
© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

Bram ADAMS
Ghislain Hoffman Software Engineering Lab, INTEC, Ghent University
http://users.ugent.be/~badams

Kris DE SCHUTTER
Lab On REengineering, University of Antwerp
http://faramir.ugent.be/~kdschutt

Software Architecture
Recovery

from Build Processes



2

1. Why Look At Build Systems?
2. Software Architecture Recovery
3. Make 
4. MAKAO
5. Rule-Based Approach
6. General Rules
7. Application-Specific Rules
8. Conclusions and Future Work

Outline



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

Case study with Aspicere:

1. Why Look At Build Systems?

makefiles application

.c
source code

???

.c
source code

.ac
tracing aspect

(Aspicere)

trace generating
application

makefiles

More general:
• how to easily modify a build system?
• how to gain quick insight into build process?
• how to assess general software architecture?

reverse-
engineering

re-engineering



4

2. Software Architecture Recovery

Software architecture recovery:
• software and build system co-evolve
• assumptions:
- correct makefiles
- modular source files (no giant implementation files)

Related work:
• Build-Time Software Architecture View [Tu01]
• Dali (and Rigi) [Kazman99], Portable BookShelf 

[Finnigan97], and Desire [Biggerstaff89]
• [Bowman99] Linux kernel architecture
- conceptual architecture ⇒ concrete architecture
- tedious discovery and population of subsystems



3. Make

make_OBJECTS = ar.o arscan.o \

commands.o dir.o ... hash.o

make$(EXEEXT): $(make_OBJECTS) 

@rm -f make$(EXEEXT)

$(LINK) $(make_LDFLAGS) \

$(make_OBJECTS) \

$(make_LDADD) $(LIBS)

...

⇒ de facto build tool/process model!

Directed Acyclic Graph (DAG)

variable

rule

target dependencies

commands

target

depen-
dencies

Makefile

Feldman. “Make-a program for maintaining computer programs”. Software - Practice and Experience,



4. MAKAO
Makefile Architecture 
Kernel for AO

Prolog

Gython 
console graph

legend
hull



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

Linux 2.6.16.18 kernel
• 2787 nodes
• 7465 edges



8

5. Rule-Based Approach

Observations:
• previous slide looks like a mess, even after layouting
• too much detail

Possible solution:
• define rules to modify graph:
- general vs. application-dependent [Kazman99]
- semantics-preserving ("cleaning-up") or not

• challenge: don't touch the code ↔ [Bowman99]
•• propagate cleanpropagate clean--up up passes backpasses back to build (configuration?) 

system



9

6. General Rules (1)

Lose the FORCE, Luke!

1 node1 node
114 edges114 edges



10

6. General Rules (2)

Redundant dependencies:
• simple transitivity

• extended transitivity

a

b c

d e f

a

b c

d e f

a

b c

d e f

a

b c

d e f

0 nodes0 nodes
108 edges108 edges

not appliednot applied

• semantics-preserving
• faster build
• lose architectural info?



11

6. General Rules (3)

Redundant dependencies (cont.):
• obsoleteness

b c11 nodes11 nodes
17 edges17 edges

b c

e

no object

source

• semantics-preserving if no commands tied to source node
• faster build



12

BEFORE



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

AFTER



14

6. General Rules (4)

Raising level of abstraction:
• pulling up source file relations

• abstracting away source files

b

d

object

source

b c

d f

object

source

b c

d f

b

0 nodes0 nodes
0 edges0 edges

929 nodes929 nodes
944 edges944 edges



15

6. General Rules (5)

Raising level of abstraction:
• sandwich rule

a b c

no regular file

a c 14 nodes14 nodes
14 edges14 edges

abstraction
• rules influenced by style of build scripts
⇒ some build systems have more/less architectural info
• lose architectural info?



BEFORE



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

system-wide
headers

built-in
modules

AFTER

kernel image



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

kernel image



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

kernel image



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

composite
object



21

7. Application-Specific Rules (1)

• composite object files

a

b c d

object

object

a897 nodes897 nodes
1056 edges1056 edges

highly effective



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

target __build

kernel image



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

target __build

built-in drivers

network



24

7. Application-Specific Rules (2)

• unchaining redundant cycles

directory

object

__build

b

a

c

decouples tangled clusters

what does this construct mean?

__build

b

a

c

0 nodes0 nodes
174 edges174 edges



© 2006, Ghislain Hoffman Software Engineering Lab. All rights reserved.

ACPI drivers

built-in drivers

file system support

network

kernel image



26

8. Conclusions and Future Work (1)

Conclusions:
- work in progress!
- lots of clean-up and abstraction rules necessary
- build system's knowledge varies per project

Rules' effectiveness:



27

Future work:
• working out dependencies of kernel image
• other cases (GCC, vim, KDE, ...)
• applying clustering techniques
• feed clean-up rules back to build scripts
• come up with new rules
• does order of rules play a role?
• ...

8. Conclusions and Future Work (2)



28

References
[Biggerstaff89] Ted J. Biggerstaff. Design Recovery for 
Maintenance and Reuse. Computer Journal, Vol. 22, No. 7 (p. 36-
49), 1989
[Bowman99] Ivan T. Bowman, Richard C. Holt and Neil V. 
Brewster. Linux as a Case Study: Its Extracted Software 
Architecture. Proc. of ICSE 1999 (p. 555-563)
[Finnigan97] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, 
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and K. Wong. 
The Software Bookshelf. IBM Systems Journal, Vol. 36, No. 4 (p. 
564-593), November 1997
[Kazman99] Rick Kazman and S. Jeromy Carrière: Playing 
detective. Reconstructing software architecture from available 
evidence. Proc. of ASE 1999 (p. 107-138)
[Tu01] Qiang Tu and Michael W. Godfrey. The Build-Time Software 
Architecture View. Proc. of ICSM 2001 (p. 398-407)


	Software Architecture� Recovery �from Build Processes
	Outline
	2. Software Architecture Recovery
	3. Make
	4. MAKAO
	5. Rule-Based Approach
	6. General Rules (1)
	6. General Rules (2)
	6. General Rules (3)
	6. General Rules (4)
	6. General Rules (5)
	7. Application-Specific Rules (1)
	7. Application-Specific Rules (2)
	8. Conclusions and Future Work (1)
	8. Conclusions and Future Work (2)
	References



