
On the Impact of Inter-language Dependencies in
Multi-language Systems

Empirical case study on Java Native Interface Applications (JNI)

Manel Grichi∗, Mouna Abidi∗, Fehmi Jaafar†, Ellis E. Eghan∗, Bram Adams‡
∗Department of Computer and Software Engineering, Polytechnique Montreal - Canada

†The Computer Research Institute of Montreal - Canada
‡School of Computing, Queen’s University - Canada

∗{manel.grichi,mouna.abidi,ellis.eghan}@polymtl.ca, †fehmi.jaafar@crim.ca, ‡bram.adams@queensu.ca

Abstract—Nowadays, developers are often using mul-
tiple programming languages to exploit the advan-
tages of each language and to reuse code. However,
dependency analysis across multi-language is more
challenging compared to mono-language systems. In
this paper, we introduce two approaches for multi-
language dependency analysis: S-MLDA (Static Multi-
language Dependency Analyzer) and H-MLDA (His-
torical Multi-language Dependency Analyzer), which
we apply on ten open-source multi-language systems to
empirically analyze the prevalence of the dependencies
across languages i.e., inter-language dependencies and
their impact on software quality and security.

Our main results show that: the more inter-language
dependencies, the higher the risk of bugs and vulner-
abilities being introduced, while this risk remains con-
stant for intra-language dependencies; the percentage
of bugs within inter-language dependencies is three
times higher than the percentage of bugs identified
in intra-language dependencies; the percentage of vul-
nerabilities within inter-language dependencies is twice
the percentage of vulnerabilities introduced in intra-
language dependencies.

Index Terms—Multi-language, Static code analysis,
change history, Dependency analysis, Co-changes

I. Introduction
Nowadays, developers are often choosing to use multiple

programming languages to implement features in software
systems. These systems need to adapt to new changes
continually and fix issues [1]. Software changes may lead
to the introduction of quality or security issues. Thus, it is
important to perform change impact analysis during the
software system maintenance [2]. A fundamental part of
program maintenance consists of analyzing dependencies
between source-code entities [3]. Such dependencies reveal
the entities potentially impacted by a maintenance task,
assist developers in their maintenance activities, and allow
tracking the propagation of their changes [4].

Since each programming language has its own rules (i.e.,
lexical, semantic, and syntactical), change impact analysis
of multi-language systems becomes more complex, and the
maintenance activities become more challenging [1]. This
is because generic dependency analyses are no longer able
to follow (in)direct function calls in order to determine

dependencies, i.e., developers need to understand the spe-
cific calling convention between, for example, Java and
C++ [5]. In contrast to the dependency analysis in mono-
language systems that has been studied extensively [6], [7],
[8] using a variety of techniques such as static code analysis
and mining software repositories, dependency analysis for
multi-language systems is not well established yet [5] and
is still subject to further research [9].

In this paper, we empirically study ten Java Native
Interface (JNI) open-source multi-language systems to
identify the inter-language dependencies, analyze their
prevalence in multi-language systems, and their impact
on software quality and security. We focus, in this study,
on JNI since it is a mature technology (appeared in 1996
with the JDK v1.0) that is often used in industry to call
native C/C++ functions from Java and vice versa. Abidi
et al. [10] show that Java - C/C++ is the most common
combination of languages used in multi-language systems.

To identify the inter-language dependencies, we intro-
duce two approaches, which we applied on the ten JNI sys-
tems: S-MLDA (Static Multi-language Dependency Ana-
lyzer) that performs a static dependency analysis using
heuristics and naming conventions to detect direct inter-
language dependencies (a direct static relationship be-
tween two multi-language files), and H-MLDA (Historical
Multi-language Dependency Analyzer) that performs his-
torical dependency analysis based on software co-changes
to identify the indirect inter-language dependencies (a
relationship that could not be detected statistically i.e.,
hidden). Consequently, we address the following research
questions:

RQ1. How common are direct and indirect inter-language
dependencies in multi-language systems?

RQ2. Are inter-language dependencies more risky for
multi-language software system in terms of quality?

RQ3. Are inter-language dependencies more risky for
multi-language software system in terms of security?

Our results show that:

1



1) The more inter-language dependencies, the higher
the risk of bugs and vulnerabilities, while this risk
remains constant for intra-language dependencies.

2) Indirect inter-language dependencies are 2.7 times
more common than direct inter-language dependen-
cies.

3) The proportion of bugs introduced in inter-language
dependencies is three times higher than in intra-
language dependencies, with values ranging between
13,70% and 46,66%.

4) The proportion of security vulnerabilities introduced
in inter-language dependencies is two times higher
than in intra-language dependencies, where values
range between 11,27% and 22,18%.

The contributions of the paper are as follows:
• To the best of our knowledge, we present in this

paper the first work that combines two methodologies
(static and historic) to study the dependencies in
multi-language systems (the case of JNI systems).

• We propose S-MLDA and H-MLDA approaches to
detect the (in)direct inter-language dependencies.

• We analyze the impact of the inter-language changes
on the software system’s quality and security.

II. Motivating example
While existing static code analysis tools such as Im-

pactMiner [7], Modisco [11], and Understand1 support
multiple programming languages, they can only analyze
one language at a time. Analyzing the inter-connection
between languages is a complicated task as it requires a
deeper knowledge of the programming languages involved
(including the valid use/call/implementation of dependen-
cies according to the languages’ rules) as well as their inter-
language calling conventions.

Figure 1 shows an example of JNI source code from
Conscrypt. Sub-figure (a) shows the Java class “Native-
Crypto”, which contains a JNI native method declaration
EVP PKEY type(...), while Sub-figure (b) shows the
C++ file “Native crypto.cpp”, which implements this
native function. The Java file that declares the JNI native
methods should have relations across C/C++ files [12],
which are what we call “direct inter-language depen-
dencies” due to the rules of JNI [13]. Figure 2 shows
the corresponding dependency call graph of Conscrypt
for Figure 1 using the “Understand” tool. We observe
that the JNI dependency between EVP PKEY type(...)
and NativeCrypto EVP PKEY type(...) (i.e., the red
arrow) is missing.

Many previous works on mono-language systems [6], [14]
highlighted the importance of identifying the indirect de-
pendencies that are hidden from the existing static means.
In our study, we identify indirect inter-language dependen-
cies by the dependant files that changed together in time
but could not be detected by static analysis i.e., in our case

1https://scitools.com/

public final class NativeCrypto {
static native int EVP PKEY type(...);}

(a) JNI native method declaration.
static int NativeCrypto_EVP_PKEY_type(JNIEnv*

env, jclass, jobject pkeyRef) {
EVP_PKEY* pkey =

fromContextObject<EVP_PKEY>(env, pkeyRef);
JNI_TRACE("EVP_PKEY_type(%p)", pkey);
if (pkey == nullptr) {return -1;}
int result = EVP_PKEY_type(pkey->type);
return result;}

(b) JNI implementation function.

Figure 1: Example of JNI source code (Conscrypt).

Figure 2: Dependency call graph for Figure 1.

study, there is no JNI dependency between these files. Fig-
ure 2 shows an example of indirect inter-language depen-
dencies between the files “Conscrypt/Native crypto.cpp”
and “Conscrypt/OpenSSLProvider.java” (i.e., the green
arrow). Although these files had no JNI code present
(could not be detected statistically), they were changed
together frequently. In another example from one of the
studied projects in this paper, “Seven-Zip”, the “.../sr-

2



c/SevenZipJBinding.cpp” and “.../src/net/sf/ArchiveFor-
mat.java” files changed together in nine commits while
they do not contain any static dependency. This kind
of dependency could only be detected using historical
analysis. We present more details on the identification
methodology of the indirect inter-language dependencies
in Section III-B2.

Not being able to identify inter-language dependencies
increases the complexity of the maintenance activities, as
developers may be unaware of the need to change or main-
tain these dependencies adequately. The goal of this study
is to empirically study the inter-language dependencies
(direct and indirect) and the extent to which they increase
the risk of introducing bugs and/or vulnerabilities.

III. Methodology
This section discusses our methodology to empiri-

cally analyze the prevalence of direct and indirect inter-
language dependencies and to examine their impact on the
quality and the security of software systems.

A dependency is a relationship link between entities
inside the same software project. In this study, we consider
the following types of dependencies:

• Inter-language dependency (inter-LD): a relationship
between files, written in different programming lan-
guages, where the dependency identification relies
on the (third party) technology used to integrate
different programming languages (e.g., Python - C ex-
tension). Inter-language dependencies could be direct
or indirect.

– Direct inter-language dependencies (DILD): an
inter-language dependency ensuring a static di-
rect call between two files according to the multi-
language conventions (e.g., a change in native
Java class requires changing the native C/C++
function). We use S-MLDA to identify them.

– Indirect inter-language dependencies (IILD): an
inter-language dependency that is hidden from
the static code analysis (e.g., a change in Java
class propagated to the native C/C++ function,
that in turn impacted foreign C/C++ and/or
Java files). We use H-MLDA to identify these
dependencies.

• Intra-language dependency (intra-LD): a relationship
between files written in the same programming lan-
guage. There is no specific (third party) technology
used to ensure the communication between them.

A. Data Collection
We used the OpenHub API2 for querying all OpenHub’s

projects to get the list of the projects that have at least two
programming languages, in particular Java and C/C++
(they could have others in addition). We chose OpenHub
because it provides the list of the programming languages

2https://www.openhub.net/

Figure 3: %Programming languages used in each project.

involved in each open source project. From the obtained
results, we took the first 100 systems sorted by “Rating”
(an option provided by Openhub). We further used the
project status to exclude inactive or abandoned systems
from the 100 selected projects. We analysed different
systems based on their size (number of lines of code). We
picked four systems ≤ 100kLoC (i.e., Conscrypt, Lwjgl,
VLC, and Realm), four systems between 100k and 1M LoC
(i.e., Seven-Zip, React-native, Libgdx, and JatoVM), and
two systems ≥ 1MLoC (i.e., Openj9 and RethinkDB).

Figure 3 shows, for each of the ten selected systems,
the programming languages used with their respective
proportions. We limit the presentation of our analysis in
Figure 3 to three languages per system. The “Others”
category combines the rest of programming languages. We
present an overview of the collected projects in Table I.

B. Inter-language Dependencies Identification
We use static and historic code analysis to identify the

inter-language dependencies. We designed a first approach
called S-MLDA based on JNI’s rules as defined by Liang
[13] to identify the direct inter-language dependencies. We
designed a second approach called H-MLDA to identify
the indirect inter-language dependencies that are hidden
for static code analysis using the changes history.

1) Static Dependency Analysis:
Overview: S-MLDA is a static analyzer written in Java
and based on PADL (Pattern and Abstract-level Descrip-
tion Language) [15]. It takes as input a set of multi-
language files and statically analyzes their source code
using an algorithm based on JNI rules. It provides as
output a set of data, i.e., sets of files involving direct
inter-language dependencies, presented in a dependency
call graph showing the general relationships between files
and the specific ones between methods. Figure 4 illustrates
the reproduced output of the example presented in Section
II.

Motivation: To the best of our knowledge, there is
no existing static analysis tool that analyzes the inter-
language dependencies for JNI systems and generates a

3



Figure 4: Dependency call graph of a part of Conscrypt generated by S-MLDA.

Figure 5: S-MLDA approach.

Figure 6: S-MLDA matching rules.
(M-Java: Java method name; M-C: C function name; RT-Java: Java
method return type; RT-C: C function return type; P-Java: Java
method parameters; P-C: C function parameters; PT-Java: Java
method parameter types; PT-C: C function parameter types)

dependency call graph output [9]. Thus, S-MLDA is the
first static analyzer able to report static dependencies
between artefacts written in different languages.

Approach: S-MLDA consists of the following steps as
shown in Figure 5:

• Parsing: We parse a given JNI system to create a
model that contains all constituents of that system
e.g., packages, classes, methods, parameters, fields,
and relationships (inheritance, implementation, etc.).

• Extracting: We identify the Java methods and C++
functions. From the obtained Java methods, we iden-
tified the JNI native methods i.e., methods that
contain the keyword “native” in their signatures, and
from the obtained C++ functions, we identified the
native implementation functions, i.e., functions that
implement the native methods.

• Matching: We identify the matched Java native meth-
ods with the respective implementations in C++ files
based on the JNI rules that we illustrate in Figure 6:

– Rule A: we verify if the Java method names (M-
Java) match with the C++ function names (M-
C) using the JNI naming convention.

– Rule B: we verify the return types (using the
JNI mapping types) from the obtained Java (RT-
Java) and C++ methods (RT-C) from the previ-
ous step to keep only the matching types.

– Rule C: we verify the number of parameters.
We consider the matching when the number of
parameters of the C++ function (P-C) equals
the number of parameters of the Java method
(P-Java) plus two. In JNI, the C++ function
implementing the native method contains two
more JNI parameters e.g., JNIEnv, jobject.

– Rule D: Last, we verify the parameter types
of the Java method (PT-Java) and the C++
method (PT-C). We consider the methods/func-
tions when we found that the mapping of the
parameter type in both methods is matching.

We built, using the obtained relationships, a dependency
call graph (example shown in Figure 4) with different
hierarchy levels: classes level and file level. In each class,
nodes are the methods and the edges are the dependencies.

4



Figure 7: Mono/multi-language co-changes analysis.

Figure 8: H-MLDA approach.

Edges between nodes across two sub-graphs are inter-
language dependencies at methods level. We consider two
files having direct inter-language dependencies if they
involve at least one edge across the two sub-graphs. From
the obtained sets, we remove the redundant dependent
files.

2) Historical Dependency Analysis:
Overview: H-MLDA studies the change history of a
multi-language project’s Git repository to reveal the in-
direct inter-language dependencies. It identifies the multi-
language co-changes (involving multi-language files), con-
verts them into sets of multi-language files, and removes
the sets in common with the output of S-MLDA (example
is shown in Figure 9). These steps allow retrieving the
indirect inter-language dependencies not detected by S-
MLDA (i.e., potentially hidden for static analysis).

Motivation: Historical code analysis is one of the com-
mon methodologies followed to analyze dependencies [6],
[16], [17]. In particular, the concept of co-change is a useful

method to recommend dependent files potentially relevant
to a future change request when they are detected by static
code analysis. The purpose in this analysis is to identify
a set of files changing together over time often enough
(within commits) to derive an assumption that these files
could be historically dependent.

Approach: H-MLDA consider a co-change to be a
commit involving source code files that have been observed
to change together [18] (set of files changing together) to
exhibit some form of logical coupling, i.e., a temporal rela-
tionship among files changed over time [14]. Let’s consider
Figure 7, which shows four different co-changes in a given
multi-language system. Commit 1 and 3 are instances of
the same changed three files i.e., a co-change, involving the
same three files. Commit 2 is a mono-language co-change
i.e., involving mono-language files. Commit 4 presents
the case of a multi-language files with only one instance
i.e., a set of files changed together only once. To reduce
the number of false positives, we did not consider the
cases where files are co-changed accidentally without a
significant reason i.e., files appeared changing together (at
commit level) only one time.

Figure 8 presents a summary of the main parts of H-
MLDA. We query Git repository for extracting all the
commits and analyze the data obtained. We split the
co-changed set of files in two groups: one for the inter-
language co-changes involving Java and C/C++ files and
the second one for the intra-language co-changes involving
Java or C/C++ files.

To allow a logical comparison at files level between
S-MLDA and H-MLDA outputs (since, by default, H-
MLDA concerns commits, while S-MLDA concerns files)
and to identify the indirect inter-language dependencies,
we convert the multi-language co-changes into sets of
multi-language files as shown in Figure 9 in step (1). Then,
we remove the ones in common with S-MLDA sets i.e., the
direct inter-language dependencies as presented in step (2)
in Figure 9, and last, we consider the remaining sets the
indirect inter-language dependencies. This is illustrated in
step (3) in the same Figure 9.

5



Figure 9: Identification of indirect dependencies.

C. Quality Issues And Security Vulnerabilities

We aim to understand if the inter-language dependen-
cies in multi-language systems introduce more bugs and/or
security vulnerabilities than intra-language dependencies.
We also study the relation between DILD and IILD
with the project quality (introduction of bugs) and the
project security (introduction of security vulnerabilities).
To achieve this, we collected the bug reports of the studied
systems (during the collection step of the systems, we
ensured that their respective bug reports as well as their
commit messages are accessible).

We take advantage of the existing SZZ algorithm [18] to
identify bug-introducing dependencies. The SZZ algorithm
identifies changes that are likely to introduce issues, it uses
the issue report information to find such bug-introducing
changes. Using the results of the SZZ algorithm, we pre-
pared an issue data-set that contains essential information
about the bug such as its bug ID, files affected, when it
was reported and fixed.

Regarding security issues, we analyzed five vulnerabili-
ties: memory faults, null-pointer exceptions, initialization
checkers, race conditions, and access control problems [19].
We implemented a script where we used these vulnerabil-
ities as search keywords (in the collected bug reports and
commit messages) in addition to the following keywords:
threat(s), vulnerability(ies), and security. It should be
noted that, to increase the confidence in our results, none
of the bug reports identified by the vulnerability search
are present in the aforementioned issue data-set (the two
data-sets are completely disjoint.

We put all our data and scripts in the following online
website3 for replication.

IV. Results

The following section presents our results and summa-
rizes them per research question.

3https://drive.google.com/drive/folders/
1bRXdPgpicEkP6CxxUY5DH96D4WxAb8hM

Table I: #Mono-/Multi-language Commits.
Systems #Total #Multi-

language
#Mono-
language

Commits Commits Commits
1 Conscrypt 3860 2952(76,47%) 908(23,53%)
2 RethinkDB 19898 13,002(65,34%) 6896(34,66%)
3 JatoVM 4135 2996(72,45%) 1139(27,55%)
4 Libgdx 13580 11,332(83,40%) 2248(16,60%)
5 Lwjgl 3884 2108(54,27%) 1776(45,73%)
6 Openj9 6219 4992(80,27%) 1227(19,73%)
7 React-native 16298 6772(41,55%) 9526(58,45%)
8 Realm 8172 5893(72,11%) 2279(27,89%)
9 Seven-Zip 909 432(47,52%) 477(52,48%)
10 VLC 11866 8676(73,11%) 3190(26,89%)

Table II: Proportions of identified inter-LD and intra-LD.
Systems %Inter-LD %Intra-LD

(out of multi- (out of multi-
language commits) language commits)

1 Conscrypt 70,59 29,41
2 RethinkDB 73,33 26,67
3 JatoVM 83,34 16,66
4 Libgdx 68,74 31,26
5 Lwjgl 51,61 48,38
6 Openj9 71,99 28,01
7 React-native 55,55 44,45
8 Realm 62,07 37,93
9 Seven-Zip 63,63 36,36
10 VLC 48,27 51,73

RQ1. How common are direct and indirect inter-language
dependencies in multi-language systems?

Motivation: The goal of this research question is to
measure the prevalence of inter-language dependencies.
For that, we need to identify the dependent multi-language
files (inter-language dependencies) in order to reveal the
direct and indirect ones using both historic and static
analysis. We aim to compare the prevalence of static direct
dependencies to indirect dependencies (potentially hidden
for the static analysis).

Approach: We present in Table I the results related
to the commits identified by H-MLDA. We show the
total number of the multi-language commits and the
total number of the mono-language commits, with their
respective percentage out of all the commits. The results
of the inter-LD and intra-LD are illustrated in Table II,
where the two columns show the percentage of inter-
LD and intra-LD identified out of the total number of
multi-language commits. Table III shows (i) the number
of DILD (identified by S-MLDA) and (ii) the number of
IILD (generated via H-MLDA). Lastly, we evaluate the
performance of S-MLDA and H-MLDA in order to validate
their precision and recall.

Results: We observed that multi-language co-
changes are common in multi-language systems,
with values ranging between 47,52% and 83,40%
(relative to the total number of commits). Develop-
ers are changing files written in diverse languages at the
same time, which indicates a strong logical coupling be-
tween these multi-language files. Multi-language commits

6



involve more than 50% of inter-LD in 90% of the systems
(except the case of VLC where the %inter-LD is 48,27%).
The values range between 48,27% and 83,34%.

The results from Table III show that the number
of indirect inter-language dependencies is higher
(average of 2.7 times) than the number of direct
inter-language dependencies in 90% of the cases
(nine systems), while it is nearly equal for the case
of Libgdx. The high number of indirect inter-language
dependencies can be precarious for system maintenance
activities; since these dependencies are hidden from static
code analysis tools, any change to them can negatively
impact the system.

During the IILD identification (i.e., generation of sets
of files from co-changes and removal of the common sets
with DILD), we found that all of the DILD (i.e., the
sets of files Java and C/C++) were included i.e.,
a part of in the multi-language co-changes (SMLDA
⊂ HMLDA).

Discussion: We discuss the accuracy of the results of
H-MLDA and S-MLDA by evaluating the precision and
the recall.

We manually evaluate the precision by randomly se-
lecting a sample of data for each approach (using the
sampling methodology in [20]). To select the sample, we
set a confidence level of 95% and an error margin of 5%.
Our final samples contained 379 DILD for S-MLDA and
382 IILD for H-MLDA.

Case of S-MLDA: We manually checked the source
code of the direct inter-language dependencies sets for the
existence of one or more of the following JNI elements
as they identify the existence of JNI source code [13]:
JNI header (i.e., #include 〈jni.h〉); JNI pointer (i.e.,
JNIEnv); JNI keyword (i.e., native(; and JNI functions
(i.e., FindClass(), GetMethodID(), etc.).

Case of H-MLDA: We manually reviewed the source
code to verify that no JNI dependencies were present
in the sample of 382 IILD. Then, we validated the file
dependencies based on one of the following elements:

• Similarity of the files names. We checked if the IILD
files in these sets could have a same or similar names
e.g., a sub-string of a file name A included in file B.

• The intent of the source code files. We reviewed the
source code and the comments inside for each set i.e.,
Java and C(++), to find if there is a behavior between
the files that could explain the indirect dependency.

• Existence of external information sources. We
searched in the bug reports and developers discussions
if the files indirectly dependent were involved in the
same issue or were reported as related.

For the recall, we considered all the sets (DILD and
IILD) presented in Table III.

Case of S-MLDA: We implemented a script to count
occurrences of the JNI header presented in all the source
code and compared it with the number of JNI headers
found in C(++) files involved in the IILD sets.

Table III: #(In)Direct Inter-language Dependencies.
Systems #DILD #IILD

(S-MLDA) (H-MLDA)
1 Conscrypt 1341 2827
2 RethinkDB 4321 8299
3 JatoVM 1128 3154
4 Libgdx 6232 5803
5 Lwjgl 733 3149
6 Openj9 4438 7364
7 React-native 2116 6416
8 Realm 2266 6177
9 Seven-Zip 174 513
10 VLC 3172 9004

Table IV: %Bugs and vulnerabilities within co-changes.
%Buggy %Buggy %Vulnerable %Vulnerable

Systems Inter-LD Intra-LD Inter-LD Intra-LD
Conscrypt 33,33 12,03 21,66 5,02
RethinkDB 40,90 10,72 22,18 3,76
JatoVM 46,66 11,42 0 9,44
Libgdx 18,18 10,33 19,27 8,33
Lwjgl 12,5 13,7 15,5 4,31
Openj9 38,88 12,66 21,11 7,83
React-native 13,33 9,77 16,66 3,52
Realm 16,66 11,82 0 0
Seven-Zip 16,66 9,78 18,57 11,27
VLC 7,14 12,87 11,45 0

Case of H-MLDA: We implemented a script to iden-
tify all the inter-language dependencies sets that have sim-
ilar names and that are not JNI. From the sets found, we
excluded the sets successfully detected by H-MLDA. The
remaining ones are the inter-language dependencies not
detected by H-MLDA which are considered in calculating
the recall.

The final results show a precision of 100% and a recall
of 78% for S-MLDA, and a precision of 68% and a recall
of 87% for H-MLDA.

Figure 10: %Buggy dependencies.

RQ2. Are inter-language dependencies more risky for
multi-language software system in terms of quality?

Motivation: Dealing with dependencies in multi-
language systems is a challenging task as different pro-
gramming languages are involved, in which tracking the

7



dependencies requires specific effort. Through this research
question, we aim to understand if bug introduction is
frequent in these kinds of dependencies (a case study of
JNI) and we aim to identify its consequence on the system
quality.

Approach: Considering the result of RQ1 (i.e., S-
MLDA is a subset of H-MLDA), in the following, we
studied the interaction between the (intra)inter-language
dependencies and the quality issues.

We show in Table IV the percentage (out of %inter-
LD and %intra-LD) of the buggy inter-/intra-language
dependencies.

Results: The percentage of bug-introducing co-
changes was as high as 46,66% in inter-language
dependencies and 13,7% in the case of intra-
language dependencies. We report that when the num-
ber of inter-language dependencies increased, the number
of bug-introducing commits increased with a significant
correlation of 0,918 and vice-versa. Conversely, we observe
that bug-introducing co-changes are constant for intra-
language dependencies, with values range between 9,77
and 13,70. Hence, there is no significant correlation be-
tween bugs and intra-language dependencies.

The box-plot in Figure 10 shows the difference between
the median of each set i.e., bugs in inter-LD and bugs in
intra-LD. Moreover, the scatter-plot in Figure 11 allows a
better analysis to answer the research question with the
following: The more the X axis in Figure 11a in-
creases for inter-language dependencies, the higher
the risk of bugs (blue color) being introduced,
while this risk remains constant for intra-language
dependencies (Figure 11b).

We used the Mann-Whitney U test [21] with a 95%
confidence level (i.e., α = 0.05) to determine if there is
a significant difference between inter-LD and intra-LD in
terms of bugs. The test shows a significant difference (p-
value = 0.017) between the percentage of bugs presented
in the inter-LD and the percentage of bugs presented in
the intra-LD.

The results in Figure 11b show no correlation between
bugs and intra-LD. Thus, we focus our next analysis
on buggy (in)direct inter-LD. We illustrate the obtained
results in a scatter-plot presented in Figure 12a. We can
observe that the more the X axis increases for inter-
LD, the higher the risk of quality bugs introduced
in both indirect inter-LD(IILD) and direct inter-
LD(DILD).

Discussion: The percentage of quality issues in inter-
language dependencies (46,66%) is higher nearly to three
times compared with quality issues in co-changes involving
intra-language files (13,7%). Several previous works sug-
gested that combining programming languages presents
always a challenging activity as it increases the complexity
of the software and leads to hard maintenance [1]. Thus,
analyzing the impact of a change through multi-language
files is important to avoid software issues. In many cases,

(a) Inter-language dependencies

(b) Intra-language dependencies

Figure 11: %Quality and security issues detected in intra-
and inter-language dependencies.

indirect dependencies could be risky to the quality of
the system as these kinds of dependencies are hard to
identify via static analysis. Our results show that the risk
of introducing bugs are 1.5 times higher in indirect inter-
LD (not detectable by static analysis) than direct ones.

The following are two examples of bugs introduced
within inter-language dependencies.

• The first example was extracted from Conscrypt. It
presents a co-change that involved four files written in
Java and C++. It was responsible for the introduction
of a bug because of a miss of a change in the native
function NativeCrypto.EVP DigestVerifyFinal() im-
plemented in org conscrypt NativeCrypto.cpp. The
author of the change modified the signature of the
native Java method EVP DigestVerifyFinal() and
missed the corresponding modification in the CPP file
that results from the inter-language dependency. We
explain it by the fact that the author of the change
was not able to identify the JNI dependencies and
to track the change propagation i.e., a miss of the
dependency analysis.

• The second example concerns a co-change extracted
from Realm. It involved inter-language dependencies

8



(a) Buggy DILD and IILD

(b) Vulnerable DILD and IILD

Figure 12: %Quality and security issues detected in
(in)direct inter-language dependencies.

with a total of six Java files and three CPP files.
Our analysis shows that this change introduced a bug
when the new return type of the Java native method
in Realm.java did not match with the old return
type of the corresponding implementation of CPP file.
These kinds of changes are subject to bugs especially
when several changes are involved (i.e., on nine files
that were indirectly dependent). JNI practices [12]
should be well mastered by the developers as they
present another way to protect the source code from
quality decrease.

RQ3. Are inter-language dependencies more risky for
multi-language software system in terms of security?

Motivation: A major concern of practitioners and
researchers nowadays is security vulnerabilities especially
since the emblematic “Heartbleed bug”, which is a security
flaw that exposed millions of passwords and personal
information. As today almost the software systems are
multi-language systems, security vulnerabilities in those
systems became a priority for developers [10]. This re-
search question aims to identify the security impact of the
inter-language dependencies in multi-language systems.

Figure 13: %Vulnerable dependencies.

For this, we present the relationship between the inter-
/intra-language dependencies with vulnerabilities.

Approach: Security software vulnerabilities are weak-
nesses in software systems that can be exploited by a
threat actor, such as an attacker, to perform unauthorized
actions within a computer system. Software vulnerabilities
can be defined as incorrect internal states detected in
the software source code that could allow an attacker to
compromise its integrity, availability, or confidentiality.
Most software security vulnerabilities fall into one of a
small set of categories:

• Memory faults: such as buffer overflows and other
memory corruptions which impact the security of a
software system.

• Null-pointer exceptions: which can threat the system
confidentiality when it is used to reveal debugging
information.

• Initialization checkers: which can threat the system
integrity when the software components are used
without being properly initialized.

• Race conditions: related to weak time checking be-
tween software tasks and can allow an attacker to
obtain unauthorized privileges.

• Access control problems: related to weak specifica-
tions of privileges defining the access or the modi-
fication of software files .

We show in Table IV the percentage (out of inter-LD and
intra-LD) of the dependencies involving vulnerabilities.

Results: We observe that 80% of the studied systems
revealed security issues introduced within inter- and intra-
language dependencies. The percentage of vulnerabil-
ities in inter-language dependencies can reach up
to nearly 22,18%, and 11,27% in intra-language
dependencies. We present the findings in a scatter-plot,
Figure 11, for a better visual analysis. We observe that
the more we have inter-language dependencies, the
higher the risk of vulnerabilities being introduced.
Without considering JatoVM and Realm (where vulner-
abilities could not be found), a correlation of 0,961 was
found between inter-language dependencies and security
vulnerabilities.

9



Figure 14: Distribution of the five security vulnerabilities categories.

The box-plot presented in Figure 13 and the p-value of
the Mann-Whitney U test (p-value = 0.007) shows a
significant difference between the percentage of vulnera-
bilities in inter-LD and the percentage of vulnerabilities
in intra-LD. Regarding the difference between the risks of
vulnerabilities in direct inter-LD and indirect inter-LD, we
report from Figure 12b that the more we have inter-LD
the higher is the risk of vulnerabilities introduced
in indirect inter-LD comparing with direct intra-
LD where it remains nearly the same.

Discussion: From the results, we observe that vulnera-
bilities in inter-language dependencies (22,18%) are twice
as common as in intra-language dependencies (11,27%).
This leads to the conclusion that inter-language dependen-
cies are more risky than intra-language dependencies and
developers should consider the challenge provided with
multi-language systems.

We observe from Table IV that no vulnerabilities were
found in inter-language dependencies of Realm and Ja-
toVM. Realm is written mostly in Java (82.3%) where
C++ presents 8%. Java does memory management auto-
matically, the compiler catches more compile-time errors,
and it does not allocate direct pointers to memory. We
observed that the selected software written mostly in Java
is less vulnerable than C or C++ to memory security
vulnerabilities. Indeed, a similar observation was reported
previously by other researchers [22]. The results of Lwjgl
are similar to Realm. Lwjgl is mostly written in Java
(85,1%) but the difference is that the second language used
is C and not C++ (Object-oriented programming (OOP)).
We are exploring in an ongoing work if the fact of having
dependencies among files written in Java and procedural
programming language instead of an OOP language may
increase the existence of vulnerabilities in multi-language
systems.

JatoVM is the implementation of the Java virtual
machine. Vulnerabilities have not been found within
inter-language dependencies, however, they were detected
within intra-language dependencies. JatoVM is written
mostly in the C language (73%). C is a low-level program-
ming language that provides access to low-level IT infras-
tructure. We noticed that previous researchers reported
that manipulating C language is critical in the software
security context [23]. Conduction further empirical studies
can better explain the fact that we are founding several
security vulnerabilities propagated between C files. In
future work, we will study the reasons behind not finding
vulnerabilities within the inter-language dependencies to
investigate whether if this low vulnerabilities is related to
the architecture of the system i.e., how it is designed or if
it is related to the domain, as it is a java virtual machine.

Figure 14 shows the distribution of the percentage of the
vulnerabilities for each category i.e., Memory faults, Null-
pointer exceptions, Initialization checkers, Access control
problems, Race conditions. We can observe from the bar-
plot that the most vulnerabilities in inter-LD are the
Memory faults and the Access control (presented
in 80% of the systems) followed by Race conditions
(presented in 40% of the systems) while the rest
are shown in less than 30% of the systems. However,
for intra-LD, Memory faults and Initialization checkers are
presented in 50% of the systems while Null-pointer excep-
tions were found in 40% of the systems and the rest are
under of 30%. Abidi et al. through their study [24], support
this finding as Memory faults e.g., buffer overflow are
the most known vulnerability subject of security issues
in multi-language systems. The pool of practitioners who
participated in that survey explained this fact by claiming
that these programming languages do not provide security

10



protection against overwriting data in memory and do not
automatically check that data written to an array is within
the boundaries of that array. Moreover, Tan et al. [25]
discussed the importance of caring about violating access
control rules in JNI systems as native methods can access
and modify any memory location in the heap.

V. Threats to validity
We now discuss threats to the validity of our study [26].

Threats to internal validity: We relied on the litera-
ture to extract the JNI rules and to apply the co-changes
method. We evaluate the accuracy of the approaches used
through the study where we found precision (recall) values
of 100% (68%) for S-MLDA and 68% (87%) for H-MLDA.

Threats to construct validity: The process followed
in collecting the data may introduce some inaccuracies.
The use of PADL meta-model, co-changes method, SZZ
algorithm, and vulnerability classification may present a
threat to construct the study and it may exist other means.
However, we mentioned that many previous works relied
on these means and validated them. For this reason, the
precision and the recall of these means is a concern that
we agree to accept.

Threats to external validity: Our results may not
be representative of all multi-language projects, since we
only studied the case of JNI on ten open-source projects.
We accept this threat as software system’ characteristics
could vary depending on different criteria. However, to
mitigate this threat, we varied the selected projects based
on project status, size, and languages used.

Threats to reliability validity: We provided a com-
panion website3 with all the needed data and results to
replicate this study. Meta-models and tools used in our
study are open source and free to access.

VI. Related Work
Cossette and Walker [3] argued that dependency analy-

sis is very important in determining the change-impact in
software. They identified and reported the limitations of
existing techniques for supporting multi-language depen-
dencies. They applied island grammars to detect depen-
dencies in multi-language software systems.

Nguyen et al. [27] studied multi-language dependencies
in web applications where they focused on analysing dy-
namically the dependencies using slicing techniques. They
introduced an WebSlice to compute program slicing across
PHP, SQL, HTML, and JavaScript. Our study propose a
static and historic analysis of dependencies using respec-
tively dependency call graphs and co-changes techniques.

Deruelle et al. [28] proposed a model for change prop-
agation applied to heterogeneous databases applications.
Their model is based on graphs rewriting and deals with
centralized and distributed environments. They used a
CORBA-based framework because it contains three dif-
ferent databases and environments. They treats the mul-
tiplicity in only heterogeneous databases and does not
consider the multiplicity in languages.

Shatnawi et al. [5] analyzed the challenges that a multi-
language system could have and that make the static code
analysis a hard task for the developer. They proposed
a solution based on KDM (Knowledge Discovery Meta-
model) where they identified dependencies between dif-
ferent artifacts. Their work was limited to the container
services where they studied the case of server-side Java
with client-side Web dialects (JSP, JSF, etc.).

Sayagh et al. [29] highlighted the challenge of identifying
configuration options through a multi-layer software. They
were the first researchers to perform an empirical study
toward identifying the configuration dependencies through
multiple layers as configuration options in each layer might
contradict each other. One of the main finding was that
there is more indirect use of configuration options than
direct use where they concluded that the detection and fix-
ing of configuration errors could become more difficult. We
follow a part of their methodology to identify the indirect
inter-language dependencies in multi-language systems.

Jaafar et al. [6] presented a novel approach called Ma-
cocha to validate two change patterns from analyzing the
co-changes: the asynchrony change pattern, correspond-
ing to macro co-changes (MC), that is, of files that co-
change within a large time interval (change periods), and
the dephased change pattern, corresponding to dephased
macro co-changes (DC), that is, MC that always happens
with the same shifts in time. They applied Macocha on
seven diverse systems. The authors considered only mono-
language files, either Java or C/C++ source code.

Zimmerman et al. [8] and Ying et al. [9] presented
an approach based on association rules to identify co-
changing files. They argued that co-changes could be use-
ful to recommend dependent entities potentially relevant
for future change. They used the co-change history in CVS
to extract co-changing files. The authors did not consider
the dependency aspects of the identified co-changes. More-
over, their algorithm could only be applied to one language
at a time e.g., not a multi-language concept.

VII. Conclusion and Future Work

Multi-language systems present challenges in terms of
code analysis and code maintenance. Developers are re-
quired to have knowledge in every language used in the
software to identify all the dependencies. This paper aims
to analyse inter-language dependencies and their relation
with the software quality and security. We empirically
applied two approaches based on historical dependency
analysis (H-MLDA) and static dependency analysis (S-
MLDA) on ten open-source multi-language systems (i)
to identify the indirect (IILD) and direct (DILD) inter-
language dependencies and to (ii) to study their impact
on the quality and the security of multi-language systems.
We evaluated the accuracy of the results and we found
precision (recall) values of 100% (68%) for S-MLDA, and
68% (87%) for H-MLDA.

11



Our main results showed that IILD are 2.7 times more
common than DILD. The more inter-LD, the higher the
risk of bugs and vulnerabilities, while this risk remains
constant for intra-LD. Bugs introduced in inter-LD are
three times higher than in intra-LD. Security vulnerabil-
ities introduced in inter-LD are two times higher than in
intra-LD. We recommend to the multi-language developers
to first use specific approaches (i.e., S-MLDA) during their
multi-language changes to identify the inter-LD especially
the (hidden) indirect ones. Secondly, they are recom-
mended to take care of the quality aspect while changing
a multi-language software i.e., specific approaches are
needed to help spot quality issues during the change tasks.
Last, we recommend to emphasize more the control on the
memory fault and access control problem when dealing
with multi-language systems.

In future work, we plan to (1) generalize this study by
analyzing more combinations of programming languages;
(2) investigate more vulnerabilities and their relationship
with the inter-language dependencies; and (3) conduct
studies with developers to understand their perspective
on multi-language developments.

Acknowledgments
This work has been partly funded by an NSERC Dis-

covery grant, the Computer Research Institute of Mon-
treal, and Polytechnique Montreal. We thank Yann-Gaël
Guéhéneuc for his valuable inputs.

References
[1] F. Boughanmi, “Multi-language and heterogeneously-licensed

software analysis,” in 17th Working Conference on Reverse
Engineering, 2010.

[2] M. M. Lehman and L. A. Belady, Program evolution: processes
of software change. Academic Press Professional, Inc., 1985.

[3] B. Cossette and R. J. Walker, “Polylingual dependency analysis
using island grammars: A cost versus accuracy evaluation,” in
IEEE International Conference on Software Maintenance, 2007.

[4] S. Hassaine, F. Boughanmi, Y.-G. Guéhéneuc, S. Hamel, and
G. Antoniol, “A seismology-inspired approach to study change
propagation,” in 27th IEEE International Conference on Soft-
ware Maintenance, 2011.

[5] A. Shatnawi, H. Mili, M. Abdellatif, Y.-G. Guéhéneuc, N. Moha,
G. Hecht, G. E. Boussaidi, and J. Privat, “Static code
analysis of multilanguage software systems,” arXiv preprint
arXiv:1906.00815, 2019.

[6] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “De-
tecting asynchrony and dephase change patterns by mining
software repositories,” Software: Evolution and Process, 2014.

[7] B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vásquez,
D. Poshyvanyk, and H. Kagdi, “Impactminer: A tool for change
impact analysis,” in Companion Proceedings of the 36th Inter-
national Conference on Software Engineering. ACM, 2014.

[8] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in Proceedings of
the 26th International Conference on Software Engineering.
IEEE Computer Society, 2004.

[9] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,”
IEEE Transactions on Software Engineering, Sep. 2004.

[10] M. Abidi, M. Grichi, F. Khomh, and Y.-G. Guéhéneuc, “Code
smells for multi-language systems,” in Proceedings of the 24th
European Conference on Pattern Languages of Programs, ser.
EuroPLop ’19. New York, NY, USA: Association for Comput-
ing Machinery, 2019.

[11] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A
model driven reverse engineering framework,” Information and
Software Technology, 2014.

[12] M. Grichi, M. Abidi, Y.-G. Guéhéneuc, and F. Khomh, “State
of practices of java native interface,” in Proceedings of the 29th
Annual International Conference on Computer Science and
Software Engineering, ser. CASCON ’19. IBM Corp., 2019.

[13] S. Liang, Java Native Interface: Programmer’s Guide and Ref-
erence. Addison-Wesley Longman Publishing Co., Inc., 1999.

[14] F. Jaafar, Y. Gueheneuc, S. Hamel, and G. Antoniol, “An
exploratory study of macro co-changes,” in 2011 18th Working
Conference on Reverse Engineering, Oct 2011, pp. 325–334.

[15] Y. Guéhéneuc and G. Antoniol, “Demima: A multilayered ap-
proach for design pattern identification,” IEEE Transactions on
Software Engineering, 2008.

[16] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Min-
ing co-change information to understand when build changes are
necessary,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, Sep. 2014, pp. 241–250.

[17] N. Ali, F. Jaafar, and A. E. Hassan, “Leveraging historical
co-change information for requirements traceability,” in 20th
Working Conference on Reverse Engineering (WCRE), 2013.

[18] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” SIGSOFT Softw. Eng. Notes, 2005.

[19] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static
code analysis to detect software security vulnerabilities,” in
Conference on Availability, Reliability and Security, 2009.

[20] R. L. Scheaffer, W. Mendenhall III, R. L. Ott, and K. G. Gerow,
Elementary survey sampling. Cengage Learning, 2011.

[21] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric
statistical methods. John Wiley & Sons, 2013, vol. 751.

[22] G. Tan, S. Chakradhar, R. Srivaths, and R. D. Wang, “Safe
Java Native Interface,” in In Proceedings of the 2006 IEEE
International Symposium on Secure Software Engineering, 2006.

[23] G. Tan and J. Croft, “An empirical security study of the native
code in the jdk,” in Proceedings of the 17th Conference on
Security Symposium. USA: USENIX Association, 2008.

[24] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: De-
velopers’ perception of multi-language practices,” ser. CASCON
’19, 2019, p. 72–81.

[25] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi,
and D. Wang, “Safe java native interface,” in Proceedings of
IEEE International Symposium on Secure Software Engineer-
ing, vol. 97, 2006, p. 106.

[26] R. K. Yin, Applications of case study research. sage, 2011.
[27] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-language

program slicing for dynamic web applications,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. ACM, 2015, pp. 369–380.

[28] L. Deruelle, M. Bouneffa, N. Melab, and H. Basson, “A change
propagation model and platform for multi-database applica-
tions,” in Proceedings IEEE International Conference on Soft-
ware Maintenance, 2001.

[29] M. Sayagh and B. Adams, “Multi-layer software configuration:
Empirical study on wordpress,” in 15th International Working
Conference on Source Code Analysis and Manipulation, 2015.

12


