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Abstract—Today’s web applications are deployed on powerful
software stacks such as MEAN (JavaScript) or LAMP (PHP),
which consist of multiple layers such as an operating system, web
server, database, execution engine and application framework,
each of which provide resources to the layer just above it. These
powerful software stacks unfortunately are plagued by so-called
cross-stack configuration errors (CsCEs), where a higher layer
in the stack suddenly starts to behave incorrectly or even crash
due to incorrect configuration choices in lower layers. Due to
differences in programming languages and lack of explicit links
between configuration options of different layers, sysadmins and
developers have a hard time identifying the cause of a CsCE,
which is why this paper (1) performs a qualitative analysis of
1,082 configuration errors to understand the impact, effort and
complexity of dealing with CsCEs, then (2) proposes a modular
approach that plugs existing source code analysis (slicing) tech-
niques, in order to recommend the culprit configuration option.
Empirical evaluation of this approach on 36 real CsCEs of the
top 3 LAMP stack layers shows that our approach reports the
misconfigured option with an average rank of 2.18 for 32 of the
CsCEs, and takes only few minutes, making it practically useful.

I. INTRODUCTION

Every web app requires a so-called “software stack” to
provide the computation and storage resources that it needs.
For example, a web app would not be accessible without a
web server. Moreover, a web app requires a database to store
its state, and some kind of execution engine within which
computations can be run. Hence, a web app requires a large
set of services, each of which is served by a separate layer,
together forming a stack of services consuming each other’s
resources. One popular software stack is the so-called LAMP
stack (Figure 1) [1], consisting of Linux (operating system;
OS) [2], Apache (web server) [3], MySQL (database) [4] and
PHP (execution engine) [5] layers for deploying web apps such
as Wordpress [6] (WP) or Drupal [7] (DR). Other common
stacks are the J2EE [8] and MEAN stacks [9].

Once a web app is deployed, the behaviour of the stack can
further be adapted to a particular platform by changing the
layers’ configuration options. Such options are basically a set
of <key,value> pairs, in which the key represents an option
name and the value a user’s desired choice for that option.
These pairs typically are stored in dedicated configuration
stores (files, databases, ...), and can change the behaviour of a
system without re-compilation. For example, one can configure
the database server to limit the number of connections by using
the database option “max connections”, while one can also
configure the PHP-interpreter to limit the execution time of a
script by the option “max execution time”.

Web framework  
(Wordpress, Joomla, Drupal, …)

Framework Plugins 
(NextGen, Contact Form, ….)

Scripting language 
(PHP, Perl, Java,…)

Database  
(MySql, PostgreSQL, …)

Web Server 
(Apache, IIS, …)

Operating system 
(Linux, Windows, …)

Figure 1: Architecture of a LAMP stack.

Despite this flexibility, assigning a wrong value to a con-
figuration option could lead the configured stack to behave
incorrectly or even to crash. Although, technically, one only
needs to change the value of a configuration option to fix
it, finding the correct option(s) to change and the correct
value is the topic of ongoing research [10]–[17]. Moreover,
configuration errors have a severe impact. Studies [18] have
shown that configuration-related errors can account for 27%
of all customer-support cases in industrial contexts, while a
well-known Google engineer prioritized them as one of the
top directions for future research major problems.

While resolving misconfiguration errors related to a single
layer of a software stack is difficult, such errors can span
across multiple stack layers, which could make them even
harder to troubleshoot and resolve [19]. Indeed, each stack
layer has its own configuration options and programming lan-
guage [20], and some features could be managed by different
options. For example, the memory size a script is able to
use can be changed in the WP layer by changing the option
“WP MEMORY LIMIT”, in the PHP interpreter layer by
“memory limit”, and in the web server layer by “php value
memory limit”. Such configuration choices could contradict
each other and hence confuse end users. In the context of
the WP LAMP stack, a notorious example of a Cross-stack
Configuration Error (CsCE) was the inability of users of the
NextGEN Gallery plugin to upload an image due to a memory
misconfiguration in the lower PHP interpreter layer.

This paper empirically studies the characteristics of CsCEs,
then proposes and empirically evaluates a novel modular
algorithm that leverages existing code slicing approaches.
The algorithm analyzes configuration options and their code
dependencies across multiple layers of a stack to recommend
the configuration option most likely causing a CsCE. We make
the following contributions:



• A large, qualitative study on 1,082 configuration errors
obtained from 3 online discussion forums to understand
the impact of CsCEs, the effort required to resolve such
errors, and the complexity of CsCE fixes.

• A modular algorithm that allows to plug in existing
code slicing techniques to recommend the configuration
options that are most likely responsible for a CsCE.

• A large empirical evaluation of the algorithm on 36 real
CsCEs in WP, DR, and 7 WP plugins, showing that our
approach reports the culprit option within few minutes
with a rank average of 2.18 for 32 out of the 36 cases.

• A public dataset of 36 evaluated CsCEs [21].

II. BACKGROUND AND RELATED WORK

This section presents background and related work about
software stacks, configuration errors, and CsCEs.

A. Software Stacks
Definition. We define a software stack as an acyclic graph
where nodes represent layers and an edge connects a layer
to another layer whose resources it requires. Figure 1 shows
the LAMP stack and mentions different components possibly
existing within each layer. Here, WP plugins extend the
functionality of the WP framework, which needs resources
from PHP for computation (e.g., standard library), which relies
on MySQL and Apache for database and web access, etc. Note
that stack dependencies model resource usage, not the order
in which an HTTP request is being served by a web server.
LAMP Stack. Even though the problem of CsCEs and our
approach apply to any software stack that fits our definition
(e.g., MEAN or J2EE), this paper uses the LAMP stack
as example, in particular with the WP and DR web apps.
WP and DR are two of the world’s most successful Content
Management Systems. WP 4.6 had 5.3 million downloads,
29 thousand plugins and serves 74.6 million web sites, while
DR 5.x–8.x together have around 1.2 million downloads, 35.2
thousand plugins and serve over 1 million websites. This
success is largely due to the variety of themes and plugins,
which are PHP scripts that access the WP/DR layers (PHP) to
extend basic functionalities, for example easier image uploads,
extra widgets or interfacing with other web apps.
Existing Work. Many research efforts focus on WP as case
study. In prior work [22], we found that each WP plugin is
using up to 15.18% of the WP layer’s configuration options,
while 82% of all WP options are used by at least two different
WP plugins, suggesting a large risk of CsCEs. Nguyen et
al. [23] verify plugin conflicts by testing all possible combina-
tions of enabled WP plugins at once. They also [24] proposed
an approach to detect undefined variables and functions across
all possible instances of a web page. Eshkevari et al. [25]
proposed an approach to detect interference problems like
conflicts between entity names, or between generated client
codes between WP and its plugins.

B. Single-layer Configuration Errors
Definition. A configuration error is an incorrect system behav-
ior due to a bad value assigned to an option. It typically has

as symptom an error message generated by the source code.
A single-layer configuration error is a configuration error in a
software stack where the symptom and misconfigured option
are known to belong to the same stack layer.
Existing work. Many researchers focused on understanding
configuration errors. Yin et al. [18] classified 546 miscon-
figuration errors from four open source systems and one
commercial software system into different categories to un-
derstand the different causes of such errors. Jin et al. [20]
conducted an empirical study to understand the challenges that
configuration introduces for testing and debugging. Hubaux et
al. [26] conducted an empirical study to find the challenges of
configuration across Linux and eCos users, and found that
better configuration support is required. Arshad et al. [27]
analyzed 281 bugs of two Java EE application servers, in order
to characterize configuration errors. Together with our prior
work [22], these papers found that configuration errors are an
important problem and are hard to debug. However, as reported
by Xu et al. [19], none of these papers focus on CsCEs.

Two major strategies have been used to analyze or test the
configurations of a system. Sampling algorithms [28] try to
select the most representative configurations for analysis or
testing using conventional analysis/test techniques. Conversely,
variability-aware approaches [29], [30] aim to analyze all
configurations at once, by making analysis or testing tools
configuration-aware (e.g., aware that a particular line is only
executed for a specific option value).

Several debugging approaches for single-layer configuration
errors exist. Zhang et al. [10] resolved misconfiguration errors
in Java programs by comparing erroneous program execu-
tions with a pre-built database of correct execution profiles.
Later [11], they used historical information to identify which
configuration option is introducing a bug in a new version.
Dong et al. [31] instead used static slicing, while Attariyan
et al. [32] use control flow analysis. Wang et al. [14] rank
the reported culprit options based on user feedback. Xiong et
al. [15] used constraint models to not only identify miscon-
figured configuration errors, but also propose a correct value.

C. Cross-stack Configuration Errors

Definition. In the most narrow sense, a CsCE is a config-
uration error whose symptoms are reported in a stack layer
without any direct link (access) to the culprit option. For
example, a permission problem in an option of the PHP
interpreter in Figure 1 could yield a “file cannot be uploaded”
error in the WP layer, without any read or write of the culprit
option in the latter layer. The definition of CsCE could be
broadened to cases where the layer with the error symptom
(a) reads the misconfigured option, but the option and the
incorrect value assignment still belong to a different layer;
or (b) both reads and assigns the misconfigured option, but
the user is misled to think that the symptom is generated by
a different layer. The latter case is very common, as web or
database error messages often are returned as is by the top
stack layer. Although we target the narrow definition of CsCE,
our approach can also help with the two broad interpretations.



Existing work. To the best of our knowledge, no existing
approach resolves CsCEs [19]. One alternative could be to use
the single-layer approaches discussed in the previous section.

Even though sampling-based approaches cannot guarantee
to detect all errors [28], they could be used to prevent certain
CsCEs, complementing debugging techniques. Yet, thus far,
they have not been evaluated on run-time configuration [28],
[29], using preprocessor macros and conditions to store/check
option values instead of regular variables and if-conditions.
Furthermore, each stack layer brings its own options, of
string type (not just boolean), and can be implemented using
different technologies (e.g., MySQL vs. PostgreSQL), yielding
a significantly larger search space to sample from. Variability-
aware approaches are not immune to this search space ex-
plosion either, as they require customization to the specific
configuration (variability) mechanisms and layers used.

Many approaches for debugging single-layer configuration
errors require additional input that is hard to obtain in a
software stack. For example, several [12], [13], [15] require
configuration constraint models as input, i.e., the allowed com-
binations of option values. Approaches to generate such mod-
els have only been applied on single-layer systems using the
C preprocessor [17] or other configuration conventions [12],
[13], [33]. Similarly, other approaches require data of a correct
version of the system [10], [11]. This is more difficult to obtain
in a software stack context, as it requires to have access to
all configuration data for an identical stack setup (same layer
technologies and versions), which also increases the volume
of data to process. Our approach does not require any oracle
or model and, hence, is able to scale to CsCEs.

The single-layer approach closest to our work is the static
slicing-based one of Dong et al. [31]. Our modular algorithm
can plug in a single-layer slicing-based technique such as
this to make it layer dependency-aware (and combine it with
similar techniques for different layers). Finally, Attariyan et
al. [32] do not use slicing, but dynamically explore and replay
condition branches to avoid the error and hence find the culprit
option. Replaying a large number of branches can be costly in
terms of time, and this only aggravates for multi-layer systems,
which have significantly more branches and options.

Recently, research has started focusing on understanding
software systems that contain multiple programming lan-
guages, of which software stacks form a subset. For example,
Kochhar et al. [34] found a correlation between the number
of programming languages in a system and the system’s
overall quality. One such quality issue, studied by Nguyen
et al. [35], is consistency between variables shared between
different languages (in particular JS, HTML and SQL). They
developed a custom slicer for PHP web apps that combines
traditional program analysis with symbolic execution and
abstract interpretation in order to handle JS, HTML and SQL
code embedded in PHP code. While they did not address nor
evaluate their approach for configuration problems, a restricted
version of the slicer (focusing only on configuration variables)
could be integrated into our generic approach to handle other
stack layers and technologies than those it was built for.

Table I: Qualitative data source statistics.

Q&A platform Time Period #Threads #Config. Errors
Stack Overflow Aug ’09-Jun ’16 997 359
Stack Exchange Sep ’10-Feb ’16 605 211
Server Fault May ’09-Feb ’16 756 483

Table II: Overview of the five layers and three data sources
analyzed for the qualitative study. ’SO’ stands for StackOver-
flow, ’STE’ for StackExchange and ’SF’ for ServerFault.

WP Drupal PHP Apache MySQL
single SO/STE SO/STE SF SF SF
cross SO/STE-PHP/. . . SO/STE-PHP/. . . SF SF SF

MySQL/Apache MySQL/Apache

III. QUALITATIVE ANALYSIS

To gain an in-depth understanding of the impact of CsCEs,
the effort required to fix them and the complexity of the
obtained fixes, this section presents the results of a qualitative
study on 2,387 forum threads from 3 online Q&A platforms.

A. Methodology

Data sources. Given the vast variety of software stacks, we
focused our qualitative analysis on the popular LAMP software
stack (Figure 1), in particular on configuration errors in the
Apache, MySQL, PHP and Wordpress (WP)/Drupal (DR)
application layers. Due to time limitations, we did not consider
Linux-related errors, nor errors related to WP/DR plugins.

Basically, we conducted a “top-down” and a “bottom-up”
analysis of cross-stack and single-layer errors. The top-down
study analyzes both kinds of errors in the WP/DR layers, in
the context of a LAMP stack. The bottom-up approach instead
focuses on configuration errors caused by the PHP, Apache,
or MySQL layer, regardless of which layers are running on
top of them (i.e., not necessarily a LAMP stack). We used
the study design outlined in Table II on the data sources of
Table I, with columns 2 and 3 of Table II corresponding to
the top-down analysis, and 4 to 6 to the bottom-up analysis.

Amongst the studied data sources, StackOverflow is a
general Q&A site covering a wide range of topics for the
general public, users and developers. We selected only those
questions that were marked as solved and tagged with “word-
press” or “drupal”, then filtered the resulting questions by
searching for discussion comments (not code blocks) mention-
ing the names of configuration options of Wordpress/Drupal
(single-layer candidate errors; SO) or PHP/MySQL/Apache
(cross-stack candidate errors; SO-PHP/MySQL/Apache). We
obtained those names from the documentation of the corre-
sponding layers. For Apache, we only retained discussions
mentioning the filename “httpd.conf” to reduce false positives.

StackExchange has subcommunities dedicated to Wordpress
and Drupal users and developers. We used the same approach
as above, yielding the single-layer (STE) and cross-stack con-
figuration error candidates (STE-PHP/MySQL/Apache) for the
analyzed layers. Finally, ServerFault is a Q&A site targeted by
system administrators. We searched for questions mentioning
options of PHP, MySQL or Apache. As mentioned earlier,



Figure 2: Difference between the number of single-layer errors
and CsCEs for each case study.

ServerFault is not limited to LAMP, hence our bottom-up
analysis is able to find options causing CsCEs in any stack.
Approach. Two human raters (first two authors) independently
analyzed the selected questions and their discussions on the
three Q&A sites to determine the values of 5 numeric, 3
boolean and 7 textual characteristics. For the textual character-
istics, each rater could assign arbitrary tags such as “produc-
tion environment” or “conflicting option”. Since this resulted
in a large set of tags for these characteristics, and in order
to resolve disagreement between raters, they performed card
sorting [36] for each textual characteristic. This allowed to
cluster tags into either fewer or broader categories, effectively
turning these textual characteristics into nominal data. They
then revisited the discussions, replacing their initial tags by
the corresponding nominal cluster names.

Of the 2,387 studied discussions, 44.7% (1,082) were re-
lated to configuration errors (Table I). Figure 2 shows for each
of the 5 studied layers of Table II a comparison between the
number of analyzed configuration errors that are single-layer
versus those that are cross-stack. Note that this figure does
not allow comparison between layers. For Drupal and PHP, we
found substantially more CsCEs than single-layer errors, while
for Apache we found the opposite. Given the imbalanced data
for Drupal, PHP and Apache, we decided to aggregate the data
of the five layers, obtaining 539 single layer and 543 CsCEs.

B. Impact of Cross-stack Configuration Errors

We found a statistically significant difference in the dis-
tribution of impact for single-layer and CsCEs (χ2 test; p-
value < 2.2e−16 with α = 0.01). As shown in Figure 3,
CsCEs are more severe compared to single-layer errors in
terms of the percentage of crashes occurring (47% of all
CsCEs compared to 29%), while they have approximately
the same percentage of hangs (23% vs. 20%). Our card sort
analysis shows that cross-stack configuration crashes typically
are related to lower-layer options that control the stack’s
capacity, like the memory size (“memory limit”) or execution
time (“max execution time”) allowed for a script. Surpassing
these limits ends up with a crash. On the other hand, single-
layer errors are more related to user access permissions than
CsCEs, but such errors do not tend to crash the system.

Since errors in the production environment are more severe,
and at least half of the single-layer and CsCEs occurred in
production, we refined the results of Figure 3 to production
errors only. We found that CsCEs exhibit a more severe impact

Figure 3: Impact of single-layer errors vs. CsCEs.

Figure 4: When do single-layer and CsCEs occur?

compared to single-layer errors, even in production (χ2; p-
value of 1.106e−11). Again, the vast majority of CsCEs were
crashes (45%), a percentage that is much higher compared to
single-layer errors (24%).

The reason for this, besides the mistake of using different
environments for testing and production, is the lack of testing
at scale before production. For example, in one case [37] the
“max input vars” option caused a CsCE where adding more
than 90 menu items to a WP site crashed the system. The
site had never been tested with more than a handful menu
items. Single-layer production crashes are more related to
misconfigured URLs and paths to lower layers, which break
when for example another database or web layer is installed.

Figure 4 shows that users face the majority of single-
layer configuration errors just after setting up their stack
(31%), or during application maintenance (26%), for example
when a new plugin is installed or theme is changed. These
problems have a relatively low impact as they can be resolved
before release or while the system is undergoing maintenance.
However, CsCEs frequently occur during DevOps activities
(26% vs. 14%) such as running scripts or backups when
operating the web application. For the same reasons as above,
when restricting the analysis to production errors, the DevOps
CsCEs grow to 44% compared to 26% for single-layer.
Conclusion: Cross-stack configuration errors have a severe
impact compared to single layer errors, due to the high
percentage of crashes they are responsible for, especially in the
production environment. Due to this severe impact, sysadmins
need automated support to debug and resolve CsCEs.

C. Effort to Solve Cross-stack Configuration Errors

In terms of effort to understand or fix configuration error,
we did not find any statistically significant difference between
single-layer and CsCEs for the number of comments on a
question (Wilcoxon; p-value of 0.041), of proposed answers
(p-value of 0.0274), of hours until a question took to be



answered (p-value of 0.1297), of options discussed before
finding the real culprit (median of 2, with a p-value of 0.3703),
nor of comments on the provided answers (p-value of 0.430).

We hypothesize that the number of comments and answers
are related to how well people expressed their problem and the
forum members’ experience. For example, we found that 25%
of the questions was answered by the original poster, typically
after a very long time. This could explain the difference in
median time to answer a CsCE question of 2.33 hours for
CsCEs compared to 1.7 hours for single-layer errors (mean of
485.1 and 253.9 hours, resp.).
Conclusion: While the literature reports that finding a single-
layer misconfigured option is a hard and time-consuming
task [18]–[20], we found that CsCEs are at least as hard
and time-consuming to resolve. This time could be reduced
with automated support for resolving CsCEs.

D. Complexity of Cross-Stack Configuration Resolution
Whereas we found that single-layer errors have a relatively
less severe impact than CsCEs, they seem to require signifi-
cantly more options (p-value of 4.847e−05) to be changed
to fix them than CsCEs (median of 2 vs. 1). Manual anal-
ysis showed that around 20 WP single-layer options always
need to be changed together. Common cases are the options
“WP HOME” and “WP SITEURL” [38] for WP, or options
managing URL redirections and permissions for Apache (like
“RewriteRule” and “RewriteCond” [39]).

While PHP interpreter errors were the most common
(56%), 5% of the WP and DR CsCEs were caused by
options assigned all the way inside the OS layer. We also
found a non-negligible percentage of errors coming from the
other layers, i.e., the web server (27%) and the database server
(12%). The decreasing percentage from top to bottom layers
is typical for a layered architecture, where layers mostly talk
with their neighbours only. Furthermore, the 5% of CsCEs
originating from the OS is a lower bound, as this study only
considers CsCEs related to file system-related OS options,
e.g. [40]). In future work, we plan to consider other OS options
as well.
In 15% of the cases the user did not have access to one or
more faulty configuration files, and hence had to override the
misconfigured options by modifying them within the source
code of the web application. Such overrides are risky, poten-
tially causing additional conflicts. One example we found [41]
showed a user modifying the “memory limit” option in the
PHP-interpreter configuration file, but his modification did not
work because the same option is overridden by the WP source
code via the function “ini set()”.
Conclusion: CsCEs require to change options not only in the
top layer of a stack, but also in deeper ones (all the way down
to the OS), not all of which are open for change by the user.

IV. METHODOLOGY FOR IDENTIFYING CAUSE OF CSCE
This section presents our modular algorithm to recommend

the configuration option responsible for a CsCE. We first
discuss the slicing program analysis technique at the core of
the algorithm, followed by important preliminary concepts.

A. Backward Slicing

Backward slicing is a program analysis technique used to
find the statements that affect a given variable (“seed”) used
on a particular line of a program [42]. The line of code and
seed together form the so-called “slicing criterion”. Backward
slicing is typically used to analyze, debug, and understand
a program, since it reduces the scope of the program to
only those statements impacting a targeted seed. Since its
introduction by Weiser et al. [42], slicing techniques have
seen applications in many domains [43]. Here, we use both
static [42] and dynamic [44] slicing techniques.

To illustrate static slicing, let’s consider the example code
in Figure 5a and the resulting backward slice for the criterion
(line 11, “higher”) in Figure 5b. As shown, backward slicing
starts from the targeted line, then goes backwards through the
code to find all lines on which the seed variable “higher” is
modified, and recursively repeats this for all variables and
function calls whose value is used to calculate “higher”.
The resulting static slice is a compilable part of the original
program that contains all statements required to calculate (i.e.,
that impact) the value of “higher” in line 11.

Dynamic slicing (Figure 5c) only analyzes the statements
that were executed during a specific execution of the system,
ignoring all other statements. For example, for an if-condition,
it only analyzes the executed branch of an if-condition, ig-
noring the second branch. Dynamic slicing is better suited
than static slicing to deal with reflective function calls, event
handlers and dynamic file includes [45]. Furthermore, it re-
duces the size of the slice and hence the amount of source
code to be analyzed, scaling better to larger systems. On the
other hand, it requires invasive instrumentation to obtain the
necessary dynamic data and concrete scenarios to run.

B. Cross-stack Slice Dependency Graph

In subsection II-A, we defined a stack as an acyclic graph in
which edges represent dependencies between adjacent layers.
In practice, such dependencies correspond to “physical links”,
i.e., some kind of mapping between resources used (e.g.,
function called, variables accessed or files read) in a layer
and the definition of those resources (e.g., function definition,
variable name or file name) in the layer below. Such physical
links can be based on naming conventions, configuration files
or could simply be hardcoded.

For example, in the LAMP stack, a Wordpress plugin would
call functions in Wordpress using regular PHP function calls,
while PHP primitives, global variables or standard library
functions would be called from Wordpress using a PHP-
to-C naming convention (e.g., function “is uploaded file”
in Wordpress could map to “is uploaded file” in the PHP
interpreter). MySQL could be called from the PHP interpreter
via its official C API or via SQL queries.

In each layer, we can summarize the results of either
dynamic or static slicing in the form of “slice dependency
graphs”. For each expression occurring in the slicing results,
there is a corresponding node in the layer’s slice dependency
graph that will have dependencies (edges) to the previous



1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3 	int result = 0;
4 	if (a > b) {
5 		result = a;
6 		higher += "'a' is higher than 'b'";
7 	} else {
8 		result = b;
9 		higher += "'b' is higher than 'a'";
10 	} 
11 	write (higher);
12 	return result;
13 }

(a) Original code.

1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3
4 	if (a > b) {
5
6 		higher += "'a' is higher than 'b'";
7 	} else {
8
9 		higher += "'b' is higher than 'a'";
10 	} 
11 	write (higher);
12
13 }

(b) Static backward slice.

1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3
4 	if (a > b) {
5
6 		higher += "'a' is higher than 'b'";
7 	} 	
8
9
10
11 	write (higher);
12
13 }

(c) Dynamic backward slice.

Figure 5: Static vs. dynamic slicing for the criterion (line 11, “higher”).

1 //Wordpress [PHP]
2 if (Option5) {
3 bar();
4 }
5

6 //MySQL [C]
7 bool mysql_foo() {
8 return option3;
9 }

10

11 bool mysql_bar() {
12 return option4;
13 }

1 //PHP interpreter [C]
2 int php_foo () {
3 if (option1 == 10
4 && ! mysql_foo()) {
5 php_bar ();
6 }
7 }
8

9 int php_bar () {
10 if (option2
11 && mysql_bar()) {
12 print (error);//SYMPTOM
13 }
14 return 0;
15 }

Figure 6: Example of a 3-layer LAMP stack.

bar()

option 1 
==10

mysql_foo()
==FALSE

php_bar()

option 2 
==TRUE

mysql_bar()
==TRUE

print(error)

return 
option3

return 
option4

Wordpress layer

PHP layer

MySQL layer

php_foo() php_bar()

mysql_foo() mysql_bar()

return 0

option 5

Figure 7: Cross-stack slice dependency graph for Figure 6.
Solid lines indicate slice dependencies, dashed lines physical
links and dotted lines slice dependencies derived from the
physical links. The black node is the start node, while the
white nodes could be ignored for optimization.

expression in the layer’s slice. If the expression is preceded
by if/else or switch/case conditions, it will depend on each
condition, see the solid edges for the PHP layer in Figure 7.

Furthermore, as is typical for slicing techniques, if the
expression is a function call, it will depend on all return
statements of the called function, while the function definition
will depend on all function calls to it. In case of access to
a global variable, the node will depend on the last statement
modifying that variable. Recursion typically is eliminated [43].

1 culpritOptions: string[];
2 nodesProcessed: set;
3 errLine=findErrorMsgLine(errorMsg);
4 crossStackDepGraph=sliceAndCreateGraph(errLine);
5 errNode=graphNode(errLine,crossStackDepGraph);

6 for n: node in breadth-first traversal of crossStackDepGraph
starting from errNode do

7 if n /∈ nodesProcessed then
8 nodesProcessed.add(n);

9 for o: configuration option used by n do
10 culpritOptions.append(o);
11 end
12 end
Algorithm 1: CsCE root cause recommendation algorithm.

Finally, to integrate the slicing results across all layers of
a given stack S, we introduce the notion of a “cross-stack
slice dependency graph” G = <N,E>, where <N,E> =⋃

i,l<N
l
i , E

l
i> ∪<φ,Ephys>, where <N l

i , E
l
i> is the slice

dependency graph of a given component i of some layer
l. A layer can have more than one slice dependency graph
if it contains parts (e.g., components) that are independent
from each other, for example different Wordpress plugins or
MySQL stored procedures.

The key enabler for G is Ephys, which is the set of edges
derived from the physical links that map an expression (node)
in a graph of a given layer to an expression (node) in a graph
of an adjacent, lower layer. Ephys maps a function definition
in a layer to its calls in other layers, function calls to the return
node(s) of the called function defined in another layer1, and a
variable access to its last modification in other layers.

In other words, using the physical links of the stack, a cross-
stack slice dependency graph stitches together the individual
slice dependency graphs of each layer into one giant graph,
as illustrated in Figure 7.

C. CsCE Root Cause Recommendation

Our modular CsCE root cause recommendation algorithm
ranks configuration options from most likely cause of a CsCE
to least likely. Its main contribution is that it integrates existing
static or dynamic slicing techniques applied on different layers
or even individual components of a layer, instead of requiring
a customized slicer per stack. Indeed, given the huge variety

1In case of dynamic slicing, we know exactly which return node was used,
but for static slicing we need to map to all possible return nodes.



in programming languages and technologies in the layers of
a stack, and the even larger flexibility in dependencies be-
tween them, a custom approach simply would not be feasible.
Instead, our approach uses the existing slicing techniques in
each layer to generate the slice dependency graphs, stitches
them together in a cross-stack slice dependency graph, then
traverses that graph to recommend options.

The main algorithm of our approach is presented in algo-
rithm 1, taking as input an error message generated by a given
software stack. First (line 3), it will try to find the line of
code printing the error message using regular expressions. If
this cannot be automated, or if no explicit error message is
provided for a CsCE, almost always some symptom of the
CsCE can be identified manually (for example an infinite loop,
failing connection or a particular GUI element involved in the
CsCE). In such cases, one could substitute errLine on line 3
by the manually identified line, which can then be used on
line 4 to perform slicing on each layer, generate the layers’
individual slice dependency graphs, then construct the unified
cross-stack slice dependency graph.

The essence of the algorithm is a breadth-first traversal of
the cross-stack slice dependency graph starting from the error
message node errNode (line 6). Starting from errNode, we
navigate the node’s backward slice in breadth-first fashion
along the node’s edges in the dependency graph, and check
each such dependent node for manipulation of a configuration
option. If so, we add it to culpritOptions. To avoid visiting
the same subgraph more than once, we use a cache to mark
the visited nodes (line 7). Finally, when following an edge
from a function definition to a call, the breadth-first iteration
on line 6 of the algorithm will ignore the edge from the call
to the function’s return node. For example, after going from
the php bar() definition to the php bar() call (white node),
the algorithm will not return back to return 0.

We use breadth-first traversal for the graph navigation, since
this will bring us first to the configuration options closest to
the error message. Those are the options traditionally [32]
considered to have the highest likelihood of being the cause
of a configuration error. Options at the same distance from the
error message node will be returned in a random order. Since
the unified cross-stack slice dependency graph spans across all
layers, the algorithm traverses both lower and higher layers to
find the cause of a CsCE.

Some optimizations are possible. For example, when per-
forming the slicing and creation of slice dependency graphs
on line 4, the slicing results of a given layer Li could be
used to limit the code that should be sliced in the next layer
below Li+1. Indeed, using a call graph, one could filter out
the functions from Li+1 that could never be reached from Li

via the physical links between the layers. This works both for
dynamic and static slicing. In Figure 7, the white nodes could
be ignored by the algorithm, as they are not reachable from
the definition of php bar(), which was called from the top
layer. A second optimization would be to stop the traversal on
line 6 as soon as enough unique options have been appended
to culpritOptions.

Table III: The subject systems used in our evaluation.

Subject Versions #LOC #options
1 WP 3 89,136 307
2 WP 4 131,044 316
3 DR 7.x-3.38 311,935 222
4 DR 7.5 112,961 153
5 DR 4.1.0 3,105 4
6 Woocommerce 2.4.8 57,725 132
7 Hyper Cache 3.2.3 1,098 32
8 UpdraftPlus 1.11.15 92,616 120
9 WP Super Cache 1.4.6 5,437 20

10 WP Photo Album+ 6.3.10 43,587 739
11 NextGEN Gallery 1.6.1 8,599 73
12 Sitemap XML 1.5.0 202 9
13 PHP-interpreter 5.3.29 661,943 639

#preprocessed LOC 5,057,274

V. EMPIRICAL EVALUATION

A. Setup of Empirical Evaluation

We evaluate algorithm 1 on 36 real CsCEs that we repro-
duced in a local LAMP environment to addresses the following
research questions:

RQ1 How accurate is our approach?
RQ2 How fast is our approach?

1) Data Selection: Our evaluation considers a LAMP stack
with the top three layers of Figure 1, i.e., the plugins layer,
web app (Wordpress/Drupal) and the PHP-interpreter. The 36
evaluated CsCEs belong to three data sets (Table IV):

• WP Set: CsCEs occurring when using Wordpress that are
due to a misconfigured option in the PHP interpreter.

• DR Set: The same, but when using Drupal.
• Plugins Set: CsCEs that occur during the use of a

Wordpress plugin, and that are due to a misconfigured
option in Wordpress or in the PHP interpreter.

To obtain the WP and DR Sets, we used three iterations:
• First, during our qualitative analysis of section III, we

analyzed the 201 CsCEs that are due to a misconfigured
option in the PHP-interpreter and occurred while using
Wordpress or Drupal, in order to identify those that could
be reproduced locally with the available configuration in-
formation. We also added two additional CsCEs encoun-
tered during our previous experiments [22]. We ended
up with 92 configuration errors that, in theory, should be
reproducible. This step was part of our qualitative study.

• The second iteration was the most tedious and time-
consuming, as we tried to reproduce each of the 92
CsCEs on our local LAMP setup. It soon became clear
that often crucial information required to reproduce an
error was missing from a forum conversation. The major
challenges of CsCEs, in particular the need to understand
each layer’s configuration options and their interactions,
as well as missing version numbers of some of the layers,
made this iteration quite painful and tedious. In the end,
after substantial trial-and-error, we were able to reproduce
43 of the 92 configuration errors.

• In the third iteration, we filtered out CsCEs with similar
symptoms and caused by the same configuration option,
ending up with 29 distinct CsCEs.



To obtain the Plugins Set, we randomly selected errors from
the official Wordpress forum and StackOverflow, using the
configuration options of Wordpress and the PHP interpreter
as keywords, then manually identifed whether the problem is
related to a Wordpress plugin. By following steps 2 and 3
above, we obtained 7 new reproducible errors out of 23.

As shown in Table III, our evaluation eventually considers
13 layer instances: WP (2 versions), DR (3 versions), 7 WP
plugins, and the PHP interpreter (1 version). The number of
configuration options in these instances ranges from 4 to 739,
and each instance has a medium code size, ranging up to
661,943 SLOC [46]. When analyzing a full stack consisting
of one WP/DR instance, one or more WP plugins and the
PHP-Interpreter, the total number of options considered in the
evaluation of a CsCE is the sum of options of all layers. The
evaluated plugins are amongst the top 50 most popular WP
plugins, with two of them amongst the top 5.

2) Implementation of Approach: As described in sec-
tion IV, our approach combines existing static or dynamic
slicing tools inside each layer. To deal with the complexities
of the dynamic PHP language [45], we performed dynamic
slicing on PHP-based layers (plugins and WP/DR layer),
while we used a static slicing approach on the C-based PHP-
interpreter. Our prototype implementation respectively uses
our dynamic PHPSlicer [47] and static C BackSlicer [48]
tools. Nguyen et al. [35]’s static slicer for PHP could be an
alternative for PHPSlicer, yet it does not consider all dynamic
PHP features (like dynamic includes, variable of variables, ...).

To build the database of physical links between layers, we
manually analyzed the WP, DR and PHP interpreter source
code and found two main kinds of physical links:

• Function call to a function implemented in the
PHP interpreter. For example, the basic PHP func-
tion “move uploaded file” implemented in “ext/stan-
dard/basic functions.c” of the PHP-interpreter can be
called from any higher PHP layer by the same name
“move uploaded file”. The PHP interpreter offers more
than 2,000 such functions to web apps [5].

• Superglobal variables, i.e., variables modified in
the PHP interpreter that can be used from any
web app. For example, the superglobal variable
“$ REQUEST”, when used in a web app, actually calls
the function “php auto globals create request” in the
file “main/php variables.c”. 9 such variables exist [49].

We implemented algorithm 1 in Java, exploiting the physical
links above, and calling out to PHPSlicer and BackSlicer for
the actual slicing. We optimized the execution time and accu-
racy of the static C slicing using the dynamic slicing results of
the PHP-based layers, as explained in subsection IV-C. This
improvement was essential to make the C slicing scale to the
preprocessed version of the PHP-interpreter code base.

3) Evaluation of Performance: To evaluate the performance
of our approach, we used two main metrics. For RQ1, we
considered the rank of the reported misconfigured option in
the output of algorithm 1. The lower this rank, the better,

since this indicates that a user needs to try out less options
before finding the root cause option.

For RQ2, we measure the total execution time of our
algorithm. Again, the lower this metric, the better. We did
not count the time to (1) instrument the web application for
dynamic slicing purposes, and to (2) re-run the system to
reproduce the error on the instrumented version, since (1) is
done only once and (2) never surpassed 60 seconds. Table IV
summarizes our answers to the two research questions.

RQ1: How accurate is our approach?

Answer: Our approach has a high accuracy for ranking
the misconfigured options, ranking 32 configuration errors
with an average rank of 2.18 and a median of 1, with only
4 errors unable to be ranked.

From the 32 configuration errors for which we are able to
find the cause, in 28 cases we report the culprit option with
a good ranking (1st or 2nd suggestion), and in one case with
an acceptable ranking (5th position), while in only three cases
a low ranking of 10 or 12 was obtained. However, we think
that even if that ranking is not ideal, it is still much better
compared to manual debugging.

Based on the distance-based ranking criterion of our algo-
rithm (algorithm 1), we are able to report the misconfigured
option as the first suggestion even if the distance between the
print statement generating the error message and an access
to the culprit option is large. For example, for the 3rd and
24th CsCEs we are able to find the misconfigured option as
the first suggestion, even though the distance between the C-
slicing criterion and the access is a distance of 13 slicing graph
edges apart.

The case with a ranking of 5 corresponds to the 10th CsCE,
where the distance is 9 slicing graph edges. Such a ranking
is still acceptable in practice, since manually finding these
options would be hard due to the median distance and the
complexity of the PHP-interpreter source code.

In three cases, we were only able to report the culprit option
as the 10th and 12th suggestion, due to the large number of
configuration options used in the sliced source code, and the
high slicing graph distance of 30 and 32 edges. Consider-
ing additional strategies for traversing the cross-stack slice
dependency graph or ranking the culpritOptions (e.g., [14])
in algorithm 1 could further improve the results.

Deeper analysis of our results showed that the 32 successful
CsCEs could be divided into three groups. The “Narrow”
group corresponds to the narrow definition of a software
stack (subsection II-B), where the code line printing the error
message and the line with the culprit option belonged to
different layers of the stack. The “Broad 1” group contains
examples of the first broader interpretation of CsCEs, where
the WP/DR layer generates the CsCE symptom and reads
the value of the offending PHP interpreter option (via the
function “ini get()”). Finally, the “Broad 2” group contains ex-
amples of the second broader interpretation, where symptoms,
misconfigured option, and access to the option’s value really
happened within the same (PHP interpreter) layer, yet (due to



the “error reporting” option being “on”) the PHP interpreter’s
error messages showed up on the user-visible Wordpress web
page, not just in the execution logs, causing confusion.

In total, out of the 32 CsCEs, 8 belonged to the “Narrow”
group, 14 to “Broad 1” and 11 to “Broad 2”. Note that
narrow errors are impossible to detect by existing single layer
approaches (see Section II-C). The broad categories may be
found by existing approaches, but only for higher layers, in
which most of the functions (slice dependency graphs) tend to
be connected by a call graph. The deeper one goes, the more
functions (slice dependency graphs) are disconnected, since
lower layers are called by higher ones to provide a specific
service, then return. For example, the two subgraphs within the
MySQL layer in Figure 7 are not connected directly. However,
they are connected via the PHP layer graph. Without this cross-
layer context, it is impossible to navigate between functions
and hence apply existing single-layer approaches. Of course,
even if all functions in all layers would be connected to each
other, it is still impossible to predict ahead of time whether
the culprit option of a configuration error really belongs to the
same layer as the error symptom. Hence, even for “Broad 2”,
our generic approach is the most pragmatic.

Finally, we also analyzed the four cases for which we were
not able to rank the misconfigured option at all. The first
reason our approach failed is when there was no concrete
starting point for the slicing (14th, 35th, and 36th CsCEs). For
the first two of these errors, the culprit configuration option
disabled the execution of plugin PHP code altogether (option
“short open tag” was set to “off”). For the 36th case, the user
is redirected to the login page after trying to access the admin
panel, without any error message. In general, unexecuted code
or lack of symptom is a problem for all approaches.

The second reason, preventing us from ranking the 13th
error case, is that the error message was shown in the browser
by JavaScript code after an Ajax call. Since our work currently
does not consider JavaScript and its asynchronous calls, we
plan to combine our approach with existing work [35], [50]
that analyzes client source code (HTML, JS).

Note that, similar to related work on debugging configura-
tion errors, we also assume that an error is already classified
as being a configuration issue. Our technique can be comple-
mented by the approach of Wen et al. [51] to first classify an
error as configuration or non-configuration error.

RQ2: How fast is our approach?

Answer: The errors are reported within minutes, which
makes our approach practically useful for users.

Dynamic slicing requires an execution trace, which can be
generated by instrumenting an application and executing it.
The instrumentation took 3.57 seconds in the best case, and
21.62 minutes in the worse case, with this time typically
related to the size of the instrumented layer (in SLOC).
Even when the instrumentation takes around 21 minutes, this
needs to be done only once, after which the instrumented
version of the system can be deployed and made available

by customer service to all troubleshooting users, for example
by manipulating the DNS server or load balancer [52].

To generate the execution trace from the instrumented ver-
sion, a user needs to reproduce the error on the instrumented
version of their web app. Although the instrumentation makes
the web app slower, from our evaluation the error reproduction
did not require more than 60 seconds on the evaluated errors.

After the error reproduction, one has to execute our algo-
rithm, which takes between 35.77s and 553.18s (median of
230.10s) to perform the slicing and find the misconfigured
option. Note that without the optimization that reduces the
scope of slicing for lower layers based on the slicing results of
higher layers, the C slicer sometimes would not finish, hence
we considered this optimization crucial to make the approach
compatible with static slicing of large layers. Hence, even if
some steps can still be improved in future work, our approach
is not only accurate but also fast enough for practical usage.

Since, to the best of our knowledge, we are the first to
propose a generic approach to debug CsCEs, we compared
our approach to a manual search in an online forum like
StackOverflow, ServerFault or StackExchange, based on the
qualitative study of Section III. Without considering the time
required to test a proposed answer and to discuss it via
comments, one has to wait a median of 2.433 hours to get
the correct answer for misconfigured PHP-interpreter options,
assuming the question was answered and the accepted answer
also applies to other people. Although we do not have precise
numbers on unresolved forum errors, we did find that 35%
of PHP-interpreter CsCE threads are answered by the original
poster. This suggests that (a) asking a question online does not
guarantee an answer and that (b) in cases where the original
poster had to find the answer on her own, she took the effort
to follow up on her own question. Instead, our approach is
more likely to propose a relevant answer, and does this in a
median of only 0.06 hours (current prototype).

VI. THREATS TO VALIDITY

A. Qualitative Analysis

Despite the effort spent on our qualitative study design,
gathering and clustering data from Q&A forums, we identified
several threats to validity. First, extracting data from StackEx-
change and its sub forums is subject to construct validity, since
we used the configuration options as keywords retrieve dis-
cussion threads. Relevant discussions not mentioning explicit
option names may have been missed.

Moreover, the data extracted is subject to potential threats to
reliability due to the gamification characteristics of StackEx-
change [53]. Q&A participants compete for reputation points
and badges, which could encourage them to guess which
configuration option might be the root cause of a CsCE, intro-
ducing bias into our metrics (such as the number of options
or layers discussed). Fortunately, questions and answers are
voted upon by the community, filtering out guesswork.

Furthermore, we manually analyzed the discussions’ text to
cluster threads in categories, which could introduce subjectiv-
ity in the analysis. To counter this, we used two raters and a



Table IV: The evaluated CsCEs.
Data Error System used Misconfigured option CsCE group Rank trace size Time

W
P

Se
t

1 The maximum execution time allowed is exceeded WP max execution time (PHP) Broad 2 1 1.1 MB 108.13s
2 The folder’s path used to save session data is incorrect WP session.save path (PHP) Broad 2 1 11.3 MB 553.18s
3 The allowed memory size WP is requiring has been exceeded WP memory limit (PHP) Broad 2 1 3 KB 72.56s
4 Unable to send mails WP sendmail path (PHP) Narrow 1 4.4MB 274.35s
5 Web page inaccessible as its source code is outside the allowed path WP open basedir (PHP) Broad 2 1 - 57.79s
6 upload file size has no effect on maximum file size to upload WP post max size (PHP) Broad 1 2 9.3 MB 288.75s
7 No additional database connections available to WP WP mysql.max links (PHP) Narrow 2 301 KB 54.46s
8 File upload disabled WP file uploads (PHP) Narrow 2 8.2MB 58.98s
9 Not able to upload a file WP max file uploads (PHP) Narrow 2 9.9 MB 60.31s
10 Incorrectly specified WP source code include path WP include path (PHP) Broad 2 5 811 bytes 67.54s
11 The maximum number of form inputs a user can send is exceeded WP max input vars (PHP) Broad 2 10 6.8 MB 369.91s
12 Not able to upload a file WP post max size (PHP) Narrow 10 6.5 MB 58.27s
13 No results for Ajax query that exceeded the alotted time WP max execution time (PHP) Narrow - 7.3 MB -
14 Web app does not execute PHP code WP short open tag (PHP) No symptom - - -

Pl
ug

in
s

Se
t

15 The plugin warns user from a lack of memory Woocommerce WP MEMORY LIMIT (WP) Broad 1 1 24.7 MB 243.04s
16 Not able to use caching features as it is disabled in WP Hyper Cache WP CACHE (WP) Broad 1 1 11.3 MB 234.64s
17 Not able to use backup features in the plugin UpdraftPlus DISABLE WP CRON (WP) Broad 1 1 14.9MB 238.42s
18 Plugin disabled due to a WP option WP Super Cache permalink structure (WP) Broad 1 1 19.5MB 237.07s
19 Not able to upload a file due to its large size WP Photo Album+ upload max filesize (PHP) Broad 1 1 13.1MB 236.01s
20 Fail to upload a file due to a lack of memory NextGEN Gallery memory limit (PHP) Broad 1 1 12MB 235.73s
21 Plugin reports error when compression is enabled in PHP-interpreter WP Super Cache zlib.output compression (PHP) Broad 1 1 11.7MB 235.24s

D
R

Se
t

22 DR reports that the option’s value is very low DR max execution time (PHP) Broad 1 1 87.9 MB 262.35s
23 Idem to the last case DR memory limit (PHP) Broad 1 1 87.8 MB 256.65s
24 DR crashes as the allowed memory limit is exceed DR memory limit (PHP) Broad 2 1 33 KB 73.90s
25 Not able to load PHP extensions DR extension dir (PHP) Broad 2 1 43 KB 254.26s
26 DR warns that option’s value is incorrect DR magic quotes gpc (PHP) Broad 1 1 228 KB 229.50s
27 DR crashes due to a limit of execution time DR max execution time (PHP) Broad 2 1 379 KB 78.10s
28 Not able to upload a file as its size is not allowed DR upload max filesize (PHP) Broad 1 1 6 MB 231.12s
29 DR is reporting an error, while the value of that option is incorrect DR register globals (PHP) Broad 1 1 228 KB 230.34s
30 The number of form inputs is limited DR max input vars (PHP) Broad 2 1 13.5 MB 101.69s
31 Restriction of files that can be used DR open basedir (PHP) Broad 2 1 - 35.77s
32 Not able to enable a DR module due to a missed PHP extension DR extension (PHP) Narrow 1 106.6 MB 63.90s
33 upload max filesize has no effect on maximum file size to upload DR post max size (PHP) Broad 1 2 1.3 MB 229.78s
34 Not able to upload a file DR upload tmp dir (PHP) Narrow 12 5.8 MB 56.44s
35 DR shows its source code instead of executing it DR short open tag (PHP) No symptom - - -
36 The user is redirected to the login page, without error message DR max input vars (PHP) No symptom - 4.7 MB -

Table V: Comparison to evaluation in related work.

Paper #errors #real errors #random cross- #
studied evaluated evaluated stack systems

Our work 1,082 36 0 yes 10
Zhang et al. [11] 394 8 0 no 6
Yin et al. [18] 546 0 0 no 5
Arshad et al. [27] 281 0 0 no 2
Dong et al. [31] 0 21 8 no 4
Attariyan et al. [32] 0 18 60 no 3
Zhang et al. [10] 0 14 0 no 5

multi-iteration approach for card sorting, and we also analyzed
a large data set of 2,387 threads.

Finally, regarding threats to external validity, we only
considered LAMP-related discussions, and we combined the
single-layer and CsCE data of the five analyzed layers to
deal with data imbalance. Given its popularity in the field,
we believe LAMP to be highly representative. Furthermore,
the large number of single-layer and CsCE data analyzed, as
well as the variety of observations that we made, provide us
confidence about our results. Studies on other stacks and other
LAMP web apps should be performed in the future.

B. Empirical Evaluation

Regarding the threats to external validity of our evaluation,
we only analyzed Wordpress (plugins), Drupal and the PHP
interpreter, hence we cannot generalize the results to other
stacks, nor to lower layers such as Apache and operating
systems. However, our outcomes show promising results,
encouraging us to evaluate the approach as well on other stacks
such as MEAN.

Regarding threats to internal validity, the number of an-
alyzed and evaluated configuration errors is high compared
to related work (Table V), with the number of analyzed
configuration errors twice the number of Yin et al.’s study [18],

and the number of real evaluated error 50% higher than Dong
et al. [31]. In future work, we aim to evaluate even more real
CsCEs, although reproducing such errors is time-consuming.

Another threat to internal validity could be the fact that
we did not evaluate our approach in cases where more than
one option was misconfigured. However, we think that in such
cases, users can fix an initial option using our tool, then re-
execute their scenario to find the second misconfigured option,
and so on. For future work, we aim at exploring such cases.

Finally, we only focus on errors that cause a system to
crash or write out an error message. We are not focusing on
misconfiguration errors that have an impact on the system’s
performance only. However, in section III, we found that the
majority of configuration errors exhibit a Crash or a Hang. For
future work, we plan to consider other kinds of errors.

VII. CONCLUSION

This paper empirically studied the impact, effort and fix
complexity of cross-stack configuration errors (CsCEs) for
1,082 online configuration errors, showing that CsCEs are
common and have a severe impact, even in production. We
then proposed the concept of cross-stack slice dependency
graph and an accompanying modular algorithm to recommend
the culprit option of a CsCE by integrating the results of exist-
ing slicing algorithms. Empirical evaluation on 36 real CsCEs
in a LAMP stack showed that the approach provides a good
ranking in a minimal amount of time, and could be integrated
into the workflow of online stack hosting. Future work should
evaluate our approach on other stacks and additional, deeper
layers.
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