], [17], [14].
The latter could train and evaluate models based on reports that
have been tagged as duplicate of one unique master bug report
in the same repository. Hence, their evaluation could measure

how well a model is able to predict the master bug report of
a bug report. In our case, Ubuntu reports can track multiple
Debian bug reports, i.e., there is no concept of a Debian master
bug report for a Ubuntu report. For this reason, we followed
a different evaluation approach.

We will calculate precision and recall on two different
oracles. The first oracle consists of a random sample of
335 Ubuntu bug reports from the oracle of recorded cross-
distribution duplicates used in Section III. 335 corresponds to
the sample size necessary for a population of 2,484 Ubuntu
bug reports tracking a Debian bug to have a confidence level
of 95% and confidence interval of 5% [6].

Since these 335 reports only contain duplicates marked
manually in the Ubuntu repository by humans, some duplicates
might be missing, which could artificially reduce the precision
and recall of the detection approach. Our second oracle
consists of the same bug reports as the first one, but this time
we manually went through the top 15 recommended duplicates
by the detection approach to mark any reports that indeed are
duplicates but were not recorded as such in the repository. We
only look at the top 15 ranking to stay consistent with the
maximal number of duplicates that our approach is allowed to
identify.

Table IV provides an example of a bug report list that we
get using our approach, where we submit a query to retrieve
duplicates for bug report #u1. Usually, the triager should only
consider reports above or equal to a fixed threshold (here 75%)
that is represented by the triple line in the table, and at most
15 bug reports. Let’s assume that the Ubuntu community has
already identified the duplicates #d1, #d2, and #d3, we then
define a new manual oracle by analyzing all the top 15s bug
reports identified by our approach, where we manually identify
new duplicates #d4 and #d6 that were not recorded in the bug
repository and hence were unknown by the community.

For the first oracle, our approach would retrieve all dupli-
cates with a perfect recall of 100%, however we have a lower
precision of 60%, since our approach identified five bug reports
to be duplicates when only three reports have been tagged by
developers as duplicates (3/5). The evaluation with the manual
oracle has different results, since our approach has a lower
recall of 80% because the bug #d6 (highlighted in red) is
below the threshold (not recommended), however we get a
better precision of 80% because #d4 is now recognized as a
real duplicate.

We make sure that there are no bug reports in the evaluation
test set that are present in the training set. For both oracles, we
use the detection approach for a range of logistic regression
thresholds from 0.60 to 0.99 in steps of 0.01. Then, we plot the
average precision/recall for each oracle across the 335 sampled
bug reports, in order to pick a threshold with the best trade-off
between precision and recall.

Results:
We manually found 16% (57) new cross-distribution

duplicates over the already reported ones using our ap-
proach: For 35 submitted reports (10% of the bugs with
already reported duplicates), we manually found 57 new

136

Table IV: Top 15 ranking for #u1 bug query. The last column (“sim.”)
corresponds to the similarity level (ranging from 0 to 1), and the m/a tags
identify duplicates in the manual oracle and the already reported duplicates
oracle

bug id desc misc title date pack. vers. ... sim.
(m/a) d1 L4 L3 L3 L1 L1 L1 ... 0.95
(m/a) d2 L4 L2 L4 L3 L1 L1 ... 0.9
(m/a) d3 L3 L1 L3 L1 L1 L1 ... 0.85
(m) d4 L3 L1 L3 L1 L1 L1 ... 0.8

d5 L3 L1 L3 L1 L1 L1 ... 0.8

(m) d6 L3 L1 L3 L1 L1 L1 ... 0.75
d7 L3 L1 L3 L1 L1 L1 ... 0.75
...

d15 L4 L2 L3 L2 L1 L1 ... 0.55

Debian duplicates over the 347 that were already reported.
This shows that the recorded cross-distribution duplicates are
not complete, either because people were not aware of them
or forgot to mark them. In other words, there is room for tools
to automatically detect such duplicates.

The attributes with the largest weight in the similarity
model (in descending order) are: date, title, misc, and
description. The logistic Similarity Model gives most of the
weight to: date=“L1”, title=“L5”, misc=“L5”, and descrip-
tion=“L5”. This means that recently reported bugs that are
very similar in title, miscellaneous fields and descriptions
are favoured over other reports in the list of recommended
duplicates. On the other hand, the weights of the package,
architecture, and severity attributes are marginal. Especially
the low importance of package name is surprising, since one
would expect the package name to help narrow down the set
of reports to compare a new bug report to (as the reporter
likely knows which application shows the error) to and hence
lead to more precise recommendations.

At the minimum threshold, we get maximum recall
of 58/60% and a minimum precision of 4/5% for the
two oracles, while at the maximum threshold, we get a
minimum recall of 3% and a maximum precision of 99%
for both oracles: Figure 5 shows the evaluation of precision
and recall for the original and manual oracles. As expected,
the precision increases with higher thresholds, while the recall
drops (less duplicates are found, since it is harder to have a
value higher than the threshold).

Overall, the results for both oracles have only small
differences. At the intersection of precision/recall curves
(threshold of 88%), we get a precision and recall of 43% for
both oracles. This point of balance represented the best pick
if one has no preferences between precision and recall (i.e.,
false alarms and completeness). For RQ2, we prefer more
precise results than recall, hence we opt for a threshold of
97%, which yields a higher precision of 91% compared to a
lower recall of 14%.

0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

Ev
al

ua
tio

n
%

Evaluations
Already reported dup prec./rec.
Manual pre./rec.

Figure 5: Precision and recall of our approach across multiple thresholds. The
green line represents precision and the blue line represents recall.

Our approach detects duplicates across distributions with
a maximum recall of 60% using a threshold of 60% (with
a precision of 5%), while we get an optimal precision and
recall of 43% when using a threshold of 88%.

B. RQ2: How much time is lost by users and developers
during the fixing process?

Motivation: to estimate how much time is actually lost by
users and developers because they are not aware of cross-
project duplicates, we use the detection approach on Ubuntu
bug reports to detect new Debian duplicates. We estimate how
much time is actually lost by the users in Ubuntu when waiting
for a fix that is already available upstream in Debian. We also
estimate how much collaboration time is lost when developers
are not aware that a bug has been reported in both distributions.
In such cases, it would be helpful to merge information from
the different bug reports to get new valuable information to fix
a bug [5]. Note that we are only able to “estimate” the time
loss, by providing an upper limit, since developers have other
occupations than working on the bug reports considered in this
study, and the data in the repositories might not be complete.

Approach: For RQ2, because we want to analyse the
underlying cost of not using our approach, we use another
oracle made of bug reports without reported Debian duplicates
to evaluate user time lost and collaboration time lost. We
randomly pick a sample of 14,500 Ubuntu bug reports (in
which 1,844 bugs have within-project duplicates) from our
data set of 237,787 Ubuntu bug reports that do not have
tracked Debian bugs yet, then we use for each of them the
Bug Duplicate Recommender with a threshold of 97% (cf.
RQ1) to get a list of suggested Debian bug reports. We are

137

limited to 14,500 bug reports because the use of our detection
tool has some overhead (see the cost of using our approach in
section V).

Figure 6 shows an example of collaboration time lost for
developers of both distributions. Let’s say someone in Ubuntu
reports the bug #u1 on 2011-05-02 and is not aware of the 2
related Debian bug reports that were reported before. At this
point, developers start losing collaboration time because the
bug #u1’s active period overlaps with the one of bugs #d1 and
#d2. As shown in this example, we measure collaboration time
lost by calculating the time period where developers on both
distributions are working on a fix in parallel without knowing
each other. To do so, we calculate the maximal number of
days where the newly found duplicates’ active period overlap
with the original report, in this example there are a total of
49 collaborative days lost. The active period is delimited by
a bug report’s creation date and its closure date. Of course,
the obtained collaboration time loss is a theoretical amount of
time, since developers do not work full-time on one specific
bug [8]. Hence, it should rather be interpreted as a measure
of missed opportunities. Also, to simplify things, we do not
take in consideration the time where a bug can be fixed and
then reopened.

Figure 6 also shows an example of the time lost by users,
where the Debian bug reports #d1 and #d2 are duplicates of
the Ubuntu bug report #u1, and the triager is not aware of
these two Debian duplicates. In that case, the Ubuntu users
would have lost 14 days on waiting for a fix already available
in Debian for bug report #d2. We do not consider the report
#d1 because its fix date is later than the one of #d2, we always
consider the earliest fix date.

Hence, we measure the time lost by the users waiting for
a fix by calculating the time difference in days between the
Ubuntu bug closure date and the earliest Debian duplicate
fix date. In the case where the Ubuntu bug report is fixed
before any of the Debian duplicates, we consider the time
loss to be 0 because the users do not wait extra time due
to being unaware of cross-distribution duplicates. Similar to
RQ1, this paper does not consider the case where, on the
opposite side, the Debian users lose time while waiting for
a fix already done in Ubuntu. We perform our analysis of user
time loss on our sample of 14,500 Ubuntu bug reports that do
not have Debian trackers, since for reports with tracker people
are already aware of the duplicate, hence there is no user time
loss.

To put the amount of time loss (both for collaboration and
users) into perspective, we compare it to the typical time
used for fixing Ubuntu reports without cross-project duplicate,
calculated as the time difference between the creation date and
closure date of all 28,840 bug reports that are not linked in
any way to a tracker (including masters and their duplicates).
Although this time difference does not represent the real work
load done by the developers, it gives an idea on how significant
the user and collaboration time loss are in the bug fixing
process.

Results:

2011-06-20

2011-04-26

bug #u1

2011-05-02

bug #d1

bug #d2

2011-04-30
closed

closed
2011-07-02

Time lost by the
users to wait for fix

14 days

49 days
Collaboration time
lost by developers

closed
2011-06-18

Figure 6: Time lost by Ubuntu users waiting for a fix.

Our approach retrieved new Debian duplicates for 4%
(821) of the submitted Ubuntu bug reports: Out of 14,500
bug reports, our approach with a threshold of 97% recom-
mended 821 Debian duplicates for 591 Ubuntu bug reports.
Note that of these duplicates, 91±5% should be expected to
be correct (cf. precision in RQ1), while the recall is expected
to be low. In other words, more duplicates exist in the data
set than identified with a 97% threshold. Here, we prefer to
identify less, but more correct recommendations.

Figure 7 shows the data in the form of beanplots. Each bean
(either left or right) shows a shape depicting the distribution
of a group’s data across a range of values and shows a line
delimiting the data’s median.

It takes a median of 29 days to fix a bug in Ubuntu: As
depicted by the both right hand side beanplots on Figure 7, the
time to fix a bug in Ubuntu is almost fairly distributed within
a range from a few days to even a year and more, albeit more
bugs tend to be fixed within a few days (see the small peek
at the bottom of the bean).

Users waiting for a fix lost a median of 38 days: As
depicted by the left hand side of the left beanplot on Figure 7,
a significant part of the time lost by developers is distributed
around 30 days and 700 days. A user in Ubuntu can either
wait a few days or more than a year for an already existing
fix in Debian, which could depend on how long is the bug
fixing process in Ubuntu is compared to Debian (without any
collaboration across distributions). The median of user time
loss is 9 days higher than the one of bug fixing time, which
means that, whereas Ubuntu bugs typically are fixed within a
month, bugs that are not noticed to be cross-distribution take
more than a month extra time on top of the typical time to fix
a bug in Ubuntu!

Developers lost a median collaboration period of 47
days: As depicted by the left hand side of the right beanplot
on Figure 7, a significant part of the time lost by developers is
distributed around 30 days and 500 days, which is similar to

138

0.
5

5.
0

50
.0

50
0.

0
50

00
.0

user (new) collaboration (new)

tim
e

lo
st

 (d
ay

s)

time loss
bugs lifetime

Figure 7: Collaboration and user time lost. The left and right bean plots depict
the time loss that we uncovered by detecting new duplicates. Both cases of
time loss are compared to the typical bug fixing lifetime of all Ubuntu bug
reports in the repository having no known duplicates.

what we observed for user loss time. The median collaboration
time loss is higher than the one to fix a bug, meaning that
being able to spot and exploit collaboration opportunities for
cross-distribution bugs could substantially reduce the time to
fix those bugs. Of course, this would also automatically reduce
the time for users waiting for a bug fix.
While fixing a bug takes a median time of 29 days, devel-
opers lose a median of 47 days of potential collaboration
and users lose 38 days on waiting for fixes already made
in the other distribution when considering new duplicates
detected by our approach.

V. DISCUSSION

A. Real Cases where Time Is Lost Across Distributions

We analyzed results of RQ2 to identify cases where time
is lost. Ubuntu bug #1113370 represents a case where time
is lost by waiting users and for collaboration. On February
2nd 2013, the same PostgreSQL bug is reported on Debian
(#699604) and Ubuntu. Even thought the author was the same
for both reports, he did not start a tracker for the upstream
Debian bug nor inform other people about the existence of
the bug across distributions, which means that developers lost
time by working independently on a fix. The patch consisted
of an update to package “roundcude”. Both bug reports were
closed the same year, i.e., on March 16th for Debian and on
April 1st for Ubuntu. A total of 16 days were lost by waiting
Ubuntu users and 42 days were lost on collaboration, albeit
we do not know if the author of both bug reports was working
discretely with people from both distributions. We only have
access to information available from the bug repository in this
case.

There are cases where Ubuntu users could lose over half
a year waiting because maintainers in Ubuntu were fixing
a given bug later than maintainers in Debian. For example,
maintainers involved in Ubuntu bug #723940 for “xlog” take

213 more days than the maintainers in Debian (bug #614847)
to update the package. In such a case, a better collaboration
across distributions might have reduced the package updating
process for Ubuntu.

B. Collaboration Benefits from the Detection of Bug Dupli-
cates

Our results show that there is an average of 47 days that
is not used by the developers from Ubuntu and Debian to
collaborate. Although this is of course an approximation, and
collaboration does not expedite the fixing of every bug (some
Debian bug fixes could require additional validation by Ubuntu
developers), we can argue that the collaboration at least could
consist of obtaining more information about a bug (e.g., more
stack traces), which could help fix a bug quicker [4].

C. Duplicates that our Approach can Find

To evaluate our approach, we submitted queries that consist
of Ubuntu bug reports and only identified the Debian bug
duplicates, however we can retrieve other kinds of duplicates
using our approach. For example, it is possible to rather query
a Debian bug report and get the Ubuntu duplicates, and it is
also possible to retrieve a mix of duplicates from both repos-
itories. Our approach is independent from Ubuntu/Debian,
hence it is also scalable to other distributions and even other
kinds of open source projects, as long as we are able to parse
the bug reports (i.e., build new parsers, see Figure 3), identify
common bug report fields, and push those to the common
database.

D. Cost of Using Our Approach

To convince bug repository triagers to use our approach,
it has to provide results in a reasonable delay. Our Bug
Duplicate Recommender takes on average 130 seconds to
provide recommendations for a new bug report, where it has
to deal with a database of 375,931 bug reports in our case
study, which is less than the average 20 minutes spent by
triagers to find duplicates [7]. Hence, the approach’s run-time
is marginal considering the fact that our approach can reduce
the triaging time, lost time, and lost collaboration time. Even
if the Bug Duplicate Recommender takes a reasonable time
to recommend duplicates for a single bug report, it requires
a significant amount of time (over 500 hours) to generate
duplication recommendations for thousands of bug reports in
our case study (see RQ2 in IV).

E. Finding the Optimal Threshold

By looking at Figure 5 and Figure 6 we can see that there is
no perfect threshold for detecting cross-distribution duplicates,
hence we need to make a trade-off between precision, recall,
and lost time by users. The choice of the threshold depends on
the triager’s preference, since one could prefer a shorter and
more relevant list of duplicates (higher precision, cf. RQ2), or
the full list of suggested bug reports to be sure that most of
the duplicates are detected. The latter case would make the
users lose less time while waiting for a bug fix, but it requires

139

more effort from the triager. In other words, the triager has to
trade-off between how much time he/she is willing to spend
and how much time he/she can make the end users wait. A
compromise could be to use a threshold of 88%, where the
recall and precision are at the same value of 43%.

VI. THREATS TO THE VALIDITY

A. External Threats

We only consider the Ubuntu and Debian Linux cross-
distributions in our study, which may not represent a generic
case for the hundreds of other cross-distributions relations in
the Linux ecosystem. Our study concerns two of the most
popular distributions and considers over 350,000 bug reports.
Debian is involved in multiple major Linux distributions while
Ubuntu is one of the most popular derived distribution’s of
Debian (similar to Mint). The duplicate detection approach
should be applied to those other distributions, as well as to
non-distribution projects.

B. Construction Threats

We manually build an oracle to evaluate the precision/accu-
racy of our duplicate detection technique. The oracle in RQ1
is relatively small (335 reports), since we had to manually
analyze all 15 recommendations of each report to find dupli-
cates that are not recorded as such in the Ubuntu repository.
Furthermore, we are not expert triagers of Debian and Ubuntu
bug repositories, hence we could make errors in the manual
classification of the duplicates.

We did not use the same technique as prior works to evaluate
precision and recall of the recommendation approach, since the
concept of master bug report used by prior work does not exist
for a Ubuntu report (see approach of RQ1).

VII. CONCLUSION AND FUTURE WORK

In this study, we adapt an existing approach for recom-
mending within-project duplicate bugs to recommend bug
duplications across distributions (Ubuntu and Debian), which
can achieve a recall up to 60%, comparable to the perfor-
mance of existing duplicate detection inside one project. Our
approach offers a threshold adjustment that provides flexibility
to the bug repository triager to decide between detecting more
duplicates or having more precise results. A threshold of 88%
represents a balanced choice between precision and recall of
43%. We found that the application of our approach could help
triagers to find relevant duplicates, and reduce by a median of
38 days the time lost by the Ubuntu users waiting for a fix
already available in Debian. We also found that developers
from both distributions lost a median of 47 days of potential
collaboration, where our approach has the potential to help
them save this precious time. Based on these promising results,
we suggest triagers working in cross-distribution software
projects to apply the approach to reduce the time that is
actually lost by users and developers.

REFERENCES

[1] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M.
German. An empirical study of integration activities in distributions
of open source software. Empirical Software Engineering, 2015. to
appear.

[2] Anahita Alipour, Abram Hindle, and Eleni Stroulia. A contextual
approach towards more accurate duplicate bug report detection. In
Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 183–192. IEEE Press, 2013.

[3] John Anvik, Lyndon Hiew, and Gail C Murphy. Coping with an open bug
repository. In Proceedings of the 2005 OOPSLA workshop on Eclipse
technology eXchange, pages 35–39. ACM, 2005.

[4] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul
Premraj, and Thomas Zimmermann. What makes a good bug report?
volume 19, pages 1–30, 2008.

[5] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun
Kim. Duplicate bug reports considered harmful really? In Software
Maintenance, 2008. ICSM 2008. IEEE International Conference on,
pages 337–345. IEEE, 2008.

[6] Sarah Boslaugh and Dr. Paul A. Watters. Statistics in a Nutshell.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, first edition, 2008.

[7] Yguarata Cerqueira Cavalcanti, Eduardo Santana de Almeida, Carlos
Eduardo Albuquerque da Cunha, Daniel Lucredio, and Silvio Romero
de Lemos Meira. An initial study on the bug report duplication
problem. In Software Maintenance and Reengineering (CSMR), 2010
14th European Conference on, pages 264–267. IEEE, 2010.

[8] Kevin Crowston and Barbara Scozzi. Bug fixing practices within
free/libre open source software development teams. 2008.

[9] Ronen Feldman and James Sanger. The text mining handbook: advanced
approaches in analyzing unstructured data. Cambridge University Press,
2007.

[10] David A Freedman. Statistical models: theory and practice. cambridge
university press, 2009.

[11] Hongying Gu, Long Zhao, and Chang Shu. Analysis of duplicate
issue reports for issue tracking system. In Data Mining and Intelligent
Information Technology Applications (ICMiA), 2011 3rd International
Conference on, pages 86–91. IEEE, 2011.

[12] Lyndon Hiew. Assisted detection of duplicate bug reports. PhD thesis,
The University Of British Columbia, 2006.

[13] Nicholas Jalbert and Westley Weimer. Automated duplicate detection
for bug tracking systems. In Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on,
pages 52–61. IEEE, 2008.

[14] Tomi Prifti, Sean Banerjee, and Bojan Cukic. Detecting bug duplicate
reports through local references. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, page 8.
ACM, 2011.

[15] Anand Rajaraman and Jeffrey David Ullman. Mining of massive
datasets. Cambridge University Press, 2011.

[16] Baishakhi Ray and Miryung Kim. A case study of cross-system
porting in forked projects. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
page 53. ACM, 2012.

[17] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of
duplicate defect reports using natural language processing. In Software
Engineering, 2007. ICSE 2007. 29th International Conference on, pages
499–510. IEEE, 2007.

[18] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards
more accurate retrieval of duplicate bug reports. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software
Engineering, pages 253–262. IEEE Computer Society, 2011.

[19] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng
Khoo. A discriminative model approach for accurate duplicate bug
report retrieval. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 45–54. ACM,
2010.

[20] Cheng-Zen Yang, Hung-Hsueh Du, Sin-Sian Wu, and Xiang Chen.
Duplication detection for software bug reports based on bm25 term
weighting. In Technologies and Applications of Artificial Intelligence
(TAAI), 2012 Conference on, pages 33–38. IEEE, 2012.

140

	Introduction
	Background and Related Work
	Methodology
	Study Setup
	Identifying Common Bug Report Fields
	Bug Report Similarity Model
	Bug Duplicate Recommender

	Results
	RQ1: What is the performance of an IR-based duplicate detection technique across two distributions?
	RQ2: How much time is lost by users and developers during the fixing process?

	Discussion
	Real Cases where Time Is Lost Across Distributions
	Collaboration Benefits from the Detection of Bug Duplicates
	Duplicates that our Approach can Find
	Cost of Using Our Approach
	Finding the Optimal Threshold

	Threats to the validity
	External Threats
	Construction Threats

	Conclusion and Future Work
	References

