
Noname manuscript No.
(will be inserted by the editor)

A mixed-methods analysis of micro-collaborative coding
practices in OpenStack

Armstrong Foundjem, Member, IEEE, ·
Eleni Constantinou ·
Tom Mens, Senior Member, IEEE ·
Bram Adams, Member, IEEE

the date of receipt and acceptance should be inserted later

Abstract Technical collaboration between multiple contributors is a natural phenomenon
in distributed open source software development projects. Macro-collaboration, where each
code commit is attributed to a single collaborator, has been extensively studied in the re-
search literature. This is much less the case for so-called micro-collaboration practices,
in which multiple authors contribute to the same commit. To support such practices, Git-
Lab and GitHub started supporting social coding mechanisms such as the “Co-Authored-
By:” trailers in commit messages, which, in turn, enable to empirically study such micro-
collaboration. In order to understand the mechanisms, benefits and limitations of micro-
collaboration, this article provides an exemplar case study of collaboration practices in the
OpenStack ecosystem. Following a mixed-method research approach we provide qualita-
tive evidence through a thematic and content analysis of semi-structured interviews with 16
OpenStack contributors. We contrast their perception with quantitative evidence gained by
statistical analysis of the git commit histories (∼1M commits) and Gerrit code review histo-
ries (∼631K change sets and ∼2M patch sets) of 1,804 OpenStack project repositories over
a 9-year period. Our findings provide novel empirical insights to practitioners to promote
micro-collaborative coding practices, and to academics to conduct further research towards
understanding and automating the micro-collaboration process.

Keywords collaborative software development · open source software · OpenStack · social
coding · code reviews · mixed method research

Armstrong Foundjem
School of Computing, Queen’s University, Kingston, Canada
E-mail: a.foundjem@queensu.ca

Eleni Constantinou
Department of Mathematics and Computer Science, Eindhoven University of Technology, Netherlands
E-mail: e.constantinou@tue.nl

Tom Mens
Software Engineering Lab, University of Mons, Belgium
E-mail: tom.mens@umons.ac.be

Bram Adams
School of Computing, Queen’s University, Kingston, Canada
E-mail: bram.adams@queensu.ca

2 Armstrong Foundjem, Member, IEEE, et al.

1 Introduction

In open-source software development projects, it is common for multiple contributors to
collaborate on a wide range of activities, from social activities such as submitting a forum
question or bug report comment, to technical activities such as developing and reviewing
code changes. This paper focuses on one of these activities, i.e., code contributions, chal-
lenging the assumptions that people have made thus far about the way in which collaboration
processes exploit distributed version control systems.

Traditionally, collaborations between open-source developers take the form of so-called
macro-collaborations, which focus on large-scale collaborations by entire teams on complex
features for extended amounts of time, typically on dedicated feature branches [1, 2, 3, 4, 5].
While developers do interact during such collaborations, their contributions tend to be nicely
modularized in their own commits for which they are recorded as sole author by version
control systems like git.

While macro-collaboration involves multiple developers contributing one or more com-
mits, in contrast micro-collaborative coding is a more fine-grained type of collaboration that
involves multiple developers contributing to the same commit. Hence, instead of working
asynchronously, micro-collaboration involves synchronous technical activities on a shared
code base. This practice is claimed to have various benefits within teams, such as solving
complex problems [6, 7, 8, 9, 10, 11, 12] and improving onboarding [13]. At the same time,
micro-collaborations are essential both in in-person settings (cf. traditional pair program-
ming) and when working in an online, global software development environment (as has
become the norm since Covid-19), when the required contributions by the different devel-
opers are impossible to decompose cleanly into separate commits.

Despite the many advantages of micro-collaborations, and their similarity to agile prac-
tices such as pair programming, modern version control systems for online collaboration
like git unfortunately do not provide built-in support to track such collaborations, simply
because, by design, a git commit can only have one author and one (possibly different) com-
mitter. The author is the one who created the content, and the committer is the one who
committed it to the repository. Similarly, code review systems such as Gerrit1, or reviews
integrated in GitHub’s pull request mechanism, only allow one individual to be the author
of a code change.

As such, for a long time developers have had to come up with workarounds to still at-
tribute micro-collaboration changes to all responsible collaborators, which is essential for
accountability, copyright, etc. purposes. For example, in November 2007, the Debian com-
munity raised awareness2 for git to support multiple authors for a commit, and in March
2012, the Eclipse developer community expressed the need to attribute multiple authors for
a commit: “In the case, for example, of pair programming, we may have a situation where
multiple developers should be credited with a commit . . . there is no current mechanism to
do this. It might be cool to be able to specify multiple values in the ‘author’ field or multiple
occurrences of the author field” (Wayne Beaton).3

Only recently, a de facto approach to acknowledge all co-authors of a patch has been
integrated in GitHub4, GitLab5, etc., basically requiring developers to add specific Co-

1 https://www.gerritcodereview.com
2 https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=451880#12
3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=375536
4 https://github.blog/2018-01-29-commit-together-with-co-authors/
5 https://gitlab.com/gitlab-org/gitlab-ce/issues/31640

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 3

Authored-By: trailers at the end of their commit message, each one listing the name of one of
the main author’s collaborators. According to the OpenStack wiki6, the use of such trailers is
encouraged. It is even the only mechanism for micro-collaborative coding that is advertized
publicly as “a convention for recognizing multiple authors, and our projects would encour-
age the stats tools to observe it when collecting statistics.” Moreover, according to GitHub,
“the new feature responds to a growing need in organizations where collaborative coding
is the norm to speed up onboarding of junior developers, to improve code quality through
peer programming or code reviews, etc.” 7.

Thus far, there is little empirical evidence about the prevalence of micro-collaboration
practices in large open-source development communities, and the expected and actual bene-
fits of such practices. Worse, there is no data about the extent of micro-collaboration before
commit trailers were established, nor to what extent those older practices still prevail. To
address this lack of knowledge, this paper carries out an exemplar case study of micro-
collaboration practices. Such exemplar case studies are a well-accepted, yet underexploited,
method in empirical software engineering to gain fine-grained insights and understanding of
specific phenomena [14].

This paper studies as an exemplar case the OpenStack ecosystem8, a popular open-
source platform for cyloud computing governed by the Open Infrastructure Foundation
(OIF). To do so, we follow a mixed-methods research methodology [15] combining qualita-
tive semi-structured interviews of OpenStack contributors with quantitative statistical anal-
ysis of historical data extracted from version control and code review environments.

First, we perform an interview study with 16 participants to answer the following re-
search questions:

RQ1 How do OpenStack contributors engage in collaborative coding practices?
RQ2 What are the benefits of micro-collaboration?
RQ3 How can micro-collaboration be improved further?

Second, we perform a quantitative study on more than 900k commits and 600k Ger-
rit change sets of more than 1.8k OpenStack projects to validate the key findings of the
qualitative study. Furthermore, we validate our qualitative and quantitative results with nine
experts, all members of the Technical Committee at OpenStack. As a result, we provide the
following main contributions:

1. Ten qualitative findings describing the perceived practices, advantages and shortcomings
of micro-collaboration practices at OpenStack;

2. Empirical evidence validating five of these qualitative findings, notably we confirm that
micro-collaboration correlates positively with:
(a) onboarding and retention;
(b) a lower likelihood of introducing bugs;
(c) more and larger code reviews, patch sets and commits;

3. We observe that the large majority of micro-collaborative changes are not explicitly
marked as such using commit trailers.

The paper’s main message is that micro-collaboration matters in distributed develop-
ment, hence it makes sense for open-source communities to promote and support this prac-
tice. Yet, one cannot only rely on the presence of co-author trailers in commit messages.

6 https://wiki.openstack.org/wiki/GitCommitMessages
7 https://www.infoq.com/news/2018/01/github-multiple-author-commit/
8 https://www.openstack.org/

4 Armstrong Foundjem, Member, IEEE, et al.

Open-source communities could adopt the various heuristics used in our study to identify
micro-collaborations hidden in Gerrit code reviews.

A replication package containing all necessary details of the qualitative analysis of the
interviews, as well as the data and scripts of our analyses is available [16]9.

2 Background

The goal of this paper is to understand the phenomenon of micro-collaborative coding
practices in open source software projects that are part of a larger software ecosystem.
This requires a case study containing multiple interdependent project teams with many dis-
tinct contributors of diverse nature. Moreover, the community should be open to micro-
collaborations, and have established mechanisms and tools to support it. In addition, the
ecosystem should be sufficiently long-lived, and contain traceable and accurate data logs of
its software development history. OpenStack satisfies all of these criteria, which is why it
was selected for our case study.

2.1 About OpenStack

OpenStack is an open-source ecosystem for cloud computing that was jointly developed by
NASA and Rackspace in 2010. It is available under the Apache 2.0 license, and follows a 6-
month official release schedule, with releases ordered alphabetically starting with “Austin”
in October 201010. While this first release included only two initial projects (Nova and
Cinder), OpenStack has been growing steadily over time, and currently comprises over 60
core projects11.

As of March 12th, 2021, OpenStack’s code base of 20M lines of code involved code
contributions by over 100k community members including volunteers and developers em-
ployed by over 710 companies12 (including large multinationals like Microsoft, Facebook,
Huawei and Red Hat), spread across 187 countries. There is also a large base of companies
and software ecosystems (SECOs) relying on OpenStack services, such as Apache Software
Foundation, etc. OpenStack development involves over 2k projects/sub projects [13], 63 of
which are so-called core projects [17]. Zhang et al. [18, 19] have studied how a large-scale
complex system such as OpenStack is developed by various companies that are collaborating
with different OpenStack projects. They found eight models of collaboration among these
companies and OpenStack that differs in their objectives and contribution performance, de-
spite their differences, these companies work together as an ecosystem with common goals,
which is to release OpenStack. The Open Infrastructure Foundation (OIF), formerly known
as OpenStack Foundation, was founded in 2012 with the objectives to promote, empower
and protect the OpenStack software and its community. The Foundation staff Members (FM)
are the custodians of the OpenStack trademark, controlling the flow of budget and defining
the goal of the Open Infrastructure Foundation. The Technical Committee (TC) members
are responsible for all technical matters concerning the foundation, and they control all the
upstream OpenStack projects [20], such as the official core projects.

9 The replication package can be found on Zenodo: https://doi.org/10.5281/zenodo.5759968
10 https://releases.openstack.org
11 https://governance.openstack.org/tc/reference/projects/
12 https://www.openstack.org/annual-reports/2020-openinfra-foundation-annual-

report/

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 5

2.2 The OpenStack Development Workflow

The overall OpenStack collaborative development process is comparable to what one ex-
pects to find in large collaborative open source communities. The specific implementation
of this workflow at OpenStack relies on a variety of tools, including: (i) a distributed version
control system (git) that hosts the code base of all projects in its public repositories; (ii) a
code review system (Gerrit) for patch sets and new features across all projects; (iii) a task
and issue tracker (that has migrated from Launchpad13 to Storyboard14); (iv) a continuous
integration (CI) system (Zuul15).

Figure 1 shows the common development workflow that OpenStack project contributors
use. Each stage is numbered chronologically. In step 1©, as soon as a git account is set
up, the contributor can select a desired upstream project and create a branch on his local
environment to clone the project into. In step 2©, the contributor should switch from the
master branch to their local branch to make all necessary changes to the source code. Next
3©, the contributor needs to run unit tests against the changed code and commit it to a staging

area. Then 4©, the change set can be submitted to the Gerrit code review system [21, 22] and
can be iteratively amended 5© by code reviewers and the original contributor(s) through a
collaborative process. When the code reviewers eventually approve the change set, the latest
patch set is sent to the CI tool (Zuul) for automated testing and compilation 6©. If the CI
tests are successful, the changes are merged into the upstream project 7©.

Terminology-wise, a change set in Gerrit corresponds to a given feature or bug fix for
which a contributor submits an initial patch set [23] for code review. The iterative code re-
viewing process leads to a series of subsequent patch sets, corresponding to updates or fixes
to the initial patch set. This series of patch sets belongs to the same change set with a unique
Change-Id identifier. These identifiers will be referred to as change identifiers henceforth. If
the code changes within a patch set are co-authored, OpenStack recommends that the com-
mit message can be used to indicate that multiple people have been working on a particular
patch, using the git commit message trailer Co-Authored-By: <name> <email>16.

2.3 OpenStack Contribution and Attribution Policy

People can contribute to the OpenStack community17 in many different ways and there are
also different types of rewards18. Contributions can be technical19, social20, or administra-
tive21. Technical contribution happens through an upstream project, for example by con-
tributing to its documentation or code base, or by participating as a chair for any of the
project’s technical conferences and summits. Social contribution can occur by engaging in

13 https://launchpad.net/openstack
14 https://storyboard.openstack.org
15 https://docs.openstack.org/infra/system-config/zuul.html
16 https://wiki.openstack.org/wiki/GitCommitMessages
17 https://www.openstack.org/videos/summits/berlin-2018/community-contributor-

recognition-and-how-to-get-started
18 https://superuser.openstack.org/articles/open-infrastructure-community-

contributor-awards-denver-summit-edition/
19 https://wiki.openstack.org/wiki/AUCRecognition
20 https://superuser.openstack.org/articles/auc-community/
21 https://wiki.openstack.org/wiki/Community/AmbassadorProgram

6 Armstrong Foundjem, Member, IEEE, et al.

?https://docs.opendev.org/opendev/infra-manual/latest/gettingstarted.html

Fig. 1: Gerrit code contribution process in OpenStack (adapted from ?).

the social life of the community, for example, by planning community events such as sum-
mits, project team gatherings, forums, etc. Contributions can also be of administrative na-
ture, for example through participating in the OpenStack Ambassadors’ program or serving
the foundation through the Technical Council (TC) or Project Team Leads (PTL). Besides,
since OpenStack does not discriminate22 among these types of contributions, but instead
gives equal importance to contributors, every single contribution should count towards re-
ward and recognition.

This paper will only focus on micro-collaboration to the code base, thus, we will only
investigate attribution and co-authorship in the code base.

3 Setup of Interviews with OpenStack Contributors

The research questions raised in the introduction aims to understand and document Open-
Stack’s practices for micro-collaboration. Are git commit message trailers used consis-
tently? What other collaborative coding mechanisms are used frequently? What are the bene-
fits of micro-collaboration? To address these and other related questions, we have conducted
semi-structured interviews [24] with OpenStack practitioners during the Open Infrastructure
Summit (OIS) in Berlin, Germany from 13 to 15 November 2018.

3.1 Selection and Demographics of Participants

22 https://docs.openstack.org/contributors/code-and-documentation/introduction.html

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 7

For the interviews, we required OpenStack practitioners to share their view on the potential
added value that collaborative coding brings to the ecosystem. To gain different perspectives
on the problem, we sought to obtain the opinion of Foundation staff Members (FM), as well
as Active Technical Contributors (ATC) having contributed to at least one OpenStack project
and having at least three years of experience within OpenStack.

In November 2018, we carried out an initial quantitative analysis on OpenStack’s git
repositories to identify code collaborators in terms of git co-authored trailers. Based on
this, we extracted a list of contributors having co-authored at least one patch set, and we
sent customized emails to three senior contributors that the first author knew personally.
For broader coverage and response we drafted a recruitment screener [25] and sent it to
the OpenStack developers’ mailing list as well through personal emails, inviting interested
OpenStack practitioners to participate in the interview.

In total, we received 32 prospective participants for the interviews, of which 24 ATC
and 8 FM (6 confirmed upfront through email confirmation, and 2 more were recruited on-
site through snowball sampling [26] upon suggestion by a senior FM). During the summit,
as the interviews progressed, we noticed after the 16th participant that no additional new
information was provided on top of what previous participants had said; we thus reached a
point of saturation [27, 28], similar to how previous studies [29, 30] reached saturation at 16
and 10 interviews, respectively. In qualitative studies, saturation usually happens during data
collection and analysis when no new theme emerges from any additional data collected, i.e.,
in our case from the interviewed participants. Therefore, we stopped the interview session
and discarded the redundant interviews.

The demographics of the 16 retained respondents is shown in Table 1, with seven in-
terviewees self-identifying as female and nine as male. The respondents were spread across
different geographical regions. Only three of the respondents were contributing to Open-
Stack on a volunteer basis, while the other 13 were hired (9 were hired directly by companies
participating in the OpenStack consortium, whereas 4 got hired through OpenStack events
or summits). Respondents T1 to T11 were all active technical contributors (ATC) to project
teams, while respondents B1 to B5 were additionally involved in a more organizational role
at OpenStack, such as being an FM or TC member, project team leader (PTL), or member
of the infrastructure (Infra) team. Their experience in OpenStack ranged from three to nine
years, and they were involved in between 1 and 11 different projects.

3.2 Interview Recording and Transcription

All interviews were semi-structured and performed by the first author of this article during
the 2018 OpenStack Summit in Berlin. The 16 recorded interviews lasted a median of 17
minutes. Before the interview, each respondent was asked to fill a consent form. Most of
the questions were open-ended. The questionnaire is shown in Appendix A. The interview
guide was designed to include three main series of sections:

1. general questions aimed to understand the background and demographics of each par-
ticipant;

2. questions targeted to respondents of type Bk (having an organizational role in Open-
Stack) to gain more insight in the mechanisms and modalities OpenStack governance
has put in place to encourage the practice of collaborative coding; and

3. questions targeted to respondents of either type Ti or Bk to capture the technical perspec-
tive of collaborative coding.

8 Armstrong Foundjem, Member, IEEE, et al.

Table 1: Demographics of interview respondents.

ID Region Gender OpenStack role Status #projects #years

T1 North America | ATC hired 5 6
T2 Europe ~ ATC hired 4 5
T3 Asia ~ ATC hired 3 3
T4 Europe | ATC hired 3 4
T5 North America ~ ATC volunteer 1 4
T6 North America | ATC volunteer 11 6
T7 Asia | ATC hired 4 4
T8 Africa ~ ATC volunteer 1 8
T9 North America | ATC hired 5 9
T10 Europe ~ ATC hired 2 3
T11 Asia | ATC hired 8 9

B1 North America ~ PTL/TC hired 7 3
B2 Asia | FM/Infra hired 4 5
B3 Europe | TC/Infra hired 5 9
B4 South America ~ PTL/TC hired 2 9
B5 North America | PTL/FM hired 3 9

After the summit, the recorded interviews were distributed equally over the last three
authors of this paper for transcription. The interviewer double-blinded the respondent names
before providing the recordings to the transcribers. Each interview transcript was stored in
a file labelled by a unique identifier associated to the respondent. Each transcriber received
instructions to further anonymize the transcripts by hiding any personal data, in order to
anonymize any privacy-sensitive information.

3.3 Interview Coding and Reviewing

Our qualitative methods consisted of: (1) a thematic analysis [31, 32, 33] from the tran-
scribed data to uncover themes such as the expected benefits, challenges and communi-
cation mechanisms at OpenStack; and (2) a content analysis [34, 35] to understand the
prevalence of emerged themes that practitioners discussed about during the interview. To
uncover themes from the transcribed corpus, we started with a qualitative coding process.
We identified how identical codes form categories of high-level themes. We kept track of
the prevalence (i.e., popularity) of the emerged themes as they appear in each code category.
Below, we provide more details.

After transcription of the 16 interviews, which form our data points at document-level,
we started a two-phase process consisting of (1) coding the transcripts; and (2) reviewing
the coding to reach mutual agreement. The coding phase started with an initial inductive
coding [36] conducted by one author who used two transcripts (corresponding to 10−15%
of the total set of transcripts [37]). He assigned labels to the transcribed text, without any
predetermined theory, structure or hypothesis. As the coding progressed, common themes
started emerging, that were classified into code categories. The coding process continued
until all transcribed text was coded. This process resulted in an initial codebook [38].

Next, all authors were involved in a deductive coding process [36] using this initial
codebook as a guide. Each author independently coded the interview transcripts that were
initially assigned to them. Whenever a new theme emerged during this coding, the authors
would discuss, resolve and manually harmonize the resulting codebook as described below.

In the reviewing phase, each author was assigned for coding a different set of four tran-
scripts that had already been coded in the first phase by another author. The purpose was to

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 9

Table 2: Research questions and associated thematic findings on micro-collaboration prac-
tices based on the transcribed qualitative data. For the findings highlighted in grey we will
provide additional quantitative empirical evidence in Section 6.

RQ Finding Emerging theme on micro-collaboration

RQ1 F1 There are 2 main mechanisms for micro-collaboration.
F2 Most frequent communication media are IRC and Gerrit.

RQ2 Collaborative coding . . .
F3 . . . encourages teamwork.
F4 . . . improves onboarding.
F5 . . . enhances learning and understanding.
F6 . . . improves software quality.
F7 . . . improves productivity.
F8 . . . enables recognition and accountability.
F9 . . . facilitates solving complex problems.

RQ3 F10 There is a need for automation, tracking and awareness.

assess whether both coders reached a sufficient rate of agreement on the performed coding.
For each code found in each transcript, value 1 was assigned if both coders agreed on the
code category, and value 0 otherwise. Based on the categorical structure of the data, and
the use of two raters, we used Cohen’s κ [39] to calculate inter-rater reliability (IRR) [40].
We used Landis’ agreement levels [41] to interpret the IRR as poor, slight, fair, moderate,
substantial or excellent.

To iteratively improve the IRR, we performed three rounds of negotiated agreement [40].
The first round of coding already yielded a substantial IRR of κ = 0.69. During the second
round the raters negotiated the disagreements that were encountered during the first round
using a combination of online and in-person discussion. After sorting out these differences
the improved IRR became excellent, with κ = 0.81. In the third round, we rearranged and
merged certain code categories that were considered contextually similar. This lead to a final
coding structure that satisfied all raters, with a perfect coding agreement of κ = 1.

The resulting codebook, provided in our online replication package [16], enables us to
understand practitioners’ perspectives on collaborative coding in a complex ecosystem. Ten
themes emerged from the transcribed text that depict the advantages and benefits of collab-
orative coding in OpenStack. Section 4 reports on these themes derived from the qualitative
results together with their frequencies.

4 Qualitative Results of Interviews

This section reports on the findings that we derived from analysing the interview transcripts.
They provide qualitative evidence to answer the research questions outlined in Section 1.
Numbered from F1 to F10, the findings are summarised in Table 2 and discussed in the
following subsections.

RQ1 How do OpenStack contributors engage in collaborative coding practices?

10 Armstrong Foundjem, Member, IEEE, et al.

F1 While OpenStack uses git feature branches for macro-collaboration, there are two
main mechanisms for micro-collaboration: (a) Co-Authored-By: commit trailers; and
(b) Gerrit code reviews. Even though OpenStack and GitHub encourage the use of
commit trailers, it is not considered to be the most frequently used approach for micro-
collaboration.

We asked the interviewees about the collaborative coding mechanisms they were aware of,
or had personal experience with, in OpenStack projects. All different mechanisms they men-
tioned are discussed below. Some of them correspond to macro-level collaboration, while
others correspond to micro-level collaboration. In the remainder of this paper, we will nar-
row down our focus on micro-level collaboration between individuals.

(a) Co-Authored-By: trailers in git commits. The micro-collaborative coding mechanism
that was mentioned by all 16 respondents consists of appending trailers of the form Co-
Authored-By: <name> <email> to git commit messages to indicate the contributors that
collaborated on a particular patch (see Section 2.2). While all respondents were aware of
such commit message trailers, two of them (B1 and T5) did not participate in co-authoring
activities within OpenStack, while three respondents (B1, B5, and T11) only experienced this
technique outside of OpenStack.

Three respondents stated that they used such trailers when it was important to list all
co-authors in a code commit that is a product of collaboration, and six participants said to
systematically use the trailers during collaborative coding. Three other respondents said that
they sometimes forget to add the trailers because they are not interested in the perks coming
with the collaboration (e.g., credits to attend OpenStack events). Two respondents said they
only use the trailers for non-trivial changes. When asked how frequently trailers were used
across the OpenStack projects, only three respondents claimed that it was extremely com-
mon. The other 13 reported that the mechanism was used even though it was not a frequent
practice.

(b) Gerrit code review collaboration. The second most mentioned technique for collabo-
rative coding is through Gerrit code reviews, and could support either micro- or macro-
collaboration.

Respondents mentioned the following two code review mechanisms that can be consid-
ered as micro-collaboration:

1. Five respondents mentioned the practice of co-authoring by uploading a new patch set
version of someone else’s patch set, under the same Gerrit change id. As such, one can
download a patch under review, modify it, then re-upload a modified version that super-
sedes the previous patch version. This approach is easy to use and preserves the original
co-authoring information. It also registers the information of the new author(s) in the
final commit. Three of these respondents mentioned the use of Gerrit’s web interface for
inline patch editing23, allowing to quickly generate a new patch set for minor edits such
as fixing typos.

2. Four respondents considered the act of providing code review comments as a form of
code collaboration, typically when they expect no credit for their contributions in the
form of co-authorship. This is the most loose interpretation of micro-collaboration that
we encountered, and we did not study this further.

23 https://gerrit-review.googlesource.com/Documentation/user-inline-edit.html#
editing-change

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 11

Table 3: Communication media used for collaboration, per number of respondents (n), in
percentages (Pct). IRC and Gerrit-comments are the most used media with 53.7%.

Communication channel n Pct.(%)

IRC 13 31.7
Code review comments 9 22.0
General mailing list 8 19.5
Git commits 6 14.6
Personal email 4 9.8
Video/phone conferencing 1 2.4

In terms of macro-collaboration, four respondents discussed the practice of writing
a separate change set dependent on someone else’s change set, such that the combination
of both change sets achieves the intended functionality. The advantage of this approach is
that both authors get full credits, since they each submit their own change set (and hence
commits). The disadvantage is that it requires the code contributions to be cleanly decom-
posable, and that it introduces strong dependencies between patches. This approach is often
used when the original contributor is no longer available or interested to work on the patch.

(c) git feature branches. Four respondents mentioned the macro-collaborative coding mech-
anism of feature branches in git. Development of certain complex features at OpenStack
requires a large-scale, macro-level collaboration among cross-project teams. Such features
usually take longer than expected to develop (otherwise the patch set approach mentioned
previously could be used). As such, development takes place in a feature branch24 with sev-
eral iterations of commits. When development is completed, these features are later merged
into the master branch. B3 explains: “You just set an official feature branch where you land
those various patches and then once the branch is ready you can squash it as a single com-
mit and merge it back to the main, with all the co-authors. So that would be: the lightweight
. . . spontaneous . . . and the industrial way of doing it.”

F2 IRC is the most frequently reported communication medium for joint contribu-
tions, followed by code review comments.

While joint contributions could potentially involve many different communication chan-
nels, the responses highlighted that some of them were more common. Table 3 reports six
different communication channels that are used for collaborating within OpenStack. IRC
is the most common, followed by code review comments, communication through mailing
lists and git commits. More traditional forms of private communication, such as personal
emails and phone calls, appear to be less common or were simply not mentioned.

RQ2 What are the benefits of micro-collaboration?

OpenStack contributors perceive benefiting from micro-collaborative coding for a diverse
set of reasons. Based on an analysis of the contents of the interview transcripts, Table 4

24 https://docs.openstack.org/infra/manual/drivers.html#feature-branches

12 Armstrong Foundjem, Member, IEEE, et al.

Table 4: Perceived benefits of micro-collaborative coding at OpenStack in descending order
of respondents (n) per percentages (Pct).

Preceived benefits of micro-collaboration n Pct.(%)

F3 Encourage team work 14 24.6
F4 Improve onboarding 14 24.6
F5 Enhance learning and understanding 8 14.0
F6 Improve software quality 7 12.2
F8 Enable recognition and accountability 5 8.8
F9 Facilitate solving complex problems 5 8.8
F7 Improve productivity 4 7.0

summarises in decreasing order of frequency the benefits that respondents perceive from
micro-collaborative coding. The frequency of each benefit indicates how prevalent contrib-
utors perceive its value in collaborative coding. F3, F4, F5 and F6 are considered the most
frequent benefits, totaling 75.4% of all responses. Each perceived benefit is discussed in
detail below.

F3 Co-authoring encourages teamwork.

14 respondents consider co-authoring as a mechanism that both enables and exploits the
benefits of collaboration and teamwork. For example, co-authoring was said to facilitate the
planning and actual development of code contributions, to provide more confidence about
the quality of a contribution, and to speed up development in areas with high complexity,
even of larger contributions. T4 affirms that it is “nice to know that it wasn’t just one person
thinking through the design of it and developing it but that it was multiple people collabo-
ratively doing it”.

Co-authoring encourages diversity amongst contributing developers (in terms of think-
ing, skills, expertise, seniority, etc.) and provides a common platform for developers to share
expertise; divide and conquer. By awarding credits for OpenStack events to all co-authors,
co-authoring provides an additional incentive to make developers collaborate. Finally, T5

signaled more implicit cases of co-authoring, where a contributor is “. . . picking up things
that have just been abandoned or left or people don’t have time for . . . ”

F4 Collaboration improves onboarding.

All respondents emphasized the importance and benefits of collaboration and mentoring
for onboarding newcomers. For example, B3 reported that collaboration makes it easier for
new contributors to submit their first patch: “You notice that they might be too shy to author
completely a patch, but if they can be counted as a co-author, or if they wrote the design of
it or the documentation of it that does not really show in the code, then you can credit them
for their work. So, I feel like it is a positive system.”

Eight respondents reported that they started co-authoring as junior developers, whereas
five claimed they were already experienced. Only four respondents mostly did co-authoring
with less experienced people (typically as mentor), while the other twelve respondents typ-
ically performed co-authoring while being mentored by more experienced contributors.
Hence, new contributors as well as more experienced ones seem to benefit from learning

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 13

from more senior contributors, allowing a better understanding of the design and deeper
technical details of projects.

While one respondent claimed that the person who is doing most of the work is recorded
as lead author, fourteen other respondents instead claimed that the lead author would just be
the person doing the final submission of the patch.

Eight respondents mentioned both the social and technical aspects that can influence
contributor’s retention/abandoning/turnover. Four respondents stated that the TC is doing
its utmost to improve OpenStack’s work culture, besides just being aware of unpleasant
experiences that contributors have had in the past. For example, B3 said “we try to keep
it fun and engaging, . . . make sure that people are happy contributing to OpenStack and
that they want to contribute to OpenStack.” OpenStack has also put in place an onboarding
program to attract new contributors and keep them engaged [13]. Moreover, T9 mentioned
the benefits on feedback during collaboration: “. . . like the onboarding sessions that we do
here attempt to get you familiar with the specifics of a project but the toolset in general.
But I think that’s also a good way for feedback in regard to the retention; for feedback
where things might not be working well. That’s how we find out.” Collaboration creates
an atmosphere for contributors to share immediate feedback on their work progress, since
collaborators are accountable to one another. This allows to address obstacles timely before
they may lead to abandonment.

F5 Collaboration enhances learning and understanding.

Eight respondents indicated that collaboration enhances learning and understanding of
the code base, since it (i) encourages junior developers to learn the development process
faster; (ii) helps to better understand other people’s context, component, expertise and prob-
lems; and (iii) facilitates better comprehension of the scope and complexity of the overall
project.

F6 Collaboration improves software quality.

Seven respondents stated that collaborative coding fosters higher-quality contributions,
for example in terms of (i) coding style and clarity and (ii) code correctness. Since every
contributor brings in her own specific expertise, the resulting contribution becomes more
than the sum of its parts. To sustain this claim on collaborative coding, B1 asserts that “. . . to
ensure that the code has the style that matches the rest of the library code for that particular
project and that it is readable and simple and accurate, correct. So, all the usual reasons that
you do code review.” In addition, B2 advocates “. . . When more than one person contributes,
it helps the quality of the code. ”

F7 Collaboration improves productivity.

Four respondents highlighted that collaboration increases productivity, since there is no
more need to wait for other people to fix something. Instead, one can just collaborate to
make things move quicker. At the same time, the fact that a group of people is working
together on a contribution allows to bring larger changes faster, while everyone only needs
to perform a part of the effort (less work for everyone involved). This was highlighted by
B6: “. . . most projects do encourage that, it’s a good way that people can work together and
come up with changes . . . than one person or they are able to get more work done than one
person can do by themselves.””

14 Armstrong Foundjem, Member, IEEE, et al.

Two respondents provided another perspective on productivity improvement, namely
that co-authoring stimulates developers to not just reject other people’s contributions (with
a high chance the rejected contributions would never make it), but instead encourages them
to collaborate themselves on the broken patches. As such, a small fix could still allow a
broken patch to go in, rather than the project losing out on it or stalling while waiting for
improvements by the patch author. As such, this mechanism leads to an improvement of the
code review culture. Related to this are the aforementioned implicit collaborations, where
contributors can effectively pick up an abandoned patch or a patch people do not have time
for anymore (with their permission, if needed).

F8 Collaboration enables recognition and accountability.

Five respondents declared that co-authoring brings about individual recognition. It al-
lows acknowledging everyone involved in a joint contribution, so that even the smallest
contribution gives visibility to its contributors. Six respondents uphold that one major way
of thanking joint contributors is by providing credits to them for each contribution. Such
credits enable contributors to obtain a rebate on the registration cost for OpenStack events,
such as a project team gathering or summit. In addition, credits allow contributors to vote or
stand in elections.

Visibility and recognition also implies accountability, since in the case of a bug or other
issues the responsible can be tracked easily. This is an important aspect of joint contribu-
tion, yet not everyone follows these guidelines consistently. Especially the more experienced
developers would forego being recorded as a collaborator, since they already have enough
visibility in the community or do not need the extra credits (they have direct access to all
OpenStack events). By doing so, the accountability aspect is lost.

Furthermore, two respondents mention that the recognition provided by joint contribu-
tions positively reflects on the public image of the contributor’s company. This is why many
companies actively track their employees in order to encourage such contributions. T1 high-
lights that it makes “. . . certain sense for some companies that employ contributors that
having a name attached to a patch is important because it gives that company recognition
in addition to the individual contributor.”

Related to F6, the provisions for accountability also provide more confidence in the
quality of joint collaborations, since, in the event that one of the developers of a project
leaves, the other collaborators still share a sizeable amount of knowledge and expertise about
the contributed code. Hence, the organization can continue to work without being impacted.

T5 emphasises accountability during collaborative coding: “Usually most people try
adding co-authored-by . . . so at least they have tracked accountability. And very rarely do
we run in cases where people actually completely pull a patch down, recommit it without.”
T3 claims collaborative coding is important to credit or encourage collaboration: “It gives
credit or credit is due if many people are involved in an idea then they should all get credit
for the idea.”

Accountability of co-authorship can also be important because of legal obligations. This
was highlighted by respondent T3: “. . . giving credit is important for legal reasons . . . some-
one created some code but if there is no attribution then that causes legal problems.”

F9 Collaboration facilitates tackling more complex problems.

Five respondents stressed that joint contributions enable a project to deal with complex
and inter-dependent multi-person patches. These are patches that cannot be decomposed into

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 15

separate parts, but need to be submitted as one. Similarly, co-authoring can help to break
down complex tasks for contributors with different expertise. For example, B5 reported that
“The reasons in which I contributed was mostly on complex task as we applied the divide
and conquer technique.”

RQ3 How can micro-collaboration be improved further?

When respondents were asked about whether they were satisfied with how OpenStack sup-
ports collaboration and co-authoring, 15 respondents said they were generally happy, and
11 could not think of any specific drawback. When asked more specifically about things
that could be improved in the processes or tools for co-authoring, responses were more di-
verse, as shown in Table 5. Automation, tracking and promotion account for 71% of the total
demands.

Table 5: Mechanisms to improve collaboration practices, per number of respondents, ex-
pressed in percentages (%).

Things to improve # respondents %

Automation 10 32.3
Tracking 7 22.6
Promotion 5 16.1
Enforcing “Co-Authored-By:” 3 9.7
Documentation 3 9.7
Communication 2 6.5
Licensing 1 3.2

F10 Better automation, tracking and awareness of joint contributions are the most
commonly mentioned requests for improvement.

The respondents raised various concerns regarding the process and tools used for co-
authoring commits, and suggested mechanisms that could improve joint collaboration. For
example, as Table 5 shows, ten respondents mentioned the importance of more automated
tools involved in co-authored commits, for example to automatically insert trailers. Seven
respondents asked for better ways for tracking (co-)authorship, since for example the Gerrit-
based workflows require manual effort to look up all versions (sets) of a patch to identify
all co-authors, and contributions other than source code are not tracked that well. Moreover,
automating the tools should also facilitate the process of adding co-authors, standardize the
information provided in git commit messages, and speed up collaborations.

Five respondents stated that the practice of co-authoring commits should be promoted
more actively, to create more awareness and hence achieve more collaboration. In addition,
three respondents said that the usage of a Co-Authored-By: commit trailer should be enforced
when co-authoring commits. This might partly be due to lack of clear documentation of the
joint collaboration process (two respondents).

Two respondents emphasized the need for better communication means during collab-
orative coding activities. Finally, respondent T5 advocated that collaborative coding could

16 Armstrong Foundjem, Member, IEEE, et al.

result in licensing violations [42], since more people are involved and might (accidentally)
bring in source code protected by different licenses: “. . . There is a lot of licensing prob-
lems that might occur . . . You have to be generally careful. If it is already in the repo than
naturally it is licensed, and they should be honoring our licenses.”

5 Setup of Quantitative Study

This section explains the setup of our quantitative study on OpenStack aiming to find sta-
tistical support for the key qualitative findings of RQ1 and RQ2 that were highlighted in
gray in Table 2. We will empirically evaluate these qualitative findings on the basis of the
quantitative study outlined in this section.

5.1 Extracting Micro-Collaborations

The qualitative analysis of Section 4 revealed two important sources of micro-collaboration,
namely, co-authorship trailers in git commit messages, and patch sets for Gerrit change sets
to which multiple individuals have contributed. This subsection presents the datasets used
in our quantitative analysis.

Cinit = initial dataset of git commits. OpenDev is the integrated collaborative open source
platform hosting the OpenStack code base. On the 22nd of July 2020 we cloned all 2,219
OpenDev git repositories with a total of 1,870,705 commits, in order to identify those con-
tributors that are most involved in co-authorship activities. To gather a history of exactly nine
years of OpenStack activity, we removed any activity before the 1st of July 2011 (66,015
commits) and after the 30th of June 2020 (5,503 commits). We selected July 2011 as the
start for our commit data set to better align with the Gerrit dataset (described below), since
Gerrit was introduced in the OpenStack workflow in July 201125.

We ignored 343 repositories and their 97,630 commits that corresponded to retired
projects26, as indicated by their latest commit’s message. This left us with 1,701,557 git
commits for 1,869 OpenStack projects, covering all branches including feature branches.
From these, we removed another 210,462 commits corresponding to the activity of the
openstack/openstack repository as it does not contain actual content, rather pointers to other
repositories. As such, the initial commit dataset Cinit consists of 1,491,095 git commits in
1,868 repositories.

To determine co-authorship in this commit dataset, we proceeded as follows. For each
git commit we extracted its author and committer, as well as any contribution that could be
retrieved through commit message trailers signaling co-authorship. Officially, co-authored
commits should use the Co-Authored-By: commit message trailer (see Section 2.2). However,
we manually observed and confirmed the presence of many variations of this trailer in the
OpenStack git repositories, which we also included as valid signals of co-authorship. More
specifically, after conversion to lowercase we found and considered at least one instance
of each of the following alternative trailers: author:, co-author:, authored-by:, co-authored:,
co-author-by:, co-authored-with:, author attribution:, also-authored-by: and co-authored-by:.

25 http://lists.openstack.org/pipermail/openstack/2011-August/022939.html
26 https://opendev.org/opendev/puppet-ansible

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 17

Pinit = initial dataset of Gerrit change sets. The second data source of micro-collaborations
in OpenStack is based on the Gerrit code review system. Micro-collaboration in Gerrit is
more subtle than in git since, to signal co-authorship, we had to consider all change set
instances where at least one individual other than the initial patch set submitter, modified
and uploaded a patch set.

We gathered all change sets through OpenDev’s Gerrit REST API27. For each change
set we extracted all comments, all patch sets and their comments and files touched. The ex-
tracted data contains relevant information about which contributor performed which action,
such as who commented on a change set or patch set, and who authored and submitted the
patch set. On the 22nd of July 2020, we fetched the change sets of all 2,219 git repositories
of OpenDev with a total of 733,465 change sets. Similar to the git commit dataset C we con-
sidered a 9-year observation period from the start of July 2011 (the introduction of Gerrit
in OpenStack) to the end of June 2020 and removed change sets of retired projects and the
openstack/openstack repository.
The initial review dataset Pinit consists of 675,159 Gerrit change sets and 2,098,269 patch
sets in 1,818 projects. The new, merged and abandoned change sets correspond to 13,890,
538,381 and 122,888 change sets, respectively.

5.2 Data Cleaning

The initial datasets Cinit and Pinit presented in Section 5.1 need to be cleaned in order to
merge developer identities and remove bots.

Merging identities. To avoid false positives of collaborative coding and report only true col-
laborative coding instances, we applied developer identity merging [43] on the datasets Cinit

and Pinit . Cinit contains 20,312 distinct identities, composed of a name and email address,
corresponding to authors, committers and persons mentioned in the commit message trail-
ers. P contains 18,392 distinct identities that typically contain a name, email and username
information28; 5,089 of the extracted identities were missing the username.

Prior to merging identities, we manually analysed the combined dataset Cinit ∪ Pinit

to recover generic names and emails that are not associated with identities (e.g., root, etc,
Your Name, Author Name, root@localhost.localdomain, none@none); we recovered 20 such
labels in total. The list of terms was enhanced with an initial invalid name list based on
the suggestions of Goeminne et al. [43]. These names and emails where excluded when
comparing terms during identity merging.

Then, the first author acquired a partial ground-truth dataset containing the list of active
contributor accounts, with names and username(s) of each contributor mapped to all their
email addresses, as recorded in OpenStack’s internal database. This partial dataset did not
contain inactive or deleted accounts and was used as the first step to merge identities.

After this merging step, identity names, emails and usernames in the Pinit were nor-
malized following the approach of Bird et al. [44] and identities with at least two com-
mon tokens were manually inspected to decide whether they needed to be merged. The
manual inspection was based on three criteria: (1) name/email/username labels, (2) activ-
ity statistics of each identity; and (3) recovery of OpenStack webpages for each identity

27 https://review.opendev.org/Documentation/rest-api.html
28 There are identity pairs in P that contain the same name-email pairs, but the username information only

appears in one of them. If we account identities in P as name-email pairs, the number of identities corresponds
to 18,081.

18 Armstrong Foundjem, Member, IEEE, et al.

to verify if the person corresponds to the identities. In case one criterion was not suf-
ficient, then the following one was used to make a decision. For example, the identities
Tom Mens <tom.mens@domain.com> and Mens Tom <tom@mens.com> do not share the
same email address, but the normalized terms (Tom, Mens) in both identities indicate that
they should be merged based on the first criterion. This identity merging process resulted in
a final set of 17,195 merged identities in Cinit ∪ Pinit .

Removing bots. The second cleaning step consisted of excluding bot activity. Bots are tools
performing automated processes and their accounts are disguised as real identities. In the
context of identifying collaborative coding of OpenStack contributors, such automated bots
should not be considered as collaborators and thus be excluded from our analysis.

To identify bots, we relied on an official OpenStack list of Gerrit accounts correspond-
ing to bots29. We enhanced this list in three ways. Firstly, we identified OpenStack sys-
tem names30 and manually verified identities that contain terms stemming from the system
names. Secondly, we manually identified Gerrit identities having the same name as the of-
ficial bots used by continuous integration tools; this was achieved using variations of the
search term “CI” in their name or username. In addition, the most active Gerrit accounts for
different activity types (change set ownership, change set or patch set comments, authored
or uploaded patch sets, patch set approvals, reviewing) were manually inspected to recover
very active bots that might have been missed by the first two bot identification steps. Using
the above process, 322 distinct bot accounts were detected in Cinit ∪ Pinit .

Throughout the process, we discovered 14 mixed profiles of combined human and bot ac-
tivity [45, 46]. For example, the fictitious merged identity of John Doe <john.doe@domain.com>
and John Doe CI <john.doe@domain.com> would be marked as a mixed profile, as the first
identity is marked as human while the second is marked as bot.

All activity corresponding to bots and all bot-specific activity of mixed profiles were
excluded, thereby effectively removing 572,544 commits from Cinit , and 43,713 change sets
from Pinit . Moreover, 218 change sets are removed as all their patch sets were authored
or uploaded by bots. This resulted in cleaned datasets Cclean of 918,551 commits in 1,832
projects, and Pclean containing 631,223 change sets in 1,817 projects.

5.3 Dataset Alignment

The cleaned datasets Cclean and Pclean still need to be aligned. We need to carry out project
alignment to ensure that we only consider projects that exist in both datasets. Otherwise, we
might overestimate the collaboration in one of the datasets if there are highly collaborative
projects that are only present in that dataset. Second, in order to compare both datasets we
need to carry out commit alignment by mapping git commits to the corresponding Gerrit
change sets.

Project alignment. There are 1,804 projects in common between the commit dataset Cclean

(corresponding to 1,832 projects) and the review dataset Pclean (corresponding to 1,817
projects). Restricting ourselves to these 1,804 projects, we obtain a final commit dataset
C with 917,970 git commits and a final review dataset P with 631,201 Gerrit change sets.
These final datasets will be used for the quantitative analyses of Section 6.

29 https://wiki.openstack.org/wiki/ThirdPartySystems
30 https://docs.opendev.org/opendev/system-config/latest/systems.html

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 19

Commit alignment. To align the individual commits in C with the merged code reviews in P ,
we cannot simply rely on commit hash values, since commits can be rebased or squashed [8].
As a first heuristic, we use the change identifiers (change-id trailer in the commit message)
that persist when squashing, according to the OpenStack documentation31. This heuristic
allowed us to align 474,156 git commits and 490,860 Gerrit change sets corresponding to
442,509 change identifiers.

As a second heuristic, we use commit hash values to match commits in the case they have
not been squashed. The heuristic aligned 102 commits and change sets that had identical
commit hash values, corresponding to 108 change identifiers. This low number is due to the
large number of alignments already achieved by the first heuristic. Unfortunately, the second
heuristic is not robust due to rebasing and cherry-picking, as in these cases the hash value
changes and there is no traceability.

Thus, a third heuristic matches the author and commit messages to align commits as
these fields proved to be the most reliable to align commits in the presence of rebasing, ac-
cording to German et al. [47]. This heuristic allowed us to align 22 commits and 19 change
sets, corresponding to 24 change identifiers. In total, 442,637 change identifiers are aligned,
corresponding to 474,280 git commits and 490,981 Gerrit change sets. These aligned com-
mits and change sets are only used in our analyses when directly comparing the collaborative
or individual activity between the two platforms and are annotated as C ∩ P in the remainder
of the paper.

5.4 Analysing Bug-Introducing Commits

One aspect of code quality related to (F6) is the probability of introducing bug-inducing
changes (BIC) when doing micro-collaboration vs. individual coding activities. Bug-inducing
commits contain changes to files that introduced new bugs but unfortunately slipped through
code review and were only noticed and reported later on [48, 49, 50]. Existing work on bug-
inducing changes has focused especially on predicting whether a given change introduces a
bug [51, 52], as well as on heuristics to trace back from a bug-fixing change to the change
that introduced the original bug (in particular the SZZ family of algorithms [50, 53]). We
follow a 3-step methodology to mine BIC data:

Step 1 — Linking bug ID to bug fixing commit ID

Over the studied period, OpenStack has used both the Launchpad and Storyboard issue
trackers. We mined the bug metadata (e.g., ID, date, time, and time zone of bug submission)
from both tracking systems, focusing only on “confirmed” issues since those are the cate-
gories of issues for which bug fixes are being proposed. This resulted in a list of 1,194,026
issues.

We extracted and parsed all the commit messages from the commit dataset C to identify
bug-fix related commits. We used regular expressions to scan the commit messages for the
typical trailers used by developers to communicate the bug ID being fixed [50, 51, 54]:

1. [A− za− z]∗ [\−][Bb][Uu][Gg][:][\s]?[#]?[\d]{6,7}
2. [F f][Ii][Xx]?[A−Za− z]∗? :?[\s]?[#]?[0−9]{6,7}
3. [A− za− z]∗ [Ll][Pp]?[:]?[\s]?[#][0−9]{6,7}

31 https://docs.opendev.org/opendev/infra-manual/latest/developers.html

20 Armstrong Foundjem, Member, IEEE, et al.

The regular expressions enabled us to extract bug IDs from the commit messages. We
compared the bug IDs from their corresponding issue report on LaunchPad or Storyboard
to the extracted bug IDs in the commit messages. If a match was found, we linked the bug
ID to the commit ID (SHA-1) of the bug fixing commits (about 1.2M in total). In doing so,
we found and removed 231,726 duplicate bug IDs, leaving us with a total of 917,970 unique
bug IDs linked to their corresponding bug fixing commits IDs.

Step 2 — Identifying BICs

To identify the BICs for the obtained bug fixing commits, we used the SZZ implementation
provided by PyDriller [55]. On each bug fix commit, this SZZ variant performs git blame to
identify the last commits that touched the lines fixed by the bug fix. Those commits form the
initial set of candidate BICs, since they were the last ones to touch the fixed lines. However,
since the actual BICs have already been made before the bugs were reported (otherwise,
the bug would not exist yet), PyDriller uses the bug report date to remove the commits
made after the fixed bugs were reported. If, after filtering, more than one commit remains,
the algorithm considers all of them as BICs. We ran the algorithm on 917,970 commits,
yielding 315,690 BICs.

Step 3 — Analyzing BICs

Based on the identified BICs, we aim to find out if micro-collaborative coding correlates
to software quality. To do so, we use a χ2-test of independence [56, 57] with confidence
level α = 0.001. This test measures how far the observed counts of a variable are from
the expected counts if the null hypothesis is true. The further, the more evidence the data
presents against the null hypothesis. In our case, the null hypothesis states that there is no
difference in the proportion of BICs between individual and micro-collaborative coding. To
report the observed and expected counts, we first count the number of observations (i.e.,
observed counts) for two events of interest: event A for the response variable (BIC or non-
BIC), and event B for the explanatory variable (collaborative or individual coding). Next,
for each of the four cases, we compute Expected Count = Total for A×Total for B

Table Total . This allows to
calculate the χ2 statistic.

5.5 Validation of Qualitative Findings Through Multivariate Analysis

In RQ2, improvement of software quality (F6) and productivity (F7) were reported as two
of the benefits of micro-collaboration. To quantitatively validate these benefits, we use both
statistical tests (for F6 involving BIC) and multivariate statistical analysis on a large number
of observed variables that are potentially related to quality and productivity improvement.
Inspired by Siegmund et al. [58] we carry out exploratory factor analysis (EFA) and con-
firmatory factor analysis (CFA) [59] with structural path analysis to analyze multivariate
structures in quality and productivity improvement.

These analyses were implemented in Python using Factor Analyzer32 and semopy [60].
Full details are available in our replication package [16].

Structural Equation Model (SEM) is a set of statistical models rooted on the assumptions
of two requirements (1) the concept under consideration must be a complex multivariate

32 https://factor-analyzer.readthedocs.io

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 21

relationship, and (2) the data to understand these relationships should be interval-scaled or
continuous data [61], even though Johnson et al. [62] argue that categorical data with more
than five categories can still be considered for SEM models [62]. Our observed variables
contain a mixture of categorical and continuous data.

In order to study the relation of micro-collaboration with the quality and productivity of
code contributions, we started off with a catalogue of metrics known from related work to be
related to quality and/or productivity [13, 63, 64, 65, 66, 67, 68, 69, 70]. We then filtered out
all metrics not fit for SEM models, either (1) because they were not categorical with more
than five categories [62], not interval-scaled or not continuous [61], (2) because more than
90% of their values were either zero or absent, or (3) because the metrics were correlated.
This led us to the 17 observed variables (metrics) that are listed in Table 6. The quality
metrics are measured per change set, similar to all productivity metrics, except for those
marked as “po”. The latter metrics measure the productivity of the contributors involved in
the change sets. Furthermore, the variables marked as “b” are used both for the quality and
change-set level productivity analysis. Note that collabso is a contributor-level version of
collabs, hence has a different definition. A separate model will be built for change set- and
contributor-level productivity.

Exploratory Factor Analysis (EFA)

CFA (and SEM) assume the presence of factors, i.e., latent variables that aggregate seman-
tically related observed variables. One can either hypothesize such factors a priori, or use
Exploratory Factor Analysis (EFA) to identify factors semi-automatically. EFA basically
does this by reducing the dimensionality of the observed variables such that the identified
factors are explained by the principal components of the observations. Similar to Siegmund
et al. [58], we use EFA to semi-automatically extract the factors, together with the factor
loadings, i.e., the degree to which each observed variable is associated with each latent vari-
able. We do a separate EFA on the observed variables related to software quality, those
related to change set productivity, and those related to contributor productivity.

Before proceeding with EFA, one needs to ascertain that the basic assumptions for factor
analysis are met. To do so, we used Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin
(KMO) tests [71] to examine the strength between the measured variables, and how factors
explain each other34. Bartlett’s test validates the null hypothesis that the correlation matrix of
the data is identical to its identity matrix I. If this is the case, then the observed variables are
unrelated and the data is therefore unsuitable for EFA (in other words, one should reject this
test to continue EFA). KMO tests to what extent each observed variable could be perfectly
predicted by other observed variables in the dataset.

The KMO tests revealed an average fit of the EFA model for quality (KMO = 0.75) as
well as for productivity measured at change-set level (KMO = 0.73). Bartlett’s tests were
significant (p < 0.0001) with χ2 = 4.2×10−6 for quality and χ2 = 1.6×10−6 for produc-
tivity at change-set level. However, none of the EFA tests were successful for productivity
measured at contributor level (i.e., for the po variables in Table 6). Therefore, we could not
carry out a multivariate analysis at that level, and instead we only conducted a univariate
statistical analysis for them.

We then proceeded with EFA on the quality metrics and on the change-set level vari-
ables to determine the latent variables and their loadings, resulting in the loadings reported
in Tables 7 and 8. To determine the number of factors, we used the eigenvalue rule [59].

34 https://www.analysisinn.com/post/kmo-and-bartlett-s-test-of-sphericity/

22 Armstrong Foundjem, Member, IEEE, et al.

Table 6: Observed variables (metrics) for software quality (q), software productivity (p) and
both (b). The productivity metrics marked as “pa” apply to change sets, while those marked
as “po” apply to contributors.

Observed variables Description

coreReviewers (q) Number of experienced developers (core reviewers and PTL-Approved) with
core power (+2) involved in a code review process. At least two +2s are
required to trigger continuous integration. [68]

juniorReviewers (q) Number of junior developers (reviewers) with a +1 power [68]

reviewPriority (q) Review priority of a patch set, the higher the more immediate attention re-
quired from experienced developers. [66] [65]

gating (q) Number of times that CI/CD runs functional and integration testing jobs
(successfully or not) [68]

verified (q) Number of approval scores (+2) from automated testing, etc. [68]

workFlow (b) Number of ±[1,2] scores for best practices including coding style, work-in-
progress, etc. [70] [66]

comments (b) Total number of comments on a change set. [64]

commenters (b) Number of contributors posting comments in addition to the original author
of the change set. [64]

churn (b) Number of added and deleted lines of code. [67]

changedFiles (b) Number of changed files in a change set. [65]

status (b) Status of patch sets, which can either be “Merged” or “Abandoned”. [67]

collab (b) Indicates if contribution to a change set was collaborative or not (bool value,
1 if collaborative and 0 otherwise).

duration (pa) Time required to complete the code contribution. [64]

codeReviews (pa) Number of change sets under review. [63, 64]

collabo (po) Indicates if a contributor has collaborated at least once with another contrib-
utor (bool value, 1 if collaborative and 0 otherwise).

commits (po) Number of commits by a given contributor [67] [69]. Gerrit encourages and
enforces rules to split code changes into smaller commits, as this practice
makes review quicker and easier to identify potential flaws.33

patchSets (po) Number of patch sets submitted by each contributor. [23] [64]

devProjects (po) Number of projects a contributor commits code to. [13]

We computed the eigenvalues of the correlation matrix for both quality and (change-set
level) productivity, and chose only the factors with eigenvalue ≥ 1. We obtained three la-
tent variables for quality and two for productivity. To determine which observed variables
contributed to these latent variables, we considered the absolute value of the loadings to be
relevant when ≥ 0.32 [59].

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 23

Table 7: The latent variables for quality and their loadings.

Observed variables automationEffort socialInteraction reviewQuality

coreReviewers 0.409 0.103 0.523
juniorReviewers 0.028 0.568 0.482
reviewPriority 0.008 0.005 0.030
verified -0.005 0.432 0.514
workFlow 0.684 0.077 0.339
gating 0.996 -0.011 0.000
comments 0.028 0.765 0.217
commenters 0.013 0.882 0.157
churn 0.034 0.222 0.269
changedFiles -0.005 0.025 0.089
status 0.989 -0.010 -0.008
collabs 0.055 0.126 0.349

Table 8: The latent variables for productivity at change-set level and their loadings.

Observed variables socialInteraction reviewProductivity

duration 0.332 0.275
collabs 0.164 0.373
churn 0.325 0.243
comments 0.583 0.291
commenters 0.977 0.199
codeReviews 0.510 0.542
workflow 0.121 0.450

The observed variables highlighted in bold in Tables 7 and 8 contribute to the corre-
sponding latent variable. The higher the loading, the more the observed value contributes to
the latent variable. We then manually assigned a label to each latent variable on the basis of
the observed variables it is composed of. For example, factor automationEffort in Table 7
captures information from variables gating, status, workFlow and coreReviewers, most of
which relate to the automation effort in the CI process. Note that some of the observed
variables contribute to multiple latent variables.

Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM)

Based on our EFA measurement model, we want to confirm and analyze the relationships
among the latent variables. This requires defining a CFA model and structural regression
model (SEM) [72, 73, 74] in terms of the latent variables, then performing a SEM analysis
on these models to determine the relationship(s) between latent variables. A typical SEM
model can enable researchers to uncover multiple regression causal relationships in a single
analysis among latent variables. The left-hand side of both equations are the endogenous
(i.e., dependent) variables and the right-hand sides are the exogenous (i.e., independent)
variables. Therefore, endogenous variables are explained by exogenous variables.

In particular, we define multivariate regressions for quality (F6) and productivity (F7)
in Equations 1 and 2 below:

24 Armstrong Foundjem, Member, IEEE, et al.

socialInteraction ∼ automationE f f ort
reviewQuality ∼ automationE f f ort + socialInteraction

(1)

reviewProductivity ∼ socialInteraction (2)

This allows us to see how reviewQuality is explained by automationEffort and social-
Interaction (Equation 1), and how reviewProductivity is explained by socialInteraction
(Equation 2). These relations will enable us to validate to what extent the act of micro-
collaboration impacts both reviewQuality and reviewProductivity while controlling for the
other factors.

We first have to evaluate our models to either accept or reject them based on their fit.
We considered the indicators proposed in the literature [58, 61, 73, 75, 75, 76, 77]. Cron-
bach’s α [78] explains how closely related tested items are in a group [48], which enables
us to establish reliability and validity of the three factors for software quality (socialInterac-
tion, automationEffort and reviewQuality), and the two factors for productivity at change-set
level (reviewProductivity and socialInteraction). The reliability of our measurement ensures
its consistency over repeated trials, and the validity indicates to what extent the individual
observations rightly measure what they are supposed to measure. To accept the reliability
of a model a value of α≥ 0.7 is expected. We obtained α = 0.77 for the quality model and
α = 0.74 for the productivity model, implying that both models passed this test. The SEM
model fit index [58] tells us how well the model fits the data. For both measurements of
quality and productivity our models shows good and acceptable fits (N=608,261).

While our models did not pass the SEM χ2 index criterion (ρ < threshold of 0.05), this
criterion is known to be sensitive and to easily reject models with large sample sizes and
minor deviations, and is failed by most of the prior work. Instead, our models did pass more
robust criteria such as Root Mean Square Error [73, 76] (0.07 ≤ 0.08), Normed-Fit Index
(0.98 > 0.95), Tucker-Lewis Index (0.97 > 0.95), Comparative-Fit Index (0.98 > 0.90),
and Adjusted Goodness-of-Fit Index (0.97 > 0.90). Our models were accepted based on
these goodness of fit indexes and show strong support for both quality and change set-level
productivity.

6 Quantitative Results

This section presents the quantitative empirical analyses that we conducted, using various
kinds of statistical testing, to confirm or refute the main findings of the qualitative analy-
sis of the interviews in Section 4. We would like to stress that, apart from the two SEM
analyses [73, 77], our quantitative analysis methods can only infer correlation, and therefore
do not claim any causal relationship between any of the micro-collaboration related factors
studied in this section.

6.1 How do OpenStack contributors engage in micro-collaborative coding practices? (RQ1)

F1 reported qualitative evidence that OpenStack contributors use two main micro-collaboration
mechanisms: git commit message trailers and Gerrit change sets. Since the majority of re-
spondents indicated that the practice of git commit trailers was infrequent, this subsection
studies the prevalence of these two micro-collaboration mechanisms.

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 25

Micro-collaborative coding happens in OpenStack, but is infrequent. It is considerably
more prevalent on Gerrit (∼ 11% change sets and ∼ 27% of patch sets) than on git
(< 2%), although the former instances are harder to identify manually than the latter.
Over three out of four collaboration instances involve only two distinct contributors,
while collaboration between larger groups is scarce.

Out of all 917,970 commits in the commit dataset C we only found 15,801 commits (i.e.,
1.72%) with git commit trailers. On the other hand, in the 497,442 merged change sets be-
longing to the P dataset of 631,201 change set, we found a much higher proportion of 55,794
change sets (11.2%) that can be regarded as review-based collaboration. In terms of indi-
vidual patch sets (i.e., patch versions), we found that 425,736 out of the studied 1,600,019
patch sets of the considered change sets appear in collaborative change sets, indicating a
26.61% collaboration in terms of contributions to patch sets. In contrast to the trailer-based
mechanism, the Gerrit-based micro-collaboration is not explicitly tagged, hence is hard to
identify manually or retrace.

Figure 2 presents a violin plot of the distribution of the number of collaborators in each
individual git commit and change set. Most collaborations involve two distinct contribu-
tors, accounting for over 75% of all collaboration instances in either platform. We found
an outlier with as much as 49 co-authors in git commits; they were all contributors to the
neutron project, performing a divide-and-conquer technique to jointly implement seven sub-
features35, to support some third-party APIs. The outlier with 13 collaborators in Gerrit
change sets happened in the DevStack project while working on major changes36 that aimed
to make DevStack more user-friendly to install, test and use.

P C
Platform

2

5

10

50

of

 c
ol

la
bo

ra
to

rs

Fig. 2: Number of collaborators in collaborative git commits in C ; and in Gerrit change sets
in P .

Both commits and change sets need to be considered to gain a comprehensive
overview of micro-collaboration within OpenStack, since neither git commit trailers
nor Gerrit collaboration are used consistently.

35 https://opendev.org/openstack/neutron/commit/cd66232c2b
36 https://review.opendev.org/c/x/group-based-policy/+/359883

26 Armstrong Foundjem, Member, IEEE, et al.

Table 9: Top 10 of most collaborative OpenStack projects in terms of proportion and number
of collaborative change identifiers.

project proportion (%) # collaborative change identifiers

nova 9.3 8,778
neutron 6.3 6,007
tripleo-heat-templates 5.0 4,743
openstack-ansible 2.6 2,496
cinder 2.6 2,419
openstack-manuals 2.2 2,075
keystone 2.0 1,872
horizon 1.8 1,743
kolla 1.7 1,576
kolla-ansible 1.5 1,409

TOTAL 35.0 33,118

Table 9 presents the top ten of most collaborative projects at OpenStack. They corre-
spond to cross-project teams37 that, combined together, account for 35% of the total collab-
orative activity. Cross-project teams such as Nova, Neutron, Cinder, Keystone and Horizon
develop common features that other OpenStack projects consume. They typically manage
OpenStack resources such as configuration and deployment services (Openstack-Ansible
and Kolla). Despite the 35% magnitude of collaborative coding within these ten cross-
project teams, five of them represent projects with the most commits [19]. In general, as
observed by [19], collaborative coding doesn’t happen frequently during OpenStack devel-
opment cycles, but is used sparingly during complex features that involve multiple teams
and contributors.

As micro-collaboration in OpenStack is observed in both git and Gerrit, we also investi-
gate the overlap in micro-collaboration between both platforms. In other words, how many
instances of collaboration are indicated both by git commit trailers and multiple Gerrit patch
sets, and how many collaboration instances are unique to either method? For this analysis,
the dataset C∩P of Section 5.3 is used to compare the two platforms in an unbiased way.
Out of the 442,637 aligned change identifiers, 56,202 are collaborative either on git or Gerrit
and will be used for the subsequent analysis.

Table 10: Recognition of collaborative activity of aligned change identifiers.

Collaborative in Gerrit
True False

Collaborative in Git True 5,980 3,254
False 46,986 -

Table 10 presents the number of collaborative change identifiers on git or Gerrit. Our
results indicate that 5,980 of these collaborative change identifiers exist in both C and P ,

37 https://docs.huihoo.com/openstack/docs.openstack.org/project-team-guide/cross-
project.html

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 27

07
/20

11

07
/20

12

07
/20

13

07
/20

14

07
/20

15

07
/20

16

07
/20

17

07
/20

18

07
/20

19

year

0

2500

5000

7500

10000

12500

15000

17500

of

 c
ol

la
bo

ra
tiv

e
ch

an
ge

 id
s

C P
C P
P
C

(a) Absolute collaboration values

07
/20

11

07
/20

12

07
/20

13

07
/20

14

07
/20

15

07
/20

16

07
/20

17

07
/20

18

07
/20

19

year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%
 o

f c
ol

la
bo

ra
tiv

e
ch

an
ge

 id
s

C P
C P
P
C

(b) Relative collaboration proportion (%)

Fig. 3: Annual evolution of collaboration frequency in OpenStack. Data points along the
x-axis indicate the start of each yearly interval (e.g., 07/2014).

representing respectively 64.76% and 11.29% of retrieved micro-collaborations in each plat-
form. This overlap indicates cases where the implicit micro-collaboration observed in Gerrit
was made explicit through a commit message trailer. The remaining collaborative change
identifiers, respectively 3,254 in C and 46,986 in P , could only be found in one of both
datasets. Especially the latter cases represent a risk in terms of micro-collaboration visibil-
ity. Overall, within C ∪ P , commits alone capture 16.43% of all collaboration activity, while
change sets capture as much as 94.21%.

The proportion of micro-collaboration change identifiers in OpenStack fluctuates
around 15% from July 2015 onwards and around 19% from July 2017 onwards, while
it was less than 12% in the first 3 years of development.

Figure 3 shows the evolution during 07/2011– 06/2020 of the frequency of micro-colla-
borative change identifiers in C , P , C ∪ P and C ∩ P . Figure 3(a) reveals that the amount
of micro-collaboration increased significantly for P and C ∪ P , after which it decreases
again. Meanwhile, C and C ∩ P increased slowly until 06/2015, followed by a gradual de-
crease onwards. The drop of micro-collaboration in C and C ∩ P seems to coincide with an
overall decrease in the number of OpenStack change identifiers, since Figure 3(b) reveals
that, proportionally speaking, from 07/2015 onward P continuously increases but C and
C ∩ P continuously decrease albeit at a much lower rate. Interestingly, the proportion of
micro-collaboration change identifiers dropped sharply during 07/2011–06/2012 (negative
slope of P and C ∪ P), which is likely due to the explosive growth of development activity
in OpenStack in that period (not shown in Figure 3, given the exponential growth in Open-
Stack development, with a yearly increase in the number of change identifiers ranging from
37% to 135% until 2019, the stable micro-collaboration ratio indicates that collaboration
actually happens frequently.): 6,622 change identifiers were made during 07/2011–06/2012
compared to the 17,720 change identifiers during 07/2012–06/2013.

6.2 What are the benefits of micro-collaboration? (RQ2)

This section quantitatively validates the qualitative findings of perceived benefits highlighted
in gray in Table 2: F4 Collaboration improves onboarding; F6 Collaboration improves soft-

28 Armstrong Foundjem, Member, IEEE, et al.

ware quality; F7 Collaboration improves productivity; and F8 Collaboration enables recog-
nition and accountability.

F4 Collaboration improves onboarding

A recent study by Foundjem et al. [13] reveals that ecosystem-level onboarding at Open-
Stack correlates with higher retention rate, productivity and quality. Since that study indi-
cated that micro-collaboration enables mentor-mentee interaction, here we focus on studying
to what extent micro-collaboration correlates with the retention rate of newcomers.

Participation in micro-collaboration is correlated with prolonged activity regardless
of contributor seniority.

For each studied year of development (ranging from July to June), we use survival anal-
ysis [79, 80] to analyse the probability that contributors remain active (“survive”) for a given
period of time. To avoid bias, we split our dataset using a sliding window of four years that
we move forward one year at a time. This results in five consecutive periods of four years,
i.e., 2011–2015, 2012–2016, . . . until 2015–2019. In each window, we perform a separate
survival analysis considering only the contributors who had their first contributions in that
window. The duration of each contributor’s activity in a given window is calculated as the
time elapsed from the first contributed patch set recorded in P until the last contributed
patch set in the full observation period (June 2020). We compare the survival curves [80] for
contributor activity in each four-year window along two different dimensions:

– junior versus senior: junior contributors have provided their first contribution within the
last year of the considered 4-year time window; while seniors have made contributions
in earlier years of that time window.

– individual versus collaborative: individual contributors were never involved in micro-
collaboration in OpenStack, while collaborative ones have been active in micro-collaboration.

To clarify this, we consider a concrete example for the time window 07/2013 to 06/2017.
The contributors who contributed from July 2016 until June 2017 are considered as juniors,
while the ones who contributed from July 2013 until June 2016 are seniors. The sliding
window technique allows to compare the longevity of junior contributors in each time win-
dow as there is no overlap between the juniors in different time windows (juniors in one
time window become seniors in the next time window). The two dimensions of contributor
classification yield four different survival curves per time window for all possible pairwise
combinations, shown in Figure 4 with 99% confidence intervals.

We observe that collaborative contributors (blue/green) are active significantly longer
in OpenStack than individual contributors (red/orange). This is visually confirmed by the
non-overlapping confidence intervals, and statistically confirmed through log-rank tests with
p < .001 (after Bonferroni correction to adjust for family-wise error rate) for all periods.

Note that the maximum longevity of junior contributors is decreasing in more recent
time windows as the end of the full observation period is June 2020, thus limiting the time
they could have been active. To account for multiple comparisons of juniors in one time
window participating as seniors in follow-up time windows, we tested all statistical hy-
potheses after adjusting p-values with Bonferroni correction; the statistical differences were
confirmed with adjusted p < 2.8e−5.

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 29

0 20 40 60 80 100
activity duration for contributors joining during 07/2011-06/2015

0.0

0.2

0.4

0.6

0.8

1.0
su

rv
iv

al
 p

ro
ba

bi
lit

y
Collaborative Juniors
Individual Juniors
Collaborative Seniors
Individual Seniors

0 20 40 60 80 100
activity duration for contributors joining during 07/2012-06/2016

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Collaborative Juniors
Individual Juniors
Collaborative Seniors
Individual Seniors

0 20 40 60 80
activity duration for contributors joining during 07/2013-06/2017

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Collaborative Juniors
Individual Juniors
Collaborative Seniors
Individual Seniors

0 10 20 30 40 50 60 70
activity duration for contributors joining during 07/2014-06/2018

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Collaborative Juniors
Individual Juniors
Collaborative Seniors
Individual Seniors

0 10 20 30 40 50 60
activity duration for contributors joining during 07/2015-06/2019

0.0

0.2

0.4

0.6

0.8

1.0

su
rv

iv
al

 p
ro

ba
bi

lit
y

Collaborative Juniors
Individual Juniors
Collaborative Seniors
Individual Seniors

Fig. 4: Kaplan-Meier survival curves with 99% confidence interval (shaded areas) for slid-
ing windows of 4-year periods, for junior/senior OpenStack contributors according to their
collaboration status. The activity duration is measured in months.

We also observe that collaborative stakeholders have at least a 15% probability of sur-
viving during the entire studied period, with collaborative seniors usually having a higher
survival probability than juniors until June 2017. The survival probability of individual con-
tributors drops below 20% after approximately 12 months, decreasing until close to 0%
towards the end of the studied period. Overall, our results show that micro-collaboration
correlates with developer engagement in OpenStack.

F6 Collaboration improves software quality

To quantitatively validate whether micro-collaboration correlates with better software qual-
ity we performed (1) χ2 tests on the bug-introducing likelihood of micro-collaborative vs.
individual change sets, and (2) a multivariate SEM analysis on the latent variables for review
quality (reviewQuality) identified in Table 7. The latter analysis validates to what extent the
review process is different for micro-collaborative and individual change sets.

Micro-collaborative changes tend to have a significantly lower likelihood of introduc-
ing bugs than individual changes.

30 Armstrong Foundjem, Member, IEEE, et al.

Table 11: The presence of bug inducing changes (BIC) in collaborative versus individual
coding.

Observed Count Expected Count

BIC Non BIC BIC Non BIC

collaborative 2,320 13,678 5,542.15 10,455.85
(14.5%) (85.5%) (34.6%) (65.4%)

individual 315,690 586,282 312,467.85 589,504.15
(35.0%) (65.0%) (34.6%) (65.4%)

χ2(1,N = 917,970) = 2916.21, ρ<0.001

Individual vs. Collaborative coding

0

5000

10000

15000

20000

25000

#B
ug

 in
du

ci
ng

 c
ha

ng
es

Collab
No
Yes

Fig. 5: Distribution of #BICs for individual (No) and collaborative (Yes) commits.

Using the approach of Section 5.4, we use a χ2-test across the dimensions of
micro-collaboration/individual coding style and BIC/non-BIC change set. Table 11 shows
the confusion matrix with observed and expected counts. Across the studied OpenStack
projects, 14.5% of micro-collaborative code changes are bug-introducing, compared to 35%
of individual code changes. The beanplot of Figure 5 compares the distribution of BICs in
micro-collaborative versus individual changes across the studied projects. There is a high
median of 7,550 BICs for individual commits, compared to a low median of 24 BICs for
micro-collaborative contributors.

The χ2-test indeed rejects the null hypothesis, signalling a significant difference in pro-
portion of BICs between micro-collaborative and individual contributions. Cliff’s delta [81,
82] confirmed a large effect size for this difference (δ = 0.782).38

Table 12 compares the top 10 OpenStack projects in terms of their proportion of BICs for
collaborative and individual changes. We can indeed observe that the 10 most bug-inducing
projects that were collaborative only account for 0.18% of the total BICs, whereas the cor-
responding top individual projects account for about 8.46% of the total BICs.

38 According to [82] we interpret effect size as negligible (d < 0.147), small (0.147≤ d < 0.33), medium
(0.33≤ d < 0.474) or large (d ≥ 0.474).

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 31

Table 12: Top 10 OpenStack projects most affected by bug-inducing changes (in terms of
their proportion and number).

Individual coding Collaborative coding

project proportion (%) #BIC project proportion (%) #BIC

/project-config 2.016 19,400 tripleo-heat-templates 0.048 467
openstack-manuals 1.152 11,089 deb-nova 0.046 443
tripleo-heat-templates 0.940 9,049 swift 0.019 190
releases 0.848 8,162 requirements 0.019 185
x/vmware-nsx 0.836 8,052 rally 0.009 96
tempest 0.715 6,885 tripleo-common 0.009 96
swift 0.495 4,764 trove 0.009 89
x/gantt 0.490 4,720 tempest 0.007 76
senlin 0.486 4,685 rally-openstack 0.007 74
placement 0.478 4,604 tacker 0.007 73

Total 8.456 81,410 Total 0.180 1,789

Fig. 6: Path diagram showing the structural analysis for the quality SEM model. Factors are
shown as circles, observed variables as rectangles, and loadings as solid arrows.

The SEM model indicates a significant, positive causal link between micro-
collaborative changes and review quality.

32 Armstrong Foundjem, Member, IEEE, et al.

In order to interpret the SEM model for change-set level quality based on Equation 1 in
Section 5.5, we consider the model’s path diagram (Figure 6). This diagram represents the
latent variables (reviewQuality, socialInteraction and automationEffort) as circles, observed
variables (e.g.,gating and status) as rectangles, and SEM model loadings as solid, directed
edges between latent and observed variables. In the structural model, the loadings are labeled
with their path coefficient [83], which is the standardized (β) regression coefficient39 that,
similar to a traditional correlation coefficient, estimates the strength of a regression path,
with a magnitude in the range −1 ≤ β ≤ 1. The p-value indicates statistical significance of
this strength.

Since the SEM model is multivariate, the path diagram shows multiple regression re-
lationships among the latent variables. A first regression relationship is a direct path that
exists between the independent (exogenous) variable automationEffort and the dependent
(endogenous) variable reviewQuality, with β = 0.027, while a second relationship exists
along an indirect path that flows from automationEffort to socialInteraction (β = 0.007),
then to reviewQuality (β = 0.768).

The path diagram in Figure 6 shows how all paths/loadings are statistically significant at
p< 0.001. Furthermore, the SEM model reveals causal relationships between all three latent
variables, suggesting that reviewQuality is explained by automationEffort and socialInter-
action. Notably, the interaction between automationEffort and socialInteraction is essential
for reviewQuality, with a combined β of 0.775 (0.768+0.007). Since the focus of this work
is on micro-collaboration, we observe that collab (i.e., whether a change set was done in
a micro-collaborative way) has a statistically significant relationship with reviewQuality,
while controlling for the other two latent variables (and their observed variables). Further-
more, this relationship is positive, with more micro-collaboration correlating with higher re-
viewQuality. The SEM model estimate β = 0.311 means that a one-unit increase of collabs
corresponds to a 0.311-unit increase of reviewQuality. That said, the diagram also shows
how collab only has the fourth out of five strongest relationships with reviewQuality. Hence,
although it is not the strongest (positive) explanation of reviewQuality, there is a statistically
significant relationship.

F7 Collaboration improves productivity

To validate the qualitative finding that micro-collaboration improves productivity, we an-
alyze productivity of micro-collaborative contributors in terms of the amount of technical
contributions in C ∪ P (co-authored commits, created change sets, and contributed patch
sets), the time required to complete such contributions, and a multivariate analysis (SEM
model) on the latent factors of Table 8 for review productivity.

Collaborative contributors produce more change sets, patch sets and commits. The
contribution size of collaborative change sets is larger compared to individual efforts
(but with small effect size).

To assess whether micro-collaborative contributors produce more change sets, patch
sets and commits, we compared the distributions of the number of created change sets, sub-
mitted patch sets and commits between collaborative and individual contributors in Figure 7.

39 https://www.statisticshowto.com/standardized-beta-coefficient/

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 33

No Yes
Collaborative

0
100

101

102

103

104

of

 c
ha

ng
e

se
ts

(a) Created change sets

No Yes
Collaborative

0
100

101

102

103

104

of

 p
at

ch
 se

ts

(b) Submitted patch sets

No Yes
Collaborative

0
100

101

102

103

104

of

 c
om

m
its

(c) Commits

Fig. 7: Overall productivity of collaborative vs non-collaborative contributors.

We considered contributors to be collaborative if they have had at least one collaborative
activity. Furthermore, for such collaborative contributors we took into account all their con-
tributions (including the ones they carried out individually).

Figure 7 suggests that there is an important difference in the number of contributions
between individual and collaborative contributors. We observe that collaborative contribu-
tors create more change sets and submit patch sets in P , and produce more commits in C
compared to individual contributors.

To confirm these visual observations with statistical hypothesis tests, we carried out
non-parametric Mann-Whitney U tests, as the assumption of normality is not met in neither
C nor P . The null hypotheses state that there is no difference between collaborative and
individual contributors in the distribution of the number of created change sets, and commits.
These three hypotheses are rejected (p < 0.001) with large effect size for created change
sets (δ = −0.78), submitted patch sets (δ = −0.84) and commits (δ = −0.60). As a result,
we can conclude that micro-collaboration correlates with more change sets, patch sets, and
commits.

The experimental setting above takes into account all contributions of collaborative con-
tributors, including individual ones. However, individual efforts of collaborative contributors
might introduce bias in the reported results. To eliminate bias, we repeated the experiment
by comparing the distributions of the number of created change sets, submitted patch sets
and commits between individual and collaborative contributors, but by only considering the
collaborative activity of the latter.

The Gerrit findings persist, i.e., the two hypotheses are rejected with large effect size,
where differences in Cliff’s delta are observed for change sets (δ =−0.49 instead of−0.78)
and submitted patch sets (δ = −0.72 instead of −0.91). The results for commits, however,
differ, i.e., the null hypothesis is rejected, but individual contributors seem to have more
commits than collaborators (δ = 0.40 instead of −0.60 with a medium effect size). This
is observed because the collaborative activity attributed with trailers on git is scarce (see
Section 6.1) and therefore only a small portion of commits are considered for collaborators
(1.9% of collaborators’ commits are in fact collaborative based on commit trailers). This
result indicates that most collaborators’ activity is either individual, or collaborative without
attribution.

The latter observation is interesting, since the collaborative contributors seem to spend
substantial effort on creating reviews and submitting patch sets, but with few commits in
git to be marked as collaborative with trailers. Although the lack of collaboration attribution
with commit trailers is further investigated in Section 6.2, these results showcase the impli-
cation of not explicitly marking collaborative efforts, especially since collaboration tracking
is one of the top improvements requested by interviewees (see Section 4).

34 Armstrong Foundjem, Member, IEEE, et al.

Fig. 8: Kaplan-Meier survival curves (with 99% confidence intervals) for the time between
the first and the last patch set in a change set, focusing on the first year after initial patch
submission.

Another possible factor affecting developer productivity might be the actual size of the
contributions in individual and collaborative contributions. We investigate this factor with
a Mann-Whitney test, with H0 stating that there is no difference between the distribution
of churn of collaborative and individual change sets. We only use the code churn of the
last patch set submitted for each change set to avoid overestimating the contribution size.
The null hypothesis is rejected (p < 0.001), but with small effect size (δ = −0.27). This
result indicates that collaborative change sets consist of more churn, but the reliability of
this outcome is limited. This observation is in line with OpenStack’s divide-and-conquer
best practice recommending to split large patches into smaller blocks40.

Quantitative evidence contradicts contributor perception: collaborative change sets
tend to require more time to finalise, and there is no evidence of a higher success rate.

According to the qualitative interviews, collaborative coding on Gerrit was perceived
to allow patch sets to be merged quicker, by allowing other contributors to create addi-
tional, improved patch sets on top of existing ones, enabling them to get merged more likely
and quicker into the code base. To quantitatively verify that collaboration allows to com-
plete code contributions faster, we compare the time (in days) needed for getting patch sets
merged, between collaborative and individual patch sets. More specifically, we computed for
each change set, the number of days between the first patch set and closing of each change
set (either merged or abandoned).

Figure 8 presents the survival curves (with 99% confidence intervals) for the collabora-
tive patch set contributions (orange line) and individual patch set contributions (blue line),
respectively. The quantitative results contradict the respondents’ perception, since we ob-
serve that collaborative contributions are finalized slower, either by merging or abandoning,
compared to the individual ones. A log-rank test confirms this difference with statistical
significance (p < 0.001).

We performed a χ2 test to verify if micro-collaborative patch sets are more likely to be
accepted compared to individual patch sets. The null hypothesis, stating that collaboration
strategy is independent from the final outcome of the change set (merged or abandoned),
could not be rejected (p = 0.078). This suggests that the presence of collaboration is not
related to the final outcome of the review (80% of individual and 87% of collaborative

40 https://docs.openstack.org/contributors/code-and-documentation/patch-best-
practices.html

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 35

(a) Small churn (b) Medium churn (c) Large churn

Fig. 9: Time (in days) to finalize change sets for different code churn categories.

(a) Individual (b) Collaborative

Fig. 10: Time (in days) to finalize change sets for different churn sizes.

change sets are merged). Therefore, there is no quantitative evidence that collaboration is
related to a higher success rate in merging change sets.

The longer time taken to finalize collaborative code reviews does not depend on the
amount of code churn or number of changed files.

A possible explanation as to why collaborative contributions (change sets) might take
longer before they are merged might be due to the scope and size of the contributions. Col-
laboration could allow to produce and address larger or more complex changes that require
more overall effort to produce one (larger) commit. To verify this hypothesis, we categorize
change sets based on the code churn (i.e., the sum of added and deleted lines of code) of
the last (i.e., accepted) patch set. We grouped each change set into three distinct churn cat-
egories using 33% and 66% of code churn as boundaries. By doing so, a small code churn
corresponds to < 6 code lines, a medium churn between 6 and 37 lines, and a large churn
≥ 38 lines.

Figure 9 presents the survival curves corresponding to the time it took to finalize each
change set, grouped by churn category and collaboration practice. The figure suggests that
individual change sets take less time to finalize, regardless of the churn size category. This
was statistically confirmed through log-rank tests (p < 0.001). Similarly, Figure 10 shows
that, the larger the churn, the longer it takes to finalize the change set, independent of the
individual or collaborative nature of a commit. The hypotheses were tested against the ad-
justed p-values using the Bonferroni correction by considering all the tests performed for
churn categories (Figure 9) and collaboration categories (Figure 10). Using the adjusted
alpha p < 1.1e−4, all null hypotheses are rejected.

A related analysis based on the number of changed files showed similar results. We
created three size categories. The small category contained change sets touching only one
file. According to the 80% quantile (compatible with the Pareto 80-20 rule), the medium

36 Armstrong Foundjem, Member, IEEE, et al.

(a) Small number of files (b) Medium number of files (c) Large number of files

Fig. 11: Time (in days) to finalize change sets for different file categories.

(a) Individual (b) Collaborative

Fig. 12: Time (in days) to finalize change sets for different file sizes.

category contained change sets touching 2 to 4 files, and the large category all change sets
touching more than four files. Figure 11 presents the survival curves, per file size category,
corresponding to the time it took to finalize each change set for the different collaboration
practices (individual or collaborative). Figure 12 shows, per collaboration practice, the time
it takes to finalize change sets of different file size categories.

The results show that individual efforts take less time to finalize, while large change sets
take longer to finalize than smaller ones. The results are statistically confirmed with log-rank
tests and adjusted p-values using a Bonferroni correction (with adjusted p< 1.1e−4). These
findings are in line with the larger size of collaborative changes. Furthermore, by definition
of collaboration, collaborators need to communicate with each other, revise each other’s
patch sets, integrate their work, etc. While this allows collaborators to tackle more complex
changes using a divide-and-conquer strategy, it comes at the expense of taking more time to
produce a lower number of larger commits than individual contributions do.

There is a moderate correlation between the number of comments and the number of
developers posting comments, and the time it takes to finalize a change set. Therefore,
communication overhead only partially explains the increased time taken to finalize
collaborative contributions.

Another factor that may influence the time it takes to finalize collaborative contribu-
tions, is the communication overhead that may affect collaborative activity. A Spearman
correlation tests the null hypothesis that there is no association between the time it takes to
finalize code reviews and the number of review comments in a change set. This is a lower-
bound measurement of communication overhead as we measure the actual number of com-
ments while finalizing any given collaborative change set, without accounting for possible
multi-way communication channels. The underlying assumption is that the more messages
are exchanged, the longer it tends to take to finalize a given change set. Although the null

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 37

hypothesis can be rejected, the correlation is moderate (p < 0.001, rs = 0.40). A second
Spearman correlation tests the null hypothesis that there is no association between the time
it takes to finalize code reviews and the number of developers posting comments in a change
set; this test accounts for the individuals involved when communicating. The second test
confirms the findings of the first test, since it reports a statistically significant but moderate
correlation (p < 0.001, rs = 0.40) between the two studied variables.

Fig. 13: Path diagram showing the structural analysis for the change-set level productivity
SEM model. Factors are shown as circles, observed variables as rectangles, and loadings as
solid arrows.

The SEM model indicates a significant, positive causal link between micro-
collaborative changes and review productivity.

The SEM path analysis diagram in Figure 13 again shows how all paths are statistically
significant (ρ ≤ 0.001), this time for the productivity model (F7) showing the relationship
between reviewProductivity and socialInteraction (Equation 2). We can see how the endoge-
nous variable reviewProductivity can be explained by the exogenous variable socialInterac-
tion with a strong regression path with β = 0.779, showing that the former is a complex
socio-technical activity, which requires a multivariate analysis to understand how collab-
orative activities with the observed variables such as collabs, commenters, and comments
relate to the latent variables reviewProductivity and socialInteraction. Therefore both vari-
ables are positively correlated and we claim strong support for F7: Collaboration improves
productivity.

When focusing on collabs, we again notice a statistically significant, positive relation-
ship, indicating that micro-collaboration has a positive effect on reviewProductivity. Sim-
ilar to before, collabs is not the strongest observed variable, with codeReviews and work-
Flow having larger loading estimates. Still, a one-unit increase of collabs corresponds to

38 Armstrong Foundjem, Member, IEEE, et al.

an increase of 0.332 units of reviewProductivity, hence we again conclude that micro-
collaboration plays a significant role w.r.t. reviewProductivity.

F8 Collaboration enables recognition and accountability

The qualitative interviews with OpenStack practitioners revealed that OpenStack uses dif-
ferent mechanisms41 to accredit contributions, as it enables both individual recognition and
accountability (F8). To enable this, OpenStack’s governance team has implemented a num-
ber of scripts that automatically mine the various software repositories for people’s technical
contributions42.

Since collaborative contributions are only explicitly marked for commits with co-author
trailers, implicit collaboration through Gerrit patch set contributions might not be captured
by those scripts. We therefore quantitatively assess to what extent due credit is actually
recorded.

The low percentage (∼12.9%) of git commits attributing co-authorship represents
only a fraction of the actual code collaboration through trailers and patch sets.

In particular, we looked at Gerrit change sets that became merged as git commits in
OpenStack’s repositories. We counted 497,442 such merged change sets, of which 55,794
were effectively micro-collaborative (see Section 6.1). Hence, 11.2% of all merged code that
was reviewed through Gerrit was actually collaborative. Of all these collaborative merged
change sets, only 7,184 change sets (corresponding to 5,983 change identifiers) were ac-
tually reported as being collaborative by means of a git commit co-author trailer message.
Hence, only 12.9% (7,184 out of 55,794) of the merged collaborative change sets through
Gerrit actually recognize that collaboration has taken place.

A high percentage (∼80%) of the collaborative coding effort through Gerrit goes un-
recognised. In addition, less than half of these collaborative coders are actually cred-
ited for their contributions.

In order to better interpret these findings, we quantified the volume of code changes and
number of contributors that were not accounted for through commit trailers. More specifi-
cally, we computed the churn (number of added and deleted lines) of all git commits corre-
sponding to merged change sets. The total churn of all merged change sets was 12.5M lines,
while the churn of all change sets that were explicitly marked as collaborative (in the com-
mit trailer) was “only” 2.9M lines. In order words, only 19.3% of the collaborative churn
was actually recognized as being collaborative.

In a similar vein, we quantified the number of contributors that did not get any credit
for their collaboration. In total, we counted 5,953 distinct contributors having been active
as collaborators in patch sets that ultimately lead to merged change sets. As an under-
approximation, 3,560 (i.e., 59.8%) of those contributors did not get any credit with com-
mit trailers for their collaboration in any of the patch sets for which they were found to be
collaborators. As an over-approximation, 5,613 (i.e., 94.3%) of the total number of distinct

41 https://superuser.openstack.org/articles/auc-community/
42 https://opendev.org/openstack/governance/src/branch/master/tools

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 39

contributors got only partial recognition, in the sense that they were marked as co-author us-
ing git trailers for some, but not all of the merged change sets to which they had collaborated
on Gerrit.

7 Related Work

7.1 Collaboration

Young et al. [84] identified four models for contributor attribution across open source projects.
The authors suggest that these models, ranging from technical platforms such as GitHub to
non-technical platforms such as the ad hoc model (e.g., for board members or sales persons)
could identify all possible types of software development contribution, which usually have
multiple dimensions. The authors used a standard “All Contributors” (AC) model to analyze
the entire lifecycle of thousands of open source projects, in order to capture a wide vari-
ety of contributions from diverse sources (outreach, finance, infrastructure, and community
management) and identify the differences with traditional ways of measuring contribution.
Their findings suggest that attribution systems that are designed with the community in mind
allow to make contributions more visible. The authors also claim that models that require a
more explicit attribution, in principle, discriminate against the morality of what is and what
is not a contribution. Similar to Young et al., our work focuses on micro-collaborative cod-
ing practices including contributor attribution. In line with the previous claim, we provide
quantitative evidence on contributions that OpenStack didn’t explicitly attribute to contrib-
utors.

Zhang et al. [19] studied how collaboration happens between large open source ecosys-
tems (including OpenStack) and contributing companies. Different clusters of collaboration
emerge among thousands of contributing companies and the OpenStack projects. This quali-
tative study identified four recurrent roadmaps, which contributing companies have adopted
as their business models to becoming dedicated contributors to OpenStack. Companies could
collaborate intentionally, passively or choose to stay committed in isolation. Based on a col-
laborative network graph, thus, the authors show how the position of a company correlates
positively to productivity within the ecosystem. In addition, this work sheds light on the
complexities of collaboration within such a large ecosystem. In contrast to studying collab-
oration at the company level, our study focuses on micro-collaboration between individuals
in code reviews.

Whitehead [85] argues that software engineering is a collaborative process by nature,
requiring strong coordination among many software developers to release large-scale soft-
ware artifacts. The past two decades experienced a rise in web-based tools that advance
collaboration in software development. Despite this, there is a lack of empirical evidence
on the benefits of such collaborative tools and processes. Our work provided such empirical
evidence, for developer collaboration in the OpenStack ecosystem in particular.

Similar to Whitehead, Mens et al. [86] reflected on the collaboration and coordination
are processes during social coding. They draw the attention of practitioners in large-scale
software development on the importance of constant communication and interaction. How-
ever, they do not provide concrete implications of or reasons for collaborative coding. Our
work fills in the gaps by providing both qualitative and quantitative evidence on why and
how developers carry out micro-collaborations in a large open source ecosystem, Open-
Stack.

40 Armstrong Foundjem, Member, IEEE, et al.

Avelino et al. [87] investigated developer collaboration in the Linux kernel. They found
that a small portion of developers make significant contributions to the code base and that au-
thors with a high number of co-authored files tend to connect with others with fewer connec-
tions. Avelino et al. consider as co-authorship instances cases where multiple authors touch
the same file. In contrast, our work focused on the two different kinds of micro-collaboration
instances (through co-authorship of git commits, or collaboration on code reviews).

Overall, previous work on collaboration has focused either at a high-level view of collab-
oration between companies, or at attribution models and tools. This article investigates col-
laboration on a fine-grained level and by doing so, uncovers potential challenges of micro-
collaboration in practice. We shed light on micro-collaboration benefits and drawbacks for
the development process, as well as for the tools supporting it. Future work should investi-
gate how the collaboration practices that have shown to be beneficial to OpenStack can be
transferred to other communities, and how the difficulties due to current tool support and
lack of community awareness about micro-collaboration can be mitigated.

7.2 Developer Onboarding

Foundjem et al. [13] used a mixed-method analysis to understand the process, benefits and
drawbacks of OpenStack’s onboarding program. The authors highlighted that onboarding
comprises two levels: the ecosystem-level event (teaching overall processes and practices)
and the project-level (project-specific technology and practices) onboarding process. They
conducted an observational study to classify the ecosystem-level activities of 72 contribu-
tors aspiring to join OpenStack. The authors quantitatively validated the perceived benefits
by comparing diversity, productivity and quality measures of contributors that participated
in onboarding, and those that did not. Results showed that onboarding correlates signifi-
cantly with increasing gender diversity, productivity and code quality. The authors also fo-
cused on project-level onboarding to verify whether collaborative coding helps to improve
the onboarding process. They found a statistically significant correlation between micro-
collaboration and prolonged activity, as well as evidence of micro-collaboration practices
between novices and experts. The current paper expands on these results about project-level
onboarding at OpenStack by examining the relationship between micro-collaboration and
other factors such as the quality and productivity of code contributions.

Casalnuovo et al. [88] mined git repositories for empirical evidence that prior social
communication with project developers facilitates project onboarding. Focusing on 1,274
developers with a long GitHub contribution history, the authors examined the development
history of 58,170 projects that these developers participated in. Pre-existing relationships
were found to strongly affect developer migration to projects. It should be noted that the
authors considered a single author per git commit, so they did not take into account possible
co-authorships (such as those expressed in git commit trailer messages).

Steinmacher et al. [89] performed a systematic literature review on onboarding in open
source projects. They depict onboarding as a sustainability mechanism for open source
projects. They identified two categories of contributors and the major barriers that these
contributors face during onboarding. The most evidenced barriers were newcomers’ previ-
ous technical skills, receiving response from community, centrality of social contacts, and
finding the appropriate way to start contributing. While these barriers form a baseline, Stein-
macher et al. highlight that further empirical evidence on newcomer onboarding is needed.

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 41

7.3 Code Review and Quality

Henley et al. [90] carried out a mixed-method analysis on the documented challenges and
limitations that modern code review faces. The authors propose CFar, a tool to enhance
human collaboration during code review. The tool forms an integral part of the collabora-
tive software design process, incorporating an automated code review mechanism based on
program analysis to generate feedback to the reviewer. Through deploying CFar at various
professional sites, the authors measured the tool’s effectiveness and reported that it corre-
lates with an improved communication, productivity, and review quality.

McIntosh et al [22] quantitatively studied code review coverage and participation in
the context of three software projects. They found significant correlation between software
quality and code review coverage and participation. This provides empirical support to the
intuition that badly performed code review negatively correlates with software quality in siz-
able projects that use modern code review tools. Our own study also suggests that software
quality is a complex process with multiple facets to consider, moreover our SEM models
found positive relationships between micro-collaboration and both reviewProductivity and
reviewActivity.

7.4 Pair Programming

Pair programming has been advocated by the agile software development community as a
technique that can improve the productivity and transfer of knowledge within open source
projects. Plonka et al. [91] highlight that knowledge transfer can happen at any level of
collaboration, but it is particularly valuable in a novice-expert configuration. The authors
carried out an observational study and interviews in four major software companies. Their
findings suggest that knowledge transfer exist within pair-programming in six teaching
strategies, ranging from incidental to straightforward suggestions.These strategies are an
abstraction of major teaching methods that are encouraged in a cognitive apprenticeship.
Cognitive apprenticeship is a concept that describe the knowledge transfer process where a
skilled master teaches his skills to an apprentice.

In a similar study, Lui and Chan [92] aimed at comparing the productivity between
novice–novice and expert–expert relations. The authors carried out a controlled experiment,
called repeat-programming, that aims at facilitating the socio-technical factors that human
beings experience with respect to efficacy. Experimental findings suggest that the productiv-
ity gain (in terms of time reduction and software quality improvement) is much higher for
novice–novice pairs (compared the baseline of novice individuals) than for expert–expert
pairs (compared to the baseline of expert individuals). The results align with prior studies,
suggested that pair programming is effective in increasing practitioner productivity, espe-
cially between novices, or experts that need to solve programming problems outside their
area of expertise.

Spohrer et al. [93] examined pair programming and peer code review in collocated teams
of a global software firm. The authors performed on-site interviews to solicit information
about perceived patterns of team collaboration, specialization and knowledge coordination.
They found that teams applied pair programming and code reviews in varying ways; the
team’s structure was theoretically linked to the structural properties of the technology un-
derlying the techniques. Similar to our work, they investigated collaboration practices, but
based on a quite different case study with different characteristics, and focused on the com-
munication in pair programming and code reviews. The micro-collaboration practices inves-

42 Armstrong Foundjem, Member, IEEE, et al.

tigated in this paper align with the ones investigated by Spohrer et al., and the findings from
our OpenStack case study enrich the body of knowledge on collaboration practices.

8 Discussion

8.1 The Good

This paper is the first case study of its kind focusing on the notion of micro-collaboration in
open-source development, as well as its relation to socio-technical factors such as produc-
tivity, quality and developer retention. The recent mechanism of commit message trailers al-
lows to explicitly mark micro-collaborations, but it is used by less than 2% of the git commits
in OpenStack. Micro-collaboration through Gerrit code changes is more frequent, account-
ing for 11% of the code changes and increasing each year. Most of the micro-collaborations
involve only two contributors.

Despite the relative infrequence of micro-collaboration, our quantitative analysis was
able to validate a number of benefits and expectations expressed by the interviewed Open-
Stack community members. In particular, we found empirical evidence for the claims that:

– micro-collaboration correlates positively with onboarding and retention, both for junior
and senior micro-collaborating participants.

– micro-collaboration correlates with a lower likelihood of bug-introducing changes and
with higher review quality

– micro-collaborating contributors produce more and larger code reviews, patch sets and
commits

This highlights the value and importance of micro-collaboration practices, even in a
remote setting of geographically distributed development. Hence, it would we worthwhile
to invest in how to make this practice scale.

8.2 The Bad

However, we also identified disadvantages of micro-collaboration that contradict the expec-
tations of the interviewees:

– micro-collaboration requires more time, independent of the size of the contribution
– micro-collaboration does not increase the success rate in terms of merged code changes
– the majority of micro-collaboration, i.e., the 80% happening within Gerrit, are not ex-

plicitly accounted for

The first two of these observations seem to indicate that activities involving micro-
collaboration tackle more challenging problems, which was suggested by qualitative find-
ing F9, but not quantitatively validated. These findings seem to reflect earlier findings on
the communication overhead involved with collaboration in software engineering [94], and
on the scope of code changes (e.g., contributors with larger responsibilities, such as ar-
chitects, have been found to introduce more bugs due to the sheer complexity of their
changes [95]). Future work should quantitatively validate these notions in the context of
micro-collaboration.

The third observation is the most surprising since it implies that a non-negligible amount
of micro-collaborative contributions is not explicitly accounted for, which might have real

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 43

consequences, from lost recognition of developers’ contributions (which might lead to a loss
of “credits”) all the way to loss of accountability. If, for example, a vulnerability is reported
for which only one of the possible co-authors is known, precious time could be lost trying
to track down this one person as opposed to contacting the group of people responsible for
it.

The root cause of this accountability problem is that most of the micro-collaborations
can only be identified implicitly by checking the patch set history of commits in the code
review environment. Before conducting our study, we were not even aware of such a mech-
anism (and its prevalence), and neither did OpenStack’s community analytics tools, i.e.,
Stackalytics43 and Governance44. Given the importance of these micro-collaborations, fu-
ture studies on micro-collaboration should incorporate both kinds of data (explicit recogni-
tion through commit trailers and implicit collaboration through patch sets).

While, on the upside, OpenStack could adopt our identification heuristics of Gerrit
collaboration to automatically recover these contributions in their statistics, even the best
heuristics to identify hidden micro-collaboration fail if the developers involved do not bother
to claim their contribution. This appears to be relatively common, as our interviews revealed,
since quite some senior developers forego adding their name to commit trailers since they no
longer need the OpenStack credits associated with contributions. If such micro-collaboration
is not visible in the Gerrit patch set history either, one ends up with a complete loss of trace-
ability.

This raises the question whether commit trailers –or other explicit mechanisms to tag
micro-collaboration– should be enforced, or whether it suffices to heavily raise aware-
ness about them in the developer documentation. Tool support could come at the rescue,
in the form of dedicated IDE support or hooks in the Gerrit review environment to flag
likely micro-collaborations that have not been marked through commit trailers. The popular
sourcetree git management tool at one point discussed such support, stating that trailers are
“quite cumbersome to add [...] on every commit”45.

However, tool support for attributing micro-collaboration is not always straightforward.
For example, tools might lead to bots being attributed for automated work, or provide in-
centive for contribution inflation (making many small contributions instead of fewer signif-
icant ones). Nonetheless, we believe that accounting for such risks when designing micro-
collaboration tools can minimize their effect. More work is needed in this direction.

On the other hand, the limited usage of the existing commit trailer mechanism may re-
veal underlying misconceptions of micro-collaboration. Change sets that have several con-
tributors might lead to attribution of only a subset of those contributors. This indicates that
there might not be a clear answer to what contribution(s) suffice to be attributed with commit
trailers. Although every contribution is valuable, regardless of its size, it might be the case
that there is a consensus on which contributions need to be attributed. These criteria of attri-
bution, if present, should be explicitly part of the policy and of mentoring when onboarding
newcomers to raise their awareness.

Hence, these aspects show the need to better support micro-collaboration with tools, but
also to bring awareness of micro-collaboration attribution to the contributors. Overall, we
believe that more work is needed to find the right balance of tool support and community
awareness so as to enhance micro-collaboration.

43 https://www.stackalytics.com/
44 https://opendev.org/openstack/governance/src/branch/master/tools
45 https://jira.atlassian.com/browse/SRCTREE-5347

44 Armstrong Foundjem, Member, IEEE, et al.

8.3 The Uncertain

Perhaps another tricky issue requiring future work is the ability to copyright the contribu-
tions that have been made through micro-collaborations, and to assign the right license to
them. On the one hand, having multiple people responsible for a given commit, possibly
working for different employers, makes it more complicated to decide who to assign copy-
right and what license is compatible with the authors. On the other hand, in case the actual
micro-collaboration is hidden, only one of the co-authors might be assigned copyright and
might be consulted regarding licensing changes. Both situations highlight the importance of
explicitly marking and identifying micro-collaborations.

Future work should also aim at quantitatively validating the expected relation between
micro-collaboration and learning/understanding, as well as the interaction between micro-
and macro-collaboration. Macro-collaboration concerns the combination of many individual
developers’ contributions, as is the common workflow using distributed version control sys-
tems like git to achieve a complex and long-lasting task. The benefits of such an implicit type
of collaboration might differ from the ones of a more explicit form of micro-collaboration
where contributors actually work together on shared fine-grained contributions such as code
commits.

Another way to view this distinction is by considering macro-collaboration as a kind
of asynchronous collaboration (where individual contributors make complementary code
changes), as opposed to a more synchronous kind of micro-collaboration where multiple
contributors work jointly on the same code change. It remains an open question if there is
some threshold in terms of feature complexity, project size or, perhaps, contributor experi-
ence above which either of these collaboration types become more efficient.

The kind of communication channel (cf. Table 3) being used to give credit to micro- or
macro-collaboration may also play a role in how the value and benefits of such collabora-
tion are credited and perceived. If is therefore worthwhile to study the effect of the chosen
communication channel(s) on collaboration practices.

While we focused exclusively on OpenStack, one should consider replicating our study
on other software ecosystems, especially since the commit trailer micro-collaboration mech-
anism used could be ecosystem-specific. Furthermore, different projects might put more im-
portance on awarding “credits” to their contributors (even though the need for accountability
is universal), might have a different code base size or a larger development community.

Bogart et al. have shown that different ecosystems have different values, cultures, poli-
cies, practices and tools [96]. Hence, replicating the study on another ecosystem might lead
to different findings. However, there are also some encouraging signals. In particular, the
standardization attempts by GitHub and GitLab to use a common Co-Authored-By: trailer
in commit messages, together with the elaborate collaboration functionalities offered by
such coding platforms (notably pull request reviews and issue discussions) imply that future
micro-collaborations in a majority of open-source projects would at least use similar tools
and infrastructure. Apart from simplifying the replication of our analyses on such projects,
this might also lead to potential convergence of micro-collaboration practices and processes
in general.

8.4 Validation with OpenStack Experts

Since our quantitative analysis validates the qualitative results obtained through interviews
with the OpenStack community, we closed the loop by presenting our results to OpenStack

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 45

experts. For this, the first author arranged an online meeting with nine Technical Committee
(TC) members. Five of them did not take part in the original interview, so as not to introduce
bias in the validation of our findings. During this meeting the study was summarised, fol-
lowed by an overview of the qualitative findings (Table 2) and quantitative results in terms
of prevalence, advantages and disadvantages of micro-collaboration. Based on this infor-
mation, the TC members were asked to validate the representativeness of the findings and
to provide feedback based on their knowledge of (micro-)collaboration in the OpenStack
ecosystem.

TC members unanimously agreed that the qualitative and quantitative findings are
representative and meaningful.

The interaction between regular code review comments and actual micro-collaboration
was touched upon by four experts. Overall, the perceived goal of code reviews at OpenStack
is still the critical evaluation of submitted patch sets, not “taking over other’s patch sets”.
Another expert made a compelling case of how code review comments, patch-set-based and
commit trailer-based micro-collaboration all are practices across a common spectrum. While
code review comments provide suggestions to the initial patch author, patch set-based micro-
collaboration deals with fixes and changes that would take too long or be too complicated
to explain to the initial author. Finally, the explicit commit trailer-based micro-collaboration
would be geared towards more significant collaborations.

Going deeper into understanding what kinds of micro-collaboration are patch set-based
instead of commit-trailer-based, a number of suggestions were made. Two experts stated that
a “big part of these micro-collaborations are just related to rebases, so I don’t think that
we can really consider them as real collaborations that are worth mentioning in the commit
message”. In other words, such patch sets would correspond to “making minor fixups as
an immediate prelude to merging” in order to resolve merge conflicts that have popped up
during code review (typically after acceptance of the patch).

In contrast, another expert assumed “that one of the more common reasons for change
takeovers is reviewers reactivating orphaned patches, or restoring abandoned ones, because
the original author is no longer around or has otherwise ceased updating the change them-
selves”. This expert suggested us to study how often patch set-based micro-collaborations
involved patch sets by author A followed by patch sets by author B “with no back-and-forth,
and perhaps a significant delay between the two”.

Another factor the experts encouraged us to look at in future work is the fact that “col-
laboration deals with human factors like interpersonality and communication skills, and
not everyone has developed those skills”. Furthermore, the finding that more than 75% of
micro-collaborations involved two collaborators might “depend on the level of complexity,
the more contributors, the more complex the problem is”.

Finally, in terms of the overal usefulness of our study, the experts stated that “the results
are promising”, “may be useful for community feedback” and “can be valued feedback to
the OpenStack community”. Furthermore, the results confirmed suspicions about “a low
percentage of contributors using the git commit trailer. Especially for people who don’t
care about getting recognition for their job or community anymore”. As such, our findings
strengthened one expert’s belief that “OpenStack should reinforce this policy of using the
Co-Authored-By: trailer in each commit that has been co-authored”.

46 Armstrong Foundjem, Member, IEEE, et al.

9 Threats to Validity

We discuss the main threats that may affect the validity of our findings, following the struc-
ture recommended by Wohlin et al. [97].

Threats to internal validity concern choices and factors internal to the study that could
influence the observations we made. We took a conservative approximation to quantify col-
laboration practices. Any contributor that was found to collaborate, regardless of the size of
the contribution, was considered to be a micro-collaborator. We opted for this strategy since
we believe that all collaborators should be acknowledged, even if their contributions may
be very limited in size [63]. Our analysis strategy is supported by the fact that OpenStack
projects are known to frequently break drown complex problems into smaller pieces to go
under review [98], thus making the size of follow-up collaborative contributions small as
well.

Furthermore, since some concepts like software quality and productivity concern com-
plex interactions of many socio-technical factors, we use multivariate techniques such as
Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural
Equation Model (SEM) to validate qualitative findings related to “(F6) Collaborative cod-
ing im- proves software quality” and “(F7) Collaborative coding improves productivity”.
For other concepts, we used univariate statistical tests and analyses, which do not consider
possible confounding factors, either because the preconditions of EFA/CFA/SEM were not
satisfied, or because no empirical data was available related to those factors.

Threats to conclusion validity concern the degree to which the conclusions we derived from
our data analysis are reasonable. The conclusions derived from our quantitative analysis are
supported by statistical tests with high confidence, so they are unlikely to be affected by such
threats. The conclusions derived from our qualitative analysis could have been biased by the
fact that we interviewed only 16 OpenStack contributors. We are confident that this is not the
case, since we continued soliciting more interviews until we reached a point of saturation in
the received responses [99]. Finally, except for our SEM model analyses, our conclusions
only revealed correlations between variables that may play a role in micro-collaboration,
and not causal relationships.

The findings derived from our multivariate analysis are supported by statistical analysis.
First, we did preliminary tests before deciding if we could do EFA. Second, EFA helped
us identify latent variables in order to reduce the risks of defining factors solely by our
intuitions. Next, we confirmed our factors with CFA, and we used multiple model fitness
indexes to validate our models before starting to interpret them.

Threats to external validity concern whether the results can be generalized outside the
scope of this study. Given that our findings are based on an exemplar case study of a single
ecosystem, namely OpenStack, our observations concern only projects within this ecosys-
tem. These findings might not generalise to projects belonging to other ecosystems. Even
if other large open source projects (e.g. Linux kernel, RedHat) adopt similar collaborative
practices, the findings for such projects might still differ. Indeed, different software ecosys-
tems have been shown to have different values, policies and practices [96].
In a similar vein, future work should study the extent to which micro-collaboration occurs
within companies. While a substantial proportion of open-source projects was open-sourced
by or is backed by a company, this does not imply that those companies automatically
adopted the same micro-collaboration practices (even though OpenStack itself is backed and

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 47

developed by a consortium of companies). Perhaps one could study open-source projects to
which such companies have been contributing, and interview their contributors, to validate
the findings of our study in that context.

Threats to construct validity concern the relation between the theory behind the experiment
and the observed findings. A first such threat stems from the identification of co-authorship
attribution in commit message trailers. The trailer message was required to include both
substrings “author” and “:”. If either of the two terms did not exist, then co-authorship
attribution was not recovered, possibly leading to an underestimation. The strategy could
also have lead to an overestimation since it may not have included non-authorship related
trailers that still contained both substrings. To mitigate the presence of such under- or over-
estimations, the second author of the paper manually investigated all distinct trailer types
containing the substrings “author” and “:”. This allowed us to identify and consider ad-
ditional co-authorship trailers corresponding to either typos (e.g., “Co-authorioed-by”) or
alternative trailers used to indicate authorship (e.g., “Co-Authored-With”, “(Co-)Author”,
“Author attribution”, “Also-Authored-By”). It also allowed us to ignore false positives (e.g.,
“Authorization:”).

A second construct validity threat stems from our strategy for identifying collaboration
through Gerrit code reviews, which required that the collaborator must have uploaded the
contributed patch set, as Gerrit’s author field might still contain information of the initial
submitter if the patch set was uploaded by a follow-up contributor. This strategy may have
lead us to ignore some Gerrit collaborations. To quantify the extent of this threat, we tried to
identify collaboration with two additional strategies: (S1) by considering both the authors of
all patch sets and uploaders of follow-up patch sets; and (S2) by considering only the authors
of all patch sets. Strategy (S1) identifies only 286 additional change sets as collaborative,
resulting in a risk of less than 1% of missed collaborations due to our original strategy.
Strategy (S2) would only identify only 2,793 change sets in total as collaborative, since it
ignores collaborators touching and uploading patches, thereby missing 96% of collaborative
change sets. This meta-analysis increases our confidence in the adopted strategy to identify
and extract collaborations through Gerrit.

Another construct validity threat relates to the time granularity of our quantitative anal-
ysis. We opted for an annual analysis (periods July–June as described in Section 5.1). We
could alternatively have chosen finer-grained time intervals, aligned with OpenStack’s re-
lease policy and release deadlines (twice per year according to OpenStack’s release plan46).
When repeated the temporal analyses for F1 and F4 by considering time intervals based on
release dates, the conclusions we could derive for both findings remained the same.

Our quantitative analysis could have been threatened by including archived projects that
are no longer maintained. This threat was mitigated by excluding such retired projects from
our analysis. Some collaborations could have been overestimated if collaborators used mul-
tiple accounts to identify themselves on git or Gerrit. To minimize this threat, we carefully
merged such cases into a single identity by relying on a partially internal ground truth data
source of developer identities from OpenStack, containing a classified list of contributors
and their associated email addresses. We also manually identified the presence of bots and
excluded their activity from our analysis in order to avoid such automated processes being
counted as attributing to inter-human collaboration. The same identity merging was also
used in our analysis of bug-inducing changes to find qualitative support for the claim that
collaboration improves software quality. To analyse this claim we relied on bug reports to

46 https://releases.openstack.org

48 Armstrong Foundjem, Member, IEEE, et al.

link bugs to code commits. We encountered the technical challenge that OpenStack started
migrating47 its issue tracker from LaunchPad to Storyboard since March 2015. Since this mi-
gration process resulted in a certain amount of information loss, we mined bug reports from
both issue trackers and filtered out all duplicate cases that were found on both platforms.

10 Conclusion

While pair-programming has been a staple of agile development for decades, the correspond-
ing notion of co-authoring individual patches in a remote setting, i.e., micro-collaboration,
for a long time has lacked explicit coding practices. The advent of the commit trailer mech-
anism as a new standard for tagging commits involving micro-collaboration has enabled us
to empirically study the prevalence, advantages and disadvantages of micro-collaboration in
the OpenStack ecosystem, using a mixed-methods approach.

Interviews with 16 OpenStack community members identified two major mechanisms
for micro-collaboration, i.e., commit trailers (the official mechanism) and Gerrit patch sets
(an implicit mechanism). Micro-collaboration was said to encourage teamwork, improve
onboarding/learning, software quality, productivity and dealing with software complexity.
While micro-collaboration was said to enable better recognition and accountability, the in-
terviewees did identify issues involving the tracking and awareness of joint contributions,
requiring better automation.

Our subsequent quantitative study on more than 900k git commits and more than 600k
Gerrit change sets surprisingly found that the implicit patch set-based micro-collaboration
(in Gerrit) was responsible for 80% of the micro-collaborative changes. Overall, patch set-
and commit trailer-based micro-collaboration together make up 19% of OpenStack’s yearly
change set volume (since 2017). We found how micro-collaboration correlated with longer
retention of contributors (both junior and senior), a lower likelihood of introducing bugs, a
higher review quality and a higher productivity in terms of the number of change sets, patch
sets and commits produced, and the size of contributions (small effect size). In contrast,
micro-collaboration did take more time, and did not have a significantly higher likelihood
of getting a contribution accepted.

The main take-home messages of this work are (1) the relatively common occurrence
of micro-collaboration in remote development, and (2) the need to consider both the ex-
plicitly visible (commit trailers in git) and implicitly hidden (patch sets in Gerrit) micro-
collaboration. Future work should delve deeper into the different kinds of patch set micro-
collaborations, as well as in a comparison between micro- and macro-collaboration in re-
mote development.

Declarations

Funding: This research is partially supported by the F.R.S.-FNRS under Grant numbers
T.0017.18, J.0151.20 and O.0157.18F-RG43 (Excellence of Science project SECO-Assist),
as well as by the FRQ-F.R.S.-FNRS under Grant number 264544 (bilateral Québec-Wallonia
project SECOHealth).

Conflict of interests/Competing interests: The authors have no relevant financial or non-
financial interests to disclose.

47 https://openstack.nimeyo.com/108658/openstack-operators-migration-to-storyboard

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 49

Ethics Approval: The interviews performed during this study were subject to ethics certifi-
cate CER-1617-40, governed by the ethics board of Polytechnique Montreal.

References

1. C. de Souza Costa, J. J. Figueiredo, J. F. Pimentel, A. Sarma, and L. G. P. Murta, “Rec-
ommending participants for collaborative merge sessions,” Trans. Softw. Eng., pp. 1–1,
2019.

2. C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “TIPMerge: recommending experts
for integrating changes across branches,” in International Symposium on Foundations
of Software Engineering, 2016, pp. 523–534.

3. S. Krusche, M. Berisha, and B. Bruegge, “Teaching code review management using
branch based workflows,” in International Conference on Software Engineering. ACM,
2016, pp. 384–393.

4. M. T. Rahman, “Investigating modern release engineering practices,” in International
Conference on Software Analysis, Evolution, and Reengineering. IEEE, 2015, pp.
607–608.

5. C. Bird and T. Zimmermann, “Assessing the value of branches with what-if analysis,” in
International Symposium on Foundations of Software Engineering. ACM SIGSOFT,
2012.

6. S. Datta, “How does developer interaction relate to software quality? An examination of
product development data,” Empirical Software Engineering, vol. 23, no. 3, pp. 1153–
1187, Jun. 2018.

7. T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, “Exploring software development
at the very large-scale: A revelatory case study and research agenda for agile method
adaptation,” Empirical Software Engineering, vol. 23, pp. 490–520, 2018.

8. E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. M. German, “Open source-
style collaborative development practices in commercial projects using GitHub,” in In-
ternational Conference on Software Engineering. IEEE, 2015, pp. 574–585.

9. S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coordination challenges
in large-scale software development: A case study of planning misalignment in hybrid
settings,” Trans. Softw. Eng., vol. 44, no. 10, pp. 932–950, 2018.

10. T. Neumayr, H.-C. Jetter, M. Augstein, J. Friedl, and T. Luger, “Domino: A descriptive
framework for hybrid collaboration and coupling styles in partially distributed teams,”
Human-Computer Interaction, p. 24, Nov. 2018.

11. F. Mardi, K. Miller, and P. Balcerzak, “Novice - expert pair coaching: Teaching Python
in a pandemic,” in Technical Symposium on Computer Science Education. ACM, 2021,
pp. 226–231.

12. H. Sharp and H. Robinson, “Collaboration and co-ordination in mature extreme pro-
gramming teams,” International Journal of Human-Computer Studies, vol. 66, no. 7,
pp. 506–518, 2008.

13. A. Foundjem, E. E. Eghan, and B. Adams, “Onboarding vs. diversity, productivity and
quality – empirical study of the OpenStack ecosystem,” in International Conference on
Software Engineering, 2021, pp. 1033–1045.

14. P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software En-
gineering: Guidelines and Examples, 1st ed. Wiley, 2012.

15. A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App store effects on
software engineering practices,” Trans. Softw. Eng., vol. 47, no. 2, pp. 300–319, 2021.

50 Armstrong Foundjem, Member, IEEE, et al.

16. A. Foundjem, E. Constantinou, T. Mens, and B. Adams, “Replication package —
v2.0.0),” https://doi.org/10.5281/zenodo.5759968, December 2021, online.

17. A. Foundjem and B. Adams, “Release synchronization in software ecosystems,” Em-
pirical Software Engineering, vol. 26, no. 34, 2021.

18. Y. Zhang, M. Zhou, A. Mockus, and Z. Jin, “Companies’ participation in oss
development–an empirical study of openstack,” IEEE Transactions on Software En-
gineering, vol. 47, no. 10, pp. 2242–2259, 2021.

19. Y. Zhang, M. Zhou, K.-J. Stol, J. Wu, and Z. Jin, “How do companies collaborate
in open source ecosystems?” in International Conference on Software Engineering.
ACM, 2020, pp. 1196–1208.

20. S. Zhou, B. Vasilescu, and C. Kästner, “How has forking changed in the last 20 years? A
study of hard forks on GitHub,” in International Conference on Software Engineering.
ACM, 2020, pp. 445–456.

21. M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review data from An-
droid,” in International Working Conference on Mining Software Repositories, 2013,
pp. 45–48.

22. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code review
coverage and code review participation on software quality,” in Working Conference on
Mining Software Repositories. ACM, 2014, pp. 192–201.

23. X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this change?: Putting text
and file location analyses together for more accurate recommendations,” in 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
261–270.

24. C. Bird, “Interviews,” in Perspectives on Data Science for Software Engineering. Mor-
gan Kaufmann, 2016.

25. C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green, C. Jaspan, and
J. Lin, “Predicting developers’ negative feelings about code review,” in International
Conference on Software Engineering. IEEE, 2020, pp. 174–185.

26. N. Salleh, R. Hoda, M. T. Su, T. Kanij, and J. Grundy, “Recruitment, engagement and
feedback in empirical software engineering studies in industrial contexts,” Information
and Software Technology, vol. 98, pp. 161–172, 2018.

27. G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough? an experiment
with data saturation and variability,” Field methods, vol. 18, no. 1, pp. 59–82, 2006.

28. P. I. Fusch and L. R. Ness, “Are we there yet? data saturation in qualitative research,”
The qualitative report, vol. 20, no. 9, p. 1408, 2015.

29. M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging role of data scien-
tists on software development teams,” in 2016 IEEE/ACM 38th International Confer-
ence on Software Engineering (ICSE). IEEE, 2016, pp. 96–107.

30. A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a good day: The
daily life of software developers,” IEEE Transactions on Software Engineering, vol. 47,
no. 5, pp. 863–880, 2019.

31. N. Terzimehić, R. Háuslschmid, H. Hussmann, and m. schraefel, “A review & analysis
of mindfulness research in HCI,” in ICHF in Computing Systems. ACM, 2019, pp.
1–13.

32. P. Lenberg, L. G. W. Tengberg, and R. Feldt, “An initial analysis of software engineers’
attitudes towards organizational change,” Empirical Software Engineering, vol. 22,
no. 4, pp. 2179–2205, 2017.

33. D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in software en-
gineering,” in International Symposium on Empirical Software Engineering and Mea-

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 51

surement, 2011, pp. 275–284.
34. D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, “Analysis and detection of informa-

tion types of open source software issue discussions,” in International Conference on
Software Engineering, 2019, pp. 454–464.

35. J. Himmelsbach, S. Schwarz, C. Gerdenitsch, B. Wais-Zechmann, J. Bobeth, and
M. Tscheligi, “Do we care about diversity in human computer interaction,” in Inter-
national Conference on Human Factors in Computing Systems. ACM, 2019, pp. 1–16.

36. H. R. Bernard, A. Wutich, and G. W. Ryan, Analyzing qualitative data: Systematic
approaches. SAGE publications, 2016.

37. M. W. DiStaso and D. S. Bortree, “Multi-method analysis of transparency in social me-
dia practices: Survey, interviews and content analysis,” Public Relations Review, vol. 38,
no. 3, pp. 511–514, 2012.

38. J. Saldaña, The coding manual for qualitative researchers. SAGE publications, 2015.
39. M. S. Islam, W. Khreich, and A. Hamou-Lhadj, “Anomaly detection techniques based

on kappa-pruned ensembles,” IEEE Transactions on Reliability, vol. 67, no. 1, pp. 212–
229, 2018.

40. J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-depth
semistructured interviews,” Sociological Methods & Research, vol. 42, no. 3, pp. 294–
320, 2013.

41. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical
data,” Biometrics, vol. 33, no. 1, 1977.

42. O. Mlouki, F. Khomh, and G. Antoniol, “On the detection of licenses violations in the
android ecosystem,” in International Conference on Software Analysis, Evolution, and
Reengineering. IEEE, 2016, pp. 382–392.

43. M. Goeminne and T. Mens, “A comparison of identity merge algorithms for software
repositories,” Science of Computer Programming, vol. 78, pp. 971–986, 2013.

44. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email so-
cial networks,” in International Working Conference on Mining Software Repositories.
ACM, 2006, pp. 137–143.

45. M. Golzadeh, A. Decan, E. Constantinou, and T. Mens, “Identifying bot activity in
github pull request and issue comments,” in 2021 IEEE/ACM Third International Work-
shop on Bots in Software Engineering (BotSE), 2021, pp. 21–25.

46. N. Cassee, C. Kitsanelis, E. Constantinou, and A. Serebrenik, “Human, bot or both?
a study on the capabilities of classification models on mixed accounts,” in 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2021, pp.
654–658.

47. D. M. German, B. Adams, and A. E. Hassan, “Continuously mining distributed ver-
sion control systems: An empirical study of how Linux uses git,” Empirical Software
Engineering, vol. 21, no. 1, pp. 260–299, Feb. 2016.

48. Y. Fan, X. Xia, D. Alencar da Costa, D. Lo, A. E. Hassan, and S. Li, “The impact of
changes mislabeled by SZZ on just-in-time defect prediction,” Trans. Softw. Eng., p. 26,
2019.

49. E. C. Neto, D. A. d. Costa, and U. Kulesza, “Revisiting and improving SZZ implemen-
tations,” in International Symposium on Empirical Software Engineering and Measure-
ment, 2019, pp. 1–12.

50. M. Borg, O. Svensson, K. Berg, and D. Hansson, “SZZ unleashed: An open implemen-
tation of the SZZ algorithm,” in MaLTeSQuE. ACM, 2019, pp. 7–12.

51. J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” SIG-
SOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

52 Armstrong Foundjem, Member, IEEE, et al.

52. L. An, F. Khomh, and Y.-G. Guéhéneuc, “An empirical study of crash-inducing commits
in Mozilla Firefox,” Software Quality Journal, vol. 26, pp. 553–584, 2018.

53. G. Rodriguez, G. Robles, and J. Gonzalez-Barahona, “Reproducibility and credibility
in empirical software engineering,” Information and Software Technology, vol. 99, pp.
164–176, 2018.

54. M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su, “Exploring and ex-
ploiting the correlations between bug-inducing and bug-fixing commits,” in Joint Meet-
ing on ESEC and FSE. ACM, 2019, pp. 326–337.

55. D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework for mining
software repositories,” in Joint Meeting on ESEC and FSE. ACM, 2018, p. 3.

56. M. L. McHugh, “The chi-square test of independence,” Biochemia medica: Biochemia
medica, vol. 23, no. 2, pp. 143–149, 2013.

57. A. Satorra and P. M. Bentler, “A scaled difference chi-square test statistic for moment
structure analysis,” Psychometrika, vol. 66, no. 4, pp. 507–514, 2001.

58. J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring and mod-
eling programming experience,” Empirical Software Engineering, vol. 19, no. 5, pp.
1299–1334, 2014.

59. H. Treiblmaier and P. Filzmoser, “Exploratory factor analysis revisited: How robust
methods support the detection of hidden multivariate data structures in is research,”
Information & Management, vol. 47, no. 4, pp. 197–207, 2010.

60. G. Meshcheryakov, A. A. Igolkina, and M. G. Samsonova, “semopy 2: A struc-
tural equation modeling package with random effects in python,” arXiv preprint
arXiv:2106.01140, 2021.

61. A. Gopal, T. Mukhopadhyay, and M. S. Krishnan, “The impact of institutional forces
on software metrics programs,” Trans. Softw. Eng., vol. 31, no. 8, pp. 679–694, 2005.

62. D. R. Johnson and J. C. Creech, “Ordinal measures in multiple indicator models: A
simulation study of categorization error,” American Sociological Review, pp. 398–407,
1983.

63. N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck, and J. Butler, “The
SPACE of developer productivity: There’s more to it than you think.” Queue, vol. 19,
no. 1, pp. 20–48, Feb. 2021.

64. D. Izquierdo-Cortazar, N. Sekitoleko, J. M. Gonzalez-Barahona, and L. Kurth, “Using
metrics to track code review performance,” in Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, ser. EASE’17.
New York, NY, USA: Association for Computing Machinery, 2017, pp. 214–223.
[Online]. Available: https://doi.org/10.1145/3084226.3084247

65. O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality: How developers
see it,” in Proceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16. New York, NY, USA: Association for Computing Machinery, 2016,
pp. 1028–1038. [Online]. Available: https://doi.org/10.1145/2884781.2884840

66. V. Kovalenko and A. Bacchelli, “Code review for newcomers: Is it different?”
in Proceedings of the 11th International Workshop on Cooperative and Human
Aspects of Software Engineering, ser. CHASE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 29–32. [Online]. Available:
https://doi.org/10.1145/3195836.3195842

67. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of code
review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New York, NY,

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 53

USA: Association for Computing Machinery, 2014, pp. 192–201. [Online]. Available:
https://doi.org/10.1145/2597073.2597076

68. ——, “An empirical study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189, 2016.

69. E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte, and A. Garcia, “Code
and commit metrics of developer productivity: a study on team leaders perceptions,”
Empirical Software Engineering, vol. 25, no. 4, pp. 2519–2549, 2020.

70. P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German, “Contemporary peer
review in action: Lessons from open source development,” IEEE Software, vol. 29,
no. 6, pp. 56–61, 2012.

71. C. Tong, S. K.-S. Wong, and K. P.-H. Lui, “The influences of service personalization,
customer satisfaction and switching costs on e-loyalty,” International Journal of Eco-
nomics and Finance, vol. 4, no. 3, pp. 105–114, 2012.

72. L. Klem, “Structural equation modeling.” 2000.
73. R. P. Bagozzi and Y. Yi, “Specification, evaluation, and interpretation of structural equa-

tion models,” Journal of the academy of marketing science, vol. 40, no. 1, pp. 8–34,
2012.

74. A. A. Igolkina and G. Meshcheryakov, “semopy: A python package for structural
equation modeling,” Structural Equation Modeling: A Multidisciplinary Journal,
vol. 27, no. 6, pp. 952–963, 2020. [Online]. Available: https://doi.org/10.1080/
10705511.2019.1704289

75. H. Kang and J.-W. Ahn, “Model setting and interpretation of results in research using
structural equation modeling: A checklist with guiding questions for reporting,” Asian
Nursing Research, vol. 15, no. 3, pp. 157–162, 2021.

76. R. Ghaiumy Anaraky, Y. Li, and B. Knijnenburg, “Difficulties of measuring culture in
privacy studies,” Proc. ACM Hum.-Comput. Interact., vol. 5, no. CSCW2, oct 2021.
[Online]. Available: https://doi.org/10.1145/3479522

77. T. N. Beran and C. Violato, “Structural equation modeling in medical research: a
primer,” BMC research notes, vol. 3, no. 1, pp. 1–10, 2010.

78. R. Vallat, “Pingouin: statistics in python,” Journal of Open Source Software, vol. 3,
no. 31, p. 1026, 2018. [Online]. Available: https://doi.org/10.21105/joss.01026

79. J. T. Rich, J. G. Neely, R. C. Paniello, C. C. J. Voelker, B. Nussenbaum, and E. W.
Wang, “A practical guide to understanding kaplan-meier curves,” Otolaryngology–head
and neck surgery, vol. 143, no. 3, pp. 331–6, 2010.

80. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lucia, and D. Poshy-
vanyk, “When and why your code starts to smell bad (and whether the smells go away),”
Trans. Softw. Eng., vol. 43, no. 11, pp. 1063–1088, 2017.

81. N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal questions,” Psycho-
logical Bulletin, vol. 114, no. 3, pp. 4994–509, November 1993.

82. M. Hess and J. Kromrey, “Robust confidence intervals for effect sizes: A comparative
study of Cohen’s d and Cliff’s delta under non-normality and heterogeneous variances,”
AERA, pp. 1–30, 2004.

83. G. D. Garson, Path analysis. Statistical Associates Publishing Asheboro, NC, 2013.
84. J.-G. Young, A. Casari, K. McLaughlin, M. Z. Trujillo, L. Hébert-Dufresne, and J. P.

Bagrow, “Which contributions count? analysis of attribution in open source,” in Inter-
national Working Conference on Mining Software Repositories. IEEE, 2021.

85. J. Whitehead, “Collaboration in software engineering: A roadmap,” in Future of Soft-
ware Engineering, May 2007, pp. 214–225.

54 Armstrong Foundjem, Member, IEEE, et al.

86. T. Mens, M. Cataldo, and D. Damian, “The social developer: The future of software
development,” IEEE Software, vol. 36, no. 1, p. 4, Jan 2019.

87. G. Avelino, L. Passos, A. Hora, and M. T. Valente, “Assessing code authorship: The case
of the Linux kernel,” in Open Source Systems: Towards Robust Practices. Springer,
2017, pp. 151–163.

88. C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer onboarding in
GitHub: The role of prior social links and language experience,” in Joint Meeting on
ESEC and FSE. ACM, 2015, pp. 817–828.

89. I. Steinmacher, M. A. G. Silva, and M. A. Gerosa, “Barriers faced by newcomers to
open source projects,” in Open Source Software: Mobile Open Source Technologies.
Springer, 2014.

90. A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird, “CFar: A tool to in-
crease communication, productivity, and review quality in collaborative code reviews,”
in CHI. ACM, 2018, pp. 1–13.

91. L. Plonka, H. Sharp, J. van der Linden, and Y. Dittrich, “Knowledge transfer in pair pro-
gramming: An in-depth analysis,” International Journal of Human-Computer Studies,
vol. 73, pp. 66–78, 2015.

92. K. M. Lui and K. C. Chan, “Pair programming productivity: Novice–novice vs. expert–
expert,” International Journal of Human-Computer Studies, vol. 64, no. 9, pp. 915–925,
2006.

93. A. H. K. Spohrer, T. Kude and C. T. Schmidt, “Peer-based quality assurance in infor-
mation systems and development: A transactive memory perspective,” in International
Conference on Information Systems, 2013.

94. F. P. Brooks Jr., The mythical man-month. MA, United States: Addison-Wesley Read-
ing, 1974.

95. M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction approaches:
a benchmark and an extensive comparison,” Empirical Software Engineering, vol. 17,
no. 4, pp. 531–577, Aug. 2012.

96. C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “When and how to make breaking
changes: Policies and practices in 18 open source software ecosystems,” Trans. Softw.
Eng. Methodol., vol. 30, no. 4, Jul. 2021.

97. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer Science & Business Media, 2012.

98. P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software peer review prac-
tices: A case study of the Apache server,” in International Conference on Software
Engineering. ACM, 2008, pp. 541–550.

99. P. Fusch and L. Ness, “Are we there yet? data saturation in qualitative research,” The
Qualitative Report, 2015.

A mixed-methods analysis of micro-collaborative coding practices in OpenStack 55

A Questions for guiding the OpenStack interviews on co-authoring

A.1 Demographics

This first set of questions allow us to determine the profile and role of each interviewee within OpenStack.

1. How and why did you start to get involved in OpenStack?
2. What is your role in OpenStack? (And how did your role evolve over time?)
3. Which and how many OpenStack projects have you been involved in?
4. For how long have you been involved in OpenStack (and in these specific projects)?

A.2 Generic Questions

[These questions will be asked to each interviewee, regardless of his or her profile.]

1. Which mechanisms are you aware of (or have personal experience with) for making joint contributions
to OpenStack projects with other persons?
[If the question is too unclear, provide concrete examples to the interviewee, e.g., internally visible
branch, externally visible branch, emails, slack, same commit, IRC ...]

2. Are you aware of (or familiar with) the possibility to co-author commits in OpenStack projects?
3. If yes:

– Are co-authored commits common in the OpenStack projects you are involved in?
– What value, if any, does commit co-authoring bring to the OpenStack projects your are involved in?
– What are the drawbacks, if any, commit co-authoring brings to the ecosystem?
– Did/does the practice of co-authored commits improve onboarding experience? Go to C1 or D1

4. If no:
– For Foundation members, continue at question C2.
– For all other interviewees: end of interview.

A.3 Questions for OpenStack Foundation Members

[These questions will only be asked to OpenStack Foundation members.]

1. If the interviewee is aware of the possibility to co-author commits:
(a) In general, why do co-authored commits happen in OpenStack?
(b) Does OpenStack actively encourage co-authored commits? Why (not)?
(c) Are OpenStack ecosystem members satisfied by the way in which co-authored commits are sup-

ported process-wise or tool-wise? Do you see room for improvement? How?
2. How is OpenStack (or the specific projects you are or have been involved in) dealing with contributor

onboarding, i.e., trying to attract and retain new contributors? Which techniques and/or processes are
used to support this?

3. How is OpenStack trying to reduce contributor turnover, and more specifically how is it trying to avoid
key contributors from abandoning?

4. Apart from the above issues, according to your personal experience, what are other social, technical
or organizational health problems OpenStack is confronted with, including its community and its open
source code base?

5. How are these problems being addressed? For those problems that are not addressed yet, how should
they be addressed?

56 Armstrong Foundjem, Member, IEEE, et al.

A.4 Questions for OpenStack Practitioners

[These questions will only be asked to software developers involved in OpenStack projects.]

1. Have you yourself been involved in co-authoring commits? For which projects (within and beyond Open-
Stack)?

2. If yes:
(a) How frequently have you co-authored commits?
(b) What were the reasons for, and goals of, co-authoring the commits you were involved in (as opposed

to individually authoring them)?
(c) Are you aware of other reasons/goals of co-authored commits?
(d) How much experience did you have in OpenStack when you started co-authoring commits?
(e) What were the characteristics of the persons you co-authored with (juniors, seniors, experts in spe-

cific topics, . . .)?
(f) What process do you use for co-authoring commits with other contributors (communication, divi-

sion of tasks, ...)?
(g) Who becomes the “principal author” (i.e., the author recorded in Git)?
(h) Do you explicitly mark your co-authored commits using “co-authored trailers” in commit messages?

Why (not)?
(i) Are you satisfied by the way in which co-authored commits are supported by OpenStack, both

process-wise or tool-wise? Do you see room for improvement? How?
3. If not at all:

(a) Was it an explicit decision not to get involved in co-authoring?
(b) If yes, why?
(c) If not, do you see:

i. any value that commit co-authoring could bring to you?
ii. any drawbacks that commit co-authoring could bring to you?

