
Universiteit Gent
Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie

Co-evolutie van broncode en het bouwsysteem:
impact op de introductie van AOSD in legacy
systemen
Co-evolution of Source Code and the Build System: Impact
on the Introduction of AOSD in Legacy Systems

Bram Adams

Proefschrift tot het bekomen van de graad van
Doctor in de Ingenieurswetenschappen:

Computerwetenschappen
Academiejaar 2007-2008





Universiteit Gent
Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie

Promotoren: Prof. Dr. Ir. Herman Tromp
Prof. Dr. Wolfgang De Meuter

Universiteit Gent
Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie
Sint-Pietersnieuwstraat 41, B-9000 Gent, België

Tel.: +32-9-264.33.18
Fax.: +32-9-264.35.93

Dit werk kwam tot stand in het kader van een BOF-beurs (Bijzonder Onderzoeks-
Fonds) van de Universiteit Gent.

Proefschrift tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen:

Computerwetenschappen
Academiejaar 2007-2008





Preface

“Mathematics and programming!” was my typical answer in elementary and se-
condary school to other people’s queries about my future. I liked mathematics
and assumed that programming computers would also be cool. Eventually, I lived
up to my bold prediction by pursuing a Master in Computer Science Engineering
at Ghent University. At the age of eighteen, I wrote my first “Hello World” in
Bart Dhoedt’s course on Java. The transition from programming to software engi-
neering followed a couple of years later, when Ghislain Hoffman encouraged me
to migrate to the Linux operating system and to the Eclipse IDE. As these two
systems spearheaded the open source movement, I became intrigued by design
patterns, version control systems, test-driven development, continuous integrati-
on, build systems, refactoring, etc. This fascination led me to do my Master’s
thesis in Ghislain’s group, with Herman Tromp, Koenraad Vandenborre and Kris
De Schutter as my advisors. The thesis introduced me to AOSD and seduced me
into doing a PhD. Ghislain and Herman agreed to become my advisors, and we
managed to obtain a BOF grant from Ghent University. I am very grateful to them
for this opportunity.

In October 2004, my journey into the world of research officially began, with
as initial goal investigating AOSD technology for C. For this task, I could count on
the other members of the group. Kris De Schutter was my mentor, who convinced
me to think before programming, to use the right tool for the job and to switch to
Apple computers. He was right about all of these. David Matthys taught me that
there is more to life than just work, but I have been a bad student in this regard.
I would also like to thank Hannes Verlinde, José Sampaio Faria, Andy Verkeyn,
Koenraad Vandenborre, Jan Van Besien, Mieke Creve and Stijn Van Wonterghem
for being themselves.

One given day in February, 2005, my research career got an unexpected boost
when all of a sudden Ghislain offered me the chance to go to the AOSD 2005
conference in Chicago. In less than a week, I managed to write my first workshop
paper (for SPLAT), together with Tom Tourwé. This paper was the first in a series
in which Kris and I tried to solve challenges and issues concerning aspects for C
identified by Tom and his colleagues at CWI in Amsterdam (The Netherlands).
The SPLAT paper also represented the first real occasion to present my work in
public, for which I am thankful to Tom and Kris Gybels, one of the organisers of



ii

SPLAT who has been very influential on my work. Travelling together with him
and Andy Kellens (both from the PROG lab at the VUB in Brussels) taught me that
research could be fun, that Starbucks has delicious mocha and that Apple stores
are cool. Above all, I noticed for the first time that being at a conference refuels
ones ideas and desire for research.

Shortly after AOSD, Kris De Schutter and Andy Zaidman arranged a large
case study with Kava, in the context of the Arriba project. Andy and I eventually
spent several weeks at Kava. During that period, I came to know Andy as a serious
researcher with clear ideas and opinions. It was (and still is) fun to work together
with him. I also would like to thank Bernard De Ruyck, who graciously allowed us
to apply our tools on his Kava system. Looking back, the impact of the Kava case
on this dissertation has been significant. Andy and I encountered inexplicably
many Makefile problems while introducing AOSD technology, which from the
outside looked trivial but could only be solved using hacks. Yet, no tools could
be found to help us, nor were there existing experience reports. As the reader will
notice, this problem forms exactly the core topic of this dissertation.

By the summer of 2005, our group flourished as never before in terms of PhD
students, projects and thesis students. But then, disaster stroke: Ghislain tragically
passed away after having broken his leg on the parking lot. This came as a real
shock to us, everyone was baffled. Although I have only worked for Ghislain for
one year, I will not forget how he would make time to chat with anyone and how he
always tried to reconcile both parties in case of conflicts. Without Ghislain, a dark
and uncertain period gloomed. The group lost industrial contacts and courses, and
some people had to leave. This kind of situation causes a lot of tension and makes
people show their real faces. On the upside however, experiencing the slow death
of a research group makes one appreciate the good people, who keep on believing
in you and who remain supportive of your work.

For this, I first would like to thank Kris De Schutter and David Matthys, with
whom it has always been a pleasure to work. In difficult circumstances, we ma-
naged to keep up the quality of education, research and thesis guidance. In the
context of the latter, we have also encountered many enthusiastic thesis students,
who brightened up our office at difficult times. Second, I want to thank Herman
Tromp for taking over the role of advisor from Ghislain. He has done everything
he could to let us do our work in the best possible circumstances. At the same time,
he never let an opportunity slip to improve my cultural skills, especially regarding
culture originating from Antwerp, but often to no avail. His weekly mocking about
my favourite soccer team (SV Zulte-Waregem) was quite appreciated.

Third, I would like to thank the Belgian software engineering research com-
munity in general, and the PROG lab of Theo D’Hondt and Wolfgang (“Wolf”) De
Meuter in particular. PROG is a unique research group, in which thorough research
is stimulated, but without sacrificing the pleasant things in life (drink anyone?). I
have always been welcome at PROG (and SSEL), for which I am grateful. Theo
encouraged me to co-operate with PROG members and, more generally, to think
outside the box. At a crucial point in my PhD career (AOSD 2007), he introduced
me to Wolf and this is without any doubt the best thing which happened to me



iii

in the last three and a half years. Wolf is a very inspiring person who has a gift
for explaining complex concepts in a simple, irresistible way. As my co-advisor,
he taught me valuable things about writing papers and doing research. Thanks
to him, this dissertation has a clear, explicit architecture with research questions,
named criteria, meaningful titles, etc. I do not think there are many advisors who
buy themselves a scanner solely to email their manually written feedback in the
middle of the night. Thanks, Wolf!

Of the past three and a half years, 2007 has been the most exciting period,
as I could reap the fruits of the MAKAO and Aspicere2 tools I had designed and
developed in 2006. Apart from the work with Kris De Schutter, Andy and Tom,
this has given me the opportunity to work together with a number of other peo-
ple. I have had the fortune to be invited by Yvonne Coady and Michael Haupt
to work with them on the VMADL project, together with Celina Gibbs and Stijn
Timbermont. Similar to attending a conference, collaborating with internationally
acclaimed researchers is highly inspiring and motivating, especially if each one
works in a different domain. The VMADL collaboration has sparked other joint
work, more in particular with Charlotte Herzeel and Kris Gybels, and with Yvon-
ne, Celina, Chris Matthews and Bart Van Rompaey. I would like to thank all of
these people for the enriching research experience, and I sincerely hope to continue
these efforts.

When the time of writing this dissertation came (near the end of 2007), Yvon-
ne Coady, Arie van Deursen, Koen De Bosschere, Bart Dhoedt and Filip De Turck
accepted to be in my jury, chaired by Paul Kiekens. I would like to thank them for
their constructive feedback, and for the courage to read this dissertation (the reader
will probably guess why). During the writing process, I was fortunate to receive
valuable feedback from Wolf, Kris De Schutter, Stijn Timbermont and Herman.
This was not straightforward, given my voluminous writing style and the lack of
structure in the initial versions. Various other people have made the conception and
writing of this dissertation a bit easier. Slinger Jansen and Arie van Deursen poin-
ted me to crucial related work, whereas Kai Germaschewski and Sam Ravnborg
provided important feedback on the Linux kernel build system case study. Bru-
no De Fraine gave me a significantly time-saving latex-tip (the \includeonly
macro). The secretaries An and Monic relieved me from various administrative
tasks, and were always in for a chat. The morning commute was cheered up by
the vibrant discussions with Piet, Dries, Nicolas, Lode and Tessa. At conferences,
workshops, etc. I have met many people with whom I exchanged interesting com-
ments and witty conversations. Thanks for this! Finally, I would like to thank the
Smashing Pumpkins for giving me courage that one night before the final writing
phase, and SV Zulte-Waregem for the weekly suspense.

Last but not least, I want to express my deepest gratitude to the people who
have had to endure me every single day of my life, and who have been able to put
into perspective my adventures with computers and work in general. I am referring
to my father, mother, sister, family and two dogs. I owe everything to them. They
have molded my character, have offered me the chance to study whatever I wanted
(as long as I did the best I could), and have always supported me throughout my



iv

studies and research. This was not straightforward, especially after the painful loss
of my father almost two years ago, which has made a deep impact on our lives. I
am really grateful for the opportunities my father and mother have given me, and
I wish I could return all of their favours.

Ghent, March 2008
Bram Adams



Table of Contents

Preface i

Nederlandse samenvatting xxv

English summary xxxiii

1 Introduction 1
1.1 Context of the Dissertation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Conceptual Evidence for Co-evolution of Source Code and the Build
System 13
2.1 The Build System and its Responsibilities . . . . . . . . . . . . . 13

2.1.1 History of Build Systems . . . . . . . . . . . . . . . . . . 14
2.1.2 The General Build System Model . . . . . . . . . . . . . 15
2.1.3 The GNU Build System (GBS), an Archetypical Build Sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3.1 Configuration Layer: Autoconf . . . . . . . . . 19
2.1.3.2 Build Layer Generation: Automake . . . . . . . 21
2.1.3.3 Build Layer: GNU Make . . . . . . . . . . . . 22
2.1.3.4 Additional GBS Components . . . . . . . . . . 26

2.1.4 Roles Played by the Build System . . . . . . . . . . . . . 26
2.1.4.1 Continuous Integration . . . . . . . . . . . . . 26
2.1.4.2 Integrated Development Environments . . . . . 27
2.1.4.3 Software Configuration Management (SCM) . . 27
2.1.4.4 Software Deployment . . . . . . . . . . . . . . 28
2.1.4.5 Release Management . . . . . . . . . . . . . . 29
2.1.4.6 Variability Management . . . . . . . . . . . . . 29

2.2 Understandability and Scalability Problems of Build Systems . . . 30
2.2.1 Problems with "make" . . . . . . . . . . . . . . . . . . . 30

2.2.1.1 Understandability . . . . . . . . . . . . . . . . 30
2.2.1.2 Scalability . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Problems with GNU Make . . . . . . . . . . . . . . . . . 32



vi

2.2.2.1 Understandability . . . . . . . . . . . . . . . . 32
2.2.2.2 Scalability . . . . . . . . . . . . . . . . . . . . 33

2.2.3 Problems with GBS . . . . . . . . . . . . . . . . . . . . 34
2.2.3.1 Understandability . . . . . . . . . . . . . . . . 34
2.2.3.2 Scalability . . . . . . . . . . . . . . . . . . . . 34

2.2.4 Problems with Application of Build Systems in General . 35
2.2.4.1 Understandability . . . . . . . . . . . . . . . . 35
2.2.4.2 Recursive versus Non-recursive “make” . . . . 37

2.3 The Roots of Co-evolution . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Co-evolution in Software Development . . . . . . . . . . 40
2.3.2 A Taxonomy of Co-evolution in Software Development . 42
2.3.3 Early Evidence for Co-evolution between Source Code and

the Build System . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3.1 KDE Migrates from GBS to CMake . . . . . . 44
2.3.3.2 Source Code Reuse Restricted by the Build Sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Conceptual Relations between Source Code and the Build

System . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4.1 RC1: Modular Reasoning vs. Unit of Compilation 47
2.3.4.2 RC2: Programming-in-the-large vs. Build De-

pendencies . . . . . . . . . . . . . . . . . . . . 49
2.3.4.3 RC3: Interface Consistency vs. Incremental Com-

pilation . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4.4 RC4: Program Variability vs. Build Unit Con-

figuration . . . . . . . . . . . . . . . . . . . . . 54
2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 The Relation between AOP and the Roots of Co-evolution . . . . 57
2.4.1 AOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 RC1: Modular Reasoning vs. Unit of Compilation . . . . 60
2.4.3 RC2: Programming-in-the-large vs. Build Dependencies . 64
2.4.4 RC3: Interface Consistency vs. Incremental Compilation . 65
2.4.5 RC4: Program Variability vs. Build Unit Configuration . . 67

2.5 Validation of Co-evolution of Source Code and the Build System . 68

3 MAKAO, a Re(verse)-engineering Tool for Build Systems 71
3.1 Scope of Tool Support . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.1 Goal T1: Tool Support for Solving Build Problems . . . . 72
3.1.2 Goal T2: Tool Support to Understand and Manage Co-

evolution of Source Code and the Build System . . . . . . 73
3.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Deriving Tool Requirements from T1 and T2 . . . . . . . . . . . 74
3.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . 75

3.2.1.1 Visualisation . . . . . . . . . . . . . . . . . . . 75
3.2.1.2 Querying . . . . . . . . . . . . . . . . . . . . . 75
3.2.1.3 Filtering . . . . . . . . . . . . . . . . . . . . . 75



vii

3.2.1.4 Verification . . . . . . . . . . . . . . . . . . . 76
3.2.1.5 Re-engineering . . . . . . . . . . . . . . . . . 76

3.2.2 Design Trade-offs . . . . . . . . . . . . . . . . . . . . . . 76
3.2.2.1 Lightweightness . . . . . . . . . . . . . . . . . 76
3.2.2.2 Static vs. Dynamic Model . . . . . . . . . . . . 77
3.2.2.3 Detecting Implicit Dependencies . . . . . . . . 77

3.3 Evaluation of Existing Tool Support and Techniques . . . . . . . . 78
3.3.1 Formal Methods . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Understanding Build Systems . . . . . . . . . . . . . . . 79
3.3.3 Re-engineering Build Systems . . . . . . . . . . . . . . . 80
3.3.4 Enhanced Build Tools and Systems . . . . . . . . . . . . 81

3.4 Design and Implementation of MAKAO based on the Requirements 82
3.4.1 Architecture of MAKAO . . . . . . . . . . . . . . . . . . 82
3.4.2 Build System Representation . . . . . . . . . . . . . . . . 83
3.4.3 Build Dependency Graph Extraction . . . . . . . . . . . . 83
3.4.4 Implementation on Top of GUESS and SWI Prolog . . . . 85
3.4.5 Re-engineering of the Build System using Aspects . . . . 86
3.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 MAKAO at Work: Achieving Goal T1 . . . . . . . . . . . . . . . 87
3.5.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1.1 Kava . . . . . . . . . . . . . . . . . . . . . . . 88
3.5.1.2 Linux 2.6.16.18 . . . . . . . . . . . . . . . . . 90
3.5.1.3 Quake 3 Arena . . . . . . . . . . . . . . . . . . 90

3.5.2 Querying . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.2.1 Error Detection . . . . . . . . . . . . . . . . . 93
3.5.2.2 Tool Mining . . . . . . . . . . . . . . . . . . . 94
3.5.2.3 Name Clash Detection . . . . . . . . . . . . . . 95
3.5.2.4 Where do Compiled Objects End up? . . . . . . 95

3.5.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.5 Re-engineering . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.5.1 Selecting the Join Points and the Join Point Con-
text . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.5.2 Composing Advice . . . . . . . . . . . . . . . 101
3.5.5.3 Virtual and Physical Weaving . . . . . . . . . . 101

3.5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Experimental Evidence for Co-evolution of Source Code and the Build
System 105
4.1 Rationale behind the Linux Kernel Case Study . . . . . . . . . . . 106
4.2 Setup of the Linux Kernel Case Study . . . . . . . . . . . . . . . 109

4.2.1 Measuring SLOC and Number of Files . . . . . . . . . . 110
4.2.2 Calculating Metrics for the Internal Build Complexity . . 110
4.2.3 Detailed Study of Crucial Evolution Steps . . . . . . . . . 111



viii

4.3 Observation 1: the Build System Evolves with the Source Code . . 112
4.4 Observation 2: Build System Complexity Fluctuates . . . . . . . . 115
4.5 Observation 3: Co-evolution as Driver of Build Evolution . . . . . 119

4.5.1 Configuration Layer under Pressure . . . . . . . . . . . . 119
4.5.2 Evolution until the Linux 2.4 Series . . . . . . . . . . . . 120
4.5.3 Towards the Linux 2.6 Kernel . . . . . . . . . . . . . . . 121

4.5.3.1 Kbuild 2.5 Eliminates Recursive Make . . . . . 123
4.5.3.2 Kbuild 2.6 Converges to Kbuild 2.5 via Build

Idioms . . . . . . . . . . . . . . . . . . . . . . 127
4.5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . 139

4.6 Validation #1: Roots of Co-evolution Experimentally Confirmed . 139
4.6.1 RC1: Modular Reasoning vs. Unit of Compilation . . . . 139
4.6.2 RC2: Programming-in-the-large vs. Build Dependencies . 140
4.6.3 RC3: Interface Consistency vs. Incremental Compilation . 141
4.6.4 RC4: Program Variability vs. Build Unit Configuration . . 141

4.7 Validation #2: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 142
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Aspicere, AOP for Legacy C Systems 145
5.1 Requirements for an Aspect Language for Legacy systems . . . . 146

5.1.1 Goal L1: Language Features to Deal with Legacy Systems 146
5.1.2 Goal L2: Integration of the Build System with the Aspect

Language . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2 Evaluation of Existing Aspect Languages for C . . . . . . . . . . 149

5.2.1 Aspect Languages with a Compile-time Weaver . . . . . . 150
5.2.1.1 Cobble . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1.2 AspectC . . . . . . . . . . . . . . . . . . . . . 154
5.2.1.3 AspectC++ . . . . . . . . . . . . . . . . . . . . 155
5.2.1.4 AspectX/XWeaver . . . . . . . . . . . . . . . . 157
5.2.1.5 C4 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2.1.6 WeaveC . . . . . . . . . . . . . . . . . . . . . 159
5.2.1.7 ACC . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.2 Aspect Languages with a Run-time Weaver . . . . . . . . 162
5.2.2.1 µDiner . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2.2 TinyC2 . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2.3 Arachne . . . . . . . . . . . . . . . . . . . . . 164
5.2.2.4 TOSKANA (Toolkit for Operating System Ker-

nel Aspects with Nice Applications) . . . . . . 164
5.2.2.5 KLASY (Kernel Level Aspect-oriented SYstem) 165

5.2.3 Aspect Language with a Virtual Machine Weaver . . . . . 166
5.2.4 Model Driven Weaving . . . . . . . . . . . . . . . . . . . 166
5.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3 Language Design of Aspicere . . . . . . . . . . . . . . . . . . . . 168
5.3.1 How Aspicere Deals with Goals L1 and L2 . . . . . . . . 169
5.3.2 Aspicere’s Join Point Model . . . . . . . . . . . . . . . . 170



ix

5.3.2.1 Supported Join Points . . . . . . . . . . . . . . 170
5.3.2.2 Join Point Properties for ITD . . . . . . . . . . 172

5.3.3 Aspicere’s Advice Model . . . . . . . . . . . . . . . . . . 173
5.3.3.1 Advice Structure . . . . . . . . . . . . . . . . . 173
5.3.3.2 Join Point Property Declaration . . . . . . . . . 175

5.3.4 Aspicere’s Pointcut Language . . . . . . . . . . . . . . . 176
5.3.5 Aspicere at Work: Database Error Recovery . . . . . . . . 178
5.3.6 Comparison with an Industrial Aspect Language for C:

Mirjam . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4 Two Weaver Implementations for Aspicere . . . . . . . . . . . . . 184

5.4.1 Aspicere1, a Source-to-source Weaver . . . . . . . . . . . 185
5.4.2 Aspicere2, a Link-time Weaver . . . . . . . . . . . . . . . 187

5.5 Validation of Goals L1 and L2 . . . . . . . . . . . . . . . . . . . 192
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6 Case Study 1: Reverse-engineering of the Kava System using Aspects 195
6.1 Rationale behind the Case Study . . . . . . . . . . . . . . . . . . 196
6.2 Application of AOP in the Source Code . . . . . . . . . . . . . . 197

6.2.1 Trace and Pointer Guard Aspects . . . . . . . . . . . . . . 197
6.2.2 Validation #1: Aspicere Meets Goal L1 . . . . . . . . . . 198

6.3 Impact on the Build System . . . . . . . . . . . . . . . . . . . . . 199
6.3.1 Integration of Aspicere1 with the Build Process . . . . . . 199

6.3.1.1 Necessary Changes to the Makefiles . . . . . . 200
6.3.1.2 Wrapping the Compiler does not Work . . . . . 201
6.3.1.3 Regular Expression-based Transformation lacks

Context . . . . . . . . . . . . . . . . . . . . . 202
6.3.1.4 MAKAO is able to Help . . . . . . . . . . . . . 203

6.3.2 The Notion of “whole-program” . . . . . . . . . . . . . . 203
6.3.2.1 An Illustration: Partially Transformed Aspects . 203
6.3.2.2 Defining the Notion of “whole program” . . . . 205
6.3.2.3 Supporting the Notion of “whole program” . . . 205

6.3.3 The Influence of C Language Features . . . . . . . . . . . 207
6.3.4 Build Time Increase . . . . . . . . . . . . . . . . . . . . 207
6.3.5 Run-time Overhead . . . . . . . . . . . . . . . . . . . . . 208

6.4 Validation #2: Roots of Co-evolution Experimentally Confirmed . 208
6.5 Validation #3: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 209
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7 Case Study 2: Component-aware Reverse-engineering of Quake 3 us-
ing Aspects 211
7.1 Rationale behind the Case Study . . . . . . . . . . . . . . . . . . 212
7.2 Application of AOP in the Source Code . . . . . . . . . . . . . . 212

7.2.1 Determining the Main System Components . . . . . . . . 212
7.2.2 The Tracing Aspect . . . . . . . . . . . . . . . . . . . . . 213
7.2.3 Validation #1: Aspicere Meets Goal L1 . . . . . . . . . . 215



x

7.3 Impact on the Build System . . . . . . . . . . . . . . . . . . . . . 215
7.3.1 Integration of Aspicere2 with the Build Process . . . . . . 216
7.3.2 Communication between Aspicere2 and the Build System 218
7.3.3 The Influence of C Language Features . . . . . . . . . . . 219
7.3.4 Build Time Increase and Incremental Weaving . . . . . . 219
7.3.5 Run-time Overhead . . . . . . . . . . . . . . . . . . . . . 220

7.4 Validation #2: Roots of Co-evolution Experimentally Confirmed . 221
7.5 Validation #3: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 221
7.6 Validation #4: Aspicere Meets Goal L2 . . . . . . . . . . . . . . 221
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8 Case Study 3: Extracting the Return-code Idiom into Aspects 223
8.1 Rationale behind the Case Study . . . . . . . . . . . . . . . . . . 224
8.2 Application of AOP in the Source Code . . . . . . . . . . . . . . 225

8.2.1 The Return-code Idiom . . . . . . . . . . . . . . . . . . . 225
8.2.1.1 Specification of the Idiom . . . . . . . . . . . . 226
8.2.1.2 Distinguishing between all Crosscutting Concerns227

8.2.2 Control Flow Transfer with Delimited Continuation Join
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.2.2.1 The Core Problem of Control Flow Transfer . . 229
8.2.2.2 Definition of Delimited Continuation Join Points

in Aspicere . . . . . . . . . . . . . . . . . . . . 232
8.2.2.3 Application to the Control Flow Transfer concern 233

8.2.3 Logging and Overriding with Join Point Properties and
Annotations . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2.3.1 Challenges for Logging and Overriding . . . . . 237
8.2.3.2 Implementation of Logging and Overriding . . . 238

8.2.4 Memory Cleanup with Join Point Properties and Type Pa-
rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.2.5 Validation #1: Aspicere Meets Goal L1 . . . . . . . . . . 243
8.2.5.1 Scalability of the Aspects . . . . . . . . . . . . 243
8.2.5.2 Run-time Overhead . . . . . . . . . . . . . . . 244
8.2.5.3 Adoption of Delimited Continuation Join Points 245

8.3 Impact on the Build System . . . . . . . . . . . . . . . . . . . . . 245
8.3.1 Integration of Aspicere2 with the Build Process . . . . . . 245
8.3.2 Migration to the Re-engineered System . . . . . . . . . . 246
8.3.3 Build Time Increase and Incremental Weaving . . . . . . 248

8.4 Validation #2: Roots of Co-evolution Experimentally Confirmed . 248
8.5 Validation #3: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 249
8.6 Validation #4: Aspicere Meets Goal L2 . . . . . . . . . . . . . . 249
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



xi

9 Case Study 4: Temporal Pointcuts to Support the Re-engineering of
the CSOM VM 251
9.1 Rationale behind the Case Study . . . . . . . . . . . . . . . . . . 252
9.2 Application of AOP . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.2.1 Problems of History-based Pointcut Languages for C . . . 254
9.2.2 The Design and Implementation of Two Major History-

based Pointcut Languages . . . . . . . . . . . . . . . . . 256
9.2.2.1 Event-based AOP and Arachne . . . . . . . . . 257
9.2.2.2 Tracematches . . . . . . . . . . . . . . . . . . 258

9.2.3 HALO, a History-based Aspect Language for Lisp . . . . 260
9.2.4 Modeling Arachne and Tracematches in Terms of HALO . 263
9.2.5 cHALO, a History-based Extension of Aspicere . . . . . . 265

9.2.5.1 Language Design of cHALO . . . . . . . . . . 265
9.2.5.2 Weaver Implementation of cHALO . . . . . . . 266
9.2.5.3 Application of cHALO to CSOM . . . . . . . . 267

9.2.6 Open Problems of History-based Pointcut Languages for C 269
9.2.7 Validation #1: Aspicere Meets Goal L1 . . . . . . . . . . 270

9.3 Impact on the Build System . . . . . . . . . . . . . . . . . . . . . 270
9.3.1 Integration of Aspicere2 with the Build Process . . . . . . 270
9.3.2 Configuration of Aspects Presents a Challenge . . . . . . 273
9.3.3 Migration to the Re-engineered System . . . . . . . . . . 274
9.3.4 Increase of Build Time and Incremental Weaving . . . . . 275

9.4 Validation #2: Roots of Co-evolution Experimentally Confirmed . 275
9.5 Validation #3: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 276
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

10 Case Study 5: Extracting Preprocessor Code into Aspects 279
10.1 Rationale behind the Case Study . . . . . . . . . . . . . . . . . . 280
10.2 Application of AOP in the Source Code . . . . . . . . . . . . . . 281

10.2.1 Class 1: Conditional Definitions . . . . . . . . . . . . . . 282
10.2.2 Class 2: Fine-grained Conditional Compilation . . . . . . 283

10.2.2.1 The General Case . . . . . . . . . . . . . . . . 284
10.2.2.2 Scattered Conditional Compilation . . . . . . . 286
10.2.2.3 Simple Conditional Compilation . . . . . . . . 288
10.2.2.4 Simple Conditional Compilation with Dependen-

cies . . . . . . . . . . . . . . . . . . . . . . . . 289
10.2.2.5 Simple Conditional Compilation with Declara-

tions . . . . . . . . . . . . . . . . . . . . . . . 291
10.2.3 Class 3: Coarse-grained Conditional Compilation . . . . . 292

10.2.3.1 Partitioned Conditional Compilation . . . . . . 292
10.2.3.2 Semi-partitioned Conditional Compilation . . . 293

10.2.4 Validation #1: Aspicere Meets Goal L1 . . . . . . . . . . 294
10.3 Impact on the Build System . . . . . . . . . . . . . . . . . . . . . 296

10.3.1 Integration of Aspicere2 with the Build Process . . . . . . 296
10.3.2 Migration to the Re-engineered System . . . . . . . . . . 298



xii

10.3.3 Build Time Increase and Incremental Weaving . . . . . . 299
10.3.4 Communication between Aspicere2 and the Build System 300

10.4 Validation #2: Roots of Co-evolution Experimentally Confirmed . 300
10.5 Validation #3: MAKAO Achieves Goal T2 . . . . . . . . . . . . . 301
10.6 Validation #4: Aspicere Meets Goal L2 . . . . . . . . . . . . . . 301
10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

11 Conclusions and Future Work 303
11.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 303
11.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

11.2.1 Conceptual Contributions . . . . . . . . . . . . . . . . . 306
11.2.1.1 What is Co-evolution of Source Code and the

Build System? . . . . . . . . . . . . . . . . . . 306
11.2.1.2 Tool Support to Understand and Manage Co-

evolution Phenomena? . . . . . . . . . . . . . . 307
11.2.1.3 Experimental Evidence of the Roots of Co-evolution

in Legacy Systems? . . . . . . . . . . . . . . . 308
11.2.1.4 What is the Relation between the Introduction

of AOSD and Co-evolution? . . . . . . . . . . . 308
11.2.1.5 AOSD Technology to Deal with Co-evolution? . 309
11.2.1.6 Validation of AOSD Technology to Deal with

Co-evolution? . . . . . . . . . . . . . . . . . . 309
11.2.2 Technical Contributions . . . . . . . . . . . . . . . . . . 310

11.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
11.3.1 Minor Future Work . . . . . . . . . . . . . . . . . . . . . 312
11.3.2 Major Future Work . . . . . . . . . . . . . . . . . . . . . 313

11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

A Example GBS system 317

B Rules for filtering Linux 2.6.x build 323
B.1 Auxiliary predicates . . . . . . . . . . . . . . . . . . . . . . . . . 323
B.2 Eliminate meta-edges . . . . . . . . . . . . . . . . . . . . . . . . 324
B.3 Initial cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
B.4 FORCE idiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
B.5 Shipped targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
B.6 Source-level abstraction . . . . . . . . . . . . . . . . . . . . . . . 327
B.7 Composite object abstraction . . . . . . . . . . . . . . . . . . . . 327
B.8 Circular dependency chain . . . . . . . . . . . . . . . . . . . . . 328

Bibliography 329



List of Figures

1 Schematisch overzicht van co-evolutie van broncode en het bouwsys-
teem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

2 Voorbeeld van een bouwafhankelijkheidsgraaf. . . . . . . . . . . xxviii
3 Voorbeeld van een Aspicere advies en de basiscode waarin het

geweven wordt. . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx

4 Schematic overview of co-evolution of source code and the build
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv

5 Example build dependency graph. . . . . . . . . . . . . . . . . . xxxvi
6 Example Aspicere advice and the base code it is woven into. . . . xxxviii

1.1 High-level overview of co-evolution of source code and the build
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Dependencies between the chapters of this dissertation. . . . . . . 11

2.1 Build system architecture. . . . . . . . . . . . . . . . . . . . . . 15
2.2 Schematic overview of the most important files used within GBS,

reproduced and modified with permission by René Nyffenegger. . 18
2.3 Example configure.ac (copy of Figure A.4 on page 320). . . . . . 19
2.4 Source file template “lib/say.c.in” (copy of Figure A.3 on page 320). 19
2.5 Automake build script template lib/Makefile.am (copy of Figure A.6

on page 321). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Example GNU Make makefile. . . . . . . . . . . . . . . . . . . . 22
2.7 Makefile with implicit dependencies. . . . . . . . . . . . . . . . . 30
2.8 Conceptual difference between recursive and non-recursive “make”. 37
2.9 Example EDSM of an AspectJ-based system. . . . . . . . . . . . 61

3.1 Outline of MAKAO’s architecture. . . . . . . . . . . . . . . . . . 82
3.2 Sample .gdf file representation of a build dependency graph. . . . 84
3.3 Prolog representation of Figure 3.2. . . . . . . . . . . . . . . . . 85
3.4 (a) Kava’s build dependency graph in MAKAO. (b) Detailed view

on the marked subgraph. . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Linux kernel 2.6.16.18 (“bzImage”), (a) before and (b) after filtering. 91
3.6 Build DAG of Quake 3, (a) in full and (b) zooming in on a subgraph. 92
3.7 Error paths in Kava’s build system. . . . . . . . . . . . . . . . . . 94



xiv

3.8 FORCE idiom filtering step (extracted from section B.4 on page 326). 96
3.9 Typical build dependency graph anomalies for which verification

should be used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Evolution of the number of non-comment, non-whitespace lines of
source code (SLOC), build and configuration scripts in the Linux
kernel build system. . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Evolution of the number of source code files, build and configura-
tion scripts in the Linux kernel build system. . . . . . . . . . . . . 113

4.3 Evolution of the average number of build and configuration scripts
per directory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Evolution of the number of build targets during the compilation of
the Linux kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Evolution of the number of explicit dependencies during the com-
pilation of the Linux kernel. . . . . . . . . . . . . . . . . . . . . 117

4.6 Evolution of the number of implicit dependencies during the com-
pilation of the Linux kernel. . . . . . . . . . . . . . . . . . . . . 118

4.7 Format of list-style build scripts in the 2.4.0 kernel build scripts. . 120
4.8 Build phase all of the Linux 2.4.0 build process (with header file

targets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.9 Build phase all of the Linux 2.4.0 build process (without header

file targets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.10 Build phase vmlinux of the Linux 2.6.0 build process. . . . . . . 127
4.11 Zooming in on the vmlinux build phase of the Linux 2.6.0 build

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.12 Build logic for the FORCE idiom in the Linux 2.6.0 kernel build

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.13 Build phase vmlinux of the Linux 2.6.0 build process after ab-

stracting away the FORCE-idiom and re-layouting the graph. . . . 131
4.14 Figure 4.13 after zooming in on the networking subsystem. . . . . 133
4.15 Circular dependency chain in the Linux 2.6.0 build system. . . . . 133
4.16 Build logic for the circular dependency chain in the Linux 2.6.0

kernel build system. . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.17 An alternative for the circular dependency chain we would ex-

pected instead of Figure 4.15. . . . . . . . . . . . . . . . . . . . . 135
4.18 Build logic for the circular dependency chain of Figure 4.17. . . . 135
4.19 Pseudo-GNU Make build logic for the ideal circular dependency

chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Cobble aspect which counts the number of zero-valued sending
data items [142]. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 AspectC aspect for page daemon wake-up in the FreeBSD ker-
nel [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 AspectC++ aspect which converts return value error codes into
C++ exceptions [214]. . . . . . . . . . . . . . . . . . . . . . . . 155



xv

5.4 Accesses to a float member are replaced by the result of a method
call with XWeaver. . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 C4 aspect which overrides a function body [245]. . . . . . . . . . 159
5.6 Introduction of a static local variable in WeaveC (example sug-

gested by Pascal Durr). . . . . . . . . . . . . . . . . . . . . . . . 160
5.7 ACC tracing advice. . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.8 Prefetching policy aspect in µDiner [203]. . . . . . . . . . . . . . 162
5.9 Checking return values using TinyC2 [249]. . . . . . . . . . . . . 163
5.10 Buffer overflow detection aspect in Arachne [68]. . . . . . . . . . 164
5.11 Self-healing aspect in TOSKANA [78]. . . . . . . . . . . . . . . 165
5.12 Process switch tracing aspect in KLASY [244]. . . . . . . . . . . 166
5.13 Aspicere aspect to make standard conversion from strings to num-

bers null pointer-proof. . . . . . . . . . . . . . . . . . . . . . . . 173
5.14 Join point property associated with the advised join points of Fig-

ure 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.15 Database error recovery advice. . . . . . . . . . . . . . . . . . . . 179
5.16 Prolog predicates associated with the database error recovery ad-

vice of Figure 5.15. . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.17 Mirjam example adapted from Nagy et al. [179] (their Listing 5.9). 182
5.18 Architecture of Aspicere1. . . . . . . . . . . . . . . . . . . . . . 185
5.19 Control flow through an (around-)advice chain in Aspicere. . . . 186
5.20 Aspicere2 architecture. . . . . . . . . . . . . . . . . . . . . . . . 188
5.21 Precedence of advice on shared join points with Aspicere2. . . . . 189

6.1 One of the two applied tracing aspects. . . . . . . . . . . . . . . . 197
6.2 (a) Original makefile snippet for .c files. (b) After transformation. 200
6.3 (a) Original makefile snippet for .ec (“esql”) files. (b) After trans-

formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.1 The build architecture-aware tracing aspect applied to Quake 3. . . 214
7.2 Original build commands and rules in the Quake 3 makefiles. . . . 216
7.3 Local makefile which overrides the important makefile variables. . 216
7.4 Modified build commands and rules in the Quake 3 makefiles for

weaving into the libraries and the executable. . . . . . . . . . . . 217
7.5 Original build rule and command for building a library in the Quake 3

makefiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8.1 Running example which applies the return-code idiom [35]. . . . . 226
8.2 Restructured version of the running example of Figure 8.1. . . . . 228
8.3 The main logic from Figure 8.1 to which all aspects and their logic

rules and facts presented later in this chapter are applied. . . . . . 229
8.4 Macro solution for the return-code idiom in Figure 8.1. . . . . . . 230
8.5 Small example which highlights the differences between continu-

ation join points and delimited continuation join points. . . . . . . 232
8.6 The idiom-based exception handling aspect. . . . . . . . . . . . . 234



xvi

8.7 Accompanying Prolog meta data of the aspect in Figure 8.6. . . . 235
8.8 Schematic order of execution of all aspects woven into an idiomatic

procedure like the one of Figure 8.1. . . . . . . . . . . . . . . . . 236
8.9 Small example which illustrates overriding of exception handling

by developers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.10 Parameter range checking aspect. . . . . . . . . . . . . . . . . . . 240
8.11 Accompanying Prolog meta data of the aspect in Figure 8.10. . . . 240
8.12 Memory handling aspect. . . . . . . . . . . . . . . . . . . . . . . 241
8.13 Accompanying Prolog meta data of the aspect in Figure 8.12. . . . 241

9.1 Procedure declarations of the running example used in this chapter. 256
9.2 Arachne pointcut with dots instead of concrete around-advice. . 257
9.3 A tracematch definition equivalent to the Arachne advice in

Figure 9.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.4 HALO’s Rete representation for a most-recent pointcut (shown

at the bottom) and a given program trace (bottom right table) [115]. 260
9.5 Example trace of the system in Figure 9.1. . . . . . . . . . . . . . 262
9.6 HALO pointcut corresponding to the Arachne pointcut in Fig-

ure 9.2 and the tracematch in Figure 9.3. . . . . . . . . . . . . 262
9.7 Sequence pointcut in HALO which is finer-grained than Arachne

and tracematch sequences. . . . . . . . . . . . . . . . . . . . . . 265
9.8 Aspicere2 pointcut which corresponds to the HALO pointcut of

Figure 9.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.9 Sequence pointcut with more limited fact retention policy. . . . . 266
9.10 CSOM shell initialisation code. . . . . . . . . . . . . . . . . . . . 267
9.11 Aspicere2 advice which performs extra initialisation for the na-

tive threading service when the marked statement of Figure 9.10 is
executed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.12 Prolog predicates used by Figure 9.11. . . . . . . . . . . . . . . . 268
9.13 Build dependency graph of CSOM. . . . . . . . . . . . . . . . . . 271
9.14 Original makefile of CSOM. . . . . . . . . . . . . . . . . . . . . 271
9.15 Modified makefile of CSOM for native threading. . . . . . . . . . 272

10.1 Conditional Definition of the debug_trace_find_meth pro-
cedure in src/objects.c. . . . . . . . . . . . . . . . . . . . . . . . 282

10.2 General Fine-grained Conditional Compilation in the implementa-
tion of the ret_int procedure in src/pmc/unmanagedstruct.pmc. 284

10.3 General Fine-grained Conditional Compilation in the implementa-
tion of the compact_pool procedure in src/malloc.c. . . . . . . 285

10.4 Scattered Conditional Compilation in the implementation of the
compact_Parrot_STM_waitlist_wait procedure in src/st-
m/waitlist.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

10.5 Aspect implementation of the Scattered Conditional Compilation
example of Figure 10.4. . . . . . . . . . . . . . . . . . . . . . . . 287



xvii

10.6 Simple Conditional Compilation inside src/thread.c for the imple-
mentation of the pt_transfer_sub procedure. . . . . . . . . 288

10.7 Simple Conditional Compilation inside src/stm/waitlist.c for the
implementation of the add_entry procedure. . . . . . . . . . . 288

10.8 Aspect implementation of the Simple Conditional Compilation ex-
ample of Figure 10.6. . . . . . . . . . . . . . . . . . . . . . . . . 289

10.9 Simple Conditional Compilation with Dependencies in the imple-
mentation of the fetch_op_be_4 procedure in src/packfile/pf_items.c.290

10.10Aspect implementation of the Simple Conditional Compilation with
Dependencies example of Figure 10.9. . . . . . . . . . . . . . . . 291

10.11Simple Conditional Compilation with Declarations in the imple-
mentation of the parrot_pic_opcode procedure in src/pic.c. . 292

10.12Aspect implementation of the Simple Conditional Compilation with
Declarations example of Figure 10.11. . . . . . . . . . . . . . . . 293

10.13Partitioned Conditional Compilation of the implementation of the
fetch_iv_le procedure in src/byteorder.c. . . . . . . . . . . . 294

10.14Semi-partitioned Conditional Compilation of the implementation
of the Parrot_sleep_on_event procedure in src/events.c. . 295

10.15Build DAG of Parrot 0.4.14, (a) in full and (b) after hiding .pm,
.pmc, .dump, .pl and header files. . . . . . . . . . . . . . . . . . . 297

10.16Original build commands and rules in the Parrot build script tem-
plate (config/gen/makefiles/root.in). . . . . . . . . . . . . . . . . 298

10.17Modified build commands and rules in the Parrot build script tem-
plate (config/gen/makefiles/root.in). . . . . . . . . . . . . . . . . 299

11.1 High-level overview of co-evolution of source code and the build
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

A.1 src/main.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
A.2 lib/say.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
A.3 lib/say.c.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
A.4 configure.ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
A.5 Makefile.am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.6 lib/Makefile.am . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.7 src/Makefile.am . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.8 config.h.in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322





List of Tables

2.1 Tichy’s overview of inter-compilation type-checking [227]. . . . . 51

3.1 Evaluation of existing tools to support build system understanding
and maintenance w.r.t. the five requirements of section 3.3. . . . . 78

3.2 Attributes of nodes of a build DAG. . . . . . . . . . . . . . . . . 84
3.3 Attributes of edges of a build DAG. . . . . . . . . . . . . . . . . 85
3.4 Evaluation of how MAKAO tackles goal T1. . . . . . . . . . . . . 102

4.1 Chronological overview of the Linux versions we have investigated. 109

5.1 Overview of existing aspect languages for Cobol and C (part 1:
compile-time weavers). . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Overview of existing aspect languages for C (part 2: run-time and
VM weavers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Comparison between the two incarnations of Aspicere and the
most related aspect languages (taken from Table 5.1 and Table 5.2). 168

9.1 Statistics with the number of new and modified files, and the num-
ber of added lines of code for adding the four extensions to CSOM. 273

11.1 Evaluation of the proposed tool and language support for under-
standing of and dealing with co-evolution problems which are ex-
plained by each root of co-evolution. . . . . . . . . . . . . . . . . 307





List of Acronyms

A

ADL architectural description language
AO aspect orientation
AOP aspect oriented programming
AOSD aspect oriented software development
AST abstract syntax tree

C

CBSE component-based software engineering
CCC crosscutting concern

D

DAG directed acyclic graph

G

GBS GNU Build System
GCC GNU Compiler Collection
GNU GNU is Not Unix

I



xxii

IR intermediate representation

J

JIT just-in-time compilation

M

MAKAO Makefile Architecture Kernel featuring AOP

O

OO object orientation

P

PCD pointcut (declaration)







Nederlandse samenvatting
–Summary in Dutch–

DIT doctoraatswerk onderzoekt het fenomeen van co-evolutie van broncode en
het bouwsysteem, zowel conceptueel als experimenteel, en toont, opnieuw

zowel conceptueel als experimenteel, hoe dit fenomeen een belangrijke impact
heeft op de introductie van aspectgeoriënteerde software-ontwikkeling (AOSD)1

technieken in zogenaamde legacy omgevingen. De komende secties vatten dit
werk samen. Eerst stellen we de onderzoeksvragen voor die we onderzocht heb-
ben. Daarna geven we een overzicht van onze aanpak voor het oplossen van elk
van die vragen.

Probleemstelling
Dit doctoraatswerk stelt dat de introductie van AOP technologie in een legacy sys-
teem gehinderd wordt door het fenomeen van co-evolutie van broncode en het
bouwsysteem (Figuur 1). Legacy systemen zijn oude, bedrijfskritische software
systemen die voortdurend omgevormd moeten worden om aan de schier oneindige
stroom van nieuwe vereisten te voldoen [21, 58]. Het bouwsysteem is de infra-
structuur die instaat voor het coördineren van compilers2, preprocessors3 en ande-
re hulpmiddelen om uitvoerbare code te genereren uit broncode (“bouwlaag”), en
om software-ontwikkelaars in staat te stellen om modules en functionaliteit te con-
figureren die ingebouwd moeten worden in het uiteindelijk bouwresultaat (“confi-
guratielaag”). Wanneer de broncode evolueert, moet het bouwsysteem mee evolu-
eren om het effect van broncodewijzigingen te kunnen verifiëren en te corrigeren.
Langs de andere kant zullen software-ontwikkelaars geneigd zijn om hun bron-
code minder optimaal te structureren indien het bouwsysteem hen niet toelaat om
flexibel veranderingen aan te brengen. Initiële indicaties en experimentele aanwij-
zingen hiervoor werden reeds eerder in de literatuur vermeld [57, 58]. Dus, er be-
staat een belangrijke spanning, meer bepaald co-evolutie [243, 232, 85, 128, 172],
tussen broncode en het bouwsysteem.

De gevolgen van co-evolutie van broncode en het bouwsysteem komen vooral
tot uiting in de context van de introductie van AOP technologie in legacy sys-

1Een alternatieve afkorting is “AOP”, d.w.z. “aspectgeoriënteerd programmeren”.
2Programma dat broncodebestanden vertaalt naar machinecode.
3Programma dat broncode in een andere vorm giet.



xxvi NEDERLANDSE SAMENVATTING

co-
evolutie

co-
evolutie

Aspicere

broncode AOSD broncode

bouw-
systeem

bouw-
systeem

MAKAO

???

Figuur 1: Schematisch overzicht van co-evolutie van broncode en het bouwsysteem.

temen. AOSD [134] is voorgedragen als een geschikte technologie om legacy
systemen om te vormen [51, 103, 142, 202, 170]. Een “aspect” encapsuleert de
implementatie van een “overlappend facet” uit de “basiscode”4 als een afzonder-
lijke module. Het kan meerdere “adviezen” bevatten die, in tegenstelling tot gewo-
ne functies, niet expliciet opgeroepen worden door de basiscode, maar daarentegen
automatisch uitgevoerd worden wanneer aan een specifieke voorwaarde (“puntsne-
de”) voldaan is op een bepaald moment tijdens uitvoering van het basisprogramma
(“samenvloeiingspunt”). Evaluatie van de puntsnede (“het passen van samenvloei-
ingspunten”) en het oproepen van het juiste advies is de verantwoordelijkheid van
de “wever”. In praktijk gebeurt het weven normaal tijdens het bouwproces, zodat
zoveel mogelijk beslissingen voor het passen van samenvloeiingspunten statisch
uitgevoerd worden. Statische wevers transformeren daarvoor broncode, bytecode
of machinecode.

AOSD brengt een aanzienlijke verandering van programmeerparadigma te-
weeg in de broncode, d.w.z. dat één uiteinde van de co-evolutie relatie een drasti-
sche wijziging ondergaat. Omwille van co-evolutie van broncode en het bouwsys-
teem zijn compensatie-acties nodig in het bouwsysteem om beide uiteinden van

4Alternatieve naam: “basisprogramma”.



SUMMARY IN DUTCH xxvii

de co-evolutie consistent te houden met elkaar (zie de horizontale pijlen op Fi-
guur 1). Helaas hebben legacy systemen ook een legacy bouwsysteem, dat slecht
gedocumenteerd is en moeilijk te begrijpen. Deze onzekerheid omtrent het gedrag
en de structuur van het bouwsysteem verhindert veranderingen in het bouwsys-
teem en kan leiden tot compromissen voor de integratie van AOP technologie met
het bouwsysteem. Deze compromissen tasten de semantiek van de aspecten in
de broncode aan. Dit betekent dat onvoldoende middelen om met co-evolutie van
broncode en het bouwsysteem om te gaan de introductie van AOP technologie in
legacy systemen tegen houdt.

Dit doctoraatswerk geeft een antwoord op de volgende zes onderzoeksvragen:

1. Wat zijn de fundamentele verklaringen voor co-evolutie van broncode en het
bouwsysteem?

2. Welke soort hulpmiddelen hebben we nodig om de co-evolutie fenomenen
van broncode en het bouwsysteem te begrijpen en te controleren in legacy
systemen?

3. Kunnen we onze hulpmiddelen gebruiken om de fundamentele verklaringen
experimenteel te staven door ze toe te passen op externe legacy systemen?

4. Hoe valt de introductie van AOSD te rijmen met de fundamentele verklarin-
gen voor co-evolutie van broncode en het bouwsysteem?

5. Hoe kunnen we AOSD technologie ontwerpen die op gepaste wijze omgaat
met de co-evolutie indien ze toegepast wordt op legacy systemen?

6. Kunnen we deze technologie valideren door ze te gebruiken om co-evolutie
fenomenen in bestaande legacy systemen te controleren?

De volgende secties vatten samen hoe dit doctoraatswerk elk van deze vragen
beantwoord heeft.

Wat is Co-evolutie van Broncode en het Bouwsysteem?
Co-evolutie [85] van broncode en het bouwsysteem komt overeen met “asynchro-
ne evolutie van broncode en het bouwsysteem tijdens dewelke veranderingen aan
één artifact een verticale impact heeft op een andere en omgekeerd”. We hebben
een conceptuele verklaring van deze co-evolutie afgeleid onder de vorm van vier
“bronnen van co-evolutie”:

RC1 Modulair redeneren in programmeertalen en compilatie-eenheden in bouw-
systemen zijn sterk met elkaar verbonden.

RC2 Bouwafhankelijkheden worden toegepast om de architectuur van de bron-
code te reïfiëren.



xxviii NEDERLANDSE SAMENVATTING

t.ctalltdylibt.o

Figuur 2: Voorbeeld van een bouwafhankelijkheidsgraaf.

RC3 Architecturale grensvlakken in de broncode worden niet altijd gerespec-
teerd door incrementele bouwprocessen.

RC4 De configuratielaag van een bouwsysteem wordt gebruikt als laag-technolo-
gische ondersteuning, geënt op productlijnen, voor variabiliteit in broncode.

De vier bronnen van co-evolutie vormen de basis voor het begrijpen van de
co-evolutie van broncode en het bouwsysteem, en voor hulpmiddel- en aspecttaal-
ondersteuning om ermee om te gaan.

Hulpmiddelen om Co-evolutie te begrijpen en te con-
troleren
Uit de vier bronnen van co-evolutie hebben we vijf vereisten afgeleid voor hulp-
middelondersteuning om co-evolutie van broncode en het bouwsysteem te begrij-
pen en te controleren: visualisatie, vraagstelling, filteren, verificatie en omvor-
ming. Deze vereisten volgen uit het doel T1 om klassieke bouwproblemen in lega-
cy systemen op te lossen en het doel T2 om te helpen bij het begrijpen en controle-
ren van de co-evolutie. MAKAO5 (Makefile Architecture Kernel featuring Aspect
Orientation) is een terugwinnings- en omvormingsraamwerk voor bouwsystemen,
die aan deze vereisten voldoet. Het bouwsysteemmodel waarop MAKAO geba-
seerd is, is de afhankelijkheidsgraaf van een concrete bouwuitvoering, aangevuld
met de waarden van bouwvariabelen en statische informatie uit de bouwspecifica-
ties. Figuur 2 toont een voorbeeld van zo’n bouwafhankelijkheidsgraaf. Knopen
komen overeen met bouwdoelen, terwijl de takken van de graaf de afhankelijk-
heden tussen doelen weergeven. Kleuren bevatten informatie over het soort doel,
zoals aangeduid in de legende.

5http://users.ugent.be/~badams/makao/

http://users.ugent.be/~badams/makao/


SUMMARY IN DUTCH xxix

We hebben MAKAO’s mogelijkheden om symptomen van co-evolutie van
broncode en het bouwsysteem te identificeren gevalideerd in zes projecten, waar-
van er vijf te maken hebben met AOP. Visualisatie en vraagstelling van bouw-
systemen zijn nuttig gebleken in elk project. Ten tweede is het filteren van het
bouwsysteem enkel van belang gebleken voor grote bouwsystemen met complexe
bouwlogica. Het omvormen van het bouwsysteem is enkel toegepast voor ingrij-
pende, grote bouwspecificatiewijzigingen. Andere veranderingen konden manueel
aangepakt worden, gebaseerd op de informatie die gehaald werd uit visualisatie en
vraagstelling. We verwachten dat verificatie cruciaal is voor het valideren van het
resultaat van MAKAO’s omvormingsfunctionaliteit.

In het algemeen hebben we aangetoond dat de voorgestelde hulpmiddelonder-
steuning capabel is om het begrip en de controle van co-evolutie van broncode en
het bouwsysteem gevoelig te verbeteren. Daarentegen zou MAKAO aangevuld
moeten worden met een hulpmiddel om de configuratielaag te analyseren.

Experimenteel Bewijs van de Bronnen van Co-evolutie
in Legacy Systemen
We hebben experimenteel bewijs verzameld van de geldigheid van de vier bron-
nen van co-evolutie doorheen de evolutie van het bouwsysteem van de Linux be-
sturingssysteemkern. De mensen die dit bouwsysteem onderhouden, worstelen
doorlopend met het vinden van manieren om de integratie van nieuwe broncode-
componenten te verbeteren (RC1) en om de bouwsysteemafhankelijkheden con-
sistent te houden met de broncode-architectuur (RC2). We hebben expliciet be-
wijs gevonden van de niet aflatende afweging tussen het weglaten van broncode-
afhankelijkheden tijdens het bouwen om hogere bouwsnelheden te bereiken, en
het vrijwaren van de bouwcorrectheid (RC3). De evolutie van de configuratielaag
wordt gedomineerd door de extreme eis om de geëxplodeerde configureerbaarheid
van de broncode te controleren (RC4). Deze bevindingen valideren de vier bron-
nen van co-evolutie.

Wat is het Verband tussen de Introductie van AOSD
en Co-evolutie?
De broncodewijzigingen geïntroduceerd door AOP technologie kunnen gecorre-
leerd worden met elk van de vier bronnen van co-evolutie. Aspecten voeren in-
tegraal redeneren in op het broncodeniveau [219, 162, 135] i.p.v. het traditionele
modulair redeneren [187] (RC1). Omkering van afhankelijkheden [182, 160, 162],
fijnmazige compositie van aspecten en de intensionele selectie van samenvloei-
ingspunten door puntsnedes verhinderen synchronisatie van broncode- en bouw-
systeemafhankelijkheden (RC2). Incrementeel weven compromitteert de consis-
tente compositie van aspecten omwille van integraal redeneren [135], fijnmazige



xxx NEDERLANDSE SAMENVATTING

1 /*basiscode*/
2 PMC* pt_transfer_sub(Parrot_Interp d, Parrot_Interp s,
3 PMC *sub){
4 return make_local_copy(d, s, sub);
5 }
6

7 /*advies*/
8 void debug_transfer(Parrot_Interp S, PMC* Sub) before Jp:
9 execution(Jp,‘‘pt_transfer_sub’’)

10 && args(Jp,[_,S,Sub])
11 && thread_debug(_){
12 PIO_eprintf(S, "copying over subroutine [%Ss]\n",
13 Parrot_full_sub_name(S, Sub));
14 }

Figuur 3: Voorbeeld van een Aspicere advies en de basiscode waarin het geweven wordt.

compositie en aspectinteractie [137, 113, 114, 74] (RC3). De verbeterde modu-
lariteit van de broncode [219, 162], de invloed van de volgorde van weven [163,
137, 113, 114, 74] en het bestaan van afhankelijkheden tussen aspecten [75] verei-
sen betere communicatie tussen de broncode en de configuratielaag (RC4). Langs
de andere kant kunnen aspecten ook de basiscode ontkoppelen van configuratie-
logica. De correlatie tussen AOSD en de vier bronnen van co-evolutie suggere-
ren dat wanneer AOP technologie geïntroduceerd wordt in een legacy systeem,
het bouwsysteem aangepast moet worden om consistentie tussen broncode en het
bouwsysteem te bewaren.

AOSD Technologie om om te gaan met Co-evolutie

De hulpmiddelondersteuning die geïntroduceerd werd om co-evolutie van bronco-
de en het bouwsysteem te begrijpen en te controleren, is zowel geldig indien AOP
technologie gebruikt wordt, als wanneer dit niet zo is. Maar, indien AOP toege-
past wordt, kunnen we van de bronnen van co-evolutie vereisten extraheren voor
aspecttaalondersteuning om co-evolutie van broncode en het bouwsysteem te con-
troleren (doel L2). RC4 suggereert om de bouwsysteemstructuur en -configuratie
te integreren met de aspecttaal. Dit stelt ons in staat om toegang te krijgen tot
configuratiebeslissingen en bouwafhankelijkheden vanuit puntsnedes en adviezen,
zodat aspecten robuust gemaakt kunnen worden t.o.v. de bouwconfiguratie en we
aspecten kunnen laten redeneren over de hoogniveau broncode-architectuur. Deze
vereisten complementeren vereisten (doel L1) voor natuurlijke integratie van de
aspecttaal in de basistaal, voor het specifiëren van robuuste puntsnedes, voor het
ontwikkelen van generiek advies en voor het aanbieden van uitgebreide context
aan adviezen.



SUMMARY IN DUTCH xxxi

Ondersteuning voor de L1 en L2 doelen is ingebouwd in Aspicere67, d.i. onze
aspecttaal voor C die gebaseerd is op de principes van logisch metaprogramme-
ren (LMP) [237, 30]. Figuur 3 toont een voorbeeldadvies (lijnen 8–14) die de
uitvoering (lijn 8) van de pt_transfer_sub procedure (lijnen 2–5) adviseert.
Aspicere’s puntsnedetaal is gebaseerd op Prolog, d.w.z. dat puntsnedes uitgedrukt
kunnen worden in termen van Prolog vraagstellingen (execution en args) en
feiten (thread_debug). Logische feiten worden gebruikt om de structuur van
de basiscode voor te stellen, maar kunnen ook aangewend worden om de structuur
en de configuratie van het bouwsysteem voor te stellen (doel L2). Dit vereist enkel
uitwisseling van deze informatie tussen het bouwsysteem en de logische feiten-
databank. Lijn 11 van Figuur 3 controleert bijvoorbeeld of de thread_debug
preprocessorvlag gedefinieerd is. Zodoende is het debug_transfer advies in
staat om de conditionele compilatielogica uit de broncode te vervangen, d.w.z. om
in de knoop geraakt en over de broncode verspreid preprocessorgebruik te verhui-
zen naar afzonderlijke modules (aspecten).

Validatie van AOSD Technologie om om te gaan met
Co-evolutie

We hebben vijf projecten uitgevoerd waarin AOP technologie geïntroduceerd werd
in een legacy C systeem, met als doel om extra experimenteel bewijs te verzamelen
van co-evolutie van broncode en het bouwsysteem in de aanwezigheid van AOSD,
en om de capaciteit van Aspicere te valideren om co-evolutie van broncode en
bouwsysteem te controleren (doel L2) in legacy systemen (doel L1). Daarnaast
hebben we deze projecten ook gebruikt om de evaluatieresultaten van MAKAO
behaald tijdens de analyse van het bouwsysteem van de Linux besturingssysteem-
kern (doel T2) aan te vullen.

De hoofdoorzaak van het co-evolutieprobleem gelieerd aan RC1 en RC2 is het
begrijpen en het definiëren van de notie van “integraliteit”, d.w.z. het bereik van as-
pecten. Conceptueel worden aspecten doorheen de volledige basiscode toegepast,
maar de grenzen van bibliotheken en uitvoerbare programma’s, en de complexe
interacties tussen deze bouwcomponenten maken deze notie minder helder. Het
bouwsysteem heeft expliciete controle over het bereik van aspecten, en dus over
de semantiek van het samengestelde systeem.

De huidige aspectwevers zijn veel trager dan basiscodecompilers, maar het
bouwsysteem kan het weefproces niet significant versnellen op een veilige manier,
omdat het niets afweet over de fijnmazige samenstelling aangeboden door aspec-
ten. Incrementele weving inbouwen in wevers is echter niet voor de hand liggend,
bijvoorbeeld omdat statische analyses om de geweven code te optimaliseren niet
kunnen omgaan met incrementele wijzigingen aan de broncode. Er is nog altijd

6Van het Latijnse werkwoord “aspicere”, dat “kijken naar” betekent. De kern van zijn voltooid deelwoord is
“aspect-”.

7http://users.ugent.be/~badams/aspicere/

http://users.ugent.be/~badams/aspicere/


xxxii NEDERLANDSE SAMENVATTING

veel werk te doen om om te kunnen gaan met de co-evolutieproblemen veroorzaakt
door RC3.

Het verhoogde potentieel voor configureerbaarheid in een AOSD systeem vergt
nauwe controle. Behalve het bepalen van het bereik van aspecten op hoog niveau
(“integraliteit” van RC1), omhelst configuratie ook de selectie van een consistente
verzameling aspecten om toe te passen op een systeem, en de associatie van as-
pecten met specifieke verzamelingen van basiscodemodules. Dit is een uitdagende
taak, vooral wanneer de configuraties sterk fluctueren, bijvoorbeeld gedurende mi-
gratie naar een volledig omgevormd systeem.

Aspicere’s ondersteuning voor integratie van informatie over de bouwstruc-
tuur en -configuratie in de logische feitenbasis (doel L2) is nuttig geweest in drie
projecten. Bouwcomponentinformatie, de huidige bouwconfiguratie en de actieve
configuratie-opties werden gebruikt om robuust advies samen te stellen en om de
basiscode te ontkoppelen van de configuratielogica. We zijn ervan overtuigd dat
de uitwisseling van bouwsysteeminformatie in het algemeen een effectief middel
is voor een aspecttaal om om te gaan met problemen veroorzaakt door co-evolutie
van broncode en het bouwsysteem. In het algemeen heeft Aspicere aangetoond dat
het capabel is om om te gaan met legacy systemen (doel L1).

Conclusie
Dit doctoraatswerk onderzoekt co-evolutie van broncode en het bouwsysteem. We
hebben conceptueel en experimenteel bewijs verzameld van het bestaan en de aard
van deze co-evolutie, en we hebben aangetoond hoe de co-evolutie problemen ver-
oorzaakt voor legacy systemen om om te gaan met broncodewijzigingen geïniti-
eerd door AOSD. Om co-evolutie van broncode en het bouwsysteem te begrijpen
en te controleren, hebben we vereisten afgeleid voor hulpmiddel- en aspecttaal-
ondersteuning. Deze ondersteuning is gevalideerd in zes projecten, waarvan vijf
in de context van AOP in legacy systemen. Deze hebben aangetoond dat hulp-
middelondersteuning in staat is om te assisteren bij het begrijpen en omgaan met
co-evolutie van broncode en het bouwsysteem.



English summary

THIS dissertation examines the phenomenon of co-evolution of source code
and the build system, both conceptually and experimentally, and shows, again

both conceptually and experimentally, how it has an important impact on the in-
troduction of aspect oriented software development (AOSD8) techniques in legacy
systems. We summarise this work in the coming sections. First, the research ques-
tions we have investigated are presented. Then, we give an outline of how we have
addressed each question.

Problem Statement

This dissertation conjectures that the introduction of AOP technology in a legacy
system is hampered by the phenomenon of co-evolution of source code and the
build system (Figure 4). Legacy systems are old, mission-critical software sys-
tems which continually have to be re-engineered to deal with a constant stream
of new requirements [21, 58]. The build system is the infrastructure which is
responsible for co-ordinating compilers, preprocessors and other tools to gener-
ate executable code from source code (“build layer”), and to enable developers
to configure the modules and features which have to be incorporated in the build
product (“configuration layer”). When the source code evolves, the build system
needs to be adapted to debug or test the effects of the source code changes. Con-
versely, if a build system does not allow flexible changes, developers might be
tempted to write spaghetti code just to facilitate integration of new source code
into the build process. Initial indications and early experimental evidence for this
can be found in the literature [57, 58]. Hence, there is an important tension, i.e.
co-evolution [243, 232, 85, 128, 172], between source code and the build system.

The consequences of co-evolution of source code and the build system es-
pecially become visible in the context of the introduction of AOP technology in
legacy systems. AOSD [134] has been proposed as a suitable technology to re-
engineer legacy systems [51, 103, 142, 202, 170]. An “aspect” extracts the im-
plementation of a so-called “crosscutting concern” from the “base code” into a
separate module. It can contain multiple “advice”s which, contrary to functions,
are not explicitly invoked by the base code, but instead are automatically exe-
cuted when a specific condition (“pointcut”) is satisfied at some point during the

8An alternative acronym is “AOP”, for “aspect oriented programming”.



xxxiv ENGLISH SUMMARY

co-
evolution

co-
evolution

Aspicere

source
code

AOSD
source
code

build
system

build
system

MAKAO

???

Figure 4: Schematic overview of co-evolution of source code and the build system.

program execution (“join point”). Evaluation of the pointcut (“join point match-
ing”) and invocation of the advice is the responsibility of the aspect “weaver”. In
practice, weaving is usually performed at compile-time, in which case as many
join point matching decisions as possible are resolved statically. To do this, static
weavers typically transform source code, bytecode or machine code.

AOSD brings with it a major paradigm shift in the source code, i.e. one end
of the co-evolution relation undergoes a drastic change. Because of co-evolution
of source code and the build system, compensating changes are necessary in the
build system to keep both ends of the co-evolution consistent with each other (hor-
izontal arrows on Figure 4). Unfortunately, legacy systems have a legacy build
system, which is not well-understood. This uncertainty about the build system’s
behaviour and structure hinders build changes and may lead to compromises in the
integration of AOP technology with the build system. These compromises affect
the semantics of the aspects in the source code. Hence, insufficient means to deal
with co-evolution of source code and the build system impedes the introduction of
AOP technology in legacy systems.

This dissertation addresses the following six research questions:

1. What are the fundamental reasons for co-evolution of source code and the
build system?



ENGLISH SUMMARY xxxv

2. What kind of tools do we need to understand and manage the co-evolution
phenomena of source code and the build system in legacy systems?

3. Can we use our tools to confirm the conceptual reasons experimentally by
applying them to third-party legacy systems?

4. How does the introduction of AOSD add to the fundamental reasons for
co-evolution of source code and the build system?

5. How do we design AOSD technology which adequately deals with the co-
evolution when applied to legacy systems?

6. Can we validate this technology by using it to manage co-evolution phe-
nomena in existing legacy systems?

The next sections summarise how this dissertation has addressed each of these
questions.

What is Co-evolution of Source Code and the Build
System?

Co-evolution [85] of source code and the build system corresponds to “asyn-
chronous evolution of source code and the build system during which changes
on one artifact have a vertical impact on the other one and vice versa”. We have
distilled a conceptual explanation of this co-evolution in the form of four “roots of
co-evolution”:

RC1 Modular reasoning in programming languages and compilation units in build
systems are strongly related.

RC2 Build dependencies are used to reify the architectural structure of the source
code.

RC3 Architectural interfaces in the source code are not always respected by in-
cremental build processes.

RC4 Build system configuration layers are used as a poor man’s support for prod-
uct line-styled variability of source code.

The four roots of co-evolution form the basis for understanding the co-evolution
of source code and the build system, and for tool and language support to deal with
it.



xxxvi ENGLISH SUMMARY

t.ctalltdylibt.o

Figure 5: Example build dependency graph.

Tool Support to Understand and Manage Co-evolution
From the four roots of co-evolution, we have extracted five requirements for tool
support to understand and manage co-evolution of source code and the build sys-
tem: visualisation, querying, filtering, verification and re-engineering. These re-
quirements follow from the goal T1 to solve traditional build problems in legacy
systems and the goal T2 to assist in understanding and managing the co-evolution.
MAKAO9 (Makefile Architecture Kernel featuring Aspect Orientation) is a re-
verse- and re-engineering framework for build systems which satisfies these re-
quirements. The build system model on which MAKAO is based is the depen-
dency graph of a concrete build run, enhanced with the build-time values of vari-
ables and static information of the build scripts. Figure 5 shows an example build
dependency graph. Nodes correspond to build targets, whereas edges display the
dependencies between targets. Colors convey information about the type of target,
as indicated by the legend.

We have validated MAKAO’s ability to identify symptoms of co-evolution of
source code and the build system on six case studies, of which five deal with AOP
technology. Visualisation and querying of build systems have been useful for ev-
ery case study. Second, filtering of the build system has only been needed for
large build systems with complex build recursion. Re-engineering of the build
system has exclusively been used for invasive, large build script changes. Other
changes can be resolved manually, based on the information obtained via visuali-
sation and querying. Verification is expected to be crucial for validating the result
of MAKAO’s re-engineering.

In general, we have shown that the proposed tool support is capable of improv-
ing the understanding and management of co-evolution of source code and the
build system. However, MAKAO should be complemented by a tool for analysing
the configuration layer.

9http://users.ugent.be/~badams/makao/

http://users.ugent.be/~badams/makao/


ENGLISH SUMMARY xxxvii

Experimental Evidence of the Roots of Co-evolution
in Legacy Systems

We have collected experimental evidence of the validity of the four roots of co-
evolution by analysing the evolution of the Linux kernel build system. The kernel
build maintainers continuously have struggled to improve the integration of new
source code components (RC1) and to keep the build system dependencies con-
sistent with the source code architecture (RC2). Explicit evidence has been found
about the recurrent trade-off between omitting source code dependencies during
the build for higher build speed and maintaining build correctness (RC3). The
evolution of the configuration layer is dominated by the extreme demands to man-
age the abundant configurability of the source code (RC4). These findings validate
the four roots of co-evolution.

What is the Relation between the Introduction of AOSD
and Co-evolution?

The source code changes introduced by AOP technology can be correlated to each
of the four roots of co-evolution. Aspects introduce whole-program reasoning
at the source code level [219, 162, 135] instead of traditional modular reason-
ing [187] (RC1). Inversion of dependencies [182, 160, 162], the fine-grained com-
position of aspects and the intensional selection of join points via pointcuts hin-
der synchronisation between source code and build system dependencies (RC2).
Incremental weaving challenges the consistent composition of aspects because
of whole-program reasoning [135], fine-grained composition and aspect interac-
tion [137, 113, 114, 74] (RC3). The improved source code modularity [219, 162],
the influence of weaving order [163, 137, 113, 114, 74] and the existence of de-
pendencies between aspects [75] require better communication between the source
code and the configuration layer (RC4). Aspects can on the other hand decouple
the base code from configuration logic. The correlation of AOSD with the four
roots of co-evolution suggests that when AOP technology is introduced in a legacy
system, the build system needs to change to retain consistency between source
code and the build system.

AOSD Technology to Deal with Co-evolution

The tool support introduced to understand and manage co-evolution of source code
and the build system is valid whether or not AOP technology is used. However, if
AOP is applied, we can extract from the four roots of co-evolution requirements
for aspect language support to manage co-evolution of source code and the build
system (goal L2). RC4 suggests to integrate the build system structure and con-
figuration with the aspect weaver’s weave-time meta data. This enables access to



xxxviii ENGLISH SUMMARY

1 /*base code*/
2 PMC* pt_transfer_sub(Parrot_Interp d, Parrot_Interp s,
3 PMC *sub){
4 return make_local_copy(d, s, sub);
5 }
6

7 /*advice*/
8 void debug_transfer(Parrot_Interp S, PMC* Sub) before Jp:
9 execution(Jp,‘‘pt_transfer_sub’’)

10 && args(Jp,[_,S,Sub])
11 && thread_debug(_){
12 PIO_eprintf(S, "copying over subroutine [%Ss]\n",
13 Parrot_full_sub_name(S, Sub));
14 }

Figure 6: Example Aspicere advice and the base code it is woven into.

configuration decisions and build dependencies from pointcuts and advice to make
aspects robust to the build configuration, and even to let them reason about the
higher-level source code architecture. These requirements complement require-
ments of goal L1 for natural integration of the aspect language in the base lan-
guage, for specification of robust pointcuts, for the development of generic advice
and for access to a wealth of context to advice.

Support for the L1 and L2 goals has been incorporated in Aspicere1011, i.e. our
aspect language for C which is based on the principles of logic meta-programming
(LMP) [237, 30]. Figure 6 shows an example advice (lines 8–14) which advises
the execution (line 9) of the pt_transfer_sub procedure (lines 2–5). As-
picere’s pointcut language is based on Prolog, i.e. pointcuts are expressed in terms
of Prolog queries (execution and args) and facts (thread_debug). Logic
facts are used to represent the structure of the base code, but can also be used to
model the build system structure and configuration (goal L2). This only requires
exchange of this information between the build system and the weaver. Line 11 of
Figure 6 e.g. checks whether the thread_debug preprocessor flag has been de-
fined. Hence, the debug_transfer advice is able to replace conditional com-
pilation logic in the source code, i.e. to move tangled and scattered preprocessor
usage to separate modules (aspects).

10From the Latin verb “aspicere”, which means “to look at”. The root of its past participle is “aspect-”.
11http://users.ugent.be/~badams/aspicere/

http://users.ugent.be/~badams/aspicere/


ENGLISH SUMMARY xxxix

Validation of AOSD Technology to Deal with Co-evo-
lution
We have performed five case studies in which AOP technology has been introduced
in a legacy C system, with the aim of collecting additional experimental evidence
of co-evolution of source code and the build system in the presence of AOSD, and
of validating the ability of Aspicere to manage co-evolution of source code and the
build system (goal L2) in legacy systems (goal L1). Moreover, these cases have
been used to enhance the evaluation results of MAKAO obtained from the Linux
kernel build system analysis (goal T2).

The main co-evolution problem attributed to RC1 and RC2 is the understand-
ing and definition of the notion of “whole program”, i.e. the scope of aspects. The-
oretically, aspects apply across the whole base code, but boundaries of libraries
and executables, and complex interactions between these build components blur
this notion. The build system has explicit control over the scope of aspects, and
hence the semantics of the composed system.

Current aspect weavers are much slower than base code compilers, but the
build system cannot significantly accelerate the weaving process in a safe manner,
because it knows nothing about the fine-grained composition provided by aspects.
Incorporating incremental weaving into weavers is not straightforward however,
e.g. because static analyses to optimise the woven code cannot cope with incre-
mental changes to the base code. There is still much work left to be able to deal
with the co-evolution problems caused by RC3.

The increased potential for configurability in an AOSD-based system requires
tight control. Apart from determining the high-level scope of aspects (“whole
program” of RC1), configuration entails selection of a consistent set of aspects
to apply on a system, and the association of aspects to specific sets of base code
modules. This is a challenging task, especially when the configurations heavily
fluctuate, e.g. during migration to a fully re-engineered system.

Aspicere’s support for integration of build structure and configuration infor-
mation with the logic fact base (goal L2) has been useful in three case studies.
Build component information, the current build configuration and the currently
active configuration options have been used to write robust advice and to decouple
the base code from configuration logic. We believe that exchange of build system
information in general is an effective means for an aspect language to deal with
problems caused by co-evolution of source code and the build system. In general,
Aspicere has shown to be capable of dealing with legacy systems (goal L1).

Conclusion
This dissertation investigates co-evolution of source code and the build system. We
have distilled conceptual and experimental evidence of the existence and nature of
this co-evolution, and have shown how the co-evolution causes problems for legacy
systems to deal with source code changes introduced by AOSD. To understand



xl ENGLISH SUMMARY

and manage co-evolution of source code and the build system, we have distilled
requirements for tool and aspect language support. This support has been validated
on six case studies (of which five deal with AOP in legacy systems), which have
shown that tool support is able to assist in understanding of and dealing with co-
evolution of source code and the build system.



Software evolution is too often confused with pro-
gram evolution. Software is much more than pro-
grams. [...] Languages, tools and programs evolve
in parallel.

Jean-Marie Favre [85]

1
Introduction

1.1 Context of the Dissertation

LEGACY systems are old, mission-critical software which are still plagued by
constantly changing requirements [21, 58]. To recover from the initial large

investments and because of their crucial role, legacy systems need to serve far
more years than originally foreseen. As such, they are typically implemented us-
ing a variety of old programming technologies. Over time however, the number of
people familiar with the internals of these systems has decreased dramatically. The
original design has eroded to enable quick hacks or to implement unforeseen fea-
tures. Documentation, design information or high-level models of understanding
are scarce and often there are quite some unsupported, vendor-specific language di-
alects involved. Still, the systems must somehow cope with new technologies like
EAI (Enterprise Application Integration), SOA (Service Oriented Architecture),
etc. If not, the owning company loses competitiveness. Paradoxically, developers
tend to avoid changing the implementation for fear of breaking something. On the
other hand, completely re-implementing the system using newer technologies is
not a good idea either, because of the high cost, because of incomplete require-
ments and because of missing design information. To summarise, legacy systems
have to be kept alive as is, but need to be updated as well to cope with any new
requirements.

A number of researchers have claimed that “aspect oriented software develop-



2 INTRODUCTION

ment”1 (AOSD) can solve many of the problems of legacy systems [142, 202, 170].
AOSD is a relatively young paradigm [134] aiming to be a solution for modeling
so-called “crosscutting concerns”. Without AOSD, a concern like persistency is
typically spread (“scattered”) across various modules which implement the actual
business logic of a system. In those modules, the implementation of the persis-
tency concern is heavily mixed (“tangled”) with the implementation of the business
logic concern. Scattering and tangling are important indicators of potentially trou-
blesome crosscutting between concerns. In our example, the persistency concern
crosscuts the business logic concern, but it is not cleanly modularised in the sys-
tem. Changes to the persistency implementation will have to propagate throughout
the whole system because of scattering, whereas tangling negatively impacts un-
derstandability of the persistency concern and the other concerns it is intertwined
with.

Crosscutting concerns, either functional or non-functional, are not just a re-
cent phenomenon. They are inherent to the problem domain and quality attributes
which are modeled. Hence, scattering and tangling are (in general) not the con-
sequence of software design failure. The problems caused by crosscutting con-
cerns primarily result from insufficient software development support for dealing
with crosscutting concerns in a modular way. As legacy systems are typically
implemented in compositionally less powerful languages and they have to cope
with a stream of new requirements which could not have been foreseen when
the system was designed, scattering and tangling hamper understanding and re-
engineering of legacy systems. As AOSD not only raises awareness about the
presence of crosscutting concerns, but also provides means to help in cleanly mod-
ularising them, it is a promising technology to help in re-engineering legacy sys-
tems [51, 103, 142, 202, 170].

At the programming language level, AOSD proposes to implement a crosscut-
ting concern within a separate module, called an “aspect”, which is isolated from
the rest of the application, called the “base code”2. An aspect groups a number
of “advice” constructs. These are similar to procedures, except that they are not
explicitly invoked by the base code. Instead, their execution is automatically trig-
gered when a run-time condition of the base code, their “pointcut”, is satisfied.
This condition can be expressed in terms of program structure, dynamic events,
control flow, etc. The moments during program execution on which a pointcut is
evaluated and possibly matches, are named “join points”. The process of evalu-
ating the pointcut and invoking triggered advice is named “weaving” and is the
responsibility of the “weaver”. Conceptually, weaving should be perceived as a

1A related term is “aspect oriented programming” (AOP), which is used in the context of programming languages
and tools.

2Asymmetric AOP treats base code and aspects different, i.e. aspects are applied on top of the base code. Symmet-
ric AOP [226, 225] on the other hand treats all modules as equal to each other, but this philosophy is less widespread
in practice.



CHAPTER 1 3

run-time activity, but for efficiency reasons most weaver implementations try to
do as much as possible before the program actually runs, e.g. by transforming
the source code, post-processing bytecode or weaving at class load-time. The net
effect of AOP is that extracting crosscutting concern code into an aspect removes
scattering. Furthermore, implicit invocation reduces tangling within the base code.

Although AOSD techniques have originated on the programming language
level, in the meantime AOSD has been investigated on various levels: implemen-
tation, design (modeling), requirements or analysis (“early” aspects), etc. Most
of these efforts have focused on forward-engineering [46]. As already mentioned,
some researchers have also identified AOP as being important for re-engineering of
legacy systems, i.e. reverse-engineering followed by forward-engineering. Mens
et al. [170] argue that, besides economic relevance, the number of legacy systems
is significantly larger than the number of newly constructed systems and that they
are infected with badly modularised crosscutting concerns. They state that evalu-
ation of AOSD in legacy systems is important for the adoption of AOSD, and that
customised language and tool support is needed for this.

In this context, De Schutter proposes [202] AOP language technology to re-
engineer legacy (Cobol) systems, i.e. for both reverse- and forward-engineering.
Because one can only modify a system if there is enough information about the
business rules and sub-components involved, AOP’s first task is to help in mining
(reverse-engineering) hidden knowledge from the legacy base code. This recover-
ing can be seen as a kind of smart tracing, in which the requested information is
gathered in a focused way. Being able to specify the mining logic separately from
the base code and to declaratively express when information should be recorded are
the two strengths of AOP applied here. Reuse of the recovery logic is a beneficial
side-effect. After reverse-engineering, the next step is to restructure or integrate
new features in the system, or to re-implement old features using the acquired
knowledge. Here, AOP is favourable because crosscutting features can be mod-
eled in separate modules, (ideally) without compromising the existing source code
layout. To complement this, pointcuts express the desired composition of the as-
pects with the base code. To optimise this flux of recovered system knowledge
to the forward-engineering phase, De Schutter proposes the application of Logic
Meta-Programming (LMP) principles [237, 30] in the aspect language’s design. A
logic representation of the program, meta data and any other interesting tidbit of
information can be used to compose a pointcut as a declarative expression. This
allows to express very robust pointcuts based on the program structure or idioms in
use instead of on syntactical details. Because the programming languages used in
legacy systems are typically rather old and less well-defined, an LMP-based point-
cut approach seems like a perfect fit to make AOP work in these environments.

In the following section, we explain how this dissertation continues along this
tradition of applying AOP in the context of legacy systems. The focus of our



4 INTRODUCTION

co-
evolution

co-
evolution

Aspicere

source
code

AOSD
source
code

build
system

build
system

MAKAO

???

Figure 1.1: High-level overview of co-evolution of source code and the build system.

attention will be the relation between source code and the build system, and how
this affects the introduction of AOP technology in legacy systems.

1.2 Problem Statement

As identified by various people, different software models and different levels of
describing and thinking about software are causally connected to one another, i.e.
they co-evolve [243, 232, 85, 128, 172]. If one description changes, this may
have an impact on the other one and vice versa. Changes can (and will) occur
asynchronously on both sides of the co-evolution relation, i.e. co-evolution is
bi-directional. Various co-evolution relations have been studied before: archi-
tecture/implementation [243], product line/variability [232], program/language/-
tool [85], design regularities/source code [128], source code/tests [172], etc. This
is not an exhaustive list, as Favre has pointed out [85]. He conjectures that co-
evolution can occur between any two or more levels or artifacts of a particular
software development dimension, like e.g. the phases of software development
or level-of-abstraction (instance, model, meta-model, etc.). A change on one level
sooner or later induces changes on other ones. Introduction of AOSD into a system



CHAPTER 1 5

to reverse-engineer the design of a system or to re-engineer crosscutting features
into aspects is an example of such a change.

This dissertation focuses on one particular instance of co-evolution: co-evo-
lution of source code and the build system (Figure 1.1). The build system is the
infrastructure responsible for initiating and directing the construction of the soft-
ware system from its basic modules. It is also responsible for driving tests in a fluid
way or for automating all tedious deployment actions. Hence, it forms a common
thread throughout the implementation phase of software development. There are
some clear indications that a build system co-evolves with the source code. In-
tuitively, if developers add new source code files, move existing ones or remove
redundant code, chances are high that they will need to modify their makefiles
or change the project configuration in their Integrated Development Environment
(IDE). A more scientific indication is given by Demeyer et al. [58]. Their “Do a
mock installation” reverse-engineering pattern states that the investigation of build
and installation process provides valuable insights into the source code architec-
ture. They also note that long build times indicate that a system’s internal organi-
sation is too complex, a typical characteristic of legacy systems. A similar relation
of the build system and the high-level structure of a software system is mentioned
by Favre [84]. To boot, variability in the source code is primarily controlled by
the build system and requires invasive, fine-grained communication between the
source code and the build system. Given these observations and the fact that both
build systems and source code (architecture) may vary, we claim that a build sys-
tem and the source code co-evolve. This dissertation studies this conjecture and
tries to uncover its impact in practice.

It is surprising that despite the importance of co-evolution of build system and
source code, evolution and maintenance of the former has been largely ignored
in research. Some specific symptoms of this co-evolution have been treated, like
modularising the build system to exploit source code reusability [57] or speeding
up the build process by restructuring source module dependencies [82], but a sys-
tematic account of problems associated with build systems and their evolution has
not been made yet. As a consequence, little tool support exists to improve un-
derstanding or re-engineering of build systems, let alone deal with co-evolution.
This situation becomes even more apparent in legacy systems, where build sys-
tem concepts and terminology from the 1970s still rule and have been used for
tasks they were not designed for [84]. To make up for the inability to scale, var-
ious workarounds and hacks have been imposed on top of existing build systems.
These have complicated understanding, re-engineering and co-evolution of build
systems even more. Tool support is indispensable to recover the design of build
systems and to help maintaining them.

Why is the co-evolution of source code and the build system relevant to legacy
systems and AOSD? Consider a legacy system into which AOP is introduced at the



6 INTRODUCTION

source code level [202] (upper horizontal arrow on Figure 1.1). In the wordings of
Favre [86], a change of programming paradigm is a change of meta-model. This is
an invasive conceptual shift which brings with it other languages and tools [85], i.e.
aspect technology has to be integrated into the build system. As mentioned above,
build systems in legacy systems do not feature state-of-the-art technology for man-
aging variability or expressing the structure of the system composition [84]. More-
over, only a select number of people understands a system’s build [71] because of
meagre tool support and a general lack of build documentation [228]. These are
exactly the same reasons why one would apply AOP at the source code level in
the first place, but their effects within the build system are less known. Just as
with source code, one tries to avoid modifications to the build system as much as
possible. This leads to a conflict where the introduction of AOP into a system in-
duces drastic changes on the source code level and hence (through co-evolution)
on the build system, but where the build system lacks the flexibility to apply these
changes. The only way out is a sub-optimal build integration, but this may lead to
compromises on the language level, e.g. no flexible (un)plugging mechanism for
aspects. In other words, the introduction of AOP clearly requires the need to sup-
port co-evolution of source code and the build system, as the limits of traditional
build system technology are gradually reached.

Introduction of AOSD is important for a legacy system’s survival, but re-
implementing or replacing a legacy build system is not straightforward. Hence,
it is not sufficient to just point out the danger of co-evolution of source code and
the build system on the use of aspects, and to rely on future AOP-aware build sys-
tems to dismantle it. AOP should be applied and evaluated within legacy systems
now [170]. We present initial tool and aspect language support for managing co-
evolution of source code and the build system. MAKAO is a dedicated framework
for understanding and maintaining build systems. Aspicere is an aspect language
for C with explicit provisions for interfacing with the build system configuration,
which allows to extract source code variability controlled by the build system into
aspects. Together, they enable developers to understand problems caused by co-
evolution and to stimulate successful co-evolution. We evaluate the capability of
MAKAO and Aspicere to deal with co-evolution of source code and the build sys-
tem on a number of representative case studies. These show how co-evolution
of source code and the build system represents a realistic challenge for AOSD in
legacy systems. Explicit tool and language support is required to face this chal-
lenge.

To summarise, these are the six research questions addressed by this disserta-
tion:

1. What are the fundamental reasons for co-evolution of source code and the
build system?



CHAPTER 1 7

2. What kind of tools do we need to understand and manage the co-evolution
phenomena of source code and the build system in legacy systems?

3. Can we use our tools to confirm the conceptual reasons experimentally by
applying them to third-party legacy systems?

4. How does the introduction of AOSD add to the fundamental reasons for
co-evolution of source code and the build system?

5. How do we design AOSD technology which adequately deals with the co-
evolution when applied to legacy systems?

6. Can we validate this technology by using it to manage co-evolution phe-
nomena in existing legacy systems?

1.3 Contributions

To answer the research questions of the previous section, this dissertation makes
the following contributions:

1. Conceptual evidence about the existence of co-evolution of source code and
the build system is collected in the form of four postulated “roots of co-
evolution”. These explain how changes in the source code have repercus-
sions on the build system and vice versa.

2. We propose a framework, MAKAO, for the reverse- and re-engineering of
build systems. It is aimed at solving typical problems in legacy build sys-
tems (goal T1), and at enabling developers to investigate and understand
practical instances of co-evolution of source code and the build system (goal
T2).

3. The four roots of co-evolution and MAKAO are validated by collecting ex-
perimental evidence about the existence of co-evolution of source code and
the build system in the Linux kernel build system.

4. The introduction of AOP at the source code level can be linked with each of
the four roots of co-evolution. As such, the roots suggest that accompanying
changes to the build system are required.

5. We propose an aspect language for C, Aspicere, which is capable of dealing
with legacy systems (goal L1) and which can interface with the build system
(goal L2). The integration of the build system with Aspicere facilitates the
decoupling of the base code from tangled configuration logic.



8 INTRODUCTION

6. The four roots of co-evolution, and the proposed tool and aspect language
support are evaluated on two reverse-engineering and three re-engineering
case studies in which AOP is introduced in legacy C systems.

Many examples and experiments in this dissertation are situated in C systems,
because the C language strikes a good balance between a legacy procedural pro-
gramming language and a still widely used programming language for systems
software (operating systems, virtual machines, compilers, etc.). This makes it eas-
ier to find representative legacy systems to experiment with, and also to derive
tools to process them. Nevertheless, the conceptual evidence about the existence
of co-evolution of source code and the build system, and the goals and require-
ments for tool and aspect language support, are independent of the programming
language used. Hence, we claim that our findings are applicable for legacy systems
in general.

The next six sections elaborate on the contributions.

Roots of Co-evolution To be able to postulate the roots of the co-evolution of
source code and the build system, we have looked at a comprehensive open source
build system, the GNU Build System (GBS), and have investigated existing work
on build system technology, smart recompilation strategies, programming lan-
guage modularity, etc. GBS shows us the many responsibilities of a build sys-
tem, the numerous ways in how it interacts with the source code and the important
problems which hamper its understandability and scalability.

From existing work on build systems and programming languages, we distill
a number of crucial links between source code and build system concepts, as de-
picted by the vertical arrows on Figure 1.1. Each of these links leads us to postulate
a root of co-evolution between source code and the build system, i.e. a partial ex-
planation for co-evolution and a potential source of co-evolution problems at the
same time. The roots (RC1, RC2, RC3 and RC4) explain why source code changes
induce changes in the build system and vice versa. The four roots of co-evolution
lay the foundation for understanding co-evolution of source code and the build
system, and for tool and language support to deal with it.

Missing Tool Support for Build Systems Despite the importance of the build
system, the lack of dedicated tool support to deal with the build system under-
standability and scalability problems restricts reverse- and re-engineering efforts,
and precludes understanding of co-evolution of source code and the build sys-
tem. We distill five requirements for tool support to solve the aforementioned
build system problems (goal T1), and to understand and manage the symptoms of
co-evolution explained by the roots of co-evolution (goal T2). We use these five
requirements to evaluate existing tools and techniques for supporting the build sys-
tem. Because none of them satisfies the five requirements, we discuss the design



CHAPTER 1 9

and implementation of a reverse- and re-engineering framework for build systems,
MAKAO, which is explicitly based on the five requirements. MAKAO’s ability to
meet goals T1 and T2 have been validated on a number of representative case stud-
ies, either in the presence or absence of AOSD. We have found that tool support
for understanding the build system is crucial to deal with co-evolution of source
code and the build system.

Experimental Evidence of Co-evolution without AOSD We have used MAKAO
to analyse the evolution of the Linux kernel build system from its inception until
recent versions to investigate the practical consequences of co-evolution of source
code and the build system in legacy systems. First, physical correlation between
source code and the build system is measured via line and file count metrics.
Second, the internal complexity of the Linux kernel build system is quantified
by MAKAO, and can be linked to concrete build system modifications via freely
available kernel developer resources. Third, important evolution steps can be iden-
tified from this data, one of which is analysed in detail with MAKAO. The analysis
results provide insight into understandability and scalability problems which ham-
per co-evolution of source code and the build system. These findings enable us to
validate the four roots of co-evolution, and MAKAO’s ability to satisfy goals T1
and T2.

Co-evolution in the Presence of AOP Introduction of AOSD technology in a
legacy system is an example of a big change at the source code level. By relat-
ing the introduction of AOP technology in legacy systems (horizontal arrow on
top of Figure 1.1) for reverse- or re-engineering to the four roots of co-evolution,
we can infer that this introduction also requires the build system to change in
order to maintain the co-evolution relation (horizontal arrow at the bottom of Fig-
ure 1.1). In other words, co-evolution of source code and the build system in the
presence of AOP technology is an important example of the general phenomenon
of co-evolution of source code and the build system which was addressed by the
previous research questions. Again, the roots of co-evolution contribute to the un-
derstanding of co-evolution of source code and the build system, and to the design
of tool and language support for dealing with it.

Aspect Language for Legacy C Systems To study co-evolution of source code
and the build system when AOP is introduced in a legacy system, we have distilled
requirements for an aspect language for legacy systems (goal L1) which is able
to improve the co-evolution of source code and the build system by interfacing
with the build system (goal L2). To be able to perform case studies in legacy C
systems, we have evaluated existing aspect languages for C w.r.t. the requirements
specified by goals L1 and L2. Unfortunately, none of the existing AOP languages



10 INTRODUCTION

for C satisfied all these requirements. We have designed and implemented a new
aspect language for C, Aspicere, based on logic meta-programming LMP [237,
30, 202]. We discuss Aspicere’s language design, two weaver implementations
and two advanced language extensions. The requirements set out by goals L1
and L2 are validated by a comparison between Aspicere and a recently proposed
industrial aspect language. Validation of Aspicere’s ability to satisfy goals L1 and
L2 is presented in five case studies.

Experimental Evidence of Co-evolution with AOSD We have applied Aspicere
on two reverse-engineering and three re-engineering case studies to validate the
four roots of co-evolution in the context of AOP, and to evaluate the ability of
MAKAO (goal T2) and Aspicere (goal L2) to deal with co-evolution of source
code and the build system. The reverse-engineering aspects support dynamic pro-
gram analysis techniques, whereas the re-engineering aspects extract exception
handling from the base code, support a declarative architectural description lan-
guage (ADL) and extract conditionally compiled code into aspects. These case
studies show us how the introduction of AOSD in the source code exercises the
limits of traditional build system technology. Dedicated tools for understanding
build systems and aspect language support for interfacing with the build system
are promising techniques for understanding and managing co-evolution of source
code and the build system.

1.4 Road Map

This section gives an overview of the focus of each chapter within this dissertation.
The dependencies between the chapters are illustrated in Figure 1.2. This scheme
also shows how the chapters work together to formulate or validate the roots of
co-evolution (RC1→RC4) and the goals for tool (T1 and T2) and aspect language
(L1 and L2) support.

Chapter 2 explains the constituent parts of a build system and illustrates them
by means of a realistic build system, i.e. the GNU Build System. Important un-
derstandability and scalability problems of GBS and build systems in general are
identified which are not only harmful for understanding and re-engineering of a
build system, but also for co-evolution of source code and the build system. We
zoom in on the latter phenomenon by distilling and postulating four previously
undocumented “roots of co-evolution” (RC1, RC2, RC3 and RC4), which corre-
spond to links between source code and the build system distilled from existing
work on programming languages and build systems. Finally, we consider the ad-
ditional influence of introduction of AOSD technology on the four roots and how
this predicts changes in the build system as a consequence.



CHAPTER 1 11

Ch. 1 Ch. 2

Ch. 3 Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

Ch. 9

Ch. 10

Ch. 11

Postulating RC1 → RC4
Linking AOP with RC1 → RC4

Formulating
Goals L1 and L2

- Confirming RC1 → RC4
- Validating T2

- Formulating Goals T1 and T2
- Validating T1

- Confirming RC1 → RC4
- Validating T2
- Validating L1 and L2

Figure 1.2: Dependencies between the chapters of this dissertation. Chapters are
annotated with the role they play in formulating or validating the roots of

co-evolution (RC1→RC4) and the goals for tool (T1 and T2) and aspect language
(L1 and L2) support. The five AOP case study chapters in the dashed rectangle can

be read in parallel.

Chapter 3 proposes a number of requirements tools should fulfil to foster build
system maintenance (goal T1) and to help in understanding and managing co-
evolution of source code and the build system (goal T2). We show that existing
tools do not satisfy these requirements and propose a new framework, MAKAO.
Based on results from three case studies, we show how MAKAO is able to deal
with build system problems (goal T1).

Chapter 4 applies MAKAO to find experimental evidence of the four roots of
co-evolution in the Linux kernel build system, from the first kernel releases until
now. We explicitly focus on the intrinsic complexity of the build process instead of
on how the users interface with it. First, we calculate various simple, but relevant
metrics of the build system. These enable us to identify important evolution steps
in the build system. One of these steps, the migration from the Linux 2.4 to the
2.6 kernel, is investigated in detail. The evolution of the Linux kernel build system
turns out to be driven by the need to overcome problems caused by co-evolution



12 INTRODUCTION

of source code and the build system.
Chapter 5 distills requirements for an aspect language to deal with legacy sys-

tems (goal L1) and to facilitate the co-evolution of source code and the build sys-
tem (goal L2). These requirements are used to evaluate existing aspect languages
for C, followed by the design and implementation of Aspicere, our own aspect
language for C. It is based on LMP [237, 30], and has explicit means to interface
with the build system, i.e. the build system is integrated with the aspect language.
We discuss Aspicere’s aspect language and weaver features, and compare Aspicere
with a recently proposed aspect language for C aimed at industrial application to
validate our requirements (goals L1 and L2).

Chapter 6, Chapter 7, Chapter 8, Chapter 9 and Chapter 10 present five case
studies with AOP in legacy systems. The first two cases (Kava and Quake 3) use
aspects to reverse-engineer an existing legacy system. The other three re-engineer
a legacy system, by extracting exception handling into aspects, by supporting the
implementation of an architectural description language (ADL) [168] and by ex-
tracting conditional compilation into aspects. These cases are used to validate the
four roots of co-evolution in the face of AOSD, as well as to validate the degree to
which MAKAO and Aspicere satisfy goals T2 and L1/L2 respectively.

Chapter 11 discusses the degree to which we have been able to address the
six research questions of this dissertation, and proposes interesting directions for
future work.



Everything has a Makefile.

Bram Adams

2
Conceptual Evidence for Co-evolution
of Source Code and the Build System

THIS chapter1 introduces the notion of a build system as it has evolved through-
out the years (Section 2.1). We illustrate the resulting build model by means

of the open source GNU Build System. Section 2.2 then describes a wide range
of problems attributed to build systems in general, and “make”-based systems in
particular. The extent of these problems becomes apparent in Section 2.3, where
we investigate traces of co-evolution of source code and the build system in ex-
isting research. We distill four links between source code and the build system,
named “roots of co-evolution”, which describe the ways in which source code and
build system interact in traditional software systems and which together form con-
ceptual evidence of co-evolution of source code and the build system. Afterwards,
we introduce AOSD and show for each root of co-evolution how AOP technology
theoretically engenders more co-evolution issues. The key message of this chapter
is that source code and the build system co-evolve and that tool support is required
to manage this.

2.1 The Build System and its Responsibilities

We first discuss the historical evolution of build systems (Section 2.1.1), before
presenting the build system model we use throughout this dissertation (Section 2.1.2).

1Small parts of this chapter are based on [3].



14 BUILD SYSTEM

To illustrate these concepts, we consider the comprehensive open source GNU
Build System in Section 2.1.3 and we situate the build system in the broader con-
text of software development (Section 2.1.4).

2.1.1 History of Build Systems

Conceptually, a “build system” is the collection of tools and prescriptions which
give birth to an application, i.e. turn a set of text files and data into a running
system. Before 1975 [84], most developers wrote their own ad hoc build and
install scripts to automate the tedious work of repeatedly invoking compilers in
the correct order with the right flags and input files, linking compiled files into the
desired libraries and executables, and moving the generated files to the appropriate
system locations or packaging them up for distribution. This scripted approach was
not perfect either. First, the scripts, typically written in shell command languages,
were not able to scale with the growing complexity of build specifications. Finding
out where and when new compilations ought to be inserted proved to be a hassle,
and many build errors sneaked in. On top of this, there was no straightforward way
to provide incremental compilation, i.e. to only re-compile the files with changes.

In 1975, Feldman has introduced a dedicated build tool named “make” [89].
To express the sequence of commands needed to produce the desired build arti-
facts, “make” still attaches an imperative list of shell commands (“build recipe” or
“command list”) to each build product. However, in order to compose the various
artifacts into higher-level ones in the right order, “make” has introduced a declar-
ative, rule-based specification. “Rules” are responsible for explicitly capturing
“dependencies” between “build targets”2 (executables, object files, etc.), and they
are listed in textual “makefiles”. These provisions tackle the scalability problems
of shell scripts. Incremental compilation is facilitated through a time stamp-based
heuristic which ensures that a rule’s target is only (re)built if the target does not
yet exist or if at least one of its dependees is newer. “make”’s innovations have
influenced lots of other build tools like e.g. Ant3 or SCons4. Traditional “make”
systems are still in wide use today.

Originally, a build system consisted solely of a build layer based on e.g. “make”.
This was insufficient to cope with the growing number of platforms and product
variants modern software had to be capable of. Portability and configurability of
software had become an important concern as well. The former manifests itself
in different locations of system header files, names of compilers or compiler flags
used. The source code itself contains some portions which should not always be
compiled, like bug fixes for a particular platform or to work around limitations

2When we refer to “the” build target of a rule (or the “dependent”), we refer to the target which results from a
build rule. The targets it depends on are “prerequisites” or “dependees”.

3http://ant.apache.org/
4http://www.scons.org/

http://ant.apache.org/
http://www.scons.org/


CHAPTER 2 15

Figure 2.1: Build system architecture.

of an API. Hence, configurability has to be interpreted in its widest sense, ranging
from selecting the set of source files to build, to the specific variant of an algorithm
which can be conditionally selected within the source files. These functionalities
have become the responsibility of dedicated configuration tools and scripts which
together form the configuration layer, i.e. a higher-level layer on top of the build
layer.

The next section discusses the resulting build model in detail.

2.1.2 The General Build System Model

Figure 2.1 shows the core architecture (often hidden behind an IDE) of modern
build systems which we adopt throughout this dissertation. A build system takes
care of two things (Figure 2.1):

• deciding which components should be built, selecting the desired features to
compile and establishing any platform-dependent information needed to do
so;

• incrementally building the system taking dependencies into account.

The first task is performed by the so-called “configuration layer”. A configu-
ration tool takes possibly parametrised build scripts and resources like the source
code or data files, and resolves all build parameters based on user input and auto-
matic detection of build platform characteristics. The configuration script defines



16 BUILD SYSTEM

the build parameters of interest and specifies how their values should be obtained.
There are various ways through which the values of configuration parameters can
be passed to the build layer and source code. Section 2.1.3.1 explains these in de-
tail. Selection of the right files to compile may depend on the developer’s orders,
constraints between files, recently committed versions of the source code, etc. The
goal of the configuration layer is to instantiate the resources and build scripts.

The “build layer” is responsible for the second task. The build tool does the
ground work based on the build dependency specification within the build script.
Influenced by “make” [89], build tools typically act like backward chainers. For
a particular build goal, each dependee at a time is investigated recursively until a
build rule is reached for which all dependees have been checked or which does not
have any dependees. If either the build goal at that level does not exist or a heuristic
based on time stamps or check sums is able to determine that at least one of its
dependees is newer, the command list (or “build recipe”) is executed to construct
the desired build goal. If there is no build rule for the current build target, the file
system is searched for this file instead. If this search fails, an error is generated.
Conceptually, the fact whether or not a goal has been rebuilt is propagated up to
the rule immediately depending on that goal. This process recursively continues
until the user-defined build goal is either rebuilt, deemed up to date, or an error
has occurred along the way. In the latter case, the build engineer usually can
configure beforehand whether a build should try to continue after an error or give
up immediately.

As Feldman shows [89], this backward chaining approach is based on a Di-
rected Acyclic Graph (DAG) in which nodes correspond to build artifacts like files,
executables, etc. and in which the edges correspond to build dependencies. There
is no prescribed way to include command lists in the DAG, however. Also, the
order of a given target’s dependees in the build specification disappears in a DAG,
unless edges can be labeled somehow, e.g. via time stamp information. Using the
DAG metaphor, incremental compilation naturally maps onto a heuristic-based
topological sort algorithm.

To conclude, the build system’s configuration layer filters out irrelevant source
code and build logic for the platform at hand, and then passes control to the build
layer, which exploits the build dependencies to generate a working application in
a correct and fast way. Some build systems make a very clear distinction between
the configuration and the build layer, while others blend them together or even
generate the build layer automatically from the configuration specification. The
latter occurs within the GNU Build System, which we discuss in the next section
as a prototypical example of the presented build system model.



CHAPTER 2 17

2.1.3 The GNU Build System (GBS), an Archetypical Build Sys-
tem

The GNU Build System (GBS for short) is an amalgam of tools which together
form a very powerful, but complex open source build system. Most of its compo-
nents can be used in isolation, but there is good integration support between them.
GBS’s goals are:

• to make source code portable across as many platforms and operating sys-
tems as possible;

• to make it easier for developers and users to write and use build files by
enforcing the GNU Coding standards5;

• to provide convenient and safe packaging support;

• to offer platform-independent installation functionality.

Figure 2.2 gives a graphical overview6 of GBS’s major components (ellipse
shapes), although libtool7 and gettext8 are not shown here (they are used in the
example of Appendix A). The heart of GBS is formed by “autoconf”9, which
forms GBS’s configuration layer. The build layer is automatically generated by
“automake”10. The other three programs (“aclocal”, “autoheader” and “autoscan”)
are support tools. Notice the dashed line in the middle of Figure 2.2. It emphasises
the firm design decision within GBS to differentiate between build machinery and
files needed by the source code developers (upper half), and the more modest build
tools required by open source users to compile the software on their system. These
clients do not necessarily need autoconf nor automake. Instead, they receive the
generated Bash script “configure” and a couple of template files (“*.in”) which
together generate a fully instantiated build layer for the build platform at hand.
This build layer consists of makefiles for the “GNU Make” build tool.

This section discusses the major components of GBS, i.e. autoconf, automake
and GNU Make with the aim of highlighting the responsibilities of a build sys-
tem and to show the complex interactions between source code and build systems.
During our explanation, we refer to an example system presented in detail in Ap-
pendix A. It is a simple C system comprising of three source files (Figure A.1,
Figure A.2 and Figure A.3) spread over two directories (“src” and “lib”). For the

5http://www.gnu.org/prep/standards.html
6This illustration originally has been made by René Nyffenegger and published at http://www.adp-gmbh.

ch/misc/tools/configure/files_used.html. He has kindly given us permission to enhance and use his
schematic overview in this dissertation.

7http://www.gnu.org/software/libtool/
8http://www.gnu.org/software/gettext/manual/
9http://www.gnu.org/software/autoconf/manual/

10http://www.gnu.org/software/automake/manual/

http://www.gnu.org/prep/standards.html
http://www.adp-gmbh.ch/misc/tools/configure/files_used.html
http://www.adp-gmbh.ch/misc/tools/configure/files_used.html
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/gettext/manual/
http://www.gnu.org/software/autoconf/manual/
http://www.gnu.org/software/automake/manual/


18 BUILD SYSTEM

configure.ac

aclocal

reads

autoheader

reads

autoconfautomake

reads

Makefile.am acconfig.h

code

autoscan

acinclude.m4

aclocal.m4

readsreadsreads

./configure

Makefile

writes

config.status

writes

config.log

writes

config.h

writes

config.h.in

reads

Makefile.in

reads

make

configure.scan

Manually editing

configure.ac

aclocal

reads

autoheader

reads

autoconfautomake

reads

Makefile.am acconfig.h

code

autoscan

acinclude.m4

manual

aclocal.m4

readsreadsreads

./configure

Makefile

writes

config.status

writes

config.log

writes

config.h

writes

config.h.in

reads

Makefile.in

reads

make

configure.scan

Manually editing

generated GNU Tools

configure.ac

aclocal

reads

autoheader

reads

autoconfautomake

reads

Makefile.am acconfig.h

code

autoscan

acinclude.m4

manual

aclocal.m4

readsreadsreads

./configure

Makefile

writes

config.status

writes

config.log

writes

config.h

writes

config.h.in

reads

Makefile.in

reads

make

configure.scan

Manually editing

generated GNU Tools

configure.ac

aclocal

reads

autoheader

reads

autoconfautomake

reads

Makefile.am acconfig.h

code

autoscan

acinclude.m4

manual

aclocal.m4

readsreadsreads

./configure

Makefile

writes

config.status

writes

config.log

writes

config.h

writes

config.h.in

reads

Makefile.in

reads

make

configure.scan

Manually editing

generated GBS tool

DEVELOPMENT

INSTALLATION

Figure 2.2: Schematic overview of the most important files used within GBS, reproduced
and modified with permission by René Nyffenegger. Edges marked with “reads”

represent secondary input files used alongside the main input specification (edges
without label).



CHAPTER 2 19

1 AC_INIT([amhello], [2.0], [bug-report@address])
2 AC_CONFIG_AUX_DIR([build-aux])
3 AM_INIT_AUTOMAKE([foreign])
4 AM_GNU_GETTEXT_VERSION([0.14.5])
5 AM_GNU_GETTEXT([external])
6 AM_CONDITIONAL(GETTEXT_INSTALLED, [test x$USE_NLS = xyes])
7 AC_SUBST([USE_NLS])
8 AC_PROG_LIBTOOL
9 AC_PROG_CC

10 AM_CONFIG_HEADER([config.h])
11 AC_CONFIG_FILES([Makefile lib/Makefile src/Makefile \
12 po/Makefile.in lib/say.c m4/Makefile])
13 AC_OUTPUT

Figure 2.3: Example configure.ac from the example system in Appendix A (this is a copy of
Figure A.4 on page 320).

1 #include <config.h>
2 #include <stdio.h>
3

4 #ifdef HAVE_GETTEXT
5 #include "../src/gettext.h"
6 #define _(string) gettext (string)
7 #else
8 #define _(string) (string)
9 #endif

10

11 void say_hello (void){
12 puts (_("Hello World (with%s gettext)!"),
13 ("@USE_NLS@"=="yes"?_(""):_("out")));
14 printf (_("This is %s.\n"), PACKAGE_STRING);
15 }

Figure 2.4: Source file template “lib/say.c.in”. This is a copy of Figure A.3 on page 320,
which illustrates the usage of the generated config.h.

reader’s convenience, snippets of the example GBS files are duplicated whenever
appropriate.

2.1.3.1 Configuration Layer: Autoconf

The original “autoconf” was created in 1991 by David J. Mackenzie [234]. Its
core goal is to provide portability across various operating systems and platforms.
To achieve this, all known compatibility problems of libraries, tools or APIs across
many platforms have been collected and hidden behind a macro-based facade. The



20 BUILD SYSTEM

idea is that developers specify their needs, e.g. a C compiler or a library providing
some function, and that “autoconf” finds the particular tool or artifact installed on
the current system. For this, it is vital that “autoconf” can identify the precise ver-
sion, location and name of any tool, operating system or library of interest. Instead
of merely looking at version numbers, the tools are invoked with mini-programs
which exercise the features desired by the developer. This provides robust version
identification, which often even works on unknown systems.

In Figure 2.2, we observe that “autoconf” expects two inputs: “configure.ac”
and “aclocal.m4”. The former contains the configuration specification. Usually,
an initial version has been generated by “autoscan”, which scans the source code
for potentially non-portable logic. Only one “configure.ac” is needed for an entire
project, and it can reference all “Makefile.in” build script templates of the build
layer. Figure 2.3 shows a simple example11. Each line contains an expansion of
a GNU “m4”12 macro which checks for the existence of a tool, library, etc. Each
system can provide its own macros on top of the standard ones by collecting them
in a library file, “aclocal.m4”, using “aclocal”. To avoid name clashes, prefixes
like “AM_” (“automake”) or “AC_” (“autoconf”) are used. The macro on line 1
contains some meta data about the program, e.g. the name of the system and the
current version, while line 2 specifies that generated scripts for internal use have
to be generated within a specific directory. Line 9 asks “autoconf” to look for a C
compiler, whereas line 13 demarcates the end of the configuration specification.

A crucial question is how configuration choices from within “configure.ac”
are communicated by the configuration tool to source code and build scripts. GBS
offers five possibilities:

1. Passing conditional compilation flags via the invoked compiler commands.

2. Generating a header file during the build with the active conditional flags,
combined with conditional compilation in the source code.

3. Using conditional build logic in the build scripts (or templates).

4. Parametrising source code and/or build scripts with build-time parameters.

5. Using environment variables to override certain paths or commands.

The first option is the simplest one, but complicates readability of the com-
mand line and may on some systems even exceed the maximum length of shell
command invocations. The second option solves this. “config.h.in” is a generated
header file (line 10 on Figure 2.3) which initially undefines all occurring compile-
time constants (see Figure A.8 on page 322). This header file is automatically
generated by the “autoheader” tool based on “configure.ac” and may possibly be

11A backslash at the end of a line is used to continue the current statement on the next line.
12http://www.gnu.org/software/m4/manual/

http://www.gnu.org/software/m4/manual/


CHAPTER 2 21

1 AM_CPPFLAGS = -DLOCALEDIR=\"$(localedir)\"
2 lib_LTLIBRARIES = libhello.la
3 libhello_la_SOURCES = say.c say.h
4 libhello_la_LDFLAGS = -version-info 0:0:0
5

6 localedir = $(datadir)/locale
7 DEFS = -DLOCALEDIR=\"$(localedir)\" @DEFS@

Figure 2.5: Automake build script template lib/Makefile.am. This is a copy of Figure A.6
on page 321.

customised via an “acconfig.h”. When executing “configure” on the client ma-
chine, the relevant flags are defined in the resulting “config.h”. Any source file
interested in this configuration information just needs to include this header file13

and use it in conditional compilation checks. This is illustrated in Figure 2.4 on
lines 4–9. If the internationalisation tools (HAVE_GETTEXT) are not installed, the
specific gettext function is not used (line 6). A similar mechanism can be used
inside build scripts (see lines 6–10 in Figure A.7 on page 321). The fourth method
has also been applied in Figure 2.4. This code snippet shows the “lib/say.c.in” file,
i.e. a source file template (as its name ends in “.in”) which is parametrised with
“autoconf” parameters like @USE_NLS@ on line 13. The substitution macro on
line 7 of Figure 2.3 instantiates a “lib/say.c” file in which @USE_NLS@ will either
be replaced by yes or no. The compiler will likely be able to optimise away the
resulting string comparison. The fifth and final technique passes configuration data
to the build scripts by overriding certain commands and paths via environment or
makefile variables like CC, CPPFLAGS, etc.

The goal of “autoconf” is to generate a Bash shell script (“configure”) at the
client site. This takes the source code and build script templates and instantiates
them based on the configuration choices. Besides this, “configure” also generates
a script “config.status” and a log file. “config.status” can be seen as a partially
evaluated version of “configure” with all configuration choices hardcoded. The in-
stantiated build scripts can then be processed by GNU Make (see Section 2.1.3.3).
Before explaining GNU Make, we first consider the high-level specification of
build dependencies using “automake”.

2.1.3.2 Build Layer Generation: Automake

“automake” is a tool set started by David J. Mackenzie in 1994 which offers a
high-level, domain-specific language to specify build layer dependencies and com-
pilation tools [167]. It automatically translates high-level specifications (“Make-

13Because compilation happens completely after configuration has ended (see the “make” node on Figure 2.2), the
compiler will always find this header file.



22 BUILD SYSTEM

1 make_OBJECTS = ar.o arscan.o \
2 commands.o dir.o ... hash.o
3 make$(EXEEXT): $(make_OBJECTS)
4 @rm -f make$(EXEEXT)
5 $(LINK) $(make_LDFLAGS) \
6 $(make_OBJECTS) \
7 $(make_LDADD) $(LIBS)
8 ...

Figure 2.6: Example GNU Make makefile.

file.am”) into portable, standardised GNU Make (Section 2.1.3.3) build scripts,
similar to e.g. the work of Buffenbarger et al. [37]. When using the full GBS, the
output of “automake” usually is a parametrised makefile (“Makefile.in”). In the
build specification, it suffices to express what the desired build output should be
(binary, library, header file, script or data) and which source code files are needed.
One can also specify compiler flags, add custom build rules which need to be
transferred as is to the generated makefiles, and specify distribution and installa-
tion requirements. Source file dependencies related to #include statements are
automatically extracted based on a common trick (see 4.5.3.2), such that one only
needs to specify the high-level dependencies.

The sample GBS build system in Appendix A contains three “Makefile.am”
files, one per directory. Figure 2.5 shows “lib/Makefile.am”. Line 2 specifies that
the result of this directory’s build will be a “libtool” library named “libhello.la”.
It consists of the code of “say.c” and “say.h” (line 3) and is versioned in a de-
fault way (line 4). Notice that name clashes are avoided by tying the SOURCES
and LDFLAGS variables specifically to libhello.la instead of declaring them
globally. The “Makefile.in” which will be generated by “automake” is parametrised
by @DEFS@ on line 7 and hence needs to be processed by “autoconf” to obtain a
GNU Make build script. We discuss GNU Make in the next section.

2.1.3.3 Build Layer: GNU Make

GNU Make [218, 167] currently is the most popular “make” implementation and,
in fact, build tool, both in industry and in the open source community. More
powerful build tools have failed to overthrow “make”. It is generally believed that
this is because of “make”’s conceptual simplicity [89], despite the flaws we discuss
in Section 2.2.

Figure 2.6 shows an example makefile snippet to compile GNU Make itself14.

14GNU Make is implemented in C and needs an older version of itself to bootstrap.



CHAPTER 2 23

On lines 1–2, a makefile variable named make_OBJECTS is defined as a list15

of several object files, i.e. compiled versions of a C or C++ implementation
module. Lines 3–7 represent a build rule which specifies that the target called
make$(EXEEXT) depends on the list of object files denoted by variable make_OB-
JECTS. To build make$(EXEEXT), the command list (build recipe) on lines 4–7
should be executed. Note that variables like $(EXEEXT) and $(LINK) corre-
spond to the fifth way of passing information from the configuration layer. On
Windows systems, $(EXEEXT) will resolve to “exe”, but on Linux or OSX plat-
forms to the empty string instead.

GNU Make interprets makefiles based on Feldman’s time stamp-based heuris-
tic. Target make$(EXEEXT) only needs to be (re)built by its recipe if it does not
yet exist or if at least one of its dependees is newer. This mechanism is transitive:
for each dependee D of make$(EXEEXT) (i.e. the files listed on lines 1–2), D
should either be a physical file or the build target of another rule. Each line in the
command list is executed in a separate shell.

GNU makefiles can contain definitions, expansions and invocations of macros
and functions. As such, GNU Make contains a powerful, but complex string pro-
cessing facility. The eval function e.g. allows to evaluate any valid makefile shell
command. GNU Make provides sophisticated control of variables, as it makes a
distinction between eager (“simple” variables) and lazy assignments (“recursive”
variables). If the := operator is used, the right hand side is evaluated immedi-
ately and the resulting value assigned to the simple variable on the left hand side.
In the case of =, the right hand side is stored as a string. Only when the value
of the recursive variable on the left hand side is explicitly asked for, the stored
string is evaluated using the by then established environment. This can be applied
to implement highly sophisticated build logic (see Section 4.5.3.2) and also leads
naturally to a top-down approach for specifying a build script. High-level targets
are described on top of the makefile and gradually more low-level ones can be
added below. Finally, makefile snippets spread across different directories can be
included literally into a given makefile, similar to C’s #include statement. This
is often used in combination with conditional definition of rules (cf. conditional
compilation in C).

To technically support these advanced features, the execution of GNU Make is
divided in two phases:

1. the makefile and all its included makefiles are processed to load variables
and rules into “make”’s internal database16 and to create the build DAG;

2. the DAG stored in the database is analysed, required targets are determined
and command lists are executed.

15A backslash at the end of a line can be used to continue the current statement on the next line.
16Simple variables have been assigned a value, while recursive ones contain the corresponding string definition.



24 BUILD SYSTEM

These two phases actually correspond to two builds, one at the meta-level and
one at the base level. The latter one does the actual construction work, as described
in Figure 2.6, whereas the former needs to bring the makefile itself up-to-date.
The included makefiles are its dependees. This means that if there is a build rule
specified for one of those dependees, it will be used to bring the dependee and
(transitively) the main makefile up-to-date. If this happens, the internal “make”
database is cleared and the first phase is re-executed until all dependencies of the
main makefile are up-to-date (or an infinite loop occurs if the dependees are rebuilt
on each re-execution). Only then, the second build phase will execute.

Before we finish the discussion of GBS, we briefly consider alternatives of
“make” and the areas in which they are used.

Alternatives for GNU Make This section first discusses the applicability of
“make” for modern Java systems. Then, we consider various build tools which
improve in some way on “make”.

Many alternatives for “make” and GNU Make have been proposed, but none
of them have been able to overthrow the original, except in the case of Java appli-
cations. There are two reasons why “make” is not very well-suited for Java. First,
most Java compilers are much more coarse-grained than C or C++ compilers. Be-
cause they cache symbols extracted from previously compiled, imported classes
instead of preprocessing source code [167] and they also defer most optimisations
to the JIT compiler, they are fast enough to build an entire project with a single
execution of the Java compiler. By way of comparison, Mecklenburg [167] claims
(backed by Ammons [13]) that in one case compiling 500 Java files took only 14
seconds compared to a build time of five seconds for one Java file. A traditional
“make” approach would require 500 compiler invocations instead of one, which
means that the speedup of skipping certain compilations based on time stamp data
is completely lost. The second reason for “make”’s unsuitability for Java applica-
tions is the fact that one Java file not necessarily leads to one class file, because
nested and inner classes yield extra class files. This fundamentally clashes with
“make”’s one-target-per-rule principle, as pointed out by Ammons [13].

For these reasons and also for the drawbacks listed later in Section 2.2, Apache
Ant17 (Another Neat Tool) is the de facto build tool in the Java world [181].
It was released in 2000 by James Duncan Davidson as an extensible, platform-
independent build tool for Java. Build scripts are XML documents which describe
dependencies between targets. However, contrary to “make” these dependencies
only specify a pre-order tree traversal. There is no time stamp-based or other
heuristic attached to them. Hence, Ant targets do not map onto files, but rather rep-
resent a collection of tasks or GNU Make phony targets [13] (see 4.5.3.2). These
tasks are implemented by Java classes. The javac task e.g. compiles a set of Java

17http://ant.apache.org/

http://ant.apache.org/


CHAPTER 2 25

source files if they are newer than their class files or the latter do not exist.
Other build tools each improve in one or more ways on “make”. Javamake [61]

is a Java build tool based on a project database with relevant dependency informa-
tion extracted from the compiled classes. Based on the semantics of changes, it
determines whether recompilation of source files is needed or not. SCons18 uses
Python programs as build scripts and MD5 check sums instead of time stamps.
Builder [207] persists the source code and derived artifacts in a database. The re-
sulting build DAG can be partitioned to prevent unnecessary recompiling and a set
of generic, enforceable constraints can be used to check the reliability of the com-
pilation and incremental linking. DERIVE [206] is built on top of a Prolog engine,
file system and relational database. Its main objective is to manage the enormous
variability within the build process. Source files and their attributes are modeled
as facts, configurations as rules and compilers and other tools as functions over
byte strings. Rules are referential transparent, as new versions of components are
added to the knowledge base instead of destroying old ones. Memoisation, partial
evaluation and abstract interpretation are used to automatically detect derivation
dependencies and potential concurrency between build actions.

Other build tools have more semantic checks. Odin [47] is based on a store
of persistent, typed software objects (files, strings or a list) and a set of typed
tool specifications. One can specify object derivations between types of objects
at once instead of on a file by file basis. The directory structure does not play
a role anymore, as the forest of derived objects maintains (possibly parametrised)
links between derived objects and atomic ones. Implicit build dependencies within
parametrised commands can be uncovered such that intermediate results can be
reused more effectively during derivation. The Odin Request Language is an im-
perative OO language to interactively query the store. Even error messages or
warnings are reified as objects available for further querying. Hence, Odin enables
developers to program with derived objects, i.e. programming-in-the-large [60]
(see Section 2.3.4.2).

There are also some tools which try to improve on GNU Make’s support for
parallel builds, i.e. running multiple commands at once. The main bottleneck
for this is finding an optimal, safe scheduling of build tasks across the machines,
taking into account dependencies between artifacts and cache support. The best-
known tools for this are “distcc” and “ccache”, both invented by the open source
Samba project19. “distcc” uses a compiler on the local machine to preprocess
each output and send the preprocessed code to any available machine for compi-
lation [167]. “ccache” caches object files and can be easily integrated in a build
by replacing the compiler by ccache compilername. This even speeds up
non-distributed builds.

18http://www.scons.org/
19http://www.samba.org/

http://www.scons.org/
http://www.samba.org/


26 BUILD SYSTEM

2.1.3.4 Additional GBS Components

To close the discussion of GBS, we consider two other components which are of-
ten used with GBS: “libtool” and “gettext”. The former was designed by Gordon
Matzigkeit in 1996 [234]. It abstracts over the way how shared libraries are created
and used on various operating systems. Instead of using a platform-specific exten-
sion, “libtool” works with “.lo” and “.la” files which contain meta data, versioning
info and a link to the actual object files or libraries. The required configuration
logic for using “libtool” is shown on Figure 2.3 (line 8) and Figure 2.5 (line 2).

“gettext” is responsible for enabling integration of native translations and sup-
port for locale concepts like currency and date format into the build system (in-
ternationalisation), as well as for insertion of the translations themselves (local-
isation). These functionalities have to be integrated in the configuration logic
(lines 4–5 on Figure 2.3 and the locale and LIBINTL code in Figure 2.5 and
Figure A.7 on page 321) and the source code. As described above, a specific
API needs to be included in the code base and called for every string appearance
(lines 5–6 in Figure 2.4). “gettext” makes a build system robust against cultural
variability.

2.1.4 Roles Played by the Build System

The explanation of the GNU Build System gives a more concrete idea of the core
functionalities of a build system. However, a build system interacts with vari-
ous other facets of software development. This section briefly reflects on these
interactions in order to be able to situate the build system better in the software
development process and at the same time to stress its important role. We con-
sider continuous integration, IDEs, configuration management, deployment, re-
lease management and variability management.

2.1.4.1 Continuous Integration

There is a close connection between the build system and test suites [181]. Devel-
opment processes like Extreme Programming heavily rely on extensive test suites
which are ideally exercised on each change to the source code. As long as develop-
ers are not forced somehow to run tests, test-driven development may be compro-
mised in tough situations (when it actually is needed the most). The build system
solves this, as it is the ideal place to enforce unit testing during development and
to make it easily repeatable.

This idea has been taken to another level with the advent of continuous inte-
gration servers. These systems regularly check a source code repository to detect
new changes to the source code. On a change, the system is built and the test suite
exercised. If a test fails, developers are automatically notified, otherwise this ver-



CHAPTER 2 27

sion of the source code can be tagged and possibly considered as a new release of
the software. The build system plays a crucial role in this scenario.

2.1.4.2 Integrated Development Environments

To increase developer productivity and standardise the development tools, ven-
dors have combined compilation tools, editors, documentation browsers, unit test
frameworks, build systems, etc. into one “Integrated Development Environment”
(IDE) [88, 199]. Nowadays, almost everyone uses an IDE for day-to-day devel-
opment in C++ or Java, whereas developers of legacy systems are often limited to
command-line environments. Although details of build and configuration scripts
are hidden behind user-friendly forms, IDEs typically have their own build system
implementation. Often, this is heavily integrated with the compiler and other tools
like debuggers, as illustrated by Smalltalk-80 [101], Borland’s Turbo Pascal20 or
IBM’s Eclipse21. This facilitates language-specific optimisations of build speed
and ease of specification, but may pin the developers on these tools [95]. More
importantly, Mecklenburg [167] states that IDEs are good for small-scale or lo-
calised development, but do not scale for bigger systems and are not practical for
unattended builds.

2.1.4.3 Software Configuration Management (SCM)

Software Configuration Management (SCM) takes care of “the control of the evo-
lution of complex systems” [81]. This goes far beyond the build system model
we have presented in Section 2.1.2, as the latter assumes that there is exactly one
version of each source code file available to the build system. In reality, many
developers contribute to the code base of a system and some kind of version con-
trol system [196] is used to manage this. This maintains a history of all changes
to source code files (these are named “revisions”), enables multiple independent
branches of development, provides means to merge and contrast changes, keeps
meta data about the intent and owner of modifications the changes, etc. As a con-
sequence, developers often need to mix source code files which belong to different
revisions, e.g. because the latest versions of some files are not stable. On the other
hand, the results of the build process, i.e. released binaries or libraries need to
be stored in the versioning system too for maintenance and bug fixing purposes.
These activities are sometimes aptly called “programming-in-the-many” [81].

A lot of research has been done involving SCM systems [81], often closely
related to the development of IDEs (see Section 2.1.4.2), but adoption of these
techniques has been slow to catch up. Many different SCM techniques have been
proposed [227, 42, 143, 147, 165, 47], but SCM systems have very long ignored

20http://en.wikipedia.org/wiki/Turbo_Pascal/
21http://www.eclipse.org/

http://en.wikipedia.org/wiki/Turbo_Pascal/
http://www.eclipse.org/


28 BUILD SYSTEM

these developments, and have kept on relying on low-level abstractions like files,
directories or makefiles [84, 81]. Although this has lowered the barrier for adop-
tion of SCM, these systems have not immediately brought the improvements they
were intrinsically capable of, nor have they clearly established their advantages
over the build system model of Section 2.1.2. As a consequence, legacy systems
often contain custom SCM systems using low-level technology.

2.1.4.4 Software Deployment

Deployment consists of packaging and installing compiled software artifacts, i.e.
it is one of the possible phases following a standard build. Packaging is concerned
with wrapping source code and/or compiled artifacts into some kind of abstraction
with a clear notion of identity, configuration interface and dependencies on (ver-
sions of) other packages [56]. Installing entails resolving missing dependencies,
applying on-site configuration and (if needed) building package elements which
have been distributed as source code. Hence, there is a clear link between software
deployment and the build system.

The relation between deployment and build systems has been investigated by
various researchers [62, 64, 66, 63, 65, 117, 47]. Dolstra et al. e.g. have designed a
build manager named “Maak”22 based on a lazy functional specification language
for build variants. A powerful, parametrised import construct enables to express
configuration dependencies via an abstract name. This enables Maak to determine
whether the referenced package already exists in binary form (in cache) or whether
(re)build is necessary. As such, a binary package in fact corresponds to a par-
tially evaluated source distribution with respect to the target build platform [206].
Maak’s successor, Nix23, improves on this by using cryptographic hashes as identi-
fiers of dependencies [66] to prevent unresolved references and reduce interference
between different dependencies. Files within components are scanned for these
special strings to recursively detect all dependencies of components. The principle
of “maximal sharing”, i.e. reuse of common dependencies based on their identi-
fier, enables seamless transition between binary and source distribution. Finally,
Nix is based on a “store” [66, 63] which contains all installed components together
with any intermediate build results, the source code and declarative store expres-
sions [65] which describe how the build results were obtained. Execution of build
actions is transactional. User environments are trees of symbolic links to activated
components for a given user’s configuration. These links are the roots of a garbage
collector pass which on demand deletes unused paths from the store. This extra
level of indirection enables atomic upgrades, rollbacks and leads to deterministic
and reproducible configurations. This work shows how packaging and installing,

22http://people.cs.uu.nl/eelco/maak/
23http://nix.cs.uu.nl/

http://people.cs.uu.nl/eelco/maak/
http://nix.cs.uu.nl/


CHAPTER 2 29

although closely related to the build system, requires a lot of extra provisions on
top of the build model of Section 2.1.2.

2.1.4.5 Release Management

Deployment is closely related to release management, which consists of config-
uring products in a flexible way, keeping track of which version of which source
module has been packaged in which release (“bill-of-materials”) and minimising
the number of needed upgrade actions on a new release [229, 230, 231]. This
requires thorough integration with the build system, e.g. to manage product vari-
ability [229] (see Section 2.1.4.6) or to verify whether new releases of a component
or its dependencies have been made and they pass all their tests [230]. Because
our build system model is not capable of this [231], van der Storm has built a
continuous integration system (Sisyphus) which polls the version control system
for changes, updates dependency and configuration information of releases which
pass all integration tests in a Release Knowledge Base (RKB), uploads the release
to an update server accessible by clients and enables incremental upgrades by only
distributing changes.

2.1.4.6 Variability Management

Both packaging and release management rely on flexible configuration specifica-
tions which are able to manage the often overwhelming variability in software.
This is studied within the product line research community24. Again, there is a
clear relation between build systems and product lines [227]. In fact, a product
line can be considered as a very advanced configuration layer (more on this in
Section 2.3.4.4) with a high-level specification language able to express any pos-
sible source of variability, feasible compositions, dependencies between various
variables and more powerful means to enforce a desired configuration. The lat-
ter refers to the fact that besides build-time composition, many product lines also
require run-time adaptation [55, 233, 56, 64]. Unfortunately, there is no standard
configuration interface for variability across all phases of a program’s lifetime. A
combination of configuration-, build- and run-time technologies is needed to im-
plement a product line, as illustrated by van Deursen et al. [233, 56] or by the
Linux kernel build system [55], which uses rather low-level technology.

24http://www.softwareproductlines.com/

http://www.softwareproductlines.com/


30 BUILD SYSTEM

1 all: A.class app.jar
2 A.class: A.java
3 javac A.java
4 app.jar:
5 jar cf $@ A.class ‘ls ../classes/*.class‘

Figure 2.7: Makefile with implicit dependencies.

2.2 Understandability and Scalability Problems of
Build Systems

This section discusses an extensive number of understandability and scalability
problems associated with “make” (Section 2.2.1), GNU Make (Section 2.2.2),
GBS (Section 2.2.3) and the application of build systems in general (Section 2.2.4).
The first three sections only briefly highlight various problem areas, whereas the
fourth section goes into more detail. These build problems show that tool support
is needed to understand and maintain build systems. In Chapter 3, the build prob-
lems are used to distill a number of requirements for dedicated tool support for
design recovery and maintenance of build systems.

2.2.1 Problems with "make"

This section discusses two understandability problems associated with “make”,
and four scalability issues.

2.2.1.1 Understandability

The existence of understandability problems seems at odds with the conceptual
simplicity of “make”, but this group of problems rather corresponds to omissions
or limitations.

Implicit Dependencies Consider the three rules in the makefile of Figure 2.7.
The first one (line 1) states that target “all” requires both a file named “A.class” as
well as an archive “app.jar”. The former is compiled by “javac” (line 3) from a Java
source file named “A.java” (line 2). The rule for the archive (lines 4–5), however,
does not explicitly specify its dependees behind the colon on line 4. Instead, the
dependees are only mentioned in the rule’s command list (line 5). In this case,
the dependency of “app.jar” on “A.class” is named an implicit dependency and we
call “A.class” an “implicit target”. Even worse, “app.jar” has a number of implicit
dependees which can only be resolved at build-time as they are the result of a shell
command (between back quotes).



CHAPTER 2 31

Implicit dependencies inevitably lead to inconsistent and incorrect builds. E.g.
if the “app.jar”-target would be built directly, “make” will not try to remake “A.class”,
and will bundle the existing, possibly outdated version in the archive. Unfortu-
nately, enforcing developers to explicitly list all dependees is not feasible, so tool
support should assist developers in tracking the actual dependees down. Note that
implicit dependencies are closely related to Singleton’s [206] concerns about the
presence of side-effects in the non-declarative command lists of build rules, i.e.
effects which cannot necessarily be specified as dependent or dependee.

Time Stamps “make”’s time stamp-based updating algorithm cannot handle sit-
uations where a dependee is replaced by an older version, e.g. by reverting to an
older revision. The dependent will not be incrementally remade, except when a
full build is made. Other heuristics based on check sums or code formatters do not
suffer from this problem.

2.2.1.2 Scalability

This group of problems is related to the (ab)use of “make” outside the “medium
sized systems” [89] it originally was conceived for [84, 81].

External Dependency Extraction One of the biggest problems of “make” for
scalability is the synchronisation between source code dependencies (e.g. from C
#include-statements) and build dependencies. This is a problem of synchroni-
sation between on the one hand source-level dependencies and on the other hand
dependencies between build artifacts. “make” does not prescribe a way to deal
with this. Manually updating build dependencies each time the source code has
been edited, is not maintainable. Several tools have been designed — often in-
tegrated with compilers — to emit build script snippets based on the actual de-
pendencies in the source code, but their integration with “make” often leads to
redundant work. The myriad of dependency management tools and techniques,
and its importance on developer productivity, build correctness and build speed
nevertheless forms an important indication towards the existence of a co-evolution
relation between source code and the build system.

Costly Incremental Compilation Heydon et al. [117] claim that the cost of in-
cremental compilation using “make” is too high because it starts dependency anal-
ysis from the leaves of the DAG instead of pruning subgraphs via a pre-order
traversal. Hence, the cost of this analysis is proportional to the total number of
source files in the build instead of the number of changed ones. This is harmful for
scaling up to big systems.



32 BUILD SYSTEM

One-dimensional Dependencies Lamb [141] argues that “make” focuses on
only one kind of dependency relation between dependent and dependees. As a
result, this one kind of dependencies is used to express any kind of build relation
such as “executables are built from object files”, “source files need declarations of
header files”, “header files extend each other”, etc. Unraveling these relations is
necessary to avoid the presence of circular dependencies.

Traceability, Versioning and Variants “make” does not have provisions for
tracing back from build products to the sources they were derived from, nor is there
a means to manage different versions or variants of build artifacts [89, 206, 37].
Various descendants of “make” have been built to treat these problems, but often
this has increased their complexity too much compared to “make”. Hence, other
mechanisms should be used as a complement to “make” to manage traceability,
versioning and variants.

2.2.2 Problems with GNU Make

Modern implementations of “make” like GNU Make offer a number of workarounds
for the aforementioned problems of “make”, but in doing this a lot of understand-
ability problems have been introduced.

2.2.2.1 Understandability

Syntax has Semantics GNU Make still relies on syntactical details like tabs,
spaces (behind the colon) or dollar signs to convey semantics. This is extremely
error-prone, but unfortunately the resulting error messages are very cryptic.

Advanced Language Features Advanced features like simple/recursive vari-
ables, the eval-command and the two-phase execution model make GNU Make
a lot more flexible. As we will see in Section 4.5, macros and other features are
even capable of building abstractions on top of the basic “make” features without
incurring extra overhead [167]. Unfortunately, these features at the same time are
new sources of confusion and misunderstanding. Variables can e.g. be used as
dependent or dependee, or to guard conditional build logic, but erroneously using
:= (simple variable) instead of : (recursive variable) can drastically change the
semantics. Knowledge of the run-time value of variables is a necessity to deal with
this kind of problems.

Precedence of Variables Another way in which variables are hard to under-
stand, are the precedence rules which determine which value assigned to a vari-
able prevails. The least precedence is given to environment variables. The next
ones in the hierarchy are variables specified in the makefile, then those defined



CHAPTER 2 33

on the command line, variables in the makefile marked as overriding another vari-
able and finally rule-specific variables. These rules are complex to remember.
Even worse, the combination with GNU Make’s include facility and dynamically
spawned “make” processes25 makes it very hard to find a variable’s roots. Again,
knowledge of the run-time value of variables is needed to resolve this.

Debugging There is no built-in GNU Make debugger, although there are some
external tools for this (see Section 3.3.4). GNU Make only generates a trace file
with a detailed account of build decisions taken and for each “make” subprocess
an overview of run-time values of variables. This trace file is voluminous and not
well-structured. It is impossible to follow the flow of the build or to keep track of
the location of targets in the build.

GNU Make signals errors in the makefiles at build-time, but the error messages
are rather cryptic. Especially in the case of syntax errors (2.2.2.1) these messages
are not precise. No warnings are given about redundant build dependencies, loops
across “make” processes26, etc. These kinds of “semantic” errors have to be de-
tected manually from the trace file output.

2.2.2.2 Scalability

GNU Make has not solved some of “make”’s scalability problems.

Dependency Extraction Just as “make”, GNU Make still has no built-in facil-
ities for synchronisation of source code and build system dependencies. A pop-
ular workaround is to (literally) include for each source file a dedicated makefile
snippet into the actual makefiles. These snippets contain specialised build rules
which are typically automatically (re)generated in the first phase of GNU Make’s
execution. Because included snippets are actually dependees of the surrounding
makefile (see Section 2.1.3.3) and are regenerated, there will be two executions of
the first GNU Make phase, which is slow (it might even double the compilation
time [167]). Other tricks have to be used to make management of build dependen-
cies feasible (see 4.5.3.2).

Portability Portability of makefiles is a real issue. Command lists can use any
Bash command or shell script and the eval-statement may even execute any string
it is passed during the build. Unless the configuration layer succeeds in abstracting
away platform-dependent program names, switches, paths, line termination, etc.,
build scripts are hardly portable. Mecklenburg [167] notes that developers should
not “hassle with writing portable makefiles”, but rather “use a portable make in-
stead”. In practice, a truly portable “make” is hard to find however.

25Variables need to be explicitly “exported” to pass them down to the new process.
26GNU Make is able to detect loops in one process.



34 BUILD SYSTEM

2.2.3 Problems with GBS

GBS is pervasively used in the open source community. However, many develop-
ers have complaints about it and have even migrated to other build systems (more
on this in Section 2.3.3.1). We present two understandability and three scalability
problems.

2.2.3.1 Understandability

Complexity It is clear from the explanation in Section 2.1.3 that GBS provides
a myriad of configurability techniques and a higher-level way of specifying con-
figuration layer and build layer. Unfortunately, this complexity is also its biggest
drawback. The combination of programming languages, macro system, the sheer
endless list of macros, hidden caching mechanism and slowness of the tools result
in tricky build errors which are hard to resolve. This problem is actually the most
important one of GBS.

Traceability to Build Templates Traceability from errors in a makefile to the
build template (“Makefile.in”) of which the makefile is an instance, is hard to
achieve [62]. This becomes worse if multiple build variants of the source code
need to co-exist, as each one conceptually uses other specifications of dependen-
cies between build artifacts. The only solution to model this is to have one “Make-
file.am” tree per variant, but this is not maintainable [62].

2.2.3.2 Scalability

Although GBS is a very comprehensive build system, it lacks a number of facilities
for scaling up to bigger systems.

Portability There are three portability problems with GBS. First, it heavily de-
pends on Unix tools like the Bash shell. Second, despite the detection of tools
based on provided features (Section 2.1.3.1), GBS in general can only be ported
to another platform if macros have been checked to work for the specific versions
of tools and APIs in use. Third, Mecklenburg [167] argues that the requirement to
generate portable GNU Make code severely restricts the features of “automake”.
Its most advanced language feature is the append (+=) operator. However, Buffen-
barger [37] claims that the “automake” language is still too difficult to understand
and only supports a limited number of languages and file name types, with no easy
way of extending these.

Imprecise Dependency Checks Although GBS has been designed to not require
developers and end users to have the same build tool machinery installed (cf. the



CHAPTER 2 35

horizontal division on Figure 2.1), end users still have too much responsibility.
Dolstra et al. [66] have found that GBS’s dependency checks yield too imprecise
results, such that developers or end users have to resolve the missing or incorrect
dependencies on libraries or tools. Especially the inability to verify if some of
the dependencies are implicit, i.e. unspecified, causes trouble. Automatic package
management, as described in Section 2.1.4.4, is clearly missing, so users need to
manually locate and install missing dependencies. Often, this involves installing
other software, possibly using GBS as well, such that dependency problems can
also manifest there.

Evolution In time, different versions of GBS (and its macros) have not been
able to remain backward compatible. This has caused a lot of grief among build
engineers. Given the advanced features of GNU Make (Section 2.1.3.3), some
prominent GBS people [234] recently have been arguing in favour of dropping
GBS and doing everything with GNU Make instead 27.

2.2.4 Problems with Application of Build Systems in General

The previous sections briefly have highlighted various major and minor under-
standability and scalability problems in “make”, GNU Make and GBS. This sec-
tion extends the discussion to understandability problems encountered during ap-
plication and maintenance of build systems in general and to an extremely common
misconception about the usage of “make”, which has consequences on scalability
and understandability at the same time.

2.2.4.1 Understandability

This section considers three problems related to the understandability and mainte-
nance of build systems.

Stakeholders In Figure 2.2, we have seen that GBS distinguishes two kinds of
users, regular developers and end users. In general, multiple stakeholders interact
with a build system, each with their own concerns and problems. Developers as-
sess the correctness of their code and, if the build failed, try to find out the cause
(e.g. missing dependencies). When adding new sources, they need to understand
how to adapt the build. Maintainers, on the other hand, require full knowledge
of the inner mechanics of a system [46], want to find dead code, to check recent
changes [58], etc. Deployers and open source end users prepare and configure
the environment (library dependencies, system variables, etc.) in order to compile
and install the software, while Quality Assurance just wants to add and run unit,

27http://www.airs.com/blog/archives/95/

http://www.airs.com/blog/archives/95/


36 BUILD SYSTEM

regression and integration tests as seamlessly as possible [172]. Researchers are
interested in (un)plugging experimental tools to analyse the source code, but for
this they need to grasp the development architecture. In fact, everyone (except for
end users) interacting with the software system from the design phase on has to
deal with some facet of the build system at some time. Hence, behind the com-
plex, parametrised build scripts a lot of knowledge is hidden, not only useful for
the stakeholders, but also for comprehension [111] and re-engineering purposes.
Dedicated, flexible tool support is needed to allow easy and effective access to this
valuable data.

Overhead of Build Systems Dubois et al. [71] estimate that in modern scien-
tific programming researchers spend 10 to 30% of their time on the build system,
especially to make the software compile and deal with varying platforms and li-
brary versions. A lot of time is wasted on seemingly simple problems, but the
large, cryptic build systems of legacy systems lack sophisticated error feedback.
As anecdotical evidence, on one and the same day28 two emails were sent indepen-
dently to the mailing list of a framework we are using (LLVM29), each complaining
about a build system problem. The framework itself is very recent, but part of it is
based on the GCC compiler30. One person reported31 that for some reason make
-C dir all and cd dir; make all each did separate things, while some-
one else literally complained32:

llvm-gcc doesn’t build under freebsd-current at the moment. I don’t
know much about the build system of GCC, so figuring out what went
wrong took me quite some time.

This evidence clearly shows that understanding and maintenance of build sys-
tems is an important issue and requires adequate tool support.

Build System Changes Another insight into the complexities of maintaining
build systems comes from Robles [195], who has investigated the role of various
non-source code artifacts in open source software. He has studied usage patterns
of the KDE desktop environment’s source code repository (before its migration to
CMake, see Section 2.3.3.1). He finds that changes to source code and correspond-
ing build modifications are not committed at the same time into the version control
system. Instead, changes to build files are bundled into one big change set. Many
such change sets occur over the investigated period of repository activity. He at-
tributes these observations to two things: (1) the build system needs to change very

28Tuesday, the 18th of December, 2007.
29http://llvm.org/
30http://www.gcc.org/
31http://www.nabble.com/Broken-makefile-dependencies--to14392495.html
32http://www.nabble.com/FreeBSD-current-to14401495.html

http://llvm.org/
http://www.gcc.org/
http://www.nabble.com/Broken-makefile-dependencies--to14392495.html
http://www.nabble.com/FreeBSD-current-to14401495.html


CHAPTER 2 37

(a) (b)

Figure 2.8: Conceptual difference between recursive (left) and non-recursive “make”
(right). The former results in an inconsistent build, because “D” is not rebuilt

after “E” has modified “F” during its construction.

frequently; (2) build scripts are tightly coupled, so most changes percolate through
many of them at once. This is acknowledged by Keith Owens [186]33 who reports
that a cleanup of one central makefile in the Linux build system between version
2.5.15 and 2.5.19 has caused 392 makefiles to be modified. Hence, grasping the
impact of build changes is crucial for the maintenance of a build system.

2.2.4.2 Recursive versus Non-recursive “make”

The adoption of “make” has been plagued by a persistent misconception [171].
Although Feldman presented “make” as “most useful for medium-sized program-
ming projects” developers soon have started to use it for ever bigger systems. To
achieve this, they typically modularise their build per directory, i.e. they put make-
files in each subdirectory in their source code hierarchy and arrange that each
makefile explicitly invokes a separate “make” subprocess for each subdirectory’s
makefile. As such, each subdirectory’s build behaviour is managed locally. New
code can easily be added by providing a new makefile and by making the parent di-
rectory’s makefile invoke it appropriately. This scheme is called “recursive make”
and is used pervasively as the basic structure of the build layer.

Figure 2.8a shows the negative implications of “recursive make” on the build
system’s underlying dependency DAG. A two-level directory structure with “re-
cursive make” is assumed in this example. The key problem is that there is no
communication between different “make” processes, as they do not share memory
nor use a kind of common repository, except for a number of defined constants
and a start target explicitly passed to the child process. As a consequence, the
DAGs of sibling “make” processes like for directories D and E are disconnected,
i.e. there are no interconnections. This is represented by the dashed line on Fig-
ure 2.8a. Although build scripts are cleanly modularised in separate directories,
“recursive make” breaks Feldman’s original DAG model by pruning (possibly)
important links between subgraphs.

33http://lwn.net/Articles/1500/

http://lwn.net/Articles/1500/


38 BUILD SYSTEM

This can lead to very subtle problems. In the top directory of Figure 2.8a, an
application called “app” has to be built. For this, two “make” subprocesses will
be needed, one for each subdirectory, as “app” relies on components “D” and “E”.
Furthermore, suppose that both “D” and “E” rely on the same file, “F”, and that
“D” will be built first. The first “make” subprocess will do its job and generate
“D”. Then, a second subprocess will construct “E”. However, for some reason “F”
is modified during the build of “E”, or in the extreme case only “F”’s time stamp
is updated. In any case, “E” is constructed from the modified “F”, the subprocess
terminates and the top process will link “D” and “E” into “app”. “app” obviously
has a problem, as it ultimately relies on components which were generated from
inconsistent versions of “F”. Because the dependency of “D” and “E” on the same
file (“F”) is expressed in two separate, non-communicating “make” processes, the
commonality of “F” cannot be detected by the parent process and hence not be
dealt with.

This kind of problems have plagued “recursive make” for quite some time,
hence there are a number of known, but unsatisfying workarounds for them. The
easiest approach is to invoke “make” a couple of times, such that a more or less
stable situation is obtained. As a special case, loops can be made inside the make-
files themselves to have more fine-grained control over the build subcomponent to
stabilise. Of course, this drastically hampers incremental compilation efficiency
and looping not always has effect, e.g. if “F” would be modified each time “E”
is considered for (re)build. Instead, one could deduce a particular build order in
which no inconsistency arises. In our example, this would mean to first build “E”
and only then to consider “D”. In small builds, this strategy might be feasible, but
this very soon gets unmanageable. A third workaround is to add extra dependen-
cies to the various makefiles to make up for the missing interconnections. This of
course requires thorough knowledge about the most crucial missing dependencies,
and can also lead to maintenance nightmares. Every build re-engineering action
potentially requires dependencies to be updated in various makefiles. None of
these workarounds is satisfying, and they only increase the complexity of the build
system.

There are other problems associated with “recursive make” as well, with less
or even no possible solutions. Parallel builds are almost always broken. The miss-
ing interconnections between build subgraphs are actually crucial synchronisation
beacons, i.e. they allow “make” to perform a rudimentary form of race condition
detection. Fixing this is hard to do. A second inherent disadvantage is the possibly
high cost of subprocess creation [167]. Third, the strategy used to recurse through
the directory structure is spread across all makefiles. This is not only a matter of
extra SLOC. It can lead to maintenance problems and can induce build problems
because each subdirectory is responsible for resuming the build recursion in the
right way. This can be beneficial, but in the case that certain special actions are



CHAPTER 2 39

required, a traditional “recursive make” cannot enforce these. Modularisation of
the build recursion logic is the answer, but this is not trivial to achieve (as we will
see in 4.5.3.2).

The real solution to these problems is to drop “recursive make” altogether and
to use a “non-recursive make” instead [171]. Basically, one “make” process is
responsible for building everything, without delegating tasks to “make” subpro-
cesses. As a result, this one process sees the whole build dependency graph,
eliminating the problems mentioned above. An extra advantage is that the added
dependencies allow better opportunities to shortcut/prune a build, i.e. for incre-
mental compilation. Faster builds are the result of this. Figure 2.8b illustrates
this on our example system. In this case, the common dependencies on “F” are
known by “make” and it is possible to fix the build order problem by declaratively
specifying the required dependencies. Of course, the naive approach of using only
one physical makefile to describe the whole build is not feasible. Instead, people
can exploit “make”’s include feature as discussed in Section 2.1.3.3. The build
can then still be modularised in various makefile snippets, but instead of invoking
them as independent subprocesses, they are textually combined at the start of the
top “make” process to give the illusion of one big makefile at build-time. An added
benefit is the ability to combine “recursive” and “non-recursive” build like this by
conditionally choosing either the recursion or the include scheme.

However, there is no such thing as a free lunch. The fact that a build graph is
constructed for the whole system, means that extra care is required when specify-
ing build rules. “make” only has one namespace, so variables, macros, functions
and targets should have a unique name. Similarly, the current directory in relation
to which files are looked up and compilers put their generated code, is harder to
find out. For “recursive make”, this is almost always the makefile’s enclosing di-
rectory, but for “non-recursive make” this always remains the outermost directory.
All target names and commands should contain relative paths or a “make” vari-
able can be used to keep track of the current directory. Another drawback is the
overhead of generating the whole build dependency graph. Although it gives more
confidence in the build, this can especially hit developers when they only need
to rebuild a particular subdirectory of the system. Special care is needed to han-
dle this. Some makefile generators like automake (see Section 2.1.3.2) explicitly
provide support for non-recursive make34.

Unless special care is taken to devise, document and enforce build system id-
ioms like “recursive make”, people are puzzled by this complex composition of
the build scripts. The build parameters introduced by the configuration system
aggravate things even further, as some design decisions may be tied to particu-
lar configurations only. Manual inspection of the build and configuration scripts,
aided by lexical search tools like “grep”, is not effective in these circumstances.

34http://sourceware.org/automake/automake.html#Alternative/

http://sourceware.org/automake/automake.html#Alternative/


40 BUILD SYSTEM

If a build system becomes too hard to understand and maintain, the risk of tailor-
ing the source code structure to the build layout, just to make it compile and link,
increases. The combination of all these problems warrants explicit tool support
to manage build systems, especially if the phenomenon of co-evolution of source
code and the build system presented in the next section is considered.

2.3 The Roots of Co-evolution

This section first examines existing conceptual and experimental indications of
co-evolution of source code and the build system, and then postulates four “roots
of co-evolution” as conceptual evidence of co-evolution. The existing indications
comprise research in which source code and the build system interact in some way
(Section 2.3.1), Favre’s [85] taxonomy of co-evolution (Section 2.3.2) and early
experimental evidence of co-evolution (Section 2.3.3). We distill the roots of co-
evolution from research on programming languages and the build system. The
roots correspond to specific links between source code and the build system which
explain why co-evolution of source code and the build system occurs and they can
serve as the starting point for techniques to deal with the co-evolution.

The key point that this section tries to make clear is that co-evolution is a fun-
damental characteristic of build systems, but that the understandability and scal-
ability problems outlined in Section 2.2 make it almost impossible to firmly deal
with co-evolution without the appropriate support by tools.

2.3.1 Co-evolution in Software Development

There are both indirect and direct indications of co-evolution of source code and
build system. The indirect indications can be found in reverse- and re-engineering
research. Explicit work on co-evolution is situated in software architecture, soft-
ware design, product line research and software testing.

In the reverse-engineering community, Tu et al. [228] have proposed an addi-
tional view to Krüchten’s “4+1” View model [139]. The “build time architectural
view” documents the high-level architecture of build systems, i.e. the various steps
involved across the whole build, even if it spans multiple invocations of “make”.
This technique enables them to find evidence of a kind of bootstrapping architec-
tural build style within the build systems of GCC, Perl, etc. To some extent, Tu et
al. have corrected the build system’s omission from Krüchten’s software develop-
ment model and as such acknowledge the importance of the build.

Holt et al. [119] claim that the build process work flow is the ideal base for tool-
supported comprehension of big software systems. This claim is based on the fact
that developers encode various facets of program design into the build process,
such as emulation of modules by header files, the order of linking (composing)



CHAPTER 2 41

an application, etc. This knowledge has no equivalent in the source code, so the
build system is the only reliable source of this data. Similar observations are made
by Champaign et al. [44], in the context of the study of a source code package
stability metric. They note that insight into the build system “was essential to
getting an accurate view of dependencies between packages”. In other words,
to get a slightly higher-level view on source code organisation, the build system
proves indispensable. They remark, however, that implicit dependencies generate
noise in their metrics, as these correspond to unspecified relations.

In the re-engineering community, Fard et al [82] have looked at co-evolution
from another angle. They describe how header file dependencies in C/C++ sys-
tems can be restructured in order to dramatically speed up builds. A reflexion
model [177] is used to expose any divergences and absences w.r.t. a proposed
source code architecture. All repair actions undertaken to converge concrete and
conceptual architecture are used to control directory and header file restructuring.
In effect, the build system is refactored by restructuring the source code. As a
side-effect, the build and the software architecture become easier to understand, as
they become better structured. This touches upon the observations in Section 2.2.1
and Section 2.2.2 about the integration problems of source code relations in the
build system and suggests a close relation between source code architecture and
the build system.

In the reverse-engineering community, there is also direct evidence of co-
evolution phenomena. Many reverse-engineering techniques have been proposed
to recover and document the “concrete” architecture of a system as modeled in
its implementation, and to contrast it to the “conceptual” architecture originally
designed for it. Most of these approaches are based on so-called fact extractors.
In this field, data extracted from source code [173, 22, 176, 127, 29, 92], object
files [111], etc. is stored as facts and relations between them. Using a query lan-
guage, these facts can be filtered, reduced and composed (using human interven-
tion) into a high-level architecture of a software system. Filtering and composition
are repeatable in order to keep track of the recovered architecture during the sys-
tem’s evolution. These techniques explicitly target co-evolution of source code
and architecture.

Recently, additional direct indications of the existence of co-evolution phe-
nomena in software development have been given. Wuyts [243] has studied co-
evolution of design and implementation of a software system. To keep both de-
velopment phases synchronised, he proposes a logic meta-programming (LMP)
approach in which a logic meta-language is integrated with a base programming
language. Both languages can access each other and exchange data. The logic
meta-layer is capable of encoding the program’s design in various ways (design
patterns, UML class diagrams, etc.) and of reacting on violations or other events
in the base program. The work of Kellens [128] is closely related to this, but he



42 BUILD SYSTEM

focuses on co-evolution of design regularities like programming conventions with
the implementation. He uses “Intensional Views” to express the intent of design
regularities, and these are evaluated on each source code change made by a devel-
oper. He or she gets immediate feedback on violations of the co-evolution. The
work of van Deursen et al. [232] considers co-evolution of identified variability
opportunities of a product line and the concrete variability supported by the im-
plementation. Synchronisation between these two requires an iterative process to
recover the implemented variability points, update the configuration specifications
and enhance the implementation with new extension points.

Closer to the domain of build systems, Moonen et al. [172] have reported on
the co-evolution of test suites and source code. They note that “when evolving a
system, the tests often need to co-evolve”, whereas at the same time “many soft-
ware evolution operations cannot safely take place without adequate tests”. This
looks similar to the relation between source code and the build system. However,
whereas source code is just plain text without a correctly functioning build system,
a system with test failures can often be compiled and executed. Hence, developers
are not automatically forced to make all tests pass before going on. Many software
processes (Extreme Programming) try to artificially impose this restriction35. In
order to make test-enabled software development manageable, Moonen et al. pro-
pose to refactor the base code driven by the desire to keep the tests intact, i.e. by
not changing interfaces. However, they note that in their case studies, test code
quality is not as complete and high quality as the source code. This is analogous
to the many build problems which have never received the same level of attention
as source code has.

The indications in this section show that co-evolution in software is not a new
phenomenon. Moonen et al. [172] even hint at other co-evolution relations be-
tween source code and other software artifacts like specifications, constraints and
documentation. The next section presents a taxonomy of co-evolution in gen-
eral [85]. We use this taxonomy to situate the co-evolution of source code and the
build system which is the topic of this dissertation.

2.3.2 A Taxonomy of Co-evolution in Software Development

Favre [85] has generalised the concept of co-evolution developed by the approaches
described in the previous section. For this, he has proposed a taxonomy in the form
of a four-dimensional space in which software artifacts can be positioned. The four
dimensions consist of level of abstraction (instance, model, meta-model or meta-
meta-model), the phases of the software development cycle (requirements, anal-
ysis, etc.), possible software representations (source code, XML, etc.) and time.
Any software artifact can be assigned a unique co-ordinate in the space formed

35E.g. by integrating it within the development environment or promoting test-driven development.



CHAPTER 2 43

by the first three dimensions, whereas the fourth dimension provides a mechanism
to model subsequent versions of the artifact, i.e. its evolution. As an example,
a source code implementation model corresponds to the source code model of a
software system in the implementation phase. The build system is a complemen-
tary software representation in the implementation phase of which an instance (a
running build system), model (the GBS example in Appendix A), meta-model
(Figure 2.2) or even meta-meta-model (Figure 2.1) can be situated in Favre’s tax-
onomy. This taxonomy is sufficiently general to model co-evolution.

Co-evolution can be interpreted in Favre’s taxonomy as the evolution in time
of changes with “vertical impact”. If a change to a software artifact at one level
of a given dimension (e.g. the build system representation) requires changes to
an artifact on another level of this dimension (e.g. source code), this change is
said to have a “vertical impact”36. Depending on whether the change moves from
high- to low-level or the other way around, Favre talks about “downwards” or
“upwards” evolution. Whichever direction the changes are made in, they have to
be made to ensure consistency between different artifacts [85]. The evolution in
time of software artifact changes with “vertical impact” between two levels of a
given dimension, shows in fact how software artifacts corresponding to the two
levels co-evolve. In our example, the evolution in time of changes with “vertical
impact” between source code and build system (representation dimension), gives
an overview of possible co-evolution between these two representations of soft-
ware. It is important to note that Favre does not claim that co-evolution occurs
between any two representations, levels of abstraction or software development
phase. Rather, his taxonomy gives a reference framework to understand and situ-
ate co-evolution.

As Favre notes [85], changes with a “vertical impact”, and hence co-evolution,
should lead to corrective co-evolution actions. Otherwise, inconsistencies arise.
If the GBS model of a build system would change, the example of Appendix A
would become useless if it was not adapted to the new model. This phenomenon is
similar to the relation between the build system and source code, because unbuild-
able source code is just plain text. Developers are forced to look after their build
system, otherwise they cannot compile, link and compose their system, i.e. they
would not be able to test and debug their changes or release the software product to
their customers. Unfortunately, the corrective co-evolution actions are hampered
by complex and hard to maintain build systems. Without tool support, the impli-
cations of source code on the build system and vice versa are not clear and hence
no appropriate action can be undertaken. This nuance is not made by Favre [85],
but seems obvious from other work on co-evolution [243, 232, 128, 172] and from
what we have discussed about the build system in Section 2.2.

Favre’s [85] taxonomy gives a general reference framework to situate co-evo-

36The notion of changes with “horizontal impact” does also exist, but is not relevant to this discussion.



44 BUILD SYSTEM

lution in software development. In principal, co-evolution occurs when, spread
over time, changes with “vertical impact” are made between two levels of a given
dimension of the taxonomy. Corrective actions are required to enforce consistency
between the two levels. This dissertation focuses on the source code and build
system levels of the representation dimension to find conceptual and experimental
evidence of co-evolution of source code and the build system. Its second goal
is to propose dedicated tool support for enforcing consistency between the two
representations.

The next section discusses early experimental evidence of co-evolution be-
tween source code and the build system.

2.3.3 Early Evidence for Co-evolution between Source Code
and the Build System

The two cases described in this section independently give early experimental ev-
idence of the existence of co-evolution between source code and the build sys-
tem. The first case describes the migration of the open source KDE desktop en-
vironment37 to another build system. The second case relates on the work of de
Jonge [57] about constraints on source code reuse imposed by the build system.

2.3.3.1 KDE Migrates from GBS to CMake

KDE is a major open source desktop environment (started in 1996) based on the
Qt rich client development framework38. This is a C++ framework which provides
amongst others GUI widgets and an event system (signal/slot system). To over-
come C++’s lack of reflection capabilities, Qt uses a special meta-object compiler
(“moc”) to process macros within header files before the actual compilation occurs
in order to generate the meta-information required to implement the advanced Qt
framework features. Developers have extended KDE’s GBS build system (Sec-
tion 2.1.3) in various ways to incorporate “moc” into their development environ-
ment. Many more GBS extensions have followed. The integration of the DCOP
communication protocol39 e.g. required automatic generation of many new types
of files during the build process. Tools to process documentation, translations, UI
configuration, etc. had to be integrated as well. To crown it all, the KDE source
code currently consists of almost 6 MSLOC40 and has to be extremely configurable
to let Linux distribution providers customise it. As explained in Section 2.1.3.1,
GBS is also responsible for managing this. Hence, KDE puts an enormous strain
on its build system.

37http://kde.org/
38http://trolltech.com/products/qt/
39http://developer.kde.org/documentation/other/dcop.html
40Source Lines Of Code, i.e. the number of lines of code which do not represent comments or whitespace.

http://kde.org/
http://trolltech.com/products/qt/
http://developer.kde.org/documentation/other/dcop.html


CHAPTER 2 45

In 2005, developers unanimously have decided to move to a new build sys-
tem41. This migration can be attributed completely to the rigid, inflexible build
system KDE developers had obtained at that point in time. As noted by Troy Un-
rau, only a limited number of people (less than ten) had a good understanding of
the build system42, such that simple actions like moving files from one folder to
another or starting a new subproject had become much too complex and heavy-
weight43. A first pilot project with SCons44 failed because the SCons developers
did not provide enough support. A second project, started in 2006, successfully
migrated the KDE code base to the CMake45 build system. CMake’s biggest sell-
ing point is the cross-platform generation of the build layer, e.g. as makefiles or
XCode project files, its speed and its compact, declarative configuration scripts. In
the meantime, some other major open source systems like Scribus46 have decided
to move to CMake, for exactly the same reasons.

KDE’s migration to another build system provides early experimental evidence
of co-evolution of source code and the build system. The KDE people have de-
cided that the flexibility of CMake (and corresponding freedom at the source code
level) was worth the huge effort of reimplementing the build system from scratch,
composing a new build development tool chain and educating all developers about
CMake. They did not really have a choice, as there were already clear signs that
source code development was suffering from build system strain. Given the large
number of developers around the world (more than thousand), this could have led
to a disaster. Hence, this case illustrates that a rigid, inflexible build system forms
a serious threat for source code evolution.

2.3.3.2 Source Code Reuse Restricted by the Build System

de Jonge [57] has looked at source code reusability. Decades ago, this problem
has almost47 been solved at the language-level with packages and modules. In
practice, many projects suffer to make components available for reuse, because
each source code component should be distributed with its own piece of build
system. However, most build systems do not have a clear one-to-one mapping of
source code components to subsystems of the build process and even if there is one,
the subsystem is typically coupled to other subsystems or requires special libraries
to be installed. To boot, the source code component usually should be configurable
too, but the configuration options affecting it are typically spread throughout the
whole build system. Hence, the decomposition into components at the design level

41http://dot.kde.org/1172083974/
42https://lwn.net/Articles/188693/
43http://dot.kde.org/1172083974/
44http://www.scons.org/
45http://www.cmake.org/
46http://www.scribus.net/
47Assuming that the API is not too system-specific.

http://dot.kde.org/1172083974/
https://lwn.net/Articles/188693/
http://dot.kde.org/1172083974/
http://www.scons.org/
http://www.cmake.org/
http://www.scribus.net/


46 BUILD SYSTEM

does not transfer to the build level.
To solve this, de Jonge introduces the notion of build-level components and a

number of rules to which builds should adhere in order to obtain such components.
Build-level components correspond to source code directories which contain build,
configuration and requires interfaces. A build interface describes the build actions
performed by a component’s build process, whereas the configuration interface
exposes all configuration choices affecting the component. The requires interface
lists all the dependencies on other components. Given these, composing a sys-
tem of user-defined components corresponds to configuring or invoking the right
pieces of the interfaces. This is feasible because all configuration and build options
are explicitly documented and enforced. To complement the build-level compo-
nent interfaces and stimulate disciplined application of the components, de Jonge
has devised a range of build-level development rules [57]. A re-engineering pro-
cess has been defined to transform existing software into build-level components.
This has been successfully applied on the well-known Graphviz48 and Mozilla49

applications.
The work of de Jonge gives a second experimental evidence of co-evolution of

source code and the build system. Source code reuse, one of the biggest promises
of software engineering [224], has been studied and remedied for years almost
exclusively on the level of source code and design. However, unawareness of
the crucial link with the build system results in conceptually decomposed systems
which cannot be untangled at the build level.

2.3.4 Conceptual Relations between Source Code and the Build
System

From the initial indications of co-evolution in software development (Section 2.3.1)
and Favre’s taxonomy (Section 2.3.2), we have learnt that co-evolution of source
code and the build system conceptually can exist and what co-evolution exactly
means. The experimental evidence from KDE and de Jonge (Section 2.3.3) has
given us early proof that the phenomenon does exist in practice. However, we
are not aware of more explicit investigation of co-evolution of source code and
the build system, nor of conceptual explanations of the phenomenon, nor of tool
support to deal with it. These three activities are the subject of this dissertation.
To get a better understanding of co-evolution of source code and the build system,
we first unravel its conceptual foundations. In later chapters, these will be used as
the starting point for tool support and as yardsticks to detect co-evolution issues in
case studies.

This section postulates and discusses four “roots of co-evolution”. These rep-

48http://www.graphviz.org/
49http://www.mozilla.org/

http://www.graphviz.org/
http://www.mozilla.org/


CHAPTER 2 47

resent four potential sources of co-evolution of source code and the build system.
They have been derived from existing work on programming languages and build
systems and correspond to bi-directional links between both worlds. These links
are bi-directional in the sense that changes at the source code end of the link have
repercussions on the other end and vice versa. Hence, each of these roots is a
potential source of co-evolution of source code and the build system.

These are the four roots we discuss in this section:

RC1 Modular reasoning in programming languages and compilation units in build
systems are strongly related.

RC2 Build dependencies are used to reify the architectural structure of the source
code.

RC3 Architectural interfaces in the source code are not always respected by in-
cremental build processes.

RC4 Build system configuration layers are used as a poor man’s support for prod-
uct line-styled variability of source code.

For ease of reference, we have assigned a name to each root. The order in
which they are listed is not chosen at random. RC1 deals with basic units of
composition (either in the source code or the build system), while RC2 describes
how to compose these units. Composition has to satisfy certain constraints to
be correct (RC3) and needs to be configured somehow (RC4). The first three
roots correspond to build layer responsibilities (Section 2.1.2), while the fourth
one corresponds to the configuration layer.

The next four sections discuss these four roots in detail. Afterwards, we con-
sider a recent example of an invasive source code change, i.e. the introduction of
AOSD. We argue that this triggers each of the four roots of co-evolution. Hence,
our roots state that application of AOP technology requires many kinds of build
system changes in order to keep source code and the build system consistent with
each other. Experimental validation of this is performed in the second half of this
dissertation (starting with Chapter 6).

2.3.4.1 RC1: Modular Reasoning vs. Unit of Compilation

The first root (RC1) states that modular reasoning in programming languages are
strongly related to compilation units in build systems. This seems rather obvi-
ous nowadays. However, compilation units and source modules do not necessarily
overlap conceptually [23]. Parnas [187] originally considered a module as an en-
tity which hides a difficult design decision from others by only exposing a public
interface (contract) to the outside without access to implementation details. As



48 BUILD SYSTEM

such, different module implementations can be selected during the build or at run-
time without requiring changes to other modules. Once interfaces are agreed upon,
modules can be developed independently and developers can apply local reason-
ing to understand a module’s implementation. This means that they only need to
investigate the module’s implementation and the imported interfaces. This defini-
tion of a module does not postulate how a module should be translated to build
concepts.

We consider two ways in which modular reasoning at the source code level
is related to compilation units in the build system. First, we discuss the granu-
larity of modules and units. If a build system manipulates files (as GBS does),
a module on the language level may either correspond to part of a file, a file or
a collection of files, as long as it hides a specific design decision. On the other
hand, given a module concept of a programming language, one could use a build
system with finer-grained compilation units, similar ones or more coarse-grained
units. Intuitively, a build system with units which are more coarse-grained than the
module concept cannot exploit the programming language’s potential modularity
to its fullest, as a change of module will not be possible without changing other
modules as well. Hence, although conceptually different, modular reasoning at the
source code level is related to compilation units in the build system.

In practice, modules often correspond to at least one file. Historically, many
people had to split their programs in different pieces because of limitations of hard-
ware or compiler [23]. Programming languages like Fortran II [18], PL/I [193],
Algol-60, Simula-67 [184], Algol-68 [151, 150], C [132], C++, Java, etc. have
one-to-one mappings from their respective notion of module to compilation unit.
Mesa [146] and Modula-2 [242] have more elaborate module provisions with ex-
plicit constructs to expose (export) and import interfaces. In Mesa, multiple im-
plementation modules can contribute to the implementation of one interface, i.e.
modules may span across multiple units of compilation. Nowadays, many IDEs
progress in the opposite direction, i.e. they enable compilation units which are
much more fine-grained than the language modules [126, 88, 199].

The first interpretation of RC1 (granularity) does point at a strong relation be-
tween modular reasoning at the source code level and build units, but there does
not seem to be room for change. Once a particular programming language, build
system and compiler have been chosen, both ends of the relation seem to be fixed.
There is a second interpretation of RC1 which is a slight generalisation of the first
one and shows that RC1 can be a real problem. This interpretation corresponds to
the observations of de Jonge [57], i.e. the mismatch between source code reusabil-
ity and the build system. This is essentially a generalisation of the first interpreta-
tion of RC1, as reusability in source code is achieved by a well thought-out decom-
position into modules and coarser-grained components. A typical problem in the
build system, as pointed out by de Jonge, is that contrary to modules, components



CHAPTER 2 49

are not mapped transparently to build “components”. Hence, the corresponding
build units of the modules within a source component cannot be identified clearly
and no clear build, configuration or requires interfaces [57] are specified in the
build system for a particular component. Hence, there is a strong relation between
higher-level modular reasoning at the source code level and build system units,
and it is known to cause problems if the build system is not well-prepared.

This section has shown in two different ways how modular reasoning at the
source code level is strongly related with build system units. One interpretation has
compared module units at the source code level with the granularity of compilation
units provided by build system and compilers. The second interpretation corre-
sponds to de Jonge’s observations [57] about the mismatch in reusability between
the source code and build system. This explains the RC1 root of co-evolution. The
next section discusses RC2, which looks at the composition of modules and units.

2.3.4.2 RC2: Programming-in-the-large vs. Build Dependencies

RC2 claims that build dependencies are used to reify the architectural structure
of the source code. Composition of source code modules into a system is called
“programming-in-the-large” [60], as opposed to “programming-in-the-small” which
is concerned with manipulating data and implementing algorithms. The problem
with programming-in-the-large is that, despite advances in e.g. Component-Based
Software Development [224] (CBSD), dedicated language support or techniques
are not used in legacy systems [84]. Instead, developers have (ab)used the build
system to compose an application from source code modules. Build systems
like GBS and older ones are not prepared for this task, which means that var-
ious workarounds and hacks are needed. Combined with the understandability
and scalability problems of build systems (Section 2.2), this means that program
composition is hidden somewhere in the build system. This clearly hampers evo-
lution of the source code and the build system. This section elaborates on this
phenomenon.

At the language level, modules are connected with each other via importing
and exporting of interfaces [187]. A given composition is valid if a module is
only accessed via its exported interface and if each imported interface is bound to
a concrete module implementation. Languages like C, C++ or Java support this
model. They allow to specify the interfaces or implementations required by mod-
ules or classes, but they are not able to specify the actual composition. If there
are multiple Java classes implementing an interface and no concrete implemen-
tation is asked for in the source code, in general the build system has to select a
particular implementation based on the user’s configuration. The key point is that
these programming languages do not provide explicit means to specify concrete



50 BUILD SYSTEM

program composition50. They only provide programming-in-the-small, whereas
module composition corresponds to programming-in-the-large.

DeRemer et al. have coined the term “programming-in-the-large” [60]. They
have proposed the concept of a dedicated module interconnection language (MIL)
to hierarchically compose modules into a full software system, i.e. to program
with modules. The crucial difference with programming-in-the-small according
to DeRemer et al. is that composition in the latter generates tree-like structures,
whereas an MIL is capable of much more complex, graph-like compositions. The
nodes of the graph can be associated with fragments of a module. The edges
can have structural meaning like “parent-of” relations, or restrict access to nodes.
Nodes without attached fragments only provide structure. Mesa [146] is the pro-
totypical example of a language which combines programming-in-the-small and
programming-in-the-large. It features a powerful module system (with primitive
versioning) in which multiple instances of a module can exist at the same time and
the module itself manages shared state. Mesa has a complex, built-in MIL named
C/Mesa, to hierarchically compose modules into “configurations”. Configurations
can be nested. Multiple implementation modules together can contribute to the
implementation of one common interface. INTERCOL [227] and PROTEL [42]
are other examples of MILs which even provide means for checking consistency
of compositions across module versions.

Despite techniques like MILs, Favre [84] observes that at the end of the 1990s
developers still reason in terms of technologies of the 1970s like programming-in-
the-small, files, makefiles and preprocessor constructs instead of state-of-the-art
technology like (modern incarnations of) MILs, models, configuration manage-
ment, etc. Program structure is modeled as directory containment and composi-
tion of libraries and executables. In other words, the “make” DAG is abused as
an MIL, something it was never meant for and is not capable of, as the “recur-
sive make” discussion in Section 2.2.4.2 shows. Only if one would restrict DeRe-
mer et al.’s graph nodes to be complete modules instead of module fragments, a
“make”-based build system could be considered as a build system-level equivalent
of an MIL51. This leads to problems. Favre [84] gives an example of a system of
which the implementation can only be understood if its makefile of one thousand
lines, all preprocessor code and the C code itself are understood. Specifying pro-
gram composition in the build system implicitly makes the build system a part of
the source code, but the understandability and scalability problems of build sys-
tems (Section 2.2) make the separation between programming-in-the-small and
programming-in-the-large a curse rather than a blessing. Keeping source code and
the build system consistent is a major task.

To summarise, RC2 claims that build dependencies are used to reify the archi-
50Note that higher-level CBSD techniques like Enterprise Java Beans [198] and others do provide declarative

means to compose systems.
51Some of the later build tools provide better support for programming-in-the-large [205, 23].



CHAPTER 2 51

type checking
monolithic separate independent

co
m

pi
la

tio
n

monolithic Pascal

separate
Fortran Simula 67 (bottom-up)

PL/I libraries Algol 68

independent
Fortran PLISS Mesa

PL/I type checking linkers CLU-library
C/C++ [106]

Table 2.1: Tichy’s overview of inter-compilation type-checking approaches [227]. Instead
of the term “separate”, Tichy originally used the term “incremental”. However,

the latter term nowadays [242] is used for any mechanism used to shorten
compilation time by only recompiling those parts which have changed. Hence, we

swap the terms “incremental” and “separate” in Tichy’s overview.

tectural structure of the source code. This refers to the fact that module compo-
sition has traditionally been specified in the build system instead of via dedicated
source code support for programming-in-the-large [84]. Hence, a complex relation
exists between the source code architecture and the build system. Note that this
does not contradict de Jonge’s observations [57], as those were concerned with the
mapping of modules and components to the build system, whereas RC2 is con-
cerned with dependencies between those components. The next section discusses
a consequence of the usage of build systems as MILs: possibly unsafe module
composition.

2.3.4.3 RC3: Interface Consistency vs. Incremental Compilation

The third root of co-evolution (RC3) is also concerned with module composition,
and considers an important side-effect of RC2, i.e. architectural interfaces in the
source code are not always respected by incremental build processes. As we have
seen in the previous section, composition of modules requires that a module is only
accessed via its exported interface and that each imported interface is bound to a
concrete module implementation. There is actually an extra requirement [227, 42]:
all modules of which an imported interface is bound to a moduleM should see the
same version of M . Otherwise, strange side-effects may occur because of incon-
sistent state or behaviour. Unfortunately, build systems do not necessarily enforce
this extra module composition requirement because they typically do not natively
support versioning (see Section 2.1.4.3), and especially because of incremental
compilation and environment processing. We discuss this relation between source
code and the build system in this section.

As Favre [84] has claimed, a build dependency graph can be interpreted as



52 BUILD SYSTEM

a coarse-grained MIL. However, a build system does not just blindly process a
build DAG to construct a system, as this would cause too much redundant work.
Because the DAG specifies the dependencies between compilation units and the
connection between compilation units and modules (RC1 of Section 2.3.4.1), the
build system knows enough to deduce which compilation units should absolutely
be recompiled, which ones possibly and which ones certainly not. Incremental
compilation [41] (also: selective recompilation [9]) is the collective name of tech-
niques aimed at exploiting this knowledge to reduce compilation time. Many lan-
guages have a compiler with a built-in incremental compilation approach, but some
extra-compiler incremental compilation techniques have been proposed as well [9]
and implemented in language-independent build tools like “make” which operate
at the file level. Incremental compilation techniques are based on assumptions and
heuristics of the extent of source code changes, and hence can be characterised
by the risks they take to improve build speed at the expense of type safety (i.e.
consistency of interfaces). Environment processing is a complementary technique
to incremental compilation which is concerned with reducing the amount of en-
vironment (i.e. imported interface declarations) to process during compilation, as
these may accumulate quickly because of transitive module dependencies. Hence,
a build system starts with a complete build DAG, but prunes it based on the in-
cremental compilation and environment techniques in use. We now consider these
techniques and their consequences on RC3.

Tichy [227] has been the first to categorise incremental52 compilation tech-
niques based on a distinction between on the one hand constraints on the incremen-
tal compilation and on the other hand the link-time type-checking (i.e. consistency
of interfaces) approach which is used. Linking is the basic operation performed
by the build system to combine modules together into an application or library.
The constraints on incremental compilation refer to the fact whether incremen-
tal compilation is not possible at all (“monolithic”), is possible only if modules
are combined following a partial order (“separate”), or is possible in any order
(“independent”). The other dimension, inter-compilation type checking, ranges
between no type-checking during linking (“monolithic”), type-checking of inter-
faces if files are processed in a partial order (“separate”) and type-checking regard-
less of processing order (“independent”). Tichy also identified a third dimension,
i.e. consistency of module versions. Tichy’s INTERCOL [227] and Cashin et al.’s
PROTEL [42] are MILs which are able to take the latter dimension into account.

Table 2.1 shows Tichy’s categorisation. At one end of the spectrum, Pascal
does not provide means for incremental compilation, whereas Mesa e.g. allows
incremental compilation in any order with fully checked interfaces in the result-

52Tichy’s original paper [227] used the term “separate compilation” for the collection of all approaches used to
shorten compilation time by only recompiling those parts which have changed, and “incremental compilation” as a
specific case of this. However, later both terms have been swapped in literature (see e.g. Wirth [242]), so we do the
same in this dissertation.



CHAPTER 2 53

ing system. Languages in between like Simula-67 have to be compiled and type-
checked depth-first according to dependencies on other modules. C [132] imple-
mentation modules can be compiled in any order and the linker will check whether
or not the declared variables and procedures used by implementation modules
match the types of actual definitions within the object files, but this type check-
ing is rather liberal (hence: monolithic). Note that some languages like Modula-
2 [242, 106] do all type-checking at compile-time by first compiling all interfaces
and then using the resulting type information to compile each implementation
module. This categorisation clearly shows how type safety (interface consistency)
and incremental compilation are related to each other.

The seminal work of incremental compilation techniques has been made by
Adams53 et al. [9]. They compare various known approaches on one medium-
sized case study. In measuring the efficiency of the techniques, Adams et al.
have looked at speedup of the build. The investigated strategies range from file-
level techniques like “trickle-down” recompilation (cf. “make”, Mesa [146] and
Modula-2 [242]), over “smart” recompilation (only recompiles dependents which
explicitly use changed declarations, as e.g. in the Eclipse compiler [212]) to ag-
gressive interface inferring techniques like “smartest” recompilation. Faster tech-
niques progressively become more dangerous for interface consistency, as they
take more risks by letting some groups of modules use inconsistent versions of
modules or by not using any human interfaces at all (cf. “smartest” recompilation).
If linking can be done incrementally, the above techniques could be used for them
too, although more specialised techniques exist for this [192, 215, 126]. Many
more recompilation techniques have been invented [88, 183, 87, 43, 201, 126], but
for all of them the remarks above hold.

Adams et al. further point out that selective recompilation has other harmful
consequences besides breaking interface consistency. First, they might reduce the
opportunities for parallel builds, although it does not preclude it. Second, inter-
procedural analysis cannot be combined as is with incremental compilation ap-
proaches like “smart” recompilation, as its whole-program knowledge cannot eas-
ily be updated incrementally. Approximation of the analysis results circumvents
this, but it requires extra work to obtain sufficiently precise results [52]. Third, in-
cremental compilation suffers from the so-called “big inhale” phenomenon. Adams
et al. have measured that on average for each compilation unit 1.9 times as much
environment data is passed to a compiler (signatures and declarations of other
modules), whereas only 20% of this is actually used. This “big inhale” can con-
sume up to 50% of compilation time [9], especially for low-level modules which
have many (transitive) dependencies [120]. As changes to interfaces are automati-
cally detected by incremental compilation approaches, developers are not afraid of
them anymore [42, 9] and hence make the “big inhale” even worse. Limiting the

53Rolf Adams is not related to the author of this dissertation.



54 BUILD SYSTEM

propagation of low-level interface changes is a possibility to deal with this [120],
but to really benefit from recompilation speedups, the “big inhale” phenomenon
itself should be tackled.

Gutknecht [106, 9] has classified the existing approaches for environment pro-
cessing. Environment data can either be loaded from a symbol file in source form
(class α) or in a compressed format (class β). The latter is more efficient if the
units change less often than they are read. A symbol file can contain data of only
one module with unresolved references to other modules (class A) or flatten all
dependency information transitively reached from a module (class B). Loading is
faster in the latter case, but more space is required (lots of duplication). C compil-
ers belong to the Aα category, while Ada and Modula compilers are most of the
time Aβ, except for Gutknecht’s own approach (Bβ) [106]. By ignoring symbol
files which are not used at all (“environment pruning”) or only the symbols which
are not referenced (“selective imbedding”) [42] up to 80% of the environment data
can be filtered out [9]. Once again, finer-grained techniques obtain better results
in reducing incremental compilation overhead, but take certain risks to accomplish
their task.

This section has shown how incremental compilation and environment pro-
cessing are build system techniques to speed up compilation, but which take risks
in doing so. Hence, dependencies between source code modules may be ignored
on program changes, such that the resulting composition does not respect the con-
sistency requirement of module composition [227, 42]. Changes of incremental
compilation technique or program interface modifications may lead to inconsis-
tency problems. This explains the third root of co-evolution. The next section
discusses the last root.

2.3.4.4 RC4: Program Variability vs. Build Unit Configuration

The fourth and final root of co-evolution between source code and the build system
states that build system configuration layers are used as a poor man’s support for
product line-styled variability of source code. It is concerned with the mechanisms
to statically54 manage sources of variability in a software system:

• platform-dependent code

• selection of features

• selection of module alternatives

• consistency of versions

As a typical example, we have seen that GBS (Section 2.1.3) handles vari-
ability via a tight integration of source code and the build system. To abstract

54As discussed in Section 2.1.4.6, variation points may also exist long after build-time [64].



CHAPTER 2 55

over platform-dependent code and feature selection in the source code, autoconf’s
build-time parameters can be used, but developers especially apply the C prepro-
cessor. The latter is a simple but powerful tool which has lived in a symbiotic
relation with the C compiler from the beginning to resolve many shortcomings of
the C language and even of C++ [169]. As the C preprocessor is a text processing
facility, preprocessor code ignores C’s syntax rules. Because in addition normal
and preprocessor code can be freely mixed, understandability of source code de-
creases significantly.

The C preprocessor offers three main constructs:

#define/#undef macro or constant (un)definition

#include file inclusion traditionally used to emulate a module/interface system

#ifdef conditional compilation which parametrises source code based on the
build system configuration

Preprocessor constants are used in GBS’s “config.h.in” (Section 2.1.3.1) to
pass configuration decisions from the build system (via compiler flags) and also
to establish hardcoded configuration choices in the source code. File inclusion on
its own is not frequently used to manage variability, unless developers physically
alter the included file via the file system. Conditional compilation on the other
hand is the bread and butter of configuring legacy systems, not just in C environ-
ments. Based on a logical formula expressed in terms of preprocessor constants,
certain code parts can be retained for compilation and others filtered out as if they
were comments. Because the preprocessor is just a lexical tool, any incomplete
piece of C code can be conditionally guarded. It is the most popular way to deal
with platform-dependent code and user-configurable features. Ernst et al. [80]
have measured that 37% of source code is controlled by conditional compilation
logic. It is especially used for dealing with portability of an application (37% of
use cases). On average, 8.4% of all lines of source code contains preprocessor
directives. Conditional compilation takes up 48% of these, macro definitions 32%
and file inclusion 15%. Hence, a considerable part of the source code is coupled
directly with the build system for the purpose of configuration.

The third important source of variability, selection of module alternatives, can-
not be treated at the source code level. As explained for RC2 (Section 2.3.4.2), it
is the build system’s responsibility to select the appropriate modules for a particu-
lar system. Based on user-specified configuration choices, certain source files can
be excluded from compilation or not. Incidentally, build script constructs equiv-
alent to the three C preprocessor operations above are typically used in the build
layer behind the scenes to implement this, and also to guard build scripts against
platform-dependent build logic. In GBS e.g., the conditional build logic eventually
changes automake or GNU Make variables.



56 BUILD SYSTEM

The fourth source of variation is versioning. As discussed for RC3 and in Sec-
tion 2.1.4.3, each module can have multiple revisions between which dependen-
cies may exist. Integration between build system and source control systems [227]
deals with this, just as compilers which support versioning of compiled objects [146,
242, 42, 87, 201].

To summarise, there is a very strong link between source code and the build
system on the level of configuration. Source code is typically heavily parametrised
by configuration logic which can be controlled via preprocessor flags passed from
the build system. As explained for RC2, module selection is completely controlled
by the build system. These two observations make it clear that the evolution of
source code configuration logic is closely related to evolution of the build system,
and vice versa. This concludes the explanation of RC4, i.e. the last root of co-
evolution.

2.3.5 Summary

This section has discussed four roots of co-evolution which represent a concep-
tual rationale for the existence of co-evolution between source code and the build
system. RC1 relates modular reasoning in programming languages to compila-
tion units in build systems based on the mapping of modules to build units and
de Jonge’s [57] observations about source code reusability and the build system.
RC2 is concerned with composition of modules, which traditionally has been del-
egated to the build system [84]. Unfortunately, this makes program understanding
and evolution more difficult, as build systems have understandability and scala-
bility problems (Section 2.2). RC3 considers an important consequence of RC2,
i.e. the problems induced by incremental compilation [227, 9] and environment
processing [9, 106] on the consistency of module composition. RC4 claims that
build system configuration layers are used as a poor man’s support for product
line-styled variability of source code. We have illustrated this by means of the
GBS system described in Section 2.1.3. Source code is heavily parametrised to
enable configuration control from the build system. The build system configures
selection of source code modules for composition. Each of the four roots corre-
sponds to one conceptual symptom of co-evolution between source code and the
build system.

The next two chapters propose tool support to understand co-evolution of source
code and the build system and apply it on a case study to validate the four roots
in practice, i.e. to check whether they really are capable of explaining symptoms
of co-evolution of source code and the build system. Once the roots have been
validated, we can use them to predict source code or build system evolution prob-
lems. The next section discusses how the introduction of AOSD triggers changes
in the source code for each of the four roots of co-evolution. Hence, our (vali-



CHAPTER 2 57

dated) roots state that application of AOP technology requires many kinds of build
system changes in order to keep source code and the build system consistent with
each other. Experimental validation of these predictions is performed in the second
half of this dissertation (starting with Chapter 6).

2.4 The Relation between AOP and the Roots of Co-
evolution

In the previous section, we have derived four roots of co-evolution based on indi-
cations of co-evolution of source code and the build system, early experimental ev-
idence and existing research on programming languages and build systems. These
roots represent four ways in which source code changes induce changes on the
build system and vice versa. Source code changes can result from small program
modifications, changes to the programming language (model) or even switching
from programming paradigm (meta-model). Recently, the latter kind of changes
has shown to be a reality. Similar to what we have seen for the various recompi-
lation strategies and environment processing approaches compared by Adams et
al. [9], ever more complex, finer-grained composition techniques at the language-
level are being put forward to enable a more flexible design of a software system.
They propose new kinds of modules, other ways to structure a system, more ad-
vanced type systems and better abstractions for configurability. Whereas many
ideas do not make it in practice, some of them do and present new challenges to
co-evolving software participants like the build system. This dissertation focuses
on one of these technologies, i.e. aspect oriented software development (AOSD).

Contrary to other technologies, AOSD has received a lot of attention from ma-
jor industry players like IBM [200]. A lot of care has been taken to develop an
industry-level aspect implementation for Java, AspectJ [133], which at the same
time has become a yardstick for many aspect language researchers. In other words,
AOSD makes a big chance to survive. Most of the software in existence today is
legacy code however, so AOSD technology should be adapted to these environ-
ments to catalyse industrial adoption [142, 202, 170]. Before this can happen, the
consequences and risks of introducing AOSD in a legacy system should be ex-
plored. The four roots of co-evolution established in Section 2.3 and validated in
later chapters, suggest that one of these risks is the fact that existing build sys-
tem technology is not able to keep pace with the source code changes [142, 202]
introduced by AOP. Source code and the build system become inconsistent if co-
evolution between source code and the build system cannot be managed. This is
harmful for the adoption of AOSD.

Case studies which focus on the effects of co-evolution of source code and
the build system on the introduction of AOSD in legacy systems are presented in



58 BUILD SYSTEM

later chapters. This section discusses the conceptual impact of AOP on the source
code level, for each of the four roots of co-evolution. Assuming that these roots
are valid, this predicts changes in the build system. First however, Section 2.4.1
describes the ideas of AOSD at the source code level.

2.4.1 AOP

Aspect oriented programming (AOP) is targeted at modularising so-called “cross-
cutting concerns” (CCCs) [134]. When implemented using traditional program-
ming language techniques, these concerns cause two undesired phenomena to
crop up in the source code: scattering and tangling. The former corresponds to
implementation fragments of a concern (like e.g. caching) which occur at many
places throughout the source code. Changes to the concern’s implementation likely
amounts to making changes at many places in the system, which is tedious, error-
prone and hampers understandability. The situation is even worse, because at each
location where a caching concern fragment occurs, it can be tangled (mixed) with
fragments of other concerns. This means that programmers need to understand
the interplay between multiple concerns before being able to modify the caching
concern. AOP deals with these undesirable program properties by extracting cross-
cutting concerns in a new kind of modules: aspects.

Initial aspect languages were domain-specific, geared e.g. towards synchroni-
sation (COOL) or remote data transfer (RIDL) [161]. Very soon, a movement to-
wards a general-purpose aspect language appeared, culminating into AspectJ [133].
To date, this is still the primary aspect language in existence, both in research and
in practice. AspectJ is an aspect language for Java which introduces the concepts
of advice, pointcut, join points, etc. An aspect is similar to a module as we have
considered in this chapter. The main difference with e.g. C translation units or
Java classes is the presence of “advice”, which consists of a “pointcut”55 and an
“advice body”. According to the most common school (“asymmetric AOP”), the
implementation of crosscutting concerns is extracted from the “base code”. The
latter corresponds to the implementation of the main concerns, the so-called “dom-
inant decomposition” which forms the backbone of the whole system. CCC imple-
mentation fragments are separated from the base code and localised into (possibly)
multiple advice bodies of an aspect.

Commonly, a distinction is made between “homogeneous” and “heterogeneous”
CCCs [51]. Homogeneous concerns are said to look almost identical everywhere
they occur. On the other hand, heterogeneous concerns may vary widely between
different occurrences. As a consequence, the implementation of homogeneous
concerns may easily be localised into one advice body, whereas heterogeneous
concerns are harder to implement in a robust way. In the latter case, the advan-

55Sometimes abbreviated to “PCD”, for “pointcut designator”.



CHAPTER 2 59

tages of AOP may seem to be limited, but this actually depends on the expressivity
of the aspect language, i.e. the advice and pointcut language. The better variability
can be expressed in the aspect language, the easier heterogeneous advice can be
extracted into advice.

Code separation is only one part of the effort required to resolve scattering and
tangling. One still needs to specify at which moments during the base program
execution an advice body should be invoked. Instead of embedding explicit calls
to advice within the base code, an advice is invoked automatically once a condi-
tion (pointcut) is satisfied. This inversion of dependencies [182] forms the core
idea behind AOP. The moments in time when advice can be triggered are called
“join points”, as this is where the main concern(s) and a CCC join each other.
Established kinds of join points are method calls and executions, variable access
and manipulation, etc. A pointcut can make use of program structure, name pat-
terns, dynamic program state, etc. to describe the intended set of join points. The
process of matching join points with a pointcut and executing advice on a point-
cut match is called “weaving”. Conceptually, a “weaver” monitors the program
execution and checks each join point to decide whether there is a match or not.
In practice, the set of interesting join points can be reduced based on analysis of
the pointcuts, or weaving can be moved completely to the compiler, with only a
couple of dynamic checks (“residues”) left at run-time. The only restriction is that
the developer should always have the perception of a run-time monitor.

Some aspect language like AspectJ also provide means for managing static
crosscutting concerns, i.e. inter-type declarations56 (ITD) [133]. Whereas advice
enables means to alter program behaviour, ITD alters types or may facilitate pro-
gram verification and error handling. The latter two applications solicit compiler
feedback if a user-specified pointcut matches during weaving. Type alteration al-
lows classes and interfaces to be extended with new attributes or methods and
may even change the inheritance hierarchy by adding new interfaces to be im-
plemented or a superclass. The idea is that these structural modifications support
behavioural CCCs implemented as advice, but that they also allow base code de-
velopers to explicitly use the introduced attributes or methods. Griswold et al. call
this “language-level obliviousness” [105], i.e. developers are aware of the wo-
ven aspects. If developers do not know anything about the possible aspects, one
speaks of “designer obliviousness”, unless developers may prepare the base code
to expose better join points (“feature obliviousness”).

From the asymmetric AOP perspective, aspects are a kind of parasite on top of
the base code. They have more powerful constructs to compose concern fragments,
i.e. advice and ITD, than base modules have. At the other extreme, “symmetric
AOP” considers all modules to be equal in power (no base code) and to be capa-
ble of composing with each other using advanced mechanisms. For developers,

56The original name for this feature was “introduction”.



60 BUILD SYSTEM

this corresponds to “pure” obliviousness [105]. The hallmark example of symmet-
ric AOP is Multi-Dimensional Separation of Concerns [226], but several attempts
to implement this have failed thus far. Asymmetric AOP is the dominant AOP
approach.

AOP has especially been studied in the context of OO systems, as a means
to overcome the problems of scattering and tangling in even the most advanced
OO languages. Nevertheless, CCCs are more fundamental than this. Anytime a
problem is tackled by making some structural design decisions, remaining con-
cerns have to fit into this main decomposition somehow. This problem is named
the “tyranny of the dominant decomposition” [226]. Hence, CCCs not only occur
in OO systems, but also in procedural or functional programs [134, 142, 202], as
these also start from a main decomposition of the system. Keeping in mind that
OO languages offer more powerful composition constructs than modular or pro-
cedural programming, this means that the latter have even less means to manage
CCCs. Research has shown [36, 51, 33, 34, 35, 32] that CCCs represent an impor-
tant evolution problem in legacy systems, especially if one takes the scale of these
systems into account (millions of lines of code). Tangling and scattering of CCCs
with the main concern heavily impact program understandability, while scattering
increases the cost of maintenance and reduces traceability of code fragments to the
modeled concern. Various researchers have considered AOP as a viable solution
to deal with this problems in legacy systems [202, 179, 32].

This dissertation considers the impact on the build system of integration of
AOP technology into the development process of a legacy system. The aim of this
is to uncover the hidden cost of evolving the build system on source code changes,
i.e. the practical consequences of co-evolution of source code and the build sys-
tem. The remainder of this section shows how introduction of AOP technology
indeed classifies as invasive source code changes according to the four roots of
co-evolution (Section 2.3.4). Later chapters validate this conceptual evidence of
co-evolution of source code and the build system with a number of representative
case studies.

2.4.2 RC1: Modular Reasoning vs. Unit of Compilation

AOP introduces a significantly different kind of modular reasoning compared to
previous paradigms [220, 219, 162, 135], i.e. whole-program reasoning. To better
understand the virtues and nature of this kind of modular reasoning supported
by AOP, Sullivan et al. [219] and Lopes et al. [162] independently have tried to
formalise traditional and AOP modularity using design structure matrices (DSMs)
and real options theory [19]. This section uses these techniques to highlight the
shift in modular reasoning by AOP to whole-program reasoning, whereas later
sections use them to highlight other characteristics of AOP. Kiczales et al. [135]



CHAPTER 2 61

co
nc

er
n1

co
nc

er
n2

C
C

C
1

C
C

C
2

in
te

rf
ac

e1

in
te

rf
ac

e2

im
pl

em
en

ta
tio

n1

im
pl

em
en

ta
tio

n2

as
pe

ct
1

as
pe

ct
2

concern1 X
concern2 X

CCC1 X
CCC2 X

interface1 X
interface2 X

implementation1 X X X
implementation2 X X X X

aspect1 X X X X X X
aspect2 X X X X

Figure 2.9: Example EDSM of an AspectJ-based system. The first four rows and columns
consider concerns as environment parameters, the fifth and sixth row and column
represent design rules (interfaces), and the remaining four rows and columns are
design parameters. The orange four-by-four matrix in the middle is a basic DSM.

provide a different theory for whole-program reasoning. Based on RC1, this shift
in modular reasoning has important consequences on compilation units in the build
system.

We first explain the concepts of DSMs and real options theory. A basic DSM
looks like the four-by-four orange matrix in the middle Figure 2.9. Its rows and
columns consist of the same list of “design rules” and “design parameters”, both
of which correspond to design choices [187]. A mark in row R and column C
means that design rule/decision R depends on C (or C influences R) according
to the designers. In Figure 2.9, rows and columns have been partitioned and per-
mutated to form square clusters (“proto-modules”) of inter-dependent design de-
cisions along the matrix’s main diagonal. The ideal DSM is empty below the
main diagonal, i.e. there is no coupling between proto-modules. This is very hard
to obtain in practice, but one can reduce coupling as much as possible by using
design rules. These express global rules which must be obeyed by the design
parameters, e.g. that an implementation module can only be accessed via a spe-
cific interface. This shifts the coupling between implementation modules to the
interface level, decoupling the implementation modules from each other. Mod-
ules which only depend on design rules, are named “hidden” because they can
freely be replaced without any impact on other modules. As an example, in the
orange matrix inside Figure 2.9, two design rules have been added to enforce ac-
cess to the two modules (implementation1 and implementation2) via



62 BUILD SYSTEM

two interfaces (interface1 and interface2). The blue region marks the
dependencies from the two implementation (proto-)modules to the interfaces. In
this case, the second module depends on the two interfaces. If we only consider the
orange matrix, both implementation modules are hidden as they only depend on
design rules. Hence, DSMs facilitate understanding of interaction between mod-
ules.

Baldwin et al.’s [19] “net options value” (NOV) theory allows to quantify the
value of a modular design [220]. The NOV is a numerical measure for the num-
ber of options provided by a modular decomposition, i.e. the degree to which
designers can freely experiment with alternative versions of modules before the
costs involved with experimenting outweigh the potential benefits of the new mod-
ules. By measuring the relative NOV of two modular designs w.r.t. the same non-
modular implementation, one can compare the two modular designs with each
other. As design rules reduce coupling and foster hidden modules, they boost the
NOV to higher values. Hence, a DSM gives a visual indication of the achiev-
able NOV. In the orange matrix of Figure 2.9, the two design rules enable the
two implementation modules to be easily swapped instead of just one of them
(implementation2). We now apply DSMs and the NOV for understanding
the influence of AOP on modular reasoning. Later on, they are used to illustrate
inversion of dependencies [182].

The above formalism provides a first explanation of whole-program reasoning.
Sullivan et al. [219] and Lopes et al. [162] have used the concept of “enhanced
DSMs” to model AOP. These are DSMs to which “environment parameters” have
been added as an extra kind of design rule [220] to model the incentives of changes
to design parameters, i.e. the external constraints on the NOV of the system. Sep-
aration of concerns can be translated into environment parameters of a design,
and aspects into extra design parameters (just like normal implementation mod-
ules). Figure 2.9 in full displays the EDSM of an AspectJ system which consists
of two main concerns, two CCCs, two interfaces (design rules), two base modules
and two aspects. We observe that the aspects depend on implementation modules
and interfaces (design rules), i.e. they are not hidden. This corresponds to As-
pectJ’s fine-grained and (conceptually) undisciplined aspect composition, in the
sense that developers are allowed to write pointcuts in terms of implementation
details like accidental variable accesses or internal method calls. From the per-
spective of NOV theory, this system has a serious flaw, which is highlighted in
the colored regions in the lower two rows of Figure 2.9. As aspects depend on in-
terfaces and implementation modules, and implementation modules on interfaces,
this means that interfaces have to be designed and developed first, followed by the
implementation modules and eventually the aspects. No parallel development of
aspects and modules is possible (aspects are not hidden!), which decreases the po-
tential NOV the system theoretically could achieve by extracting CCCs in separate



CHAPTER 2 63

aspect modules. Without restrictions, aspects depend on whole-program reason-
ing, i.e. they require knowledge of the interfaces and modules which are part of the
concrete system configuration. In other words, AOP is able to modularise CCCs
in the classic sense of the word, but the fine-grained composition is not necessarily
beneficial.

To overcome this, Baldwin et al.’s [19] theory suggests to add extra design
rules, such that the gray and red areas of Figure 2.9 become empty, at the expense
of extra rows/columns between CCC2 and interface1. In the case of AOP this
boils down to imposing a kind of abstract pointcut interface between base code
and aspects. If aspects only use these abstract pointcuts, they are sure that base
code changes will not change the semantics of the pointcut. Base code developers
on the other hand have to ensure that their concrete specification of the abstract
pointcuts is updated on base code changes. Griswold et al. [105] have proposed
a crosscut programming interface (XPI) to decouple aspects from the base code.
Other approaches achieve the same effect [11, 129]. Hence, without precautions,
AOP intrinsically requires whole-program reasoning.

A second view on modularity with AOP is given by Kiczales et al. [135]. They
argue that modular reasoning in the presence of crosscutting concerns still makes
sense, but only if the classic notion of interface is extended to so-called “aspect-
aware interfaces” (AAI). These extensions annotate method declarations with the
name of the aspects, advice signatures and pointcuts which advise them. The
interface of an aspect is enhanced with the enumeration of all join points matched
by each advice. Note that all this information can be incrementally updated on
changes to the source code. To understand a module in an AOP system, one should
only look at a module’s implementation, (extended) interface and interfaces of
referenced modules. For CCCs, this is clearly better than the global reasoning
it would take to understand them if they had not been modularised into aspects.
Still, AAIs rely on global configuration information [105], i.e. they have to be
computed based on the set of join points which are actually matched in a particular
configuration of the system. Modular reasoning in the presence of aspects requires
whole-program reasoning.

These two theories independently show how aspects require whole-program
reasoning at the source code level. If the build system’s notion of build unit does
not change, RC1 suggests that inconsistency between source code and the build
system arises. Hence, co-evolution of source code and the build system in the
presence of AOP can only be managed if the aspect language restricts aspect com-
position somehow (by imposing design rules like XPIs [105]), or if build system
technology is adapted to cope with finer-grained composition. However, there are
three more ways in which AOP and build system interact. The next section dis-
cusses AOP’s impact on RC2.



64 BUILD SYSTEM

2.4.3 RC2: Programming-in-the-large vs. Build Dependencies

RC2 claims that build dependencies are used to reify the architectural structure of
the source code. AOP introduces a different way of structuring source code, which
has been referred to as “inversion of dependencies” [182]. This section gives three
explanations of this kind of composition, based on EDSMs (see Section 2.4.2),
comparison to OO composition [160] and connectors in engineering [182]. In-
version of dependencies by itself does not seem to be a problem to express in the
build system. However, the combination with the implicit specification of advised
join points in pointcuts and the ensuing fine-grained composition (see the previous
section) potentially causes problems for co-evolution of source code and the build
system. Design rules like XPIs may be able to relax these problems.

A first explanation of inversion of dependencies can be given using EDSMs [162].
Aspects modularise CCCs, such that tangling and scattering disappear. This can
be derived from an EDSM. There is no tangling on Figure 2.9 because none of
the proto-modules has a row with marks in columns which correspond to concerns
implemented by other proto-modules, i.e. no module depends on concerns imple-
mented by other proto-modules. There is no scattering either as there is no con-
cern column with marks across multiple proto-modules’ rows, i.e. no concern is
depended on by more than one proto-module. As seen in the previous section, the
tangling and scattering dependencies have been transformed into dependencies of
aspects on interfaces and modules. In other words, explicit references between two
or more components (proto-modules) have been replaced with implicit references
from (external) aspects to the previously connected components, i.e. dependencies
have been inverted. This corresponds to the intuitive notion of implicit invocation
of advice if a given expression (pointcut) matches, instead of to explicit method
calls. Hence, EDSMs clearly show how this composition works.

A second account of inversion of dependencies is given by Lohmann et al. [160],
who have directly compared the composition mechanisms of OO with those of
AOP by implementing a product line in C++ and in AspectC++ [214]. They have
found that the AOP approach convincingly beats the OO version in terms of dy-
namic memory requirements and to a lesser degree in stack usage too, whereas
run-time differences are dominated by hardware cost. Interfaces and late binding
in the OO version can be implemented via generic advice57 and introduction of
(empty) methods, whereas RTTI or reflection can be implemented as specialised,
non-generic advice for particular join points. Hence, the explicit inheritance rela-
tions and method calls of an OO system have been replaced by implicitly invoked
advice, i.e. dependencies have been inverted. Note that build-time composition of
aspects on the one hand obsoletes run-time structures like V-tables for registering
late-bound components, but on the other hand restricts configurability to build-

57This is advice which is robust to join point variability, see Section 5.2.1.3.



CHAPTER 2 65

time. This can e.g. be resolved by using run-time weaving [190, 189]. In any case,
the work of Lohmann et al. [160] gives a second motivation of AOP’s inversion of
dependencies.

A third rationale for inversion of dependencies is given by Nordberg [182],
who approaches the matter from an analogy between software development and
mechanical/electronic engineering. The latter assembles mechanical/electronic
parts via a standardised set of connectors, i.e. connectors are well-specified and
remain stable, contrary to the parts they connect and the assemblies they compose.
Nordberg [182] claims that in software development connectors are actually less
abstract and less stable than parts, because there are too many different approaches
and standards in use. The dependencies from the more stable parts on connectors
hampers evolution as parts constantly need to be adapted to connectors. If con-
nectors were implemented using aspects, these dependencies could effectively be
inverted, i.e. the connectors would specify which parts should be connected and
how, instead of the other way around. To facilitate CBSD, Nordberg [182] imposes
a design rule [105] which restricts the scope of functional aspects to components
and applies connector aspects between components. This technique identifies in-
version of dependencies between higher-level components.

This section has discussed new composition techniques facilitated by AOP, i.e.
inversion of dependencies, based on three different points of view. This intro-
duces important changes at the source code level, which means that according to
RC2 changes should be made at the build system level to keep source code and the
build system consistent. At first sight, a build DAG seems capable of modeling this
composition, as inverted dependencies are still dependencies. However, the fine-
grained composition of aspects (Section 2.4.2), more in particular advice, with the
base code precludes this. In addition, pointcuts do not explicitly expose the join
points they match, as they conceptually correspond to an intensional description
of join points instead of an enumeration58. Hence, based on RC2, co-evolution of
source code and the build system is influenced by AOP’s provisions for composi-
tion.

2.4.4 RC3: Interface Consistency vs. Incremental Compilation

The third root of co-evolution states that architectural interfaces in the source code
are not always respected by incremental build processes. In the context of AOP,
we discuss three points of view which have an impact on this root of co-evolution.
Whole-program reasoning, fine-grained composition and aspect interaction con-
flict with the build system’s requirements for incremental compilation, and hence
harm co-evolution of source code and the build system.

The discussion of RC1 in Section 2.4.2 has shown that understanding of as-

58Note that in practice enumerations are frequently used if no intensional description can be specified.



66 BUILD SYSTEM

pects requires whole-program reasoning. As shown by Kiczales et al.’s [135]
AAIs, type checking of interface usage requires knowledge about all aspects by
which the interface or its implementation modules are advised. The consequences
of this have been made clear by the discussion of the NOV of an undisciplined AOP
design (Figure 2.9). Changes in base code interfaces and modules conceptually
require recompilation of affected base code modules and all aspects. Hence, al-
though inversion of dependencies removes dependencies from the base code (Sec-
tion 2.4.3), they are replaced by dependencies from the aspects to the base code
modules. As discussed in Section 2.3.4.3, these dependencies represent new chal-
lenges for incremental compilation techniques to prune the build DAG. The new
assumptions they need to make for pruning hamper the consistency of the module
composition. This is similar to the problems associated with whole-program static
analysis and incremental compilation [52, 9]. Hence, whole-program reasoning
provides an explanation of the applicability of RC3 in AOP-based systems.

In addition to whole-program reasoning, the fine-grained nature of aspect com-
position precludes many traditional incremental compilation strategies. Aspects
are not composed as an atomic unit with the base program, but each of its advices
is composed separately. Hence, coarse-grained techniques like “trickle-down”
(file-level) recompilation do not suffice anymore [96]. Instead, more fine-grained
techniques which should be built into the weavers are needed to drastically re-
duce compilation time (similarly as for non-AOP systems [9]), or the build system
should be able to model finer-grained composition of build units.

A third problem for incremental weaving is caused by aspect interaction, i.e.
the different ways in which aspects may influence each other semantically. One
of these interaction mechanisms which is of interest here, is structural interac-
tion [137, 113, 114]. Pointcuts may e.g. depend on methods or annotations which
are introduced by another aspect. Depending on factors like precedence of as-
pects, order of weaving, etc. the outcome of the weaving process may be different.
However, this kind of interactions can only be identified with dedicated analy-
ses [137, 113, 114] based on the semantics of pointcuts and ITD. These interac-
tions are too fine-grained for build systems. Similar problems arise for behavioural
interaction [74], i.e. differences in program execution caused by semantic interac-
tion of advice.

Based on elements of whole-program reasoning, fine-grained composition and
aspect interaction, this section has argued that consistent composition of aspects
induces new challenges for incremental weaving (RC3). Just as for RC1 and RC2,
AOP introduces changes at the source code level which require non-trivial changes
in the build system. The next section presents the relation between AOP and RC4,
the fourth root of co-evolution.



CHAPTER 2 67

2.4.5 RC4: Program Variability vs. Build Unit Configuration

The fourth way in which AOP interacts with the build system is via the build sys-
tem configuration. This section argues that AOP requires on the one hand stronger
configuration support from the build system because the variability of an AOP
system is higher, that the order of weaving is important and that there are im-
plicit dependencies between configuration choices, and requires on the other hand
a new kind of configuration support to shift variability from the base code into as-
pects. The first two arguments consider selection of module alternatives, whereas
the third one deals with platform-dependent code and selection of features (see
Section 2.3.4.4).

As shown by Sullivan et al. [219] and Lopes et al. [162], AOP systems have
a larger NOV than non-AOP systems. Even without design rules like XPIs [105],
aspects increase the potential of experimenting with new module implementations
in compositions because they modularise CCCs. This requires better ways to deal
with selection of modules, especially aspects, in the build system. The most gen-
eral approach is to apply all aspects on the base modules of the whole system. De-
sign rules like XPIs [105] or Nordberg’s component-based approach [182] require
finer-grained specification to select aspects and to limit their scope to well-chosen
boundaries. Hence, aspects demand finer granularity and higher expressiveness of
the build system’s configuration layer.

Not only the scope of aspect configuration is important. Interactions and de-
pendencies between aspects require more sophisticated control of the order of
weaving by the configuration process. This becomes clear from two observations.
First, Lopez-Herrejon et al. [163] have formalised aspect weaving as a process in
which first ITD is performed on the base program and then one advice at a time is
composed with the structurally woven base program. In their formalism, structural
weaving (i.e. ITD) is commutative, whereas the operator used for applying advice
does not necessarily have to. They give the example of AspectJ, where aspects
which have been woven first, conceptually are re-woven into every structural pro-
gram element introduced by later aspects. Second, we have seen in the previous
section that structural [137, 113, 114] and semantic [74] interactions are important
constraints on the order of weaving aspects. Hence, the order of weaving is an
important factor when applying AOP. The configuration layer should be able to
specify this order.

Implicit dependencies between aspects and possibly base code provide a third
reason why more advanced aspect configuration is needed. First, aspects often
depend on support code, i.e. auxiliary data structures or modules which are used
inside advice. When a given aspect is selected for weaving, its support code should
be selected too, otherwise not. Second, aspects may depend on or exclude other
aspects [75], but there is no explicit specification of this. Hence, if the configura-
tion layer cannot take these dependencies into account, semantically invalid woven



68 BUILD SYSTEM

programs may be generated.
The three previous problems require extra features from the build system.

However, AOP also provides opportunities for making configuration easier. If we
consider the C preprocessor e.g. (Section 2.3.4.4), source code is heavily mixed
with conditional compilation logic. Singh et al. [204] have argued that the pre-
processor often is used to implement very fine-grained crosscutting concerns, i.e.
the preprocessor can be interpreted as a very low-level aspect weaver. They have
proposed to extract some of this conditional code into aspects instead of using
the preprocessor. Aspects are e.g. not required if the whole implementation of a
procedure is conditionally guarded, because the procedure can just be moved to a
normal C compilation unit instead. In more fine-grained conditional compilation
cases, extraction into advice makes sense. The advice’s pointcut needs explicit ac-
cess to the build configuration in that case. This means that aspect languages need
to communicate with the build system to exploit aspect implementations of con-
ditionally compiled code, i.e. to modularise the coupling between base code and
build configuration. As a consequence, the NOV of the system increases again,
which may trigger the three earlier described configuration problems.

This section has provided three reasons why AOP requires more flexible con-
figuration support from the build system, i.e. higher NOV, order of weaving and
dependencies between aspects, and one reason why AOP potentially simplifies the
current configuration process if aspect language and the build system are able to
communicate. This concludes the discussion of how AOP is influenced by RC4.

To summarise, in the previous four sections we have seen that AOP introduces
changes to the source code for each of the four roots of co-evolution from Sec-
tion 2.3.4. Hence, for each root of co-evolution the build system needs to evolve
in order to maintain consistency between source code and the build system. The
next section discusses how these claims are validated.

2.5 Validation of Co-evolution of Source Code and
the Build System

This chapter has presented a model for build systems (Section 2.1) and has dis-
cussed understandability and scalability problems which affect them (Section 2.2).
We have argued that tool support is a necessity to be able to deal with these prob-
lems. Then, we have discussed how management of build systems is further com-
plicated by the phenomenon of co-evolution of source code and the build system
(Section 2.3), for which we have found indications, a taxonomy and early exper-
imental evidence. We have identified four roots of co-evolution (Section 2.3.4)
which represent conceptual relations between source code and the build system.
They relate changes in the source code to changes in the build system. To inves-



CHAPTER 2 69

tigate these phenomena in practice, and to manage this co-evolution, tool support
is indispensable as well. Finally, Section 2.4 has discussed AOP and the source
code changes it introduces in the source code. Based on these changes, the roots
of co-evolution predict corresponding changes to the build system.

The remainder of this dissertation consists of two parts. The first part is con-
cerned with validation of the four roots of co-evolution of Section 2.3.4 and of
tool support in legacy systems without AOSD, whereas the second part validates
the predictions of the four roots, and proposed tool and aspect language support
in legacy systems in which AOSD has been introduced. We briefly outline the
structure of both parts.

Chapter 3 presents tool support for understanding and maintaining build sys-
tems, i.e. to deal with typical build problems in legacy systems, and for under-
standing and managing the co-evolution of source code and the build system. Five
functional requirements are distilled from the build problems identified in Sec-
tion 2.2 (goal T1) and the roots of co-evolution (goal T2). These are used to evalu-
ate existing tools and approaches and to form the foundation of a new framework,
MAKAO. MAKAO is used in Chapter 4 to analyse the co-evolution of source
code and the build system in the Linux kernel build system. This analysis serves
as a validation of MAKAO (goal T2) and of the four roots of co-evolution in the
absence of AOSD. This concludes the first part of this dissertation.

The second part, starting with Chapter 5, discusses co-evolution in the presence
of AOSD. We first discuss our own aspect language for C, Aspicere, which is
able to deal with legacy systems (goal L1) and which provides means to interface
with the build system (goal L2). Chapter 6 to Chapter 10 then present five case
studies in which AOP is used for reverse-engineering (Chapter 6 and Chapter 7)
and re-engineering purposes (Chapter 8 to Chapter 10). These cases validate the
predictions of the four roots of co-evolution in the context of AOSD, the ability
of MAKAO to deal with co-evolution in more general environments (T2), and the
degree to which Aspicere meets the L1 and L2 goals. Chapter 11 summarises the
contributions and findings of this work.





My motivation for [adding maintainer names] and
[GNU Make version numbers to the build documen-
tation] is that Makefiles are real source files and need
the same maintenance and documentation as other
source files.

Michael Elizabeth Chastain (Linux 2.4 build
maintainer)

3
MAKAO, a Re(verse)-engineering

Tool for Build Systems

THE previous chapter has shown how build systems suffer from a wide range
of problems (Section 2.2). These problems not only hamper daily develop-

ment, but they also complicate dealing with co-evolution of source code and the
build system (Section 2.3.4). We have argued for tool support to resolve the iden-
tified build problems and to help in understanding and managing co-evolution of
source code and the build system. The latter requires means to detect whether or
not changes attributed to one of the four roots of co-evolution occur, and to react
on them if necessary. This chapter1 proposes such tool support.

First (Section 3.1), we define the scope of tool support by considering the build
problems we want to tackle and by deducing how the roots of co-evolution can
benefit from tool support. Based on this scope, Section 3.2 distills a list of concrete
requirements for build system tool support, and it also considers important design
trade-offs. These criteria are then used to evaluate existing tool support for build
systems (Section 3.3). As no tool satisfies all criteria, Section 3.4 presents the
design and implementation of MAKAO, a re(verse)-engineering framework for
build systems. To evaluate the framework’s capabilities to deal with build system
problems, Section 3.5 demonstrates MAKAO in relevant use cases for each of
the five requirements. Section 3.5.6 evaluates how MAKAO is able to deal with
the build problems outlined in Section 3.1. Section 3.6 presents the conclusions

1This chapter is based on [3].



72 MAKAO

of this chapter. A thorough validation of MAKAO in supporting co-evolution of
source code and the build system is given in the next chapter and in Chapter 6 to
Chapter 10.

3.1 Scope of Tool Support

This section defines the scope of the build system tool support we focus on, based
on the build problems of Section 2.2 and on the kind of tool support which is
needed to identify and manage symptoms of the roots of co-evolution in practice.

3.1.1 Goal T1: Tool Support for Solving Build Problems

Of the build problems described in Section 2.2, many originate from limitations
of build and configuration tools, e.g. External Dependency Extraction (2.2.1.2) or
Imprecise Dependency Checks (2.2.3.2). We do not focus on this kind of problems,
as they require enhanced build or configuration tool support.

Instead, we aim at automated support for understanding and maintenance of
build systems, because most of the problems deal with this. The following prob-
lems require support for understanding: Implicit Dependencies (2.2.1.1), Syntax
has Semantics (2.2.2.1), Advanced Language Features (2.2.2.1), Precedence of
Variables (2.2.2.1), Debugging (2.2.2.1), Portability (2.2.2.2), Complexity (2.2.3.1),
Traceability to Build Templates (2.2.3.1), Stakeholders (2.2.4.1), Overhead of Build
Systems (2.2.4.1), and Recursive versus Non-recursive “make” (Section 2.2.4.2).
Maintenance support is important for resolving Overhead of Build Systems (2.2.4.1)
and Build System Changes (2.2.4.1).

Most of these problems have to do with restricted access to the right informa-
tion, e.g. to find out which dependencies are implicit (Implicit Dependencies), to
get feedback of build errors (Debugging) or to enable stakeholders to obtain the
information they are interested in (Stakeholders). Other problems are caused by an
overload of information (Precedence of Variables, Complexity, Stakeholders, Re-
cursive versus Non-recursive “make”, etc.). Lack of knowledge about build-time
events and state (variables) is a third source of problems (Advanced Language
Features, Precedence of Variables, etc.). Maintenance problems especially have
to deal with context-dependent, invasive changes (Build System Changes) or the
inability to understand the internals of the build (Overhead of Build Systems). We
aim to come up with an automated solution for these problems.

Almost none of the identified problems actually deals with the configuration
layer, for a number of reasons. The major channels of communication between
source code and the build system for configuration purposes have been described
in the context of GBS (Section 2.1.3.1). These channels have been known for years
and provide a very fine-grained way of conveying configuration decisions to the



CHAPTER 3 73

source code. Hence, they do not represent a problem, but may need support for
understanding or traceability. The configuration specification on the other hand
(cf. the autoconf specification of Figure 2.3 on page 19) is less defined. It deals
with sets of features, constraints between them and a mapping on physical files.
This corresponds to a better defined scope than the build layer has, as the latter
deals with dependencies between files, compilation commands, shell scripts, time
stamp-based heuristics, etc. Hence, configuration languages are conceptually eas-
ier to understand and to manipulate. Of course, if the small border (RC4) with
the area of product lines (Section 2.1.4.6) would be crossed, the large scale of the
source code configurability would lead to much higher demands on the configura-
tion system. This is not the topic of this dissertation, however. Hence, we do not
focus on explicit tool support for dealing with configuration specifications in the
context of this dissertation.

This section has determined the kind of build problems we target for tool sup-
port. These problems require help in understanding and maintenance of build sys-
tems. We do not focus on configuration specifications. However, the communi-
cation channels between the configuration system and the source code can benefit
from help in understanding and traceability.

3.1.2 Goal T2: Tool Support to Understand and Manage Co-
evolution of Source Code and the Build System

This section considers the four roots of co-evolution to distill the features a tool
should have to identify symptoms of co-evolution of source code and the build
system, and to control the co-evolution.

The first root of co-evolution (Section 2.3.4.1) focuses on the mapping be-
tween source code components and build system components. The former requires
knowledge about the architecture of the source code, i.e. the components in the
source code, and the ability to manipulate it. Identification and manipulation of
build system components on the other hand is based on clusters of build targets in
the build dependency graph, and knowledge about the modularity of build scripts,
i.e. whether build logic is stored in a monolithic file or spread over multiple ones.

Similar requirements exist for the second (Section 2.3.4.2) and third (Sec-
tion 2.3.4.3) root of co-evolution. These need to know the components and de-
pendencies in the source code architecture and have to map them on clusters of
build targets and dependencies in the build dependency graph. Changes on either
representation should be possible to sustain co-evolution. The third root addition-
ally needs a means to determine which build dependencies have been sacrificed
for compilation speed.

Finally, the fourth root (Section 2.3.4.4) needs fine-grained information of the
parametrisation in the source code (platform-dependent code and selection of fea-



74 MAKAO

tures) and knowledge about selected source code modules in the build system. The
interchange of configuration choices between source code and the build system is
a third source of valuable data for RC4. Again, manipulation is needed to reinstate
consistency between source code and the build system.

To summarise, information is needed about the source code architecture, source
code parametrisation, the build dependency graph and communication of config-
uration choices between source code and the build system. At the same time, we
need means to manipulate this data as well. In this dissertation, we exclusively
focus on tool support for access to and manipulation of the last two sources of
data. These are exactly the ones associated with the build system, because suf-
ficient tool support for this area does not exist (cf. Section 3.1.1). There are
many tools and techniques to understand and manipulate source code architecture,
e.g. [173, 22, 176, 127, 29, 92, 111]. Likewise, a lot of support exists for dealing
with parametrised code, e.g. regarding the C preprocessor [121, 138, 144, 145,
158, 209, 210, 110, 20, 140, 216, 236, 169, 235, 97]. An IDE for dealing with
co-evolution of source code and the build system would need to combine tools
for architecture, parametrisation, build DAG and configuration interchange, but in
the context of this dissertation we assume that source code tools, documentation
and experts are available separately to provide us with the relevant source code
information and to manipulate the source code. Hence, we only focus on tool sup-
port for access to and manipulation of the build dependency graph and transfer of
configuration choices to the source code.

3.1.3 Conclusion

Based on the previous two sections, we have determined three primary goals for
tool support: understanding and maintenance of build systems, access to and ma-
nipulation of the build dependency graph, and access to the configuration choices
which have been passed to the source code. Note that the last two goals are in fact
subsumed by the first one. In this dissertation, we use the following terms inter-
changeably to refer to these three key goals at once: “understanding and mainte-
nance of build systems”, “design recovery and maintenance of build systems” and
“reverse- and re-engineering of build systems”. The next section derives concrete
tool requirements for supporting the design recovery and maintenance of build
systems.

3.2 Deriving Tool Requirements from T1 and T2

To address the three primary goals discussed in the previous section, we distill five
important functional requirements which together guarantee a flexible re(verse)-
engineering environment for build systems. In addition, we identify a number of



CHAPTER 3 75

design choices to consider when trying to meet the requirements.

3.2.1 Functional Requirements

Five functional requirements are discussed in this section. They have been derived
from the issues identified in the previous section.

3.2.1.1 Visualisation

Build systems typically consist of hundreds of scripts (Section 2.2.4.2), hence it is
nearly impossible to get an overview of the complete system. It does not suffice
to look at a single build script, as this usually works in concert with others (RC1).
Besides this, the often cryptic build commands and dependencies, littered with
configuration parameters, make the build logic very hard to understand (RC4).
Hence, we need a visual representation of the whole system, but with sufficient
detail to understand build subsystem composition. Visualisation also offers a build
tool-neutral view of a build system.

Build systems contain a vast amount of information, for various stakeholders
(2.2.4.1). Measures should be taken to make the data more digestible. One pos-
sibility is filtering of the visualisation (see the third requirement), but even simple
features like color coding, layouting and zooming, should help. Another powerful
way to manage the build system data is interactivity. On-demand visualisation of
particular subsystems or highlighting of common information between different
build targets enables the user to grasp detailed information he or she is interested
in.

3.2.1.2 Querying

Visualisation can only give a qualitative idea of a build system. It should be possi-
ble to query for specific information (Section 3.1.1) about a particular build target,
to access its command list, etc. As a build system has multiple stakeholders, the
querying facility should be general enough to compose custom queries on the one
hand, but not too complex so as not to scare off less programming skilled stake-
holders on the other hand. An extensible default set of basic queries, accessible via
a GUI, could enable this. A querying feature can also be used to filter information
by selecting various targets based on some user-defined criteria, or to gauge cer-
tain build characteristics via metrics. This is another reason to make the querying
facility general enough.

3.2.1.3 Filtering

To deal with information overload, the user should be able to filter out redundant
information like unimportant files or build parts. However, we would also like to



76 MAKAO

define new views of the build, e.g. to abstract away low-level details of a build
idiom, to generate a build-time view [228] or even to recover the design of the
source code. Therefore, we want to enhance filtering with powerful, composable
abstraction capabilities. This implies that a fixed set of default filtering actions
does not suffice.

3.2.1.4 Verification

Visualisation, querying and filtering are a perfect fit for soliciting information to
solve application-specific build system problems (Section 3.1.1). However, there
are many recurring problems, style issues and bad practices for which common
workarounds or recommendations exist. Redundant dependencies, circular depen-
dencies or problems introduced by recursive build logic are bad smells which occur
universally across build systems. Manual or visual inspection is not an effective
means to detect them (2.2.2.1). Instead, an automatic verification facility should
be provided which is able to model common build system patterns in a robust
way (to overcome application-specific oddities) in order to flag the presence of
problems. As the set of issues is open-ended, the verification functionality should
be extensible. In the end, a library of verification patterns could be distilled and
distributed.

3.2.1.5 Re-engineering

Visualisation, querying, filtering and verification can collect sufficient context in-
formation to decide whether build system re-engineering is needed and if so, how
one should proceed. Being able to directly exploit this knowledge from within the
tool improves the ability for robust and invasive re-engineering of the build system
(2.2.4.1). Tools should be able to simulate the effects of re-engineerings without
applying them on the actual build system. Afterwards, the modifications should be
committed to the actual build system or just “rolled back”. Special care is needed
to ensure that the re-engineering remains applicable across all configurations.

3.2.2 Design Trade-offs

Tools which are designed according to the five identified requirements will in-
evitably face certain important design trade-offs. These are outlined in the next
sections.

3.2.2.1 Lightweightness

A rather straightforward trade-off is the fact that, despite the advanced require-
ments, the tool should be lightweight and easy to integrate into the tool chain of
developers, maintainers, etc. Otherwise, developers will rather try to apply ad hoc



CHAPTER 3 77

techniques for their particular problem. Besides practical issues, the lightweight
property also places constraints on the overhead induced by the tool on builds.

3.2.2.2 Static vs. Dynamic Model

A crucial decision is whether one wants to manipulate a model of the static build
and configuration scripts, or of the dependencies within an actual (dynamic) build
run instead. This is similar to the distinction between static and dynamic analysis
of source code. In general, it is easier to obtain data from the dynamic build (e.g.
via traces) than it is to analyse the static description of the build, largely because
of the parametrisation of build scripts. The static data on the other hand abstracts
over all information across any supported build platform, which makes it better
suited to reason about and to refactor across various platforms. The complexity in
reliably processing and linking build components together from the static data is,
however, much higher. Common errors such as misunderstood macro expansions
are particularly hard to resolve, because the actual values of variables and macros
are only present during a concrete build. Unfortunately, they then correspond to
just one run on one particular build platform. Hence, there is a trade-off between
complete, static data which is hard to interpret, and specific, dynamic information
which is restricted to one build platform.

3.2.2.3 Detecting Implicit Dependencies

The phenomenon of implicit dependencies, described in 2.2.1.1 on page 30, il-
lustrates well why it is hard to work from the static description of build systems.
Implicit dependencies hamper understanding of the build, incremental compilation
and parallel builds, and may lead to inconsistent and incorrect builds. For these
reasons, they should be tangible to the user, in order to really understand what is
going on during a build and to be able to fix them if possible. Interpreting build
script command lists to find out statically which strings represent files is not fea-
sible because of parametrisation and flexible naming conventions. Conceptually,
each file access should be monitored during the build and correlated later on with
the right build rule to identify all implicit dependencies. This leads to build over-
head. Hence, there is a clear trade-off between precision of the build model and
effort required to obtain it.

The five requirements are used in the next section to evaluate existing tool
support for build systems. Afterwards (Section 3.4), the requirements and trade-
offs are used as the foundation of a dedicated framework for reverse- and re-
engineering of build systems, i.e. MAKAO.



78 MAKAO

V
is

ua
lis

at
io

n

Q
ue

ry
in

g

Fi
lte

ri
ng

V
er

ifi
ca

tio
n

R
e-

en
gi

ne
er

in
g

Jørgensen [125] X

BTV [228] X

Dali [127] X X X

de Jonge [56] X

Fard et al. [82] X

Di Penta et al. [188] X

Grexmk [13] X

Kbuild 2.5 [156] X

remake X

gmd X

Antelope X ±
AntExplorer X ±

OpenMake Build Monitor X ±
Vizant X ±

Table 3.1: Evaluation of existing tools to support build system understanding and
maintenance w.r.t. the five requirements of Section 3.3.

3.3 Evaluation of Existing Tool Support and Tech-
niques

This section evaluates related work based on the requirements presented in the
previous section. We consider research efforts in the areas of formal methods,
software reverse- and re-engineering, and specific build development tools. As we
will see, none of the discussed approaches fulfills all our requirements. Querying,
verification and general-purpose re-engineering remain largely unexplored. Our
findings are summarised in Table 3.1.

3.3.1 Formal Methods

Jørgensen [125] addresses verification of build systems. Build safeness holds if all
build rules meet the following criteria:

soundness Execution of a rule’s commands generates the rule’s target, and the



CHAPTER 3 79

dependees have been established and are older than the new target.

fairness Execution of a rule’s commands does not invalidate other rules’ targets.

completeness A rule’s target is only influenced by files in its list of dependees,
i.e. there are no implicit dependencies.

These criteria suffice to prove soundness and completeness of executions of
makefiles, and also to prove that “make”-based, incremental recompilation is guar-
anteed to give the same results as a full build. The latter only holds if compi-
lation results are not modified at all, changes to makefiles do not introduce new
build targets of which the name already occurs somewhere and command lists are
not changed in between. Unfortunately, many of these conditions are not easy to
check, as they require knowledge about side-effects. To prove soundness, fairness
or completeness, one needs an explicit model of the effects of a rule’s commands
on target and dependees, which is not straightforward.

3.3.2 Understanding Build Systems

We present three cases of build system tools and techniques in the reverse-en-
gineering community. As mentioned in Section 2.3.1, Tu et al. [228] have pro-
posed the build time architectural view (BTV) as a proper addition to Krüchten’s
“4+1” View model [139]. It is mainly targeted at extracting and documenting (vi-
sualising) the high-level architecture of build systems. Hassan [111] claims that
exploring the BTV is highly recommended when trying to analyse large software
systems, which is in line with our discussion in Section 2.2.4. In practice, the BTV
Toolkit uses the grok tool [175] to abstract up from low-level facts generated by
an instrumented version of “make” (dynamic model of Section 3.2.2). The BTV
Toolkit’s current prototype only extracts build-time facts, although conceptually
build time views also take source code into account. There are no provisions for
interactive querying, filtering, verification or re-engineering. Our visualisation,
querying and filtering requirements describe various ways of how to access the
same data as a BTV provides. As such, tools adhering to our requirements are able
to construct high-level build time views.

Champaign et al. [44] use build system data to validate a package stability met-
ric, but implicit build dependencies potentially compromise the precision of their
measurements. They have used the BTV Toolkit to obtain the build dependency
data, but the tool kit’s exclusively dynamic build model has precluded access to
information about unevaluated targets, i.e. targets which have not been part of a
build.

One of the reverse-engineering approaches mentioned in Section 2.3.1, Dali [127]
(now “ARMIN”), exploits build-related facts to obtain module/file dependencies



80 MAKAO

for deriving a graph model of a system. In this model, human experts need to de-
rive and define patterns (expressed as SQL queries) to gradually obtain a higher-
level view. For obvious reasons, none of the reverse-engineering techniques tar-
gets verification or re-engineering. Querying is possible, but the provided build
model focuses on high-level dependencies between files instead of fine-grained
info about command lists or configuration parameter values.

3.3.3 Re-engineering Build Systems

This section discusses five related efforts for the re-engineering of build systems.
As discussed in Section 2.3.3.2, de Jonge [57] has tried to align build system mod-
ularisation with source code architecture, in order to obtain effective reuse and
recomposition of source code. For this, he (semi-)automatically splits up a code
base into self-contained source trees, each with its own build and configuration
process. Afterwards, these can be distributed and recomposed (on both source
code and build level) into a new system. This is a very specialised re-engineering
approach.

The technique of Fard et al. [82] is based on a “reflexion model”. This model
is used to derive how the source code should be restructured in order to simplify
the dependencies and environment processing (Section 2.3.4.3) during the build.
Hence, the build system is re-engineered by restructuring the source code. As a
side-effect, the build and the software architecture become easier to understand.
As this technique relies on modification of the source code, it cannot be applied to
build systems in general.

Di Penta et al. [188] propose a framework for “renovating” software based
on a dependency graph of binaries and object files. Using genetic algorithms,
clustering techniques and human intervention, they are able to detect and throw
away redundant object dependencies and clones from the build results. Hence,
they optimise the results of the build system by exploiting build dependencies.

Ammons [13] considers the problem of untrusted incremental compilation be-
cause of uncertainty about the completeness and correctness of build dependen-
cies. He proposes to semi-automatically partition a build in separate mini-builds,
in practice one per loosely coupled build component. Mini-builds are scheduled
incrementally and in parallel according to the available dependency information,
but once they are executing they are constrained to a sandbox which only provides
the mini-build with its declared dependencies. A mini-build specification is a di-
rectory with three files containing information like the names of the build, depen-
dencies and build script (“control”), the list of exported files (“outputs”) and the
list of source files (“sources”) respectively. Transformation into genuine makefiles
ensures safe incremental compilation according to Jørgensen’s theorems [125].
The Grexmk tool suite implements these ideas by preserving the original build



CHAPTER 3 81

structure as much as possible. This special-purpose re-engineering is focused on
accelerating the build in a safe way.

Some build systems are designed with easy modification of build rules in mind.
The Linux Kbuild 2.5 (discussed in Section 4.5.3.1) has provisions to extend the
build via build variables [156]. The following command invokes the kernel build
with an extra build rule for building target pkg:

1 make ADD0=pkg ADD0_DEP=install \
2 ADD0_CMD=myscript.sh tmp

The rule itself states that pkg depends on target install and has only one
command in its build (line 2). These user-provided rules have free access to any
variable declared in the build scripts. This rule customisation facility is very pow-
erful, but has to be built explicitly into the build system.

To conclude, only the approaches of de Jonge [56] and Ammons [13] focus on
re-engineering the actual build system. Still, no general purpose re-engineering
is possible, as the proposed techniques deal with special-purpose re-engineering.
Only de Jonge, Ammons and Di Penta et al. [188] exploit knowledge mined from
the build system.

3.3.4 Enhanced Build Tools and Systems

This section considers tools aimed at fulfilling one single requirement. Remake2

is an improved GNU Make with tracing capabilities and a debugger. One can set
breakpoints, step through the build and evaluate expressions. Another debugger
named “gmd”3 is implemented completely using “make” macros. These debuggers
focus primarily on querying.

Tools like Antelope4, AntExplorer5 and Openmake Build Monitor6 enable live
visualisation of build runs. Makeppgraph7 creates a build dependency graph in
which colors are determined by file extensions. Vizant8 is a similar tool for Ant
files. These programs only offer visualisation, sometimes with limited filtering
control.

Finally, there are some special-purpose tools to assist “make” users. Maketool9

is an IDE for makefiles providing colored logs, collapsed directories, etc. Build
Audit10 transforms build traces in more structured HTML or text formats, while
mkDoxy11 is a documentation tool for “make” scripts.

2http://bashdb.sourceforge.net/remake/
3http://gmd.sourceforge.net/
4http://antelope.tigris.org/
5http://www.yworks.com/en/products_antexplorer_about.htm
6http://www.openmake.com/dp/home/
7http://makepp.sourceforge.net/1.50/makeppgraph.html
8http://vizant.sourceforge.net/
9http://home.alphalink.com.au/~gnb/maketool/index.html

10http://buildaudit.sourceforge.net/
11http://sourceforge.net/projects/mkdoxy/

http://bashdb.sourceforge.net/remake/
http://gmd.sourceforge.net/
http://antelope.tigris.org/
http://www.yworks.com/en/products_antexplorer_about.htm
http://www.openmake.com/dp/home/
http://makepp.sourceforge.net/1.50/makeppgraph.html
http://vizant.sourceforge.net/
http://home.alphalink.com.au/~gnb/maketool/index.html
http://buildaudit.sourceforge.net/
http://sourceforge.net/projects/mkdoxy/


82 MAKAO

Figure 3.1: Outline of MAKAO’s architecture.

3.4 Design and Implementation of MAKAO based
on the Requirements

No tool or approach described in the previous section satisfies all our require-
ments. Many techniques focus on only one or two of them, or use build system
data as a means to accomplish another task (derive architecture, slim down ex-
ecutables, etc.). However, we are explicitly interested in understanding and im-
proving the build system itself. This section presents the implementation of a ded-
icated reverse- and re-engineering framework for build systems, named MAKAO12

(Makefile Architecture Kernel featuring Aspect Orientation). Its design is based on
the five requirements identified in Section 3.2 and it deals with the three identified
design trade-offs. This section first describes MAKAO’s architecture, and then
elaborates on the various implementation and design choices.

3.4.1 Architecture of MAKAO

Figure 3.1 shows MAKAO’s architecture, which is inspired by the reverse-engi-
neering tools of Section 3.3.2. MAKAO expects as input a build dependency graph
with crosslinks to the static build scripts and with the (dynamic) build-time values
of configuration parameters and build variables. The graph and its attributes can
be persisted into a database. Because MAKAO does not enforce a particular graph
extraction approach, it is build tool-independent.

The dependency graph can be visualised, and interactively manipulated. Query-
ing and re-engineering are possible using a built-in scripting language (Gython)
through which the graph can be freely accessed. Filtering and verification facili-
ties are provided via a Prolog engine. This engine runs in parallel with the Gython

12http://users.ugent.be/~badams/makao/

http://users.ugent.be/~badams/makao/


CHAPTER 3 83

engine, managing a synchronised model of the graph.
The following sections describe in detail the important implementation and

design decisions of MAKAO.

3.4.2 Build System Representation

From the beginning, “make” is based on a Directed Acyclic Graph (DAG) [89] in
which nodes are build targets and edges represent dependencies between those tar-
gets. Newer build tools are still based on this model. DAGs have lots of favourable
characteristics, one of them being their natural visualisation (first requirement).
The presence of a configuration layer on top of a build layer does not invalidate
the underlying DAG model. It only makes DAG extraction harder if one has to
take unresolved configuration parameters into account, i.e. if one were to choose
a static data model (Section 3.2.2.2).

Hence, for the second trade-off, we have opted for a hybrid approach in which
dynamic build data is enhanced with static build script information (the actual build
rules, unevaluated targets, etc.). The dynamic build data is obtained somehow from
the data of a particular build run. Targets and dependencies encountered within
such a build run can be linked to the build script rules and command lists by relying
on names and line numbers. Starting from the dynamic model of a particular
configuration makes sense, as build problems are usually first encountered in a
build on a specific platform. This specific data can be generalised afterwards to
other configurations.

3.4.3 Build Dependency Graph Extraction

The only way to reliably obtain a build DAG is to extract it from the build tool’s
internal build model (in memory) during a typical build. MAKAO initially focused
on GNU Make (Section 2.1.3.3), as this is the de facto build tool used in the various
case studies we have performed. However, as long as a DAG can be extracted, the
remainder of MAKAO’s architecture is build tool-agnostic. In fact, apart from
GNU Make, we already provide support for ClearMake13.

Retrieving a build’s dependency graph from GNU Make can either be done
using a modified “make” (as “BTV Toolkit” does; see Section 3.3.2) or by parsing
the trace output produced by the build tool. Because of loose coupling and low
overhead (first trade-off), we currently use the latter option. We have implemented
parser scripts to extract the right data from the trace and to generate a graph from
it.

To detect implicit dependencies (third trade-off) we leverage the Bash shell’s
“xtrace” option. During a build, this prints every single executed command to

13http://www-306.ibm.com/software/awdtools/clearcase/index.html

http://www-306.ibm.com/software/awdtools/clearcase/index.html


84 MAKAO

1 nodedef> name,localname VARCHAR(255),makefile VARCHAR(255),\
2 concern VARCHAR(50),error INT,...
3 t1,subdir/file.o,/path/to/subdir/Makefile,o,0,...
4 t2,subdir/file.c,/path/to/subdir/,c,0,...
5

6 edgedef> node1,node2,directed,tstamp INT,implicit INT,...
7 t1,t2,true,2613,0,...

Figure 3.2: Sample .gdf file representation of a build dependency graph.

Name Type Meaning

name string unique ID

localname string target name as occurring in the Makefile

dir string full name of the target’s directory

base string local target name relative to “dir” attribute

makefile string name of Makefile (or directory if target is a file)

line integer line number in Makefile (or “-1” if target is a file)

concern string name of target’s concern (.o, .c, . . . )

error integer target’s error status (or “0” if no error)

phony boolean is target phony (see Section 4.5.3.2)?

inuse boolean has the target been used in the current build trace?

style natural symbol used to visualise the target

color string color of target

Table 3.2: Attributes of nodes of a build DAG.

the trace file, with all arguments expanded. We then apply a heuristic to identify
which strings represent file names. Currently, we look for all file name-like strings
containing a dot (e.g. “A.class”) which are not listed as target or dependee of the
currently processed rule. This ignores implicit dependencies on files like Linux
binaries which typically have no extension. False positives can also occur. An
alternative we are currently investigating is to run “make” through “strace” (like
Maak does [62]). This explicitly prints out any files which are opened and closed
during a build, but this data is harder to correlate with the build rules.



CHAPTER 3 85

Name Type Meaning

node1 string ID of source node

node2 string ID of destination node

directed boolean is the edge directed?

ismeta boolean is this a meta-edge?

tstamp natural discrete time stamp of edge

implicit boolean is edge implicit?

color string color of edge

Table 3.3: Attributes of edges of a build DAG.

1 main_target(t1).
2 target(t1, ’file.o’).
3 in_makefile(t1, m0).
4 target_concern(t1, ’o’).
5 path_to_target(t1, [’’, ’path’, ’’, ’to’, ’subdir’]).
6 makefile(m0, [’’, ’path’, ’’, ’to’, ’subdir’], ’subdir’).
7 error_flag(t1,0).
8 %analogous for t2
9 dependency(t1,t2,t1:t2).

10 dependency_time(t1:t2,2613).
11 dependency_implicit(t1:t2,0).

Figure 3.3: Prolog representation of Figure 3.2.

3.4.4 Implementation on Top of GUESS and SWI Prolog

We have built MAKAO on top of GUESS [10]14, a graph exploration framework
with a built-in Python-based scripting language (“Gython”). Graphs can be loaded
from a file or from a database. Figure 3.2 displays a snippet of a very simple .gdf
file which models a graph of two nodes and one edge. First (lines 1–4), the two
nodes are defined by assigning values to the (typed) attributes declared on lines 1–
2. Node t1 e.g. denotes a target in the Makefile located in /path/to/subdir.
The target’s build concern is o, i.e. it is a C-like object file. No error has occurred
during execution of the corresponding build rule (error attribute has as value
0). Edges modeling build dependencies can be specified analogously (lines 6–7).
Implicit dependencies have 1 as value for the implicit field. In total, MAKAO
defines twelve attributes for nodes (see Table 3.2) and seven for edges (see Ta-
ble 3.3). Besides these, there are some built-in attributes like visible (is node
or edge visible or not?), inEdges (incoming edges of a node), etc.

14http://graphexploration.cond.org/

http://graphexploration.cond.org/


86 MAKAO

Once loaded, the graph can be visualised and interactively manipulated, e.g.
by zooming in on particular subgraphs. All nodes, edges and hulls are Gython ob-
jects (in the OO sense) with their own behaviour and the user-definable attributes
mentioned previously. These are accessible within the Gython engine for query-
ing, navigation and re-engineering of the graph. We give examples later on. One
can also write Gython scripts to enhance GUESS with new views or panels, or to
customise it for a particular domain, as is done by MAKAO.

While Gython could also be used for filtering and verification, symbiosis with
a declarative rule-based approach offers more advantages for these [174]. We
therefore integrated the SWI Prolog engine [223]15 into MAKAO, in which an
equivalent virtual representation of the graph model is kept in sync with GUESS’s
internal model. Figure 3.3 displays the Prolog equivalent of Figure 3.2’s graph.
On line 1, target t1 is declared as the start node of the (simple) build graph. The
Prolog facts on lines 2–8 specify the various attributes of each target. The same is
done for the dependencies on lines 9–11.

Conceptually, MAKAO should forward every change on GUESS’s internal
graph model to the Prolog engine and vice versa. However, the current proto-
type only allows off-line filtering of the DAG within the Prolog engine, followed
by starting up an instance of GUESS with the resulting graph.

3.4.5 Re-engineering of the Build System using Aspects

There are various ways to model build system re-engineering, but we have cho-
sen an aspect-oriented [134] approach. For limited re-engineerings, the best re-
engineering techniques is to manually modify the build scripts, guided by MA-
KAO’s four reverse-engineering features. Once changes need to mingle with e.g.
existing command lists or need to be distributed across various places in a context-
dependent way (2.2.4.1), tool support is required. In AOSD terminology, the first
phenomenon is named “tangling”, the second one “scattering”. Because AOSD
explicitly addresses these kinds of problems, we think it is a good fit for advanced
build re-engineering.

Applied to build systems, a pointcut selects all join points where advice should
be woven during the build. These are moments during a build, like command invo-
cations or dependency checks, where one would like to enhance (advise) the exist-
ing behaviour with new commands, extra dependencies, new rules, etc. Weaving
in MAKAO can be done in two modes:

virtual change GUESS’s internal graph model

physical change the actual build scripts

15http://www.swi-prolog.org/

http://www.swi-prolog.org/


CHAPTER 3 87

This duality enables the user to non-destructively experiment with changes
before physically altering the build scripts. To enable platform-independent build
changes, the re-engineering specification should be expressed in terms of build and
configuration parameters instead of platform-dependent values.

3.4.6 Summary

To conclude, MAKAO satisfies the requirements of Section 3.2 in the following
way:

visualisation build dependency graph

querying GUESS’s embedded Gython language

filtering Prolog predicates

re-engineering aspect oriented techniques

verification Prolog predicates

The trade-offs have been taken into account as well:

1. Build tool-specific graph extraction (external to MAKAO) limits build over-
head.

2. A hybrid build model is used which links data from a concrete build to the
static build scripts.

3. Implicit dependencies are detected via a heuristic.

The next section applies MAKAO on relevant use cases for each of the five
requirements. This is used in Section 3.5.6 to evaluate how MAKAO deals with
the targeted build problems of Section 3.1.1 (goal T1). Validation of MAKAO
for understanding and managing co-evolution of source code and the build system
happens in the next chapter and in Chapter 6 to Chapter 10.

3.5 MAKAO at Work: Achieving Goal T1

This section evaluates the ability of MAKAO, and hence the five requirements of
Section 3.2, to tackle the build problems we have decided to target in Section 3.1.1,
i.e. goal T1. Validation of MAKAO in the context of co-evolution of source code
and the build system, i.e. goal T2, follows in later chapters. To evaluate MAKAO,
and indirectly the requirements of Section 3.2, for goal T1 we have applied the
framework on examples for the build problems of Section 3.1.1. Most of these
examples are situated in the industrial Kava system, Quake 3 Arena or the Linux



88 MAKAO

2.6.16.18 kernel. We first describe these systems. Then, we consider the require-
ments one by one. Afterwards, Section 3.5.6 evaluates how MAKAO deals with
all build problems associated with goal T1.

Kava (Royal Pharmacists Association of Antwerp) is a non-profit organization
of over a thousand Belgian pharmacists. Some ten years ago, they have devel-
oped a suite of C applications which were built using “make”. Due to successive
health care regulation changes, this service has been re-engineered, and migrated
to an ANSI C platform. The build system comprises 272 makefiles, but no con-
figuration scripts. Using sloccount [241], we have measured 4683 non-comment,
non-whitespace lines (SLOC) in these makefiles.

Quake 3 Arena is a high-profile, commercial 3D video game [191]16 written
in C. It has been released as open-source in August, 2005. Revision 1041 (Febru-
ary, 2007) contains 6 build scripts (±2000 SLOC), but no configuration scripts.
Quake 3 represents a middle ground between the closed source character of Kava
and the open source Linux kernel.

The Linux kernel (discussed in depth in Chapter 4) has been analysed exten-
sively by other researchers [29, 99, 44]. It has [154] a custom build layer named
“Kbuild”17 based on GNU Make, and the “Kconfig”18 configuration layer for flexi-
ble configuration of the kernel modules. There are about 859 build scripts (±13147
SLOC) and 345 configuration files (±51489 SLOC) involved in the 2.6.16.18 ker-
nel.

We now report on the results of use cases performed in the context of the above
three systems. We do this in the order of the requirements set out in Section 3.2.

3.5.1 Visualisation

We have visualised the Kava, Linux and Quake 3 build dependency graphs to qual-
itatively derive interesting information (Stakeholders problem) about the build sys-
tems and source code architecture.

3.5.1.1 Kava

Figure 3.4a shows the dependency graph (4040 nodes and 6207 edges) of Kava’s
build system, as visualised by MAKAO. The overall layout of this graph has been
taken care of by one of the force-directed layout algorithms built into the GUESS
framework. Figure 3.4b shows a more detailed view of the marked subgraph of
Figure 3.4a. Every target has a color based on its concern, i.e. the type of file
indicated by its extension, while edges have the same color as their destination
node. By default, MAKAO defines only a couple of build concerns, like .c source

16http://www.idsoftware.com/games/quake/quake3-arena/
17http://kbuild.sourceforge.net/
18http://www.xs4all.nl/~zippel/lc/

http://www.idsoftware.com/games/quake/quake3-arena/
http://kbuild.sourceforge.net/
http://www.xs4all.nl/~zippel/lc/


CHAPTER 3 89

(a)

t.ot.ct.htall

(b)

Figure 3.4: (a) Kava’s build dependency graph in MAKAO. (b) Detailed view on the
marked subgraph.



90 MAKAO

files and .o object files. One can add other concerns to MAKAO’s list and assign
a color to them, or even a different symbol if too many colors have been used
already. By doing this we can differentiate the different types of targets.

The filled polygons on Figure 3.4a and Figure 3.4b are convex hulls, which
enclose all nodes having the same value for a specific characteristic. We have
chosen as characteristic the name of the makefile which specifies the target. The
transparent colors of these hulls are chosen at random by GUESS and convey
no semantic meaning. Hulls just aid visual recognition, but can be turned off if
deemed unuseful.

Our particular choice for the hulls’ semantics allows to identify recursive “make”
systems. On Figure 3.4a, we see that most hulls have only one incoming edge and
possibly multiple outgoing ones. This means that a hull can be considered in this
case as a “make” subprocess spawned by another process (hull) to build a particu-
lar target. The hulls are disjoint and diverging and they do not originate from the
build dependency graph’s start node. Taking into account that typically a directory
contains at most one makefile (hull), we get strong indications that the Kava build
is recursive. Browsing through the build scripts quickly acknowledges this.

3.5.1.2 Linux 2.6.16.18

Figure 3.5a shows the dependency graph (3015 nodes and 8308 edges) of the Linux
2.6.16.18 kernel, more in particular the “bzImage”-target. This DAG looks very
different from the one of Kava. Apparently, there is a strange light purple core
which depends on object files. There are also two clusters of header files. These
correspond to two places where custom and system header files are checked. There
are not many hulls, and the ones which are there are rather concentric. The DAG is
also very dense, so this does not look like a recursive build at first sight, although
it is [154] (see Chapter 4). We discuss in Section 3.5.3 how we can untangle this
DAG to get a better understanding.

3.5.1.3 Quake 3 Arena

More can be learnt from Quake 3’s build graph in Figure 3.6a (626 nodes and 908
edges). There are five clusters of compiled .c files, of which three yield dynamic
libraries (black .dylib nodes), while the other two (the lower clusters) represent
executables. Figure 3.6b zooms in on the top left cluster (dynamic library).

A strange pattern can be identified in this cluster, as it actually consists of two
subclusters. Gauging from the names of the two libraries, these two library ver-
sions form a kind of mini-product line which consists of the original Quake 3 game
(“baseq3”) and an expansion pack (“missionpack”). The build dependency graph
immediately makes it clear how this product line is implemented: conditional com-
pilation. Indeed, we see that most .c files have two incoming edges, one from each



CHAPTER 3 91

tFORCEt.ot.ct.htdir

(a)

t.ot.htdir

(b)

Figure 3.5: Linux kernel 2.6.16.18 (“bzImage”), (a) before and (b) after filtering.



92 MAKAO

t.ot.ct.dylibt.h

(a)

t.ot.ct.dylibt.h

(b)

Figure 3.6: Build DAG of Quake 3, (a) in full and (b) zooming in on the subgraph marked
in black. The yellow cluster does not use conditional compilation, while the blue

ellipse marks the two variants of the main executable.



CHAPTER 3 93

product variant. Hence, the same file is used for multiple variants. Inside the
source files, struct members and logic for new weapons are indeed conditionally
guarded.

One other dynamic library exhibits the same symptoms, whereas the third one
does not (the small cluster marked in yellow). It contains only new files compared
to the base library. We have checked this with the build scripts, and it seems that
the “missionpack” version of that dynamic library requires the base version to be
present instead of being autonomous.

Two other things can be observed visually. The lower left cluster of Figure 3.6a
is also made up of two subclusters. As file names suggest, the variability ranges
between single processor and SMP versions of the game executable (marked by
a blue circle). Both versions are composed of the same object files, they just
use other flags at link-time. The second oddity is that the Subversion administra-
tion file “.svn/entries” is a dependee of three object files. Every time the working
directory is updated or reverted, those object files have to be remade, even if the
corresponding .c files did not change. It turns out that the versioning info is used to
display the current source code version when the corresponding executable starts
up.

To summarise, even without querying support, one gets a useful qualitative
view of a build system, which can even be used to obtain concrete ideas about the
high-level source code architecture.

3.5.2 Querying

We now show four examples of Gython queries to access more specific information
from the build dependency graphs and the actual build run.

3.5.2.1 Error Detection

Build errors are often hard to remedy (Debugging problem). Many builds try to
survive across failed compilation attempts by continuing the build process to con-
struct other build targets. As a consequence, the exact error message of interme-
diate errors is hidden somewhere within the vast build output, which comprises
compiler invocations, changes of the current directory, etc. Once the right output
line is finally located, it becomes even harder to make sense of the exact circum-
stances (missing file, wrong library version, etc.) under which the build has failed.

In MAKAO, we can write a simple Gython query to isolate the build context
of all build errors from unimportant build information. The query boils down to
keeping only the paths within the graph which have led to an error:

1 (error==0).visible=0



94 MAKAO

Figure 3.7: Error paths in Kava’s build system.

The expression between the parentheses gives us the so-called “node set” of all
targets in which the “make” error status (Figure 3.2) is zero. We then just need
to hide all these targets by setting their visible node attribute to zero. Visually,
this leaves us with a minimal subgraph which contains only the paths starting from
the main build target to all failing targets. This makes it much easier to locate the
exact circumstances of build errors.

We have applied this query on the Kava build system, and have found a number
of erroneous build paths (Figure 3.7). From this, the Kava developers have been
able to verify that the failing targets actually correspond to dead code. Those build
failures were not noticed before because of this. The above query has enabled
Kava to clean up this abandoned code.

3.5.2.2 Tool Mining

When one is confronted with an unfamiliar build system, a first clue about its
internals is given by the file types (“concerns”) which appear. If we observe de-
pendencies from .o files to .c files, we can assume that this corresponds to com-
piled C source code. However, the transformation from source code to object
file may vary because of different compilers, symbol strippers, obfuscators, etc.
Parametrised build commands make this information hard to deduce from the build
scripts. Hence, finding out the particular compilers in use is a useful query (Stake-
holders and Overhead of Build Systems).

For each build target, MAKAO stores both the static and the actual command
list in a dictionary (commands and actual_commands respectively). In the
latter, all configuration parameters and build variables have been replaced by their
actual value. By randomly browsing the commands- or actual_commands-
dictionary for some of the object files’ command lists, one can get an initial idea
about the compilation tools in use. To find out whether these are the only tools in



CHAPTER 3 95

use, we can issue the following query:

1 Ts=(concern=="c").inEdges.node1.findNodes()
2 base=[T for T in Ts
3 if not using_tool(T,["gcc"])]

The first expression finds all source nodes (node1) of edges pointing to .c tar-
gets, i.e. all targets depending on targets of the c concern, and binds this set to the
variable Ts. Lines 2–3 form a list comprehension which yields all targets T which
are not using any of the compilers we have already found. The using_tool-
function internally performs regular expression matching on the actual command
list of the target passed as its first argument.

The reason why we did not just store all .o files in Ts, is that other kinds of
source files may also be compiled into object files. In the Kava build system, .ec
files behave like this. These other types of source files can be detected like this:

1 set((concern=="o").outEdges.node2.findNodes().concern)

This expression finds the set of concerns of those targets which represent de-
pendees (node2) of .o files.

3.5.2.3 Name Clash Detection

A “make” process has only one global namespace shared by all targets, environ-
ment variables and macros. This can lead to unexpected results in non-recursive
builds (Section 2.2.4.2) where dozens of files are combined into one main make-
file. MAKAO can detect these problems like this:

1 clusters=[c for c in groupBy(localname)
2 if len(c)>1]
3 clusters.makefile

This snippet uses a list comprehension to first cluster the targets based on their
unqualified name (node attribute localname), and then only keep the clusters
with more than one target. On line 3 we print out the makefile-attribute of all
targets within the returned clusters. If there is a cluster with different values for
the makefile attribute, there is a real name clash (Debugging).

3.5.2.4 Where do Compiled Objects End up?

Another typical build problem is finding out where build artifacts are stored, e.g.
when trying to locate intermediately generated files to debug them (Overhead of
Build Systems). This is quite easy, e.g. for the file named “built.o”:

1 build_dir=by_localname("built.o")[0].dir

This query stores into variable build_dir the name of the directory (dir
node attribute) in which target “built.o” resides. The by_localname function



96 MAKAO

1 force_target(Force, ’FORCE’) :-
2 clean_target_a(Force, ’FORCE’).
3

4 force_dependency(Target, Force, Key) :-
5 force_target(Force, _),
6 clean_rdependency_a(Force, Target, Key).
7 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 forceless_cached:-
9 forall(clean_target(Target,Name),

10 assert(clean_target_a(Target,Name))),
11 forall(clean_dependency(Src,Dst,Key),
12 (assert(clean_dependency_a(Src,Dst,Key)),
13 assert(clean_rdependency_a(Dst,Src,Key)))).
14

15 forceless_target(Target, Name):-
16 clean_target_a(Target, Name),
17 \+ force_target(Target,_).
18

19 forceless_dependency(Target, Dependency, Key):-
20 clean_dependency(Target, Dependency, Key),
21 \+ force_dependency(Target,Dependency,Key).

Figure 3.8: FORCE idiom filtering step (extracted from Section B.4 on page 326).

finds all nodes of which the localname attribute matches the regular expression
passed as its argument (we assume that we have verified in Section 3.5.2.3 that
there is only one match).

In addition, we might check whether or not multiple makefiles use this output
directory:

1 len(set((dir==build_dir).makefile))

This expression returns the number (len) of unique (set) makefiles of which
targets are produced inside build_dir. Deducing such information from the
build trace or scripts is much harder to do.

3.5.3 Filtering

In Section 3.5.1, we have seen that the Linux DAG of Figure 3.5a is very dense.
In order to remedy this, one could try to manually collapse nodes one by one,
or maybe to script these actions [180]. Unfortunately, this approach is too coarse-
grained and limited. Just as for source code, developers agree upon project-specific
idioms to streamline the build process. As a simple example, the Linux build de-
pendency graph contains some dependencies from .c files to files of which the
name ends in “_shipped”. This is a pattern used for shipping binary blobs or gener-
ated files with the kernel source code. It enables developers to override the default



CHAPTER 3 97

shipped file by overwriting the .c file. Without fine-grained filtering support, one
cannot write a crisp pattern to capture the essence of the build idiom. Hence, one
risks to filter out too many or too little nodes. In this sense, exploiting knowledge
of build idioms leads to more effective filtering (Stakeholders). At the same time,
filtering the build dependency graph also gradually raises the abstraction level. If
no crucial build dependencies are removed, one ends up with a high-level view of
the source code architecture as recorded within the build system.

To this end, MAKAO allows to apply a user-customisable sequence of logic
rules to detect patterns in the graph and to remove/add edges/nodes based on the
results. The predicates can use the logic build dependency graph representation as
shown in Figure 3.3 and any cached facts. Besides helper predicates, each filtering
step consists of:

1. an initialisation predicate, e.g. to cache previous results

2. a predicate which selects the targets to be retained

3. a predicate for the dependencies one wants to keep

We have applied MAKAO’s filtering to the Linux 2.6.16.18 build graph of
Figure 3.5a, which forms a part of the experiment in Chapter 4 to investigate the
evolution of the Linux kernel build system. Section 4.5.3.2 extensively elaborates
on the build idioms we have uncovered, but we do not explain all of the actual
rules we have used to filter these idioms (listed in Appendix B). In this section,
we focus on one of the rules (Figure 3.8) to show how the filtering rule formalism
works. The other rules can easily be understood based on this explanation. We
have chosen to discuss the rule for the “FORCE” idiom because of its conceptual
simplicity, but clear visual effect.

We have already mentioned the strange light purple core of Figure 3.5a in
Section 3.5.1.2. When zooming in, we observe a node named “FORCE” on which
all object file targets depend (the central node marked in blue). It is because of
this node that the Linux build DAG turns out to be compact and tied together. The
filtering step we have used to filter out this node is shown in Figure 3.8.

The rules above the dashed line indicate helper predicates19. The first one
identifies the central “FORCE” target based on its name. The second predicate
captures all edges pointing to this node. In other build systems, the first rule should
be adapted to match naming conventions there. In the Linux 2.4.0 graph e.g., there
are multiple “FORCE”-like targets named “dummy”.

Below the dashed line, the three predicates of this filtering step are specified.
The initialisation rule on lines 8–13 makes sure that all resulting facts of the pre-
vious filtering step (the “clean” filtering rule of Section B.3 on page 325) are

19A single underscore is a “don’t care” value, while variable names start with a capital letter.



98 MAKAO

cached. For every edge between nodes a and b, it also asserts a fact represent-
ing the inverse edge from b to a. This is for efficiency purposes, as querying for
rdependency(a,_,_) is typically much faster than for dependency(_,a,_).
This is especially important in the early filtering passes, where lots of nodes and
edges are still present. The target selection predicate (lines 15–17) keeps all the
targets passed from the previous filtering step (line 16), except for the “FORCE”
target (line 17). Similarly, the dependency selection predicate (lines 19–21) filters
out all edges pointing to the “FORCE” target (line 21).

The filtered build DAG is shown on Figure 4.13 on page 131. The DAG has
opened up and a conventional, hierarchical visualisation appears. Subsequent fil-
tering rules can be applied on idioms which now become visible (see 4.5.3.2). The
“FORCE” idiom is only one of the seven filtering steps we have applied to unravel
the internals of the Linux 2.6.x build system in Chapter 4:

• elimination of meta-edges (see ismeta in Section 3.4.4)

• cleanup of auxiliary files

• FORCE idiom

• shipped targets (see earlier)

• source-level abstraction

• composite objects (4.5.3.2)

• circular dependency chain (4.5.3.2)

All of the filtering steps follow the same outline as Figure 3.8. The semantics
of the major idioms are described in detail in Chapter 4. The last two idioms (and
the shipped targets) are highly specific to the Linux build system; the others can
be reused in other systems. After applying the rules, the build dependency graph
opens up completely and results in the much more structured Figure 3.5b. Here,
we can identify various subsystems: (1) network support, (2) the kernel image, (3)
file system code, (4) drivers and (5) architecture-dependent facilities. This graph
can be the starting point for further filtering, e.g. by clustering tightly coupled
nodes.

3.5.4 Verification

Automated verification of common build bad practices and anomalies like those
in Figure 3.9 is important (Debugging). Manually detecting missing dependencies
(Figure 3.9a) or loops across “make” processes20 (Figure 3.9b) is possible, but is
tedious and error-prone to repeat across multiple build systems. Applying Gython

20GNU Make has support for detection of loops within one process.



CHAPTER 3 99

app

c o

(a)

a

b

c

(b)

Figure 3.9: Typical build dependency graph anomalies for which verification should be
used.

scripts is more interesting in this regard. Unfortunately, most patterns are awkward
to express imperatively, e.g. if Figure 3.9b would extend to arbitrary-length loops.
The declarative Prolog representation of the build graph is preferable for describ-
ing and checking common mistakes or style abuses. As a simple example, the
following verification query finds all targets visited more than once, which could
give indications of suboptimal builds:

1 redundant(Target,List):-
2 target(Target,_),
3 findall(R,rdependency(Target,_,R),List),
4 nth0(1,List,_).%at least 2 elements

The following rule detects the pattern of Figure 3.9a:

1 mixed(SrcNode,ObjNode):-
2 target(SrcNode,SrcName),
3 concat_atom([Root,’c’],’.’,SrcName),
4 concat_atom([Root,’o’],’.’,ObjName),
5 rdependency(SrcNode,Node,_),
6 dependency(Node,ObjNode,_),
7 target(ObjNode,ObjName).

The rule considers all targets (line 2) of which the name ends with ’c’ (line 3),
i.e. a blue node on Figure 3.9a. The idea is to locate a matching red node, if it
exists. For this, the object file name is constructed (line 4) by replacing the ’c’
by an ’o’. The red node with the right name (line 7) has to be a sibling of the
blue node (lines 5–6). If this situation occurs in the currently verified build DAG,
this is immediately reported.

Other verification rules may focus on loop detection across “make” processes
(Figure 3.9b), redundant dependencies (also transitively), detection of non-object
nodes pointing to source files, etc.



100 MAKAO

3.5.5 Re-engineering

In this section, we elaborate on AOP-based re-engineering of a build (Build System
Changes). Information recovered through one of the four reverse-engineering steps
(visualisation, querying, filtering or verification) is a prerequisite to assess a build
problem, to decide whether to re-engineer manually or via MAKAO, and to collect
the necessary context information.

MAKAO’s aspect-based re-engineering consists of the following steps:

1. locate join points and context in the build DAG

2. compose advice

3. weave the advice

To illustrate these steps, we integrate a source code preprocessing tool into
Kava’s build system. The difficulty is that this tool has to be applied to each C-like
source file before the file is processed by a compiler. We assume that alternative
solutions like compiler wrappers or regular expression transformations are not able
to help us, either because they require thorough manual inspection or because
consistent re-engineering of the build cannot be guaranteed [248]. Access to build
context information in MAKAO’s aspects helps to avoid these pitfalls.

3.5.5.1 Selecting the Join Points and the Join Point Context

The join point model of a build system is rather straightforward. It comprises
behavioural crosscutting on commands in a rule’s command list, and static cross-
cutting on a rule’s dependency list or a build system’s collection of rules. In the
current MAKAO prototype only the behavioural part has been implemented.

In our example, the join points we are interested in are compiler invocations
on source code files. In terms of the build DAG, this means we first have to find
the targets T which manipulate .c files (concern node attribute), and then have
to look up the relevant commands C in T’s commands dictionary. Join points and
context are defined by the following Gython expressions:

1 Ts=(concern=="c").inEdges.node1.findNodes()
2 base=[(C,tool,T) for T in Ts
3 for C in commands[T.name]
4 for tool in ["CC","gcc"]
5 if C.find(tool)!=-1 ]

On line 1, all targets depending on .c files are selected. We could have looked
directly for .o nodes instead, but then we would also have captured those object
files built from e.g. embedded SQL files21. Then (lines 2–5), we collect for each

21These require slightly different advice.



CHAPTER 3 101

selected target T as context the name of the compiler it uses (tool) and the spe-
cific compiler invocation command (C). For this, we only need to look inside the
command lists of the element targets of Ts and locate the sole command which
invokes a compiler. We can actually reuse the tool mining query of Section 3.5.2
to locate the right compilers.

3.5.5.2 Composing Advice

For each combination of join point and context within base, we then compose a
before- and after-advice, i.e. commands which should be invoked before or
after every C respectively. The before-advice looks like this:

6 before_advice=
7 ["\n".join([C.replace(t,t+" -E -o ${<}-p"),
8 "mv ${<} ${<}-orig",
9 "mytool.sh ${<}-p ${<}"])

10 for (C,t,T) in base ]

The advice contains the shell commands which should be executed right before
the compiler is invoked. The third command within the advice (line 9) contains
the invocation of the preprocessor tool we want to integrate. This tool takes as
input a source file which has been preprocessed by the C preprocessor (line 7).
To not destruct the original source file, the command on line 8 backs up this file.
The join on line 7 glues the three commands together, while the list comprehen-
sion (lines 7–10) generates the three commands for every element of base. The
after-advice (not shown) is much simpler, as it only needs to rename the backup
file to the original source file name after invoking the compiler.

3.5.5.3 Virtual and Physical Weaving

Finally, the MAKAO weaver should weave the advices before or after each com-
mand captured in base. To perform virtual weaving, the next Gython commands
or used (for the before-advice):

10 cc_weaver=weaver("aspicere-cc",1)
11 cc_weaver.weave_before(
12 [T for (C,to,T) in base],
13 [C for (C,to,T) in base],
14 before_advice)

Virtual weaving acts as a simulation of the re-engineering. After execution
of lines 11–14, the commands-dictionary contains the extra commands added by
the advice. The user can inspect these results, manually or automatically (using
verification), to check the re-engineering’s impact, undo changes, and refine the
advice.



102 MAKAO

V
is

ua
lis

at
io

n

Q
ue

ry
in

g

Fi
lte

ri
ng

V
er

ifi
ca

tio
n

R
e-

en
gi

ne
er

in
g

Implicit Dependencies (2.2.1.1) X X

Syntax has Semantics (2.2.2.1) X X

Advanced Language Features (2.2.2.1) X

Precedence of Variables (2.2.2.1) X

Debugging (2.2.2.1) X X X

Portability (2.2.2.2) X

Complexity (2.2.3.1) ± ± ± ±
Traceability to Build Templates (2.2.3.1) ±

Stakeholders (2.2.4.1) X X X X

Overhead of Build Systems (2.2.4.1) X X X X

Recursive vs. Non-recursive “make” (2.2.4.2) X X X

Build System Changes (2.2.4.1) X X X X

Table 3.4: Evaluation of how MAKAO tackles goal T1.

If the re-engineering behaves as expected, physical weaving can be performed
via a Perl script which has been generated as a side-effect of virtual weaving.
This script contains the necessary logic to modify the actual build scripts, where
needed, and to undo the changes if they are not satisfactory. If the advice is not
written in terms of build or configuration parameters, one cannot distribute the
woven build scripts, nor the Perl script, as they are not portable to other build
platforms. Nevertheless, platform-specific customisation of a build system is still
a powerful feature.

3.5.6 Evaluation

Table 3.4 gives an overview of how each of the five requirements implemented by
MAKAO contributes to a solution for all identified build problems, i.e. the de-
gree to which MAKAO fulfills goal T1. We can make a couple of observations
from this table. First, querying is an indispensable activity for any build problem.
It enables detailed access to build dependency graph data, command lists, build-
time values of variables, defined preprocessor constants, etc. This knowledge is a
prerequisite to understand which variable assignment has the highest precedence
(Precedence of Variables), which build parameter requires platform-dependent in-



CHAPTER 3 103

put (Portability), obtain context information for changes (Build System Changes),
etc.

Second, MAKAO’s re-engineering support is not needed in the majority of
problems. As noted in Section 3.4.5, and observed by Robles [195] and Owens [186],
AOP-based re-engineering of a build system especially makes sense for invasive
changes scattered across the build layer. For less invasive changes, it makes more
sense to re-engineer the build scripts in place, as problems often result from syn-
tactical details (Syntax has Semantics) or the location of build logic (Precedence of
Variables). Similar remarks can be made about verification, as only two problem
categories require support for this.

Third, as soon as problems occur at a larger scale (the four general problems at
the bottom), a combination of visualisation, querying and filtering is needed. As
observed for the Linux kernel build graph in Figure 3.5a, a build dependency graph
can visually be very complex. Querying is not fully suited for reducing the level
of detail in a graph, especially because it requires imperative means to express
the filtering intent. Instead, filtering support enables declarative specification of
patterns or idioms of which abstraction should be made. An example of this has
been discussed in Section 3.5.3, but the real value of filtering will become apparent
in Chapter 4.

Fourth, there are a number of ±-symbols. These signal that MAKAO is not
entirely suited to deal with the GBS problems, because these are especially related
to macro usage (autoconf) and generation of the build layer (automake). MAKAO
only provides access to the instantiated build layer in which the autoconf macros
are not retained and there is no reference back to the original build script tem-
plates. This is closely related to our decision to not focus on the configuration
layer. MAKAO could be extended to support GBS’s configuration layer by com-
plementing the build dependency graph with information extracted from the con-
figuration specifications. This would not require changes to MAKAO, only to the
parser scripts.

To summarise, we have shown that the five requirements on which MAKAO is
based are capable of tackling the build problems considered in Section 3.1.1. The
ability of the requirements to deal with co-evolution of source code and the build
system has not been validated yet. This is done in the next chapter in the context
of the Linux kernel build system, and in later chapters for systems in which AOSD
has been introduced in the source code.

3.6 Conclusion

In this chapter, we have distilled five requirements which together guarantee a
solid reverse- and re-engineering environment for many typical build problems
(goal T1) and for dealing with co-evolution of source code and the build system



104 MAKAO

(goal T2). Goal T2 has not been validated yet in this chapter. Together, the require-
ments enable visualisation of the build (sub)system’s structure on various levels of
abstraction, access to specific build data and automatic verification of common
bad smells. For invasive build changes, aspects are promising. They have explicit
support for build context, they clearly express the applicability conditions of the
re-engineering task and they are able to modularise changes.

Because existing tool support does not satisfy the five requirements, we have
designed and implemented a dedicated tool, i.e. MAKAO. It manipulates the build
dependency graph of a concrete build, enhanced with various dynamic and static
build data. Integration in a powerful graph manipulation framework, GUESS, en-
ables interactive visualisation, scripted querying and re-engineering of the build
system, and declarative filtering and verification of the build model. We have
demonstrated how MAKAO works on a number of build problems which are repre-
sentative for goal T1, in systems ranging from closed-source (Kava), closed/open-
source (Quake 3 Arena) to fully open-source (Linux 2.6.16.18). Afterwards, we
have evaluated how MAKAO, and hence the five requirements, contributes to a
solution for all the build problems associated with goal T1.

In the next chapter, we use MAKAO to analyse the evolution of the Linux ker-
nel build system, which requires detailed investigation of the build system at cru-
cial points during the evolution. This analysis serves as validation of the concep-
tual roots of co-evolution postulated in Section 2.3.4 and of the ability of MAKAO
to assist in understanding build systems in general, and symptoms of co-evolution
of source code and the build system in particular. The latter validates the support
for understanding co-evolution of source code and the build system (goal T2 from
Section 3.1) in non-AOSD systems. Later on, in Chapter 6 to Chapter 10, MAKAO
is validated on its ability to understand and manage co-evolution of source code
and the build system (goal T2) in the presence of AOP technology.



"Correctness trumps efficiency."

I just hate hearing stuff like "if we leave this
dependency out, the Makefiles will run faster, and
the user will just have to remember to run ’make
dep’ after they change the configuration". That is so
Microsoft!

Correctness comes first. Then maintainability.
Then speed.

Michael Elizabeth Chastain (Linux 2.4 build
maintainer) 4

Experimental Evidence for
Co-evolution of Source Code and the

Build System

THIS chapter1 uses MAKAO to analyse the evolution of the Linux kernel build
system from the kernel’s inception up until present day to find experimen-

tal evidence of the co-evolution phenomenon between source code and the build
system. This evidence serves as validation of the four roots of co-evolution pos-
tulated in Chapter 2 and as validation of MAKAO’s support for identifying and
understanding symptoms of co-evolution (goal T2). Our observations are based on
measurements of the number of lines of code, number of files, characteristics of
the build dependency graphs and manual browsing through the build scripts. Find-
ing the right balance between obtaining a fast, correct build system and migrating
in a stepwise fashion turns out to be the general theme throughout the evolution of
the Linux build system. Hence, the kernel maintainers implicitly acknowledge the
important role of the build system.

This chapter first (Section 4.1) introduces the rationale behind the analysis of
the evolution of the Linux kernel build system, before explaining the setup and the
scope of the case study (Section 4.2). The analysis is divided in three parts. First
(Section 4.3), we investigate the evolution of the physical relation between source
code and the build system by means of the number of lines of code and the number
of files. Second (Section 4.4), the evolution of the internal complexity of the kernel

1This chapter is based on [5].



106 EVOLUTION OF THE LINUX BUILD SYSTEM

build system is examined via a number of simple, but effective metrics. Third,
Section 4.5 gives a detailed, and at times very technical, account of maintenance
activities and their consequences on the build system. Section 4.6 summarises
the experimental evidence of the co-evolution phenomenon between source code
and the build system, which validates the four roots of co-evolution and MAKAO.
Similarly, Section 4.7 validates how MAKAO achieves Goal T2, i.e. tool support
for understanding and managing co-evolution of source code and the build system
(see Section 3.1.2).

4.1 Rationale behind the Linux Kernel Case Study

This section introduces the case study, its goals and why the Linux kernel build
system has been chosen for our analysis. Linux is a widely used and acclaimed
open source operating system, used both by enthusiasts as well as in industrial
settings. It started out in 1991, when Linus Torvalds sent an email to the Minix
newsgroup, stating that he had developed a free operating system he wanted to
share with everyone. It consisted of a monolithic kernel, in which device drivers
were hardcoded (e.g. Finnish keyboard), with user space programs ported over
from Minix. In a little over fifteen years, Linux has grown from this one-man
hobby project into what is probably the largest open-source project on the planet,
praised for its portability across computer configurations. The Linux kernel fea-
tures a custom build system based on GNU Make, Bash scripts and various small
tools.

Linux has been the target of many studies. The one which is of most relevance
to this dissertation has been performed by Godfrey et al. [99]. They have studied
the kernel source code from the perspective of software evolution, both in its en-
tirety as well as separate subsystems in isolation. Contrary to Lehman’s laws [148],
the kernel exhibits a superlinear growth in size. This means that strangely enough
the growing complexity does not temper the kernel’s evolution. Independent evo-
lution of kernel drivers and code duplication among code for different architectures
explains some of their findings, but Godfrey et al. consider the open source devel-
opment model as the biggest reason for this strange phenomenon, although other
open source systems do not exhibit this evolutionary behaviour [39]. Ramil et
al. [91] later have observed that the results of published open source experiments
are less uniform than in the proprietary case and that evolution in open source is
harder to predict in general. Godfrey et al. explicitly have excluded the build sys-
tem from their investigation. Another relevant study has been made by Bowman
et al. [29]. They deduce the system’s concrete architecture from the Linux imple-
mentation and a conceptual idea of the architecture. To detect and populate the
subsystems of the latter conceptual view, they have manually inspected the source
code instead of mining the build system for architectural information.



CHAPTER 4 107

We have studied the existence of co-evolution of source code and the build sys-
tem in the Linux kernel build system by analysing the evolution of its build system.
More in particular, we have investigated most of the early kernel releases and all
subsequent major releases, i.e. we have opted for a discrete-time perspective [39].
It is important to note that we explicitly have not examined the kernel source code,
nor the changes or log messages in the source code repository, for a number of rea-
sons. First, given the scale of the Linux kernel and the experiment, analysis of the
effects of fine-grained source code changes on the build system and vice versa is
unmanageable. Focusing only on changes in two consecutive minor releases is too
limited, whereas source code changes between two major ones are too numerous
to process and interpret. Picking out one subsystem is more feasible, but to avoid
that the selected component is not representative (both from the perspective of the
source code and build system), multiple ones should be examined. However, the
evolution of the global system is not simply the sum of all its components [99, 39].
Second, a coarser-grained perspective of the source code can be deduced from
physical characteristics like the directory structure [39] or the number of files.
These are easy to measure and convey important information, but do not require
analysis of the source code. Third, the availability of extensive email discussions
between maintainers of the Linux build system, online documents which describe
design discussions of the build system and the documentation of the build system
provide a thorough account of the rationale of changes to the build system. Based
on these three arguments, we claim that the analysis of the evolution of the Linux
kernel build system suffices to detect the existence of co-evolution of source code
and the build system. Our observations acknowledge this.

These are our research hypotheses:

1. Co-evolution of source code and the build system is an important factor in
the evolution of the Linux kernel build system.

2. The symptoms of this co-evolution can be explained in terms of the four
roots of co-evolution of Chapter 2.

3. MAKAO is able to support developers in detecting and understanding the
symptoms of co-evolution.

The next section discusses how we intend to validate these hypotheses, but first
we highlight our choice for the Linux kernel build system as subject of our analy-
sis. Like any open source system [39], almost the whole development history can
be freely accessed online. This encompasses all releases, the source code, docu-
mentation, mailing list discussions, dedicated web sites, etc. Second, because of
its popularity in various application domains, the Linux kernel lives under constant
pressure of changing requirements, feature requests, bug fixes, optimisations, etc.
As such, we would suspect that co-evolution induces the same intensity of changes



108 EVOLUTION OF THE LINUX BUILD SYSTEM

onto the build system. There is an extra catch however, in the sense that any build
error potentially reaches thousands of developers. Due to the diversity in devel-
opment environments, changes to the build system need to be robust to platform
dependencies. This makes the Linux kernel a good choice for validating our hy-
potheses.

There are also a couple of reasons why we should not have chosen the Linux
kernel. First and foremost, the aberrant source code evolution discovered by God-
frey et al. [99] does not align with Lehman’s findings on proprietary systems [148]
and is also not representative for all open source systems [91]. However, in our
case we are not interested in the absolute evolution of e.g. number of lines of code
or number of files. We focus on the relation between the evolution of source code
and the build system, whatever their respective pattern looks like. Second, the fact
that we have not investigated a closed source system can also be interpreted as a
drawback. This type of system is developed by companies with a limited number
of analysts, designers, developers, etc. As their number does not scale with the
number of feature requests or bug fixes, the evolutionary behaviour of such sys-
tems could indeed be more akin to Lehman’s laws. It is unknown whether the build
system would behave similar in those circumstances. Again, as we are interested
in the relative evolution behaviour of source code and build system, analysis of
open source software does not invalidate our research hypotheses.

Ramil et al. [91] have identified a number of threats of validity attributed to
studies of open source systems. We briefly discuss how we deal with these threats:

incomplete or erroneous data We combine data from multiple sources, i.e. build
scripts, documentation, online email discussions and MAKAO.

biased samples To avoid this, we have examined most of the early releases, as
changes to the build system and the source code are easier to make, and
all subsequent major releases. To ensure that we have not missed impor-
tant evolution steps in between the major releases, we have taken random
samples of intermediate releases.

errors in data extraction The tools we have used for counting the number of
lines of code and the number of files were existing programs which have
been tested extensively in practice. MAKAO has been applied on the three
build systems described in Section 3.5 before we have examined the evo-
lution of the Linux kernel build system. Hence, we are confident that it
extracts data in a correct way.

representativeness of the investigated system for the case This is discussed a-
bove.

granularity of the investigated components Idem.



CHAPTER 4 109

Date Version Date Version
September 17,1991 0.01 March 13, 1994 1.0
December 8, 1991 0.11 March 7, 1995 1.2.0
May 25, 1992 0.96a July 3, 1996 2.0.1
July 5, 1992 0.96c January 26, 1999 2.2.0
July 18, 1993 0.99.11 January 4, 2001 2.4.0
September 19, 1993 0.99.13 December 18, 2003 2.6.0
February 3, 1994 0.99.15 June 11, 2007 2.6.21.5

Table 4.1: Chronological overview of the Linux versions we have investigated.

undocumented development periods There is not much information about the
early releases, but there are more samples of this period and the scale of the
system is easier to manage.

unknown variables The biggest unknown variable is the source code, for the
reasons outlined above.

lack of characterisation of the investigated system The Linux system is an in-
teresting system to study, as previous research suggests [99, 29, 91]. As
discussed above, current research has not yet found proof whether or not the
Linux kernel is representative for open source systems in general.

This section has presented the research hypotheses we intend to validate and
has motivated our choice for the Linux kernel build system to do this. In the next
section, we explain the setup and scope of the case study. Afterwards, we present
the analysis results and report on the validation of our research hypotheses.

4.2 Setup of the Linux Kernel Case Study

To study the evolution of the Linux kernel build system, we have looked at most
of the pre-1.0 releases of Linux, as well as the major stable post-1.0 releases (up to
the 2.6 series). Table 4.1 gives an overview of the processed versions, which span
fifteen years of real-world development time. The distribution of systems seems
to be skewed towards the earliest versions (1991–1995), but as Linux was still a
young system back then, it was much easier to make drastic changes than later on.
Indeed, samples in the later kernel series revealed no drastic build changes within
a series, except for the 2.6 line. This is due to the changed development model, i.e.
there is no unstable kernel branch anymore in parallel with the stable one. The next
three sections describe how we have processed the selected Linux kernel releases.



110 EVOLUTION OF THE LINUX BUILD SYSTEM

4.2.1 Measuring SLOC and Number of Files

To each of the kernels of Table 4.1 we have applied David A. Wheeler’s SLOC-
Count tool2 to calculate the physical, uncommented SLOC (Source Lines Of Code)
of source code (.c, .cpp, etc.), build scripts (“Makefile”, “Kbuild”, etc.), configura-
tion data (“config.in”, “Kconfig”, etc.) and support build files (.sh, .awk, etc.). We
have also counted the number of files in these categories. Both metrics are simple
and general, but are representative for the size and modularity of both source code
and the build system. We have compared our findings with those of Godfrey et
al. [99].

4.2.2 Calculating Metrics for the Internal Build Complexity

To get more specific information about the nature of the build system itself, we
have compiled3 each of the kernels based on an initial configuration which we
have reused and enhanced with new kernel features as needed throughout the mea-
surements. The first kernels did not have configuration support, as this was only
added in version 0.99.11. From this version on, we have used a run-off-the-mill
configuration for compilation, i.e. neither a full-fledged nor a sparse one. This
enabled us to measure builds as encountered by the average developer or end user.
There were two possibilities to carry on:

• reuse the same configuration throughout all subsequent kernels

• gradually adapt the configuration to adhere to the changing requirements in
kernel functionality

This dilemma actually applies to any product line. At first sight, the first option
is preferable. However, this defies a big deal of the forces behind system evolution,
i.e. changing requirements and feature requests. As a concrete example, network-
ing and sound support were only added in the 0.99.x series. Both are indispensable
in current systems and hence are always compiled in nowadays. This suggests that
the second option is the way to go. Of course, careful consideration is required to
limit the amount of noise. Only mainstream configuration choices should be made.
We are lucky in this regard, as the kernel’s configuration system allows to import
configurations from older systems and suggests default configuration actions for
any new features. Only a minority of configuration options are suggested to be part
of the kernel, the majority is added as modules4. Hence, by focusing our detailed
analysis of Section 4.5 on the kernel and the default configuration suggestions, we

2http://www.dwheeler.com/sloccount/
3For the sake of completeness, all experiments have been made on an Intel Pentium 4 (3.4 GHz) with 2GB of

RAM.
4These are optional components like hardware drivers which can be easily (un)loaded by a kernel, even dynami-

cally, without requiring recompilation of the kernel.

http://www.dwheeler.com/sloccount/


CHAPTER 4 111

are able to analyse representative configurations of the Linux kernel. The focus
on the kernel itself is not a big restriction, as modules are by themselves indepen-
dent from each other and mostly correspond to drivers and other code produced by
external stakeholders.

Each kernel compilation yields multiple build traces, one for each build phase,
i.e. the compilation of the kernel itself, the compilation of modules and usually
also the extraction of source code dependencies. As we want to find out how the
global build system evolves, the traces we look at correspond to full builds. We
have used MAKAO to obtain the corresponding build dependency graphs, and
to calculate complexity metrics on the number of targets and dependencies. We
measure these simple graph characteristics because they are easy to grasp, but
at the same time convey a lot of information about the internal complexity of a
build system. Graph nodes represent build targets, hence if the number of edges
remains stable, the appearance of more targets denotes that more files (physical
or virtual) have been checked during the build, i.e. the build takes longer. If the
number of targets remains constant, but the number of edges (build dependencies)
increases, the build has become more complex to obtain the same build products.
This identifies redundant build logic, introduction of new tools, integration of new
build idioms, etc. Hence, the metrics give important indications on the evolution
of the internal complexity of a particular configuration of the build system.

To validate our findings, we have investigated the available (online) documen-
tation, literature [167], email archives of the Linux build system and comments in
the makefiles. This has provided us with independent sources of evolution data for
the Linux kernel build system, which we have used to compare our metrics with.
As we will see, there is a high correlation between the metrics and the actual kernel
build evolution.

4.2.3 Detailed Study of Crucial Evolution Steps

As mentioned in the previous section, we have found indications of maintenance
activities in particular kernel versions based on measurements of the number of
lines of code, files, targets and dependencies. To verify whether these predictions
are correct, each dependency graph has been loaded into MAKAO (Chapter 3) to
investigate them in detail by means of visualisation, querying and filtering. This
detailed data is correlated with information from the actual build scripts (make-
files), mailing list discussions and other online development information. Espe-
cially the transition from the 2.4 to the 2.6 kernel series turns out to be funda-
mental, as big changes in the build dependency graph can be observed. For this
reason, we spend a considerable part of this chapter on unraveling the 2.6.0 ker-
nel build system to detect idioms and patterns in it and to deduce their relation to
co-evolution of source code and the build system.



112 EVOLUTION OF THE LINUX BUILD SYSTEM

0

1

2

3

4

5

6

7

s
e
p
-9

1

s
e
p
-9

2

s
e
p
-9

3

s
e
p
-9

4

s
e
p
-9

5

s
e
p
-9

6

s
e
p
-9

7

s
e
p
-9

8

s
e
p
-9

9

s
e
p
-0

0

s
e
p
-0

1

s
e
p
-0

2

s
e
p
-0

3

s
e
p
-0

4

s
e
p
-0

5

s
e
p
-0

6

Date

S
L
O

C
 (

lo
g

1
0
)

source code

build

config

rest

Figure 4.1: Evolution of the number of non-comment, non-whitespace lines of source code
(SLOC), build and configuration scripts in the Linux kernel build system.

Note that this detailed study of build dependency graphs does not consider the
configuration layer of the Linux kernel build system, as a dependency graph in
MAKAO corresponds to a build of one particular configuration. However, during
our examination of the kernel build history, we have found some evidence of co-
evolution of source code and the build system in this area. We briefly present this
in Section 4.5.1.

The next three sections report on the analysis results we have derived using the
approach discussed in this section.

4.3 Observation 1: the Build System Evolves with
the Source Code

This section presents and discusses the measurements obtained with SLOCCount
and a count of the number of files. Figure 4.1 shows the growth over time (in
logarithmic scale) of the number of non-comment and non-blank lines of source
code and build system files. The number of files is presented in Figure 4.2. Both
consider the following four groups of files5: (1) the source code files, (2) the actual

5Note that measurement of SLOC and also number of files occurs statically, which means that it is independent
of the chosen build configuration.



CHAPTER 4 113
Number of files

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

s
e
p
-9

1

s
e
p
-9

2

s
e
p
-9

3

s
e
p
-9

4

s
e
p
-9

5

s
e
p
-9

6

s
e
p
-9

7

s
e
p
-9

8

s
e
p
-9

9

s
e
p
-0

0

s
e
p
-0

1

s
e
p
-0

2

s
e
p
-0

3

s
e
p
-0

4

s
e
p
-0

5

s
e
p
-0

6

Date

#
 (

lo
g

1
0
)

source code

build

config

rest

dir

Figure 4.2: Evolution of the number of source code files, build and configuration scripts in
the Linux kernel build system.

makefiles (build), (3) the configuration files which drive the selection process of
what should get built (config), and (4) other tools and scripts which assist the
actual build process6 (rest). Figure 4.2 also shows a fifth group of measurements,
i.e. the number of directories7 within the source code distribution. This has been
added as a means to better assess the modularity of the build and configuration
scripts.

A first thing to note is the sheer order of magnitude exhibited by the build
system (Figure 4.1 and Figure 4.2). Our measurements confirm the claim made
in [99] about the source code’s super-linear evolution in SLOC and in file count,
but suggest similar findings for the build system (on a lower scale). The build layer
has grown from 293 SLOC in 5 build scripts to 15351 SLOC in 990 files (2.6.21.5).
As for the configuration layer and build support, this is even more impressive as
it has evolved from nothing to 58801 SLOC in 415 files and 10215 SLOC in 74
files respectively. By way of reference, the source code has exploded from 8102
SLOC in 83 files to 5274927 SLOC in 18337 files. These figures suggest a very
high complexity, not only in the build system and source code themselves, but also
on the scale of induced changes.

Figure 4.1 and Figure 4.2 support RC1 (modular reasoning vs. build units) and
6These are build-time scripts and programs to extract symbol tables, install kernel components, etc. As many of

them have to be compiled at the beginning of the build, the Linux build system conforms to a simple version of the
“Code Robot” architectural style [228].

7For this, we excluded the “Documentation” directory introduced in the 2.x series, as it merely contains docu-
mentation about the kernel and its build system.



114 EVOLUTION OF THE LINUX BUILD SYSTEM

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
s
e

p
-9

1

s
e

p
-9

2

s
e

p
-9

3

s
e

p
-9

4

s
e

p
-9

5

s
e

p
-9

6

s
e

p
-9

7

s
e

p
-9

8

s
e

p
-9

9

s
e

p
-0

0

s
e

p
-0

1

s
e

p
-0

2

s
e

p
-0

3

s
e

p
-0

4

s
e

p
-0

5

s
e

p
-0

6

Date

A
v

e
ra

g
e

build/dir

config/dir

rest/dir

dir/dir

Figure 4.3: Evolution of the average number of build and configuration scripts per
directory.

RC2 (programming-in-the-large vs. build dependencies). A first indication is that
the build system grows superlinear, similar to the source code. Over the course
of fifteen years, the SLOC of the makefiles has grown by a factor of about 52,
although it has slowed down in the more recent versions. The file count on the
other hand keeps on increasing superlinearly. The average number of build system
files per directory seems more or less constant on Figure 4.2. If we explicitly
plot this ratio (Figure 4.3), we can indeed see that from March 1994 on (kernel
1.0), each directory contains on average near 0.8 makefiles. The auxiliary tools
and scripts on the other hand, are all located under one directory (“scripts”) and
a couple of subdirectories, hence the low average. As the directory structure of
the source code corresponds to the high-level structure [40] of the Linux kernel,
the makefiles seem to co-evolve with the kernel architecture. This is a second
indication of co-evolution of the build system with the source code. Third, the
build system is modularised such that each new component, i.e. subdirectory, gets
its own makefile. This is acknowledged by the fact that the Linux build system is
known to use a “recursive make” (Section 2.2.4.2). However, not each subsystem
has its own configuration specification, as the ratio of specifications per directory is
lower than for the makefiles, although within the 2.6 kernel the average number has
jumped from 0.2 to over 0.3 because of changes in the configuration specification
language (more on this later). These three observations give evidence of RC1 and
RC2, i.e. source code components have corresponding build subsystems and the



CHAPTER 4 115

source code architecture and build system evolve together.
What is striking from Figure 4.1 is the amount of work which has been put

into the configuration and support system. These have grown from nothing in the
first version8 to almost 60K and 10K lines respectively, the former even getting
ahead of the core build files. The first version of the configuration layer in the
0.99.1x series consists of a simple Bash script which takes a “config.in” config-
uration specification and generates a “.config” file for usage during the build and
an “autoconf.h” for usage inside the source code (cf. GBS in Section 2.1.3). This
script has been enhanced to support configurations of older kernel releases and the
modules phase in the 1.2.0 kernel. In the meantime, nearly all the techniques for
passing configuration choices to the source code which we have seen in the con-
text of autoconf (Section 2.1.3.1) are used in the Linux kernel build system. In the
2.0.0 kernel, the central “config.in” has been distributed across all source direc-
tories and various graphical and textual configuration front ends have been added
(which partially explains the increase in SLOC for rest). The introduction of
the configuration front ends shows how the build system has had to react to the
extreme configurability provided by the source code. The Linux kernel actually is
a product line [55] which can be tweaked to the particular hardware it is going to
control, and hence requires a sophisticated configuration system. The evolution of
the configuration layer clearly supports RC4.

To summarise, the simple metrics of this section have shown that source code
and the build system structurally follow a similar growth pattern (RC2), the build
scripts (and configuration scripts to a lesser extent) are spread across the source
code structure (RC1) and that the build system’s configuration layer has seen a
steep evolution to cope with the source code configurability (RC4). These are
important symptoms of co-evolution. The next section studies metrics of the build
dependency graphs of the investigated kernel releases.

4.4 Observation 2: Build System Complexity Fluc-
tuates

In order to assess the evolution of the complexity of the build system, we have
calculated a number of metrics of the build dependency graphs of the examined
kernels. This means that we do not have data on the configuration specification.
The meaning of the metrics especially becomes clear when combined with analysis
of the build dependency graphs, hence this section only shows that maintenance
has been performed to reduce build complexity, whereas the next section goes into
more detail about the semantics of the maintenance.

8Technically, the measurements for config and rest around ’91–’92 have zero as value, which should be
mapped to minus infinity on Figure 4.1. For practical reasons, this has been approximated by using a logarithmic
value of zero on the graph, corresponding in fact to 1 SLOC.



116 EVOLUTION OF THE LINUX BUILD SYSTEM
Targets

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

s
e

p
-9

1

s
e

p
-9

2

s
e

p
-9

3

s
e

p
-9

4

s
e

p
-9

5

s
e

p
-9

6

s
e

p
-9

7

s
e

p
-9

8

s
e

p
-9

9

s
e

p
-0

0

s
e

p
-0

1

s
e

p
-0

2

s
e

p
-0

3

s
e

p
-0

4

s
e

p
-0

5

s
e

p
-0

6

Date

#
ta

r
g

e
ts

modules

dep

all/vmlinux

Figure 4.4: Evolution of the number of build targets during the compilation of the Linux
kernel.

Figure 4.4 presents, for all analysed kernel releases, the growth over time of the
number of build targets which appear in each build phase. As mentioned before,
the Linux build process is divided into a number of phases, of which we will
consider the most important ones. The kernel image is either built by a phase
named all or vmlinux (from version 2.6.0 in 2003 on), while modules are built
by the modules phase. Extraction of source code dependencies occurs during
the dep-phase. During this phase, the #include-dependencies found within .c
files are scanned and corresponding makefile snippets are generated for use in the
all or modules phases. As MAKAO works with dynamic traces of a build
(Section 3.4.2), Figure 4.4 shows the number of targets checked or built by the
build process during a concrete run of each of the three phases9.

Overall, Figure 4.4 reflects the point made in the previous section: the build
system grows, not only in lines of code, but also in the number of tasks it attempts
to complete. From the 2.6 kernel in 2003 on, the dep-phase disappears and is
subsumed by the other two phases. Note that, contrary to the measurements in
the previous section, the examined build traces correspond to one particular build
configuration, i.e. they only take into account the contribution of selected source
code and build files, not the whole source tree. Second, as we have indicated in
Section 4.2.2, we have started from a given configuration and gradually enhanced
it with new features. Hence, it seems only natural that the number of build tar-
gets increases. However, this noise does not invalidate our measurements, as the
measurements of the number of dependencies will show.

Figure 4.5 and Figure 4.6 relate the growth over time of the number of explicit

9Every kernel has been built from scratch, i.e. we have not measured incremental builds.



CHAPTER 4 117
Explicit edges

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

s
e

p
-9

1

s
e

p
-9

2

s
e

p
-9

3

s
e

p
-9

4

s
e

p
-9

5

s
e

p
-9

6

s
e

p
-9

7

s
e

p
-9

8

s
e

p
-9

9

s
e

p
-0

0

s
e

p
-0

1

s
e

p
-0

2

s
e

p
-0

3

s
e

p
-0

4

s
e

p
-0

5

s
e

p
-0

6

Date

#
d

e
p

s

modules

dep

all/vmlinux

Figure 4.5: Evolution of the number of explicit dependencies during the compilation of the
Linux kernel.

and implicit10 build dependencies respectively, for each of the three build phases.
The turbulent course of Figure 4.5 culminates in a huge growth up to September
2000 (kernel 2.4.0), followed by a serious dip. We also notice that eventually the
number of dependencies rises again, albeit at a slower pace. Typically, the num-
ber of dependencies grows when more build targets appear in a build, redundant
checks are made, artificial dependencies have been added, etc. However, there are
also periods when the number of dependencies decreases. If we combine this with
the observation that the number of targets only grows (partly because the compiled
configuration is extended), this means that the build system complexity fluctuates a
lot. Because every new target adds at least one extra edge to the build dependency
graph, the reduction in complexity can only be the product of human intervention,
i.e. maintenance operations in the build system. Deeper investigation is needed to
verify the true nature of these changes. This is done in the next section.

Figure 4.6 shows that there is also a steady growth in the number of implicit
dependencies. This means that the number of relationships the build system knows
nothing about is on the rise. This is not only problematic when trying to understand
the build system, it also constitutes a potential source of build errors, and (at best)
may lead to suboptimal builds. Luckily, most of the implicit dependencies origi-
nate from temporary files created during the dep phase, i.e. files which contain
the dependency makefile snippets extracted from the source code’s #include-
relations. Extraction of dependencies only seems to do a depth-first iteration of
the directory structure. This can be deduced from the resemblance between the

10As seen in 2.2.1.1, implicit dependencies are relationships which are not explicitly declared as makefile rule
dependencies, but rather are buried inside a rule’s command list.



118 EVOLUTION OF THE LINUX BUILD SYSTEM
Implicit dependencies

0

500

1000

1500

2000

2500

3000

3500

4000

s
e

p
-9

1

s
e

p
-9

2

s
e

p
-9

3

s
e

p
-9

4

s
e

p
-9

5

s
e

p
-9

6

s
e

p
-9

7

s
e

p
-9

8

s
e

p
-9

9

s
e

p
-0

0

s
e

p
-0

1

s
e

p
-0

2

s
e

p
-0

3

s
e

p
-0

4

s
e

p
-0

5

s
e

p
-0

6

Date

#
d

e
p

s

modules

dep

all/vmlinux

Figure 4.6: Evolution of the number of implicit dependencies during the compilation of the
Linux kernel.

corresponding charts in Figure 4.4 and Figure 4.6, which means that the number
of implicit targets (edges) closely follows the number of targets (nodes), i.e. the
graph of the dep phase resembles a spanning tree (all targets are reached only
once). This has been acknowledged by investigating the build dependency graphs.
The fact that the modules and vmlinux phases only start to exhibit implicit
dependencies after the dep phase has been merged with them suggests that these
dependencies are harmless as well. This merger is also largely responsible for the
steep growth of the number of targets of the vmlinux phase in Figure 4.4, but
not for the modules phase. This is probably due to the addition of extra drivers
to the build configuration.

This section has presented the measured complexity metrics for the build sys-
tems of each of the investigated kernels. The number of build targets keeps on
growing. However, this is not only due to the expanded build configuration as the
fluctuating course of the number of explicit dependencies shows. There are peri-
ods where less dependencies (edges) appear for a higher number of targets (nodes),
i.e. complexity decreases. The opposite can also be observed. Hence, it is clear
that maintenance has been performed to reduce the build complexity. The next
section links these numbers to actual maintenance activities, which also give us
new indications of co-evolution of source code and the build system.



CHAPTER 4 119

4.5 Observation 3: Co-evolution as Driver of Build
Evolution

Having observed that the build system evolves and that maintenance is done to
reduce the growing complexity, we now examine the specific maintenance actions
which have been performed by the Linux build developers. These activities clearly
illustrate the four roots of co-evolution. First, we briefly consider changes in the
configuration layer. Then, maintenance activities up until the 2.4.X kernel series
are presented. Finally, we take a very detailed look at the changes between the
2.4.0 and 2.6.0 kernel build system. Although the latter section is very technical, it
illustrates many different facets of co-evolution of source code and the build sys-
tem, and shows how MAKAO is capable of supporting developers to understand a
build system.

4.5.1 Configuration Layer under Pressure

We have not directly analysed the configuration scripts of the Linux kernel build
system. Nevertheless, the measurements of Section 4.3, casual browsing of the
scripts and various email discussions have made it clear that there has been a very
apparent evolution in the configuration layer. Initially, there was no possibility at
all to configure the kernel, but since the 2.6 series the configuration system has
surpassed even the build scripts in SLOC.

There are a number of interesting facets of this evolution. The graphical front
ends which we have discussed before take as input configuration specifications
which contain the various configuration options. These options are hierarchically
ordered in groups and have constraints between them. Each option contains a
name, explanation and default configuration decision (to select something as part
of the kernel, as a module or to exclude it from the build). These constraints have
to be updated manually when the source code evolves, as each module’s (implicit)
expectations and provisions determine the feasible build configurations. Similarly,
the applied configuration mechanisms (the same as those provided by autoconf in
Section 2.1.3.1) require updates to the build system to cope with changes to the
source code. This clearly represents evidence for RC4.

The specification languages for the configuration and build scripts correspond
to high-level domain-specific languages which have been built on top of low-
level technology like Bash scripts and GNU Make. These high-level languages
hide low-level details for developers. In personal communication, Linux 2.6 build
maintainer Sam Ravnborg has coined the phrase “simple syntax for simple things”
for this. Whereas the build system engine (“how”) may significantly be optimised,
maintained and tweaked, the Linux build users are shielded from this via domain-
specific build and configuration languages (“what”). Although these languages



120 EVOLUTION OF THE LINUX BUILD SYSTEM

1 obj-y :=
2 obj-m :=
3 obj- :=
4 obj-$(CONFIG_SOUND) += soundcore.o

Figure 4.7: Format of list-style build scripts in the 2.4.0 kernel build scripts.

have seen a number of different incarnations, they mostly remain stable. This is
an important countermeasure for protecting developers against the frequent main-
tenance activities which are performed. As most of these activities have to do with
co-evolution of source and the build system, the domain-specific languages are
actually a countermeasure to deal with the co-evolution.

Although we have not investigated the configuration layer in detail, This sec-
tion has identified important configuration characteristics which are related to
RC4. The next section briefly reports on specific maintenance actions on the build
system up to the 2.4.X kernel series.

4.5.2 Evolution until the Linux 2.4 Series

Since its inception, Linux sports a “recursive make”-based build system. However,
its particular face has gone through many revisions for a variety of reasons. Espe-
cially the evolution to the 2.6.0 kernel has caused important changes (see the next
section), but there have been many changes before.

The decrease of fourteen percent in SLOC during the pre-1.0 era (1992-1993)
on Figure 4.1 indicates that effort has been spent to mitigate build complexity.
This effort corresponds to a new scheme by which the recursive build traverses
through the source code directories, replacing the naive implementation of “re-
cursive make” in use until then. Each makefile defines a variable which contains
the subdirectories to traverse over and a specific build rule (“linuxsubdirs”) which
specifies the traversal. These rules depend on a phony target11 named “dummy”
to make sure that each build always executes a rule’s command list, i.e. the sub-
directories are always traversed. However, this is only the beginning of a long list
of changes to the “recursive make” infrastructure. Their goal is to assist develop-
ers in adding new drivers or other components by making it as easy as possible to
integrate their makefiles into the build (RC1).

Figure 4.5 hints at many of these changes. Between 1.2.0 and 2.0.0 (1995-
1996), common build logic has been extracted into a shared build script called
“Rules.make”, resulting in a 40% reduction of explicit dependencies (while the
number of targets has increased). Between 2.2.0 and 2.4.0 (1999-2000), the de-

11A phony target is a target which has an associated time stamp which lies in the future. Hence, if a dependee is
declared as phony, the dependent always is always out-of-date and needs to be rebuilt by executing the rule’s command
list. More on this in 4.5.3.2.



CHAPTER 4 121

crease of nine percent in SLOC can be attributed to a massive rewrite of the build
scripts and “Rules.make” in a more concise “list-style” manner [155]. This is a
higher-level way to specify build dependencies, as shown on Figure 4.7. Depend-
ing on the fact whether sound support (CONFIG_SOUND) is chosen as a built-in
feature (“y”), module (“m”) or left out (“”), either the “obj-y”, “obj-m” or “obj-”
variable is assigned the object file soundcore.o. Developers do not need to specify
any build rules anymore. The central “Rules.make” rule base of the 2.4.0 kernel
has been completely rewritten in terms of the “obj-y”, “obj-m” and “obj-” variables
and just needs to iterate through the list of names they contain. Hence, the build
logic boils down to list processing. The list-style makefiles actually form a kind of
high-level specification language which hides build rules for the developers. This
forms additional evidence of the validity of RC1, i.e. to facilitate dedicated build
components for each source code component.

A second area of important build evolution steps, indirectly related to the three
“recursive make” changes, is the dep phase. In the earliest kernel releases, auto-
matic detection of source code (header file) dependencies within the build system
was not that sophisticated. Releases 1.2.0, 2.0.0 and 2.2.0 each tried to make
dependency management more correct without sacrificing (build) speed. New de-
pendency extraction scripts, recursion schemes, decomposition of the generated
configuration header files, etc. tried to achieve this. Eventually, as people still
encountered many nuisances, the separate dep phase has completely disappeared
in the 2.6 kernel and has been integrated into each build phase (see 4.5.3.2). The
trade-off between accurate source code dependency information versus build speed
is very apparent in this area. This was also coined as “correctness trumps effi-
ciency” by Michael Elizabeth Chastain, the Linux build maintainer [155]. Less
dependencies results in less things to check during the build, but ignores certain
file changes and hence may lead to inconsistent builds. These findings clearly re-
late to RC2 and RC3, i.e. the build DAG reflects the dependencies in the source
code and compromises are made to speed up the build by leaving out certain de-
pendencies.

This section has presented maintenance actions undertaken before the 2.6.x
kernel series. These actions have provided evidence of RC1, RC2 and RC3. The
next sections considers the 2.6.0 kernel build system, which is a complete rewrite
of the Linux kernel build system.

4.5.3 Towards the Linux 2.6 Kernel

This section elaborates on the huge evolution step the Linux build has gone through
between Linux 2.4.0 and 2.6.0 (2001-2003). This step immediately caught our at-
tention because the separate dependency extraction step has vanished and is sub-
sumed in the other phases, the number of explicit dependencies has dropped dras-



122 EVOLUTION OF THE LINUX BUILD SYSTEM

tically to one third of the 2.4.0 level, but the number of targets in the vmlinux
build has increased with a factor of 2.3. Hence, we have compared the build de-
pendency graphs of the 2.4.0 and 2.6.0 kernel builds, and have investigated the
available developer documentation and email discussions. The resulting findings
and their relation to co-evolution of source code and the build system are discussed
in this section. Note that this section is rather long, detailed and at times very tech-
nical. However, it clearly illustrates many symptoms of co-evolution of source
code and the build system.

The overhaul of the 2.6 kernel build system dates back to 2000, when two
people independently proposed substitutes for both the configuration and the build
layer. CML212 tried to replace the informally defined configuration layer by a
domain-specific language implemented on top of a custom rule-engine written
in Python, and also tried to address the tight dependency on conditional com-
pilation and building. Kbuild 2.513 was a rewrite of the Linux build layer as a
“non-recursive make” (see Section 2.2.4.2). Both approaches represented a big
improvement over the then current build system. Nevertheless, the introduction of
non-conventional (for kernel development) technologies like Python, and the ab-
sence of incremental migration strategies — in contrast to the list-style makefiles
of Section 4.5.2 — have precluded both independent initiatives from being ac-
cepted. This is a very important point, as it implicitly acknowledges the existence
of co-evolution of source code and the build system. Linus Torvalds ignored the
technological improvements to the build system to safeguard its correctness. For
one, not all features of the old build system were reimplemented (module version-
ing e.g.) and if they were, some were not tested thoroughly. Second, developers
had to learn a new way of working and adapting all components. Third, although
the new system could run in parallel with the old one, there was no incremental
way of migrating from one to the other. Hence, the risk of bringing daily devel-
opment to a halt, even temporarily, caused the two proposals to be blocked. This
contrasts with the KDE case of Section 2.3.3.1, where developers unanimously
decided to migrate to another build system.

Instead, the existing 2.4 build system has been incrementally upgraded to the
2.6 kernel by squeezing every possible bit of performance out of it. Roman Zip-
pel has designed Kconfig (initially called “LinuxKernelConf”)14, i.e. a standard
configuration language specification to which all front ends had to adhere. The
existing “config.in” files have been rewritten and renamed to “Kconfig”, which
explains the slight increase in SLOC on Figure 4.1. The build scripts have been
refactored by Kai Germaschewski. He managed to incorporate a number of Kbuild
2.5’s proposed features on top of the existing build infrastructure, while avoiding

12http://lwn.net/2001/features/KernelSummit/
13http://sourceforge.net/projects/kbuild/
14http://www.xs4all.nl/ấLijzippel/lc/

http://lwn.net/2001/features/KernelSummit/
http://sourceforge.net/projects/kbuild/
http://www.xs4all.nl/∼zippel/lc/


CHAPTER 4 123

t.ot.ct.h

Figure 4.8: Build phase all of the Linux 2.4.0 build process (with header file targets).

a non-recursive “make”. In the 2.6 build layer, “Rules.make” has been made much
more sophisticated (and renamed) and all “make” subprocesses are now invoked
with the top directory as working directory. Nevertheless, build speed is lower
than in the (blocked) Kbuild 2.5 system. Hence, the original build system has been
largely rewritten (in small increments) instead of moving to a completely new in-
frastructure.

The following two sections look in depth at the changes introduced by Keith
Owens’ Kbuild 2.5 and at the eventual 2.6 build system written by Kai Germa-
schewski.

4.5.3.1 Kbuild 2.5 Eliminates Recursive Make

This section discusses the design of the proposed Kbuild 2.5 build layer, as this ex-
poses the fundamental problems of the 2.4 kernel build system and the technically
advanced solutions for them. This knowledge helps in understanding the changes
which eventually were made to obtain the 2.6 kernel build system.

Keith Owens’ design of Kbuild 2.5 is based on a number of observations made
from the 2.4 kernel and feedback solicited from other build developers [156]:

• Build execution flow is very hard to follow because of the hundreds of build
scripts.

• The “recursive make” symptoms mentioned in Section 2.2.4.2 surface, in-
cluding the scattered, unenforced specification of recursion logic.

• Build scripts in subdirectories of a “recursive make” system do not function
in isolation, because they need various environment variables to be set by
higher makefiles in the directory structure.



124 EVOLUTION OF THE LINUX BUILD SYSTEM

t.ot.c

Figure 4.9: Build phase all of the Linux 2.4.0 build process (without header file targets).

• There are lots of important implicit dependencies15, e.g. between a Linux
module and the kernel modules on which it relies.

At the same time, dependency extraction from the source code was said to
be “fundamentally broken” in the 2.4 kernel16. First, its existence as a separate
build phase means that everyone who makes changes to the build system needs to
remember to run the “dep” phase before recompiling their system. Second, header
files generated during the build are not taken into account at all. Third, the script
used to mine the .c files for #include-statements only knows about two header file
locations, i.e. the current directory and a global one. Hence, custom header file
directories used by some subsystems are simply ignored. Fourth, no difference
is made between source files selected in the build configuration and unimportant
ones, such that some build errors are actually false positives caused by files which
do not need to be compiled. Finally, the many small files generated by the “dep”
phase clutter with the actual source code, and #include-relations between .c
files (not a recommended practice) are not dealt with correctly.

Finally, Owens pointed out that “make” previously was used for two things:

• defining how objects and libraries are to be combined from other targets, i.e.
the build dependency graph

15These implicit dependencies cannot be derived from the rule command lists, which means that MAKAO cannot
detect them.

16http://osdir.com/ml/kbuild.devel/2002-04/msg00066.html

http://osdir.com/ml/kbuild.devel/2002-04/msg00066.html


CHAPTER 4 125

• traversing the dependency tree to only do the needed things (based on time
stamps)

From his perspective, “make” was only suited, both in speed and accuracy, for
the latter. This acknowledges Favre’s claims [84] and is related to our second and
third root of co-evolution.

To solve all these issues, Keith Owens has proposed many major changes.
First, he has simply dropped the “dep” phase. The required dependencies are auto-
matically rebuilt as needed during the normal build phases. Second, an even bigger
change is the introduction of “non-recursive make”17. Except for a top-level make-
file and another one with common build code, all directories get a “Makefile.in”
file. These contain high-level declarations of what the developer wants to build and
which dependencies or side-effects come into play. The current directory problem
of “non-recursive make” is dealt with by considering target locations relative to
the Makefile.in’s directory and by providing various macros for directory loca-
tions. This manipulation requires that #include-statements in the source code
refer to unqualified file names, i.e. without any path info. The latter should be
set up using compiler flags. Third, the kernel and module build phases have been
unified. Fourth, contrary to the makefiles in the 2.4 kernel build which depend on
environment variables set by other makefiles, developers can now build separate
subdirectories. We now explain the most important changes.

Owens did not use an include-based “non-recursive make” implementation
because the resulting makefile after expansion of all included build scripts would
become too big and hence cause overhead. Instead, a complicated five-phase pro-
cess forms the heart of Kbuild 2.5. Almost every phase uses special preprocessor
commands named pp_makefilei with i getting as value 1, 2, 4 or 5:

1. pp_makefile1 processes the required source code hierarchies and records file
names, locations and time stamps in a database. This phase has to be rerun
during each build to detect changes to files.

2. pp_makefile2 glues the “Makefile.in” files together and preprocesses the re-
sult.

3. The preprocessed global makefile is now given to “make”, not for actual
compilation but to let “make” expand all variables, macro expansions and
conditional build logic, and to store the resulting generated rules to disk.

4. pp_makefile4 takes the output of the previous two phases and generates a
specialised global makefile. The time stamps stored in the database are

17There have been other attempts before to turn the Linux build into a non-recursive “make”, e.g. by Martijn van
Oosterhout in the 2.2 kernel series (http://svana.org/kleptog/make/index.html).

http://svana.org/kleptog/make/index.html


126 EVOLUTION OF THE LINUX BUILD SYSTEM

taken into account to only include the necessary build rules. This mecha-
nism detects both newer and older files, i.e. it can deal with source code
repositories, clock skew and agile reuse of shadow trees.

5. Finally, the actual build occurs, but with a twist. The generated global make-
file uses another preprocessing tool, pp_makefile5, as a wrapper around all
compilers and other tools, with the aim of finding out whether the commands
succeed or not. In the case of build success, the database entries of the built
target and its dependencies are updated with a time stamp, the (parametrised)
compilation command and the configuration settings. In case of failure, all
dependency information is marked as a failure. This bookkeeping helps for
incremental compilation, i.e. in step 4 of the next iteration.

Step 4 took 1 or 2% of the total kernel build time [156]. The total build was 9%
faster than the 2.4 build, but could be sped up by building in parallel (only limited
by hardware). The generation of the global makefile actually took longer than the
build time for small source code changes, but there was an option to bypass this
generation and reuse the previously constructed makefile (although this was not
completely safe). In any case, speed problems have been dealt with by adding the
correct dependencies instead of removing valuable information from the source
code architecture. This is clearly related to RC2 and RC3. At the same time,
developers can still incrementally add separate build scripts for new components,
without the need to change or understand existing makefiles. This facilitates RC1.

Finally, Kbuild 2.5 supports multiple output directories, one per build config-
uration. The inverse is also possible, i.e. multiple source code directories. This is
very practical to incorporate external code bases. This mode is sophisticated, as
developers can e.g. specify that some files shadow others or even that the contents
of a file should be pre- or appended to another one. This means that instead of sets
of patches, the changed source code or just the modifications could be kept in a
separate directory hierarchy. This facilitates management of source code changes.
As such, this shadow tree mode is much more advanced than the existing configu-
ration infrastructure (RC4).

Regarding the rejection of Kbuild 2.5 by Linus Torvalds, Owens has argued18

that a step-by-step migration to his approach did not make sense, given the number
and nature of changes (syntax, shadow trees, non-recursive build, etc.). As contem-
porary maintenance actions caused similar scattered changes to makefiles [186],
he claimed that a big bang was reasonable. Instead, the Kbuild 2.5 has been
blocked from integration into the official kernel source tree, and Kbuild 2.5 has
been abandoned. Still, the discussion of Kbuild 2.5 enables us to better understand
the rationale behind Kbuild 2.6, which is presented in the next section. As a side
note, recently (October 2007) a new proposal for a non-recursive “make” has been

18http://lwn.net/Articles/1500/

http://lwn.net/Articles/1500/


CHAPTER 4 127

t.ot.ct.htdir

Figure 4.10: Build phase vmlinux of the Linux 2.6.0 build process.

launched on the Linux Kbuild mailing list19. This time, the promise has been made
to reuse the existing makefiles as is.

4.5.3.2 Kbuild 2.6 Converges to Kbuild 2.5 via Build Idioms

This section elaborates on Kbuild 2.6. First, we qualitatively compare the build de-
pendency graph of the 2.6.0 kernel to the one of the 2.4.0 kernel. Then, we focus on
the new mechanism for extraction of dependencies. Afterwards, we use MAKAO
to unravel the Kbuild 2.6 dependency graph. In doing this, we have discovered
various build idioms, each of which forms part of the Kbuild 2.6 implementation
to solve the problems addressed by Kbuild 2.5. The three most apparent idioms are
discussed, i.e. the FORCE idiom, composite objects, and the circular dependency
chain. Especially the last idiom is complex to understand.

Figure 4.8 shows the dependency graph of the 2.4.0 kernel image build (all).
There are many (16615) dependencies on header files (yellow edges to yellow
nodes). On Figure 4.9, these edges have been elided such that we can clearly
observe the various object (red nodes) and source files (blue nodes) and the depen-
dencies between them. By querying the static information attached to the nodes
and edges, we find that each cluster of nodes corresponds to a particular direc-
tory. Kernel subcomponents are delimited by directory boundaries, as mentioned
earlier.

19http://www.mail-archive.com/linux-kbuild@vger.kernel.org/msg00026.html

http://www.mail-archive.com/linux-kbuild@vger.kernel.org/msg00026.html


128 EVOLUTION OF THE LINUX BUILD SYSTEM

The corresponding build DAG of the 2.6.0 release is shown on Figure 4.10.
Apparently, the majority of header file dependencies have vanished, and the re-
maining ones (843) are localised in two clusters. In the middle, we can also see a
very dense build, almost one huge cluster of nodes. Second, there are many new
implicit dependencies (near the leaf nodes) which represent relations between ob-
ject files and temporary files generated during the build. These hint at changed
build commands. Paradoxically, the dependency graph looks much more complex
after the maintenance activities than before (Figure 4.9). However, it works much
faster and fulfills a lot more functionality than the 2.4.x build.

In the next subsections, we will consider the header dependency disappearance,
and dissect the build dependency graph using MAKAO’s logic rule engine to drill
down into the concrete changes compared to the 2.4 build. We do not consider the
logic rules here. They are all listed in Appendix B, and the necessary concepts to
understand them have been introduced earlier in Section 3.5.3.

Evolution of Algorithms for Extraction of Source Code Dependencies Just
as Kbuild 2.5 does, the 2.6 build system has dropped the separate “dep” phase.
As a consequence, dependency generation now occurs as part of the normal build
instead of as a separate phase (see section 4.5.2). To make this more efficient,
a technique invented by Tom Tromey for “automake” (Section 2.1.3.2) has been
applied [167]. Basically, if a source file has been modified, this file has to be re-
compiled anyhow, hence the file’s dependees do not have to be checked to decide
whether or not to rebuild. However, the changes to the source file can introduce
new build dependencies, or remove existing ones. To generate the file’s new de-
pendencies for use in future builds, it suffices to produce them as a side-effect
during the actual compilation. Hence, during an initial, full (“clean”) build, none
of the source code files requires checking of its dependencies, which explains the
disappearing of more than 15000 edges between the 2.4.0 and 2.6.0 build. Subse-
quent builds will discover the previously generated dependencies and incorporate
them. This means that dependencies are only taken into account starting from the
build iteration following their generation, and until they are out-of-date. This is
actually a special case of RC3.

In the 2.6 kernel, the generated dependency files are enhanced with the specific
compilation command used to build the particular target. This enables to detect
when the build mode is changed from a debug to a release build, such that all
compiled files with debugging info are recompiled.

The FORCE-idiom Enhances Make’s Time Stamp Checks If we zoom in on
Figure 4.10, we obtain Figure 4.11. Apparently, there is one node (“FORCE”)
which is a dependee of all object files in the system. A “FORCE” node is an idiom
frequently used to emulate “phony” targets in older “make” implementations. One



CHAPTER 4 129

tFORCEt.ot.ct.htdir

Figure 4.11: Zooming in on the vmlinux build phase of the Linux 2.6.0 build process.

could interpret a phony target as having a time stamp far ahead in the future. If it is
used as a rule dependee, the rule’s target always has to be remade as it is older than
any phony target. Hence, phony targets can force execution of a rule’s command
list. Newer implementations like GNU Make have explicit support for phony tar-
gets by means of the declarative “.PHONY”, whereas the traditional “FORCE”
idiom lists the phony target as the target of a rule without any dependencies or
command list20.

Even when building incrementally, the command list of a build rule with a
phony dependee will be executed, hence there is no visual difference with a full
build graph21. At first sight, this seems counter-intuitive. One of “make”’s strengths
is to only rebuild what is required, i.e. only execute the command list if needed.
Here, the kernel build developers explicitly bypass this by using phony targets as
dependees.

To understand what is happening, the relevant build logic is shown on Fig-
ure 4.12. Lines 22–24 represent the build rule for compiling .c files into ob-
ject files. The “FORCE” target is indeed a prerequisite of each object file. The
“FORCE” target is declared as phony in two ways here (lines 26 and 28) for back-
ward compatibility. Explicit usage of the “.PHONY” declarative is said to be more
efficient than the emulation [218]. The heart of the Linux kernel’s FORCE id-
iom is the call to the GNU Make function if_changed_rule on line 23. The
definition of this function (lines 1–4) contains a complicated if-test with the con-
dition spread over lines 1–3 and the conditional action on line 4. In the case of

20If that rule has a command list, this will be executed anywhere the phony target is listed as a dependency. This
is the equivalent of a function call during dependency processing [167].

21Except for the addition of header file dependencies starting from the second (re)build.



130 EVOLUTION OF THE LINUX BUILD SYSTEM

1 if_changed_rule = $(if $(strip $? \
2 $(filter-out $(cmd_$(1)),$(cmd_$(@F)))\
3 $(filter-out $(cmd_$(@F)),$(cmd_$(1)))),\
4 @$(rule_$(1)))
5 ...
6 cmd_cc_o_c = $(CC) $(c_flags) -c -o $@ $<
7 ...
8 define rule_cc_o_c
9 $(if $($(quiet)cmd_checksrc), \

10 echo ’ $($(quiet)cmd_checksrc)’;) \
11 $(cmd_checksrc) \
12 $(if $($(quiet)cmd_cc_o_c), \
13 echo ’ $($(quiet)cmd_cc_o_c)’;) \
14 $(cmd_cc_o_c); \
15 $(cmd_modversions) \
16 scripts/fixdep $(depfile) $@ ’$(cmd_cc_o_c)’ \
17 > $(@D)/.$(@F).tmp; \
18 rm -f $(depfile); \
19 mv -f $(@D)/.$(@F).tmp $(@D)/.$(@F).cmd
20 endef
21 ...
22 %.o: %.c FORCE
23 $(call if_changed_rule,cc_o_c)
24 $(touch-module)
25 ...
26 .PHONY: FORCE
27

28 FORCE:

Figure 4.12: Build logic for the FORCE idiom in the Linux 2.6.0 kernel build system.

the call on line 23, the conditional action corresponds to the expansion of the
rule_cc_o_c macro22. This macro does a lot of things, but the most important
actions are the expansion of the variable cmd_cc_o_c on line 14 and the invo-
cation of the fixdep-script. The definition of cmd_cc_o_c on line 6 makes
it even more clear that the rule_cc_o_c macro does the actual compilation,
followed by postprocessing of the generated header file dependency files. This
means that the GNU Make function if_changed_rule determines whether or
not compilation is necessary. The Linux kernel apparently uses it own checks to
determine whether recompilation is necessary or not, bypassing “make”’s standard
time stamp-based heuristic. The control flow of the build is automatically forced
into the command list on lines 23–24, in which custom build logic uses time stamp
information to decide whether the target really has to be (re)made (i.e. command

22The invocation’s sole argument is appended to rule_ to obtain the macro’s name.



CHAPTER 4 131

t.ot.ct.htdir

Figure 4.13: Build phase vmlinux of the Linux 2.6.0 build process after abstracting
away the FORCE-idiom and re-layouting the graph.

list continued) or not.
What exactly does Linux’ custom build decision logic do? The basic idea

is that changes in time stamp and compilation command lead to recompilation.
The if check on line 1 checks to see whether a list of three values ($? and
$(filter-out ...) on line 2, and $(filter-out ...) on line 3)
is non-empty, in which case the condition evaluates to true and compilation oc-
curs. $? contains all modified source code files, based on “make”’s standard time
stamp information. The other two “make” expressions together calculate the differ-
ence between the currently used compilation command and flags (cmd_$(1), i.e.
cmd_cc_o_c) and the previous build iteration’s one (cmd_$(@F)23). The latter
command is stored together with the header file dependencies in a separate file per
object file. As mentioned before, this is useful information when switching e.g.
between production and debug builds. More advanced schemes using e.g. MD5
check sums could be implemented by modifying the sole if_changed_rule
function.

To summarise, the 2.6 build does not solely rely anymore on “make”’s time
stamp-based heuristic to decide when recompilation is required. A custom “make”
function is forced to execute via a phony target and enhances time stamp checks

23$(@F) contains the unqualified file name of the current build target, i.e. the object file.



132 EVOLUTION OF THE LINUX BUILD SYSTEM

by taking compilation commands and flags into account. As a consequence, the
build dependency graph always reflects the same set of dependencies, whether
incremental compilation occurs or not. This is another special case of RC3. The
dependency graph is not pruned by omitting dependencies, but instead the static
dependencies are left intact and dynamic checks are used to prevent redundant
build actions.

An important note to make: a precursor of this “FORCE” idiom already was in
use in the 2.4 kernel. There, all object files in a subdirectory depend on a “dummy”
target, which is phony. As each directory has its own “dummy” target, this idiom is
visually not as spectacular as the 2.6 “FORCE”-idiom. Indeed, the fact that all ob-
ject files reference one unique, virtual “FORCE” node in the 2.6 build, means that
each time this target is encountered within the build, the current directory remains
the same. This is easy to understand, as the absolute path of a target is the only
way to define identity of build targets in a build graph. In a “recursive make” like
the 2.4 kernel has, the current directory each time corresponds to the current sub-
directory. This results in various “dummy” targets, one per directory. This learns
us that a lot of directory fiddling is taking place in the 2.6 build to obtain a simi-
lar situation as in a “non-recursive make”-like build system. Kai Germaschewski
indeed has noted that recursion has changed from “make -C subdir” to “make -f
subdir/Makefile”, which means that the current directory is kept fixed throughout
the build (no “-C”).

To be able to delve deeper into the Linux 2.6.0 build dependency graph, we
need to abstract away the “FORCE” idiom. For this, we can use MAKAO’s Prolog
component, as we have already shown in Section 3.5.3. The filtering rule we have
applied removes FORCE and its incoming edges. After relayouting, the resulting
graph looks like Figure 4.13. Two more idioms become visible, which we discuss
in the following sections.

Composite Objects Structure the Kernel Build System Figure 4.13 reveals
new idioms. The constructed Linux kernel image consists of a number of modules
which are actually big object files linked together from various smaller ones. This
makes these “composite objects” [153] easy to recognise. A concrete example of
composite objects is shown in Figure 4.14, which displays the component of the
Linux kernel (“net” directory) which is responsible for networking support. The
red node at the bottom is a composite object which is linked from an array of eight
object files (“simple objects”).

The upper four nodes of Figure 4.15 give a more schematic overview of how
composite objects participate in the construction of the Linux kernel at the highest
levels of the build DAG. Figure 4.15 corresponds to the build subgraph responsi-
ble for building a (simplified) version of the “net” subdirectory (the networking
subsystem of Figure 4.14). We assume that this directory contains one .c file



CHAPTER 4 133

t.otdirt__build

Figure 4.14: Figure 4.13 after zooming in on the networking subsystem. Slightly different
colors are used in this graph. Directory nodes e.g. are now light green.

__build

built-in.o

1

802/built-in.o

6

802

11

ethernet

12

10

socket.o

2 3

4 87

5 9

Figure 4.15: Circular dependency chain in the Linux 2.6.0 build system.

(“socket.c”) and two subdirectories (“802” and “ethernet”), each of which con-
tains its own source code. We further assume that the contents of “802” have to
be built into the kernel, while “ethernet” should go into a module. By way of con-
vention, all composite objects in the Linux kernel are called “built-in.o”. During
the vmlinux build (i.e. construction of the kernel image), each of the selected
subdirectories (only “802” in this case) generates such a “built-in.o” file, which
links the compiled .c files of a directory. The same goes for the “net” directory
itself, which eventually contains “socket.o” and “built-in.o”. The latter will be



134 EVOLUTION OF THE LINUX BUILD SYSTEM

1 __build: $(if $(KBUILD_BUILTIN),$(builtin-target) \
2 $(lib-target) $(extra-y)) $(if $(KBUILD_MODULES), \
3 $(obj-m)) $(subdir-ym) $(always)
4 @:
5 ...
6 $(sort $(subdir-obj-y)): $(subdir-ym) ;
7 ...
8 %.o: %.c FORCE
9 $(call if_changed_rule,cc_o_c)

10 ...
11 $(builtin-target): $(obj-y) FORCE
12 $(call if_changed,link_o_target)
13 ...
14 .PHONY: $(subdir-ym)
15 $(subdir-ym):
16 $(Q)$(MAKE) $(build)=$@

Figure 4.16: Build logic for the circular dependency chain in the Linux 2.6.0 kernel build
system.

linked with the “built-in.o” files of other top-level directories into the actual kernel
image (“vmlinux”). The compilation of modules leads to similar results for those
directories which represent module code (like “ethernet” in our case). Hence, the
Linux kernel build system is structured via a hierarchical, layered composition.

Keith Owens has explained on the Linux build mailing list that composite ob-
jects have been in use since the very first Linux version (but not necessarily using
the “built-in.o” convention). They are actually one of the workarounds in use in the
2.4 kernel to overcome the “recursive make” ordering problems [156] which we
have discussed in Section 2.2.4.2. Composite objects introduce a kind of build lay-
ering which reflects the directory structure, as each directory offers a known build
interface (“built-in.o”) to higher-level directories. Hence, this idiom provides ev-
idence of RC2. However, composite objects have important disadvantages. They
cause a lot of linking and extra file activity. Owens attributes a higher probability
of out-of-date object files to this idiom. This is why he dismissed this idiom in his
Kbuild 2.5, except for modules. In the 2.6 kernel, however, composite objects are
still widely used.

The next section discusses an idiom which is complementary to composite
objects, the “circular dependency chain”.

The Circular Dependency Chain and Generic Build Recursion Logic In com-
bination with composite objects, a phenomenon we named “circular dependency
chain” can be observed from Figure 4.14. It seems that all object files in the “net”
directory depend on all subdirectories of “net”, and that the simple objects (i.e. the



CHAPTER 4 135

__build

built-in.o

1

802/built-in.o

9 5

802

7

ethernet

10

12

socket.o

2 3

4

6

8 11

Figure 4.17: An alternative for the circular dependency chain we would expected instead
of Figure 4.15.

1 $(sort $(subdir-obj-y)):
2 $(Q)$(MAKE) $(build)=$(@D)

Figure 4.18: Build logic for the circular dependency chain of Figure 4.17.

array of eight object files) are referenced by the composite object (red node at the
bottom) and the “__build” node (white node on top). Especially the high number
of dependencies on directories (green edges) seems odd. This section takes a de-
tailed look at this idiom and ultimately explains it in terms of RC1, RC2 and RC3.
Note that this section contains a lot of technical details.

Figure 4.15 shows the basic pattern of the circular dependency chain for the
simplified “net” example introduced in the context of composite objects. The
build logic responsible for this pattern is shown in Figure 4.16. The node col-
ors in the scheme of Figure 4.15 correspond to those of Figure 4.14, but the edge
colors identify the active “make” subprocess (more on this later). The central
(phony) __build target depends on all top-level composite objects (arrow 1;
$(builtin-target) on line 1 of Figure 4.16), which in turn depend ($(obj-y)
on line 11 of Figure 4.16) on all object files which have been selected by the de-
veloper during configuration (recall the list-style build script syntax of Figure 4.7).
These object files correspond to simple objects like “socket.o” (arrow 2), but also
to composite objects of subdirectories, like “802/built-in.o” (arrow 3). Dependen-
cies on simple objects are handled by the rule on lines 8–9 of Figure 4.16, which
we have explained earlier on in Figure 4.12 in the context of the “FORCE” idiom.
Hence, simple objects are recompiled if deemed necessary. Composite objects
require more complex build logic.

The subdirectory composite objects are processed by the rule on lines 15–16



136 EVOLUTION OF THE LINUX BUILD SYSTEM

1 $(sort $(subdir-obj-y)): $(@D)

Figure 4.19: Pseudo-GNU Make build logic (which cannot be achieved) for the ideal
circular dependency chain.

of Figure 4.16, which corresponds to arrows 4 and 8 on Figure 4.15. The rule
states that every subdirectory composite object (each element of the list $(sub-
dir-ym)) has no explicit dependencies, but should be built by spawning a new
“make” subprocess ($(Q)$(MAKE)) to build the particular subdirectory. Edges
corresponding to build dependencies in a new “make” subprocess are colored dif-
ferently on Figure 4.15. Hence, building a subdirectory graphically boils down to
a differently colored dependency on “__build” like arrows 4 and 8, followed by
a change of the current directory to the particular subdirectory passed as an argu-
ment to the subprocess, e.g. “802”. The change of directory enables “__build” to
depend on a specific composite object of a subdirectory (arrow 6). This composite
object is built in the same way as we are describing now for “net/built-in.o”, so we
do not elaborate on arrow 7.

The explanation up until now has unraveled a large part of the spine of the
Linux kernel build logic, i.e. the interplay between simple and composite objects.
However, there are some inexplicable arrows on Figure 4.15. The presence of
arrow 4 of Figure 4.15 is expected, as “802/built-in.o” has to be built anyway.
However, the appearance of arrow 8 is unexpected, as we have selected “ethernet”
to be a module whereas the dependency subgraph on Figure 4.15 corresponds to
the “vmlinux” build phase, i.e. the build of the kernel image. Indeed, line 6 of
Figure 4.16 explicitly mentions $(subdir-ym) instead of just $(subdir-y),
hence subdirectory composite objects depend on subdirectories of “net” which
have been selected as built-in code or as module. Just as for “802”, a subprocess is
spawned and “ethernet/built-in.o” is built (arrow 10). Arrow 8 has consequences
on the remainder of the build graph.

At this point (arrow 8), all dependencies of “net/built-in.o” have been built.
Now, some sanity checks are performed. In particular ($(subdir-ym) on line 3
of Figure 4.16), “__build” requires that all “net”’s subdirectories are built. This
seems like overkill, as both arrows 11 and 12 result in “pruning” of the build graph.
This is an optimisation of GNU Make which makes sure that any target considered
for (re)build is only built once within a given “make” subprocess. The underlying
assumption is that the particular target’s dependees will not have changed in the
meantime24. In that case, every time the target is re-visited, the current build path
stops and the build backtracks. On Figure 4.15, pruning occurs any time two edges
of the same color enter a given node. Hence, arrows 11 and 12 result in pruning.

24This is actually not that conservative, as it is easy to modify a target’s dependees in between two compilation
attempts of it.



CHAPTER 4 137

The cleanup performed by “__build” is overkill if there is at least one subdirectory
composite object specified as a dependee of the “net” directory’s composite object.
Indeed, if “802” would not have been selected as a dependee of “net/built-in.o” to
be built into the kernel, but as a module instead, neither “802” nor “ethernet” would
have been built when the sanity checks would start. The latter would notice this,
and build the two subdirectories’ composite objects. To summarise, the build logic
shown on Figure 4.15 contains inexplicable dependencies like arrow 8 between
composite objects and subdirectories, and seemingly redundant dependencies like
arrows 11 and 12 between “__build” and the same subdirectories. Together, these
edges explain the build graph of Figure 4.14. The remainder of this section dis-
cusses the rationale behind these strange dependencies.

The explanation for the sanity check dependencies is straightforward. The fol-
lowing note in the main makefile of the Linux kernel build system gives us a hint:
“We are using a recursive build, so we need to do a little thinking to get the order-
ing right.”. Indeed, similar to the composite objects idiom, arrows 11 and 12 of
the circular dependency chain correspond to a clever iteration strategy the Linux
developers have added to their “recursive make” to avoid problems with the eval-
uation order of targets [171]. This is one of the alternatives for “recursive make”
we have discussed in Section 2.2.4.2. This workaround tries to fix dependencies
which are not guaranteed to exist because of the deficiencies of “recursive make”,
but which should have been expressed in the makefiles to closely model the kernel
architecture (RC2) and to make a valid system composition (RC3). This still does
not explain arrow 8, however.

The remaining question is: why does every subdirectory composite object de-
pend on every subdirectory of the enclosing directory? We have tried to rewrite the
build logic without these dependencies, but this turned out to be impossible. Fig-
ure 4.17 shows the build graph which gets closest to the expected situation. This
graph corresponds to the code of Figure 4.18, which replaces line 6 of Figure 4.16.
The difference with Figure 4.15 is the absence of dependencies of “802/built-in.o”
on “802” and “ethernet”. Instead (arrow 4), “802/built-in.o” immediately invokes
a “make” subprocess to build itself within the “802” subdirectory (arrows 5 and 6).
The cleanup performed by “__build” does make sense now. First (arrows 7, 8 and
9), the build process learns that “802/built-in.o” already exists. The second cleanup
check does a useful job (arrows 10, 11 and 12), as it detects that “ethernet/built-
in.o” does not yet exist and builds it25. Hence, we observe that it is possible for
a subdirectory composite object to not depend on all subdirectories, but only at
the expense of an extra “make” subprocess. This separate process is needed be-
cause “__build” explicitly depends on subdirectories ($(subdir-ym) on line 3
of Figure 4.16) instead of on the composite object inside these directories to keep

25It is not clear to us why this functionality has to be built during a kernel build, but based on private email
communication there seem to be hidden dependencies on module code.



138 EVOLUTION OF THE LINUX BUILD SYSTEM

track of the current directory. Only after dispatch to the new “make” process the
mapping of the subdirectory to the particular “built-in.o” is made. We can now
investigate the ideal solution, which reduces the number of “make” processes, but
is not feasible in practice.

Figure 4.19 shows the pseudo-GNU Make code needed to add “802” as a
dependee of “802/built-in.o” instead of spawning a subprocess (arrow 4 on Fig-
ure 4.17) in the command list as Figure 4.18 does. $(@D) is a special GNU Make
variable which always refers to the directory part of the name of the current rule’s
build target. Unfortunately, this variable can only be used within a rule’s body, not
in the list of dependees. This is unfortunate because the latter is required to main-
tain the generic build rules used by Kbuild 2.6. More in particular, the 2.6 build
rules try to obtain genericity by using rules with multiple targets at once (with “a”
and “c” as directories):

1 a/b c/d: a c

This is equivalent to:

1 a/b: a c
2 c/d: a c

The ideal rule of Figure 4.19 tries to reduce the dependencies on other directo-
ries in a generic way:

1 a/b c/d: ‘‘if a/b then a else if c/d then c’’

This would be equivalent to:

1 a/b: a
2 c/d: c

However, GNU Make is not expressive enough to allow this. As our descrip-
tion of Figure 4.15 and Figure 4.17 has revealed, the circular dependency chain
idiom is the actual engine of the 2.6 kernel build. It is a centralised, generic piece
of build logic which expresses how the build should find its way through the build
dependency graph. It combines generic, parametrised build rules (Figure 4.16)
with current directory manipulation and GNU Make-specific features like prun-
ing. The aim of this build logic is to resolve the problem of “recursive make”
where each subdirectory has to reimplement the recursion logic. This is tedious
and error-prone, as it requires every developer to understand and modify the ex-
isting build system when new components are added (RC1). The 2.6 kernel tries
to do better, but in doing this, it meets the limitations of GNU Make. GNU Make
does not allow to express the build dependencies in a generic way other than using
multi-target rules, but then it is not possible to only mention the directory of the
currently built rule dependent as a dependent. Hence, a workaround is needed. As
the next most logical solution requires an extra “make” subprocess (Figure 4.17),



CHAPTER 4 139

a compromise is used which does the job, but cannot be understood easily (Fig-
ure 4.15). In other words, the evolution of the build logic digresses from the actual
source code’s evolution path (RC2) to facilitate integration of new source compo-
nents (RC1).

Figure 3.5b on page 91 shows the resulting build dependency graph after filter-
ing out the above idioms using the logic filtering rules of Appendix B. The result
resembles Figure 4.9’s structure, as the basic directory structure has remained sta-
ble between 2.4.0 and 2.6.0, and each directory more or less corresponds to a
composite object (RC2). The big difference between 2.4.0 and 2.6.0 are the id-
ioms which have been used to produce a higher-quality build at the expense of
extra complexity during the build.

4.5.3.3 Summary

The detailed discussion of changes introduced in Kbuild 2.6 compared to Kbuild
2.4, and the design of Kbuild 2.5 have given us valuable evidence of the existence
of co-evolution of source code and the build system, and of the validity of all four
roots of co-evolution (summarised in the next section). At the same time, MAKAO
has enabled us to identify and understand the complex build idioms used in Kbuild
2.6, i.e. to identify and understand the workarounds introduced to deal with co-
evolution of source code and the build system in the Linux kernel build system.
The next section gives an overview of all evidence gathered in the Linux kernel
build system case study.

4.6 Validation #1: Roots of Co-evolution Experimen-
tally Confirmed

This section distills the various elements of evidence gathered throughout the
Linux kernel build system to prove the validity of the four roots of co-evolution
(Section 2.3.4). This evidence is grouped by root of co-evolution. Afterwards, the
next section (Section 4.7) discusses the validity of MAKAO.

4.6.1 RC1: Modular Reasoning vs. Unit of Compilation

The measurements of SLOC and file count in Section 4.3 have indicated that build
logic and to some degree configuration logic are distributed across the source code
architecture, i.e. that separate source code components have a dedicated piece of
build and configuration logic. This corresponds to the notion of “recursive make”
as presented in Section 2.2.4.2. However, during the evolution of the build system
in Section 4.5, we have seen that the tension between “recursive make” and the
ease of plugging in build logic of new components has been a continual source



140 EVOLUTION OF THE LINUX BUILD SYSTEM

of build maintenance. We have described one of the earliest recursion schemes
in Section 4.5.2, which requires explicit knowledge from existing makefiles and
the right traversal strategy. To accommodate this, a common body of build logic
has been extracted (“Rules.make”) and the build specification has been lifted to a
list-style approach in which developers only need to manipulate build variables.

As Keith Owens has noted [156], the build scripts in the 2.4.x build system still
were not independent from each other, as they required environment variables to be
initialised by their environment. This situation was slightly better than the context
considered by de Jonge [57], but still not good enough. Keith Owens has proposed
a radical change to a “non-recursive make”, in which each source code component
has its own build script which is almost independent of other scripts. However,
the fear of breaking the Linux build without an incremental migration path to the
new build system has blocked Kbuild 2.5. Instead, the 2.4.x build system has been
incrementally rewritten, especially to deal with the problems caused by “recursive
make”. The circular dependency chain is a compromise to establish a generic build
logic kernel with limited build technology (GNU Make) at the expense of artificial
build dependencies.

The continuous struggle to improve the build system for integration of new
source code components is clear evidence of evolution of the build system as an
answer to source code modularity. This validates RC1.

4.6.2 RC2: Programming-in-the-large vs. Build Dependencies

The measurements of SLOC and file count in Section 4.3 have also shown that
build and configuration logic physically co-evolve with the source code, i.e. they
follow a similar growth pattern but at different order of magnitude. The fact that
build and configuration logic are distributed across the source code directories is a
second indication that the build system co-evolves with the source code, as direc-
tory structure in legacy systems typically reflects the source code architecture [39].

The desire to keep the build dependency graph synchronised with the source
code architecture is a second source of tension in the Linux kernel build system.
The constant improvements on extraction techniques of source code dependencies
(Section 4.5.2), Keith Owens’ “non-recursive make” and the idioms in Kbuild 2.6
clearly demonstrate this. The composite objects idiom (4.5.3.2) e.g. shadows the
source code architecture during the build to avoid the imprecise dependencies of
a “recursive make”, similar to the sanity checks of the circular dependency chain
(4.5.3.2). However, the latter idiom disturbed the synchronicity by adding artificial
dependencies.

These constant maintenance efforts show that RC2 is an important force behind
build system maintenance and that it is governed by the desire to stay connected
to the source code architecture.



CHAPTER 4 141

4.6.3 RC3: Interface Consistency vs. Incremental Compilation

There was no numerical data on RC3. Instead, online documentation and pub-
lished email discussions have shown that a strong tendency exists to leave out
important architectural dependencies in the build system just to speed up the build
process (Section 4.5.2). The build maintainer of the Linux 2.4.x kernel build sys-
tem has aptly summarised this as “correctness trumps efficiency”. Hence, a long
stream of new dependency extraction techniques has been proposed — the dep
phase has even been sacrificed later on — in parallel with the techniques to work
around the problems introduced by “recursive make”.

The most advanced solution to date has been the Kbuild 2.5 system (Sec-
tion 4.5.3.1). Because it implements a “non-recursive make”, there are no valu-
able dependencies between source code components missing. The improved de-
pendency extraction technique makes sure that the dependencies which are part of
the build dependency graph are as complete as possible. Kbuild 2.6 has tried to
get as close as possible to Kbuild 2.5 via the FORCE idiom (4.5.3.2). This idiom
does not prune static dependencies in the dependency graph, but instead always
traverses the whole dependency graph and checks for each target if re-compilation
is required or not. The sanity checks of the circular dependency chain (4.5.3.2) on
the other hand add redundant dependencies to make the compilation more correct.

A slightly different take on RC3 is the dependency extraction technique of
Tom Tromey (4.5.3.2). This speeds up a full build, i.e. the very first compilation
attempt, by not checking any header file dependencies at all. In subsequent incre-
mental builds, header file dependencies are exploited, but not for compilation units
which have changed. To date, this approach is still used, as the risks it takes are
rather limited.

To conclude, throughout the evolution of the Linux build system, RC3 has
been a constant force to assure that the actual source code dependencies are not
randomly ignored during incremental compilation, even though compilation speed
has always been very precious to kernel developers. Hence, RC3 is a source of
co-evolution of source code and the build system.

4.6.4 RC4: Program Variability vs. Build Unit Configuration

The configuration system has only been studied directly by the measurements of
Section 4.3. There, we have seen that the SLOC and file count of source code has
exploded, and that configuration logic has seen a similar evolution. Starting from
nothing, it has overtaken the SLOC of build scripts near the 2.4.x kernel. Together
with the observations that especially driver code attributes to the growth of source
code [99], this gives an indication of the high demands on the configuration system
to be able to manage the source code’s variability.

Further evidence, especially in the kernel documentation [152, 154], shows



142 EVOLUTION OF THE LINUX BUILD SYSTEM

that the configuration layer has its own graphical front ends to facilitate configura-
tion of the kernel. The huge amount of configuration options is structured hierar-
chically with constraints between conflicting or co-operating choices. The intro-
duction of high-level domain-specific languages to textually specify configuration
options has further fostered the integration of new configurability in the source
code.

Finally, Kbuild 2.5 has proposed a novel way of dealing with different versions
of the source code, e.g. with different patches applied. Its shadow tree feature al-
lows to maintain separate directory trees and even provides pre- and append actions
to non-destructively compose new versions of the source code.

To summarise, the source code has put a tremendous pressure on the configura-
tion layer to manage the sheer unlimited potential of configurability in the kernel.
Evolution of the build system has been driven by the desire to keep configuration
manageable and to only produce valid configurations.

4.7 Validation #2: MAKAO Achieves Goal T2

This section validates the ability of MAKAO to support developers in identifying
and understanding symptoms and workarounds corresponding to co-evolution of
source code and the build system.

MAKAO has been used in the Linux kernel build system case study to mea-
sure the internal complexity of the build dependency graph (Section 4.4), and to
understand the semantics of the Linux build. Calculation of the complexity has
only required the number of targets and dependencies (explicit/implicit) in the
graph, whereas for the build semantics, we have exploited MAKAO’s visualisa-
tion, querying and filtering functionality. Visualisation has given us clear visual
clues of changes to the structure of the build system, like Tom Tromey’s depen-
dency generation (4.5.3.2) or the compact 2.6.0 build DAG (Section 4.5.3). Query-
ing has enabled us to access detailed information about build commands or e.g.
time stamps, i.e. to clearly understand the behavioural parts of the build DAG and
values of build and configuration parameters. Filtering has provided us with the
flexibility to leave out artificial dependencies introduced by build idioms in the
Linux 2.6.0 kernel build DAG in order to investigate the actual structure of the
build and to identify remaining build idioms (Section 4.5.3.2). Hence, MAKAO
has enabled us to understand the evolution of the build system and as such has
helped us to identify workarounds and problems caused by co-evolution of source
code and the build system.

The features which have been used correspond to those which have been sug-
gested by the roots of co-evolution in Section 3.1.2 for understanding the co-
evolution of source code and the build system. RC1 requires knowledge about
build components and about the modularity of build scripts. The former corre-



CHAPTER 4 143

spond to clusters of targets in the build dependency graph, like the composite ob-
ject idiom (4.5.3.2), whereas MAKAO’s convex hulls give indications about the
modularity of build scripts. The visualisation of dependencies facilitates RC2
and RC3. RC3’s extra requirement for a means to detect whether dependen-
cies have disappeared has only partially been fulfilled. Clear differences like for
Tom Tromey’s dependency extraction technique (4.5.3.2) can be observed visu-
ally. However, there is no prescribed way to automatically detect finer-grained
differences. Filtering can be used to detect certain patterns of (missing) dependen-
cies, but there is no “diff”-functionality between two graphs. Finally, RC4 requires
knowledge of selected source code modules in the build system and communica-
tion of configuration choices between source code and the build system. The latter
has not been validated because we were not interested in this data. The collection
of selected modules on the other hand corresponds to the existing build targets in
the build DAG.

As discussed in Section 3.1.1, MAKAO is not able to study configuration spec-
ifications. However, the available documentation and online developer archives
have provided us with enough data to distill useful observations about the config-
uration layer.

4.8 Conclusion

This chapter has examined the Linux kernel build system as it has evolved over
time. This analysis has provided evidence of the validity of the four roots of co-
evolution and has also validated MAKAO’s support for understanding and identi-
fying symptoms of co-evolution of source code and the build system. This means
that the four roots of co-evolution have been acknowledged as crucial sources of
the co-evolution. This experiment does not prove that these roots are the only
ones which form an explanation of co-evolution of source code and the build sys-
tem, but we do not claim this either. Further experiments should point this out,
but conceptually and experimentally the roots have been proven to cover a wide
range of co-evolution dimensions. As a consequence, if a source code change can
be associated to one of the roots, that root predicts that build system changes are
necessary to keep the source code and the build system consistent. This means
that the introduction of AOSD in a legacy system, which has been shown to have
an impact on each of the roots of co-evolution (Section 2.4), requires important
changes to the build system in order to keep the source code and the build system
co-evolving.

MAKAO has proven itself as a valuable framework to understand a build sys-
tem and to support identification and understanding of symptoms of co-evolution
of source code and the build system. In Chapter 6 to Chapter 10, MAKAO is ap-
plied on five legacy C systems to understand and manage co-evolution of source



144 EVOLUTION OF THE LINUX BUILD SYSTEM

code and the build system when AOSD technology is being introduced. Before
we can report on these case studies, the next chapter introduces Aspicere, i.e. the
aspect language for C which has been used throughout the five cases.



ORIGIN late Middle English (denoting the action or
a way of looking at something): from Latin aspectus,
from aspicere ’look at’, from ad- ’to,at’ + specere ’to
look’.

Origin of word “aspect” (Oxford American
Dictionaries)

5
Aspicere, AOP for Legacy C Systems

IN the previous chapters, we have discussed the co-evolution of source code and
the build system in legacy systems. We have proposed a conceptual explanation

of this co-evolution (four roots of co-evolution), and requirements and design of
a re(verse)-engineering framework for build systems, i.e. MAKAO. The roots of
co-evolution and the tool support for understanding and managing co-evolution of
source code and the build system have been validated on the Linux kernel build
system. In this chapter1, the focus of the dissertation shifts to legacy systems where
AOP technology is introduced, either for reverse- or re-engineering purposes. The
tool support proposed in Chapter 3 should still be valid in this environment, be-
cause we have not made assumptions on the source code. However, we do need
an aspect language which is able to deal with legacy systems and which facilitates
management of co-evolution of source code and the build system. This chapter dis-
tills requirements for such aspect languages and presents the design of an aspect
language for C, Aspicere, which satisfies these requirements.

In the remainder of this dissertation, we especially focus on legacy C systems.
C is unique in the sense that it is one of the only languages for which many legacy
systems are readily available, e.g. as open source, and for which tool support
does not need to deal with dozens of different dialects. This chapter first distills
requirements for an aspect language for legacy systems (Section 5.1), and then
evaluates how existing aspect languages for Cobol and C deal with these require-
ments (Section 5.2). Afterwards, the design and implementation of our own aspect

1Parts of this chapter are based on [248, 2, 8].



146 ASPICERE

language for C, Aspicere2 is discussed in Section 5.3. It is based on the principles
of LMP [237, 30, 202]. We consider the rationale behind it, the language itself and
the two weavers (Section 5.4) which have been developed for it. To put the design
of Aspicere in perspective, we compare it with an industrial aspect language for
C which has only recently been proposed. Aspicere is used as the primary aspect
language in the case studies presented in the five subsequent chapters. Section 5.5
briefly explains the intent of these case studies and the outline of the remainder of
this dissertation. Finally, Section 5.6 presents the conclusions of this chapter.

5.1 Requirements for an Aspect Language for Legacy
systems

This section distills requirements for aspect languages for legacy systems (goal
L1) which are able to facilitate dealing with co-evolution of source code and the
build system (goal L2). The requirements for each of these two goals are discussed
in the following two subsections.

5.1.1 Goal L1: Language Features to Deal with Legacy Systems

De Schutter [202] has made an explicit account of the rationale behind and the
design of an aspect language for typical legacy (Cobol) systems. Other researchers
have discussed specific facets of aspect language design in legacy environments [50,
34, 75, 179]. From this work, we have distilled four requirements for aspect lan-
guages for legacy systems:

base integration the aspect language constructs should blend with the base pro-
gramming language

expressive pointcuts the pointcut language has to be expressive to deal with
weaker base language provisions for typing, structuring, etc.

generic advice advice should be robust to small variability in types and context
across the advised join points

join point context the language should offer access to sophisticated join point
context

The first requirement is about integration of a new technology, both psycho-
logically and practically. As Cobol programmers are fluent in writing Cobol code
and mostly weary of new technologies, adoption of aspects can be accelerated if
the aspect language does not try to copy or re-implement existing features [75].

2Aspicere: verb, Latin, “to look at”. Root of our modern word aspect.



CHAPTER 5 147

Instead of a separate aspect construct like in AspectC++ or AspectJ, it is much
more natural to adopt ordinary Cobol files as aspect. One just needs to add new
constructs for pointcuts and advice, but they should be as close as possible to ex-
isting language constructs to lower the learning curve. This also makes integration
into existing IDEs easier, because these only need to support the new advice and
pointcut concepts.

The second and third requirement can be illustrated best by an example. Brun-
tink et al. [33, 34] have used AspectC [50], the first aspect language for C (de-
scribed later), to implement an aspect which checks whether or not pointer argu-
ments passed to a procedure correspond to a null pointer. As C does not have a
kind of “super-type” similar to Java’s Object3 and it does not have templates like
e.g. C++ provides, there is no type-safe way to refer to a generic type. As AspectC
does not have explicit provisions for dealing with this, Bruntink et al. [33, 34] have
been forced to duplicate their argument checking advice for each occurring argu-
ment type and to use plain enumerations of procedure names as pointcut. This
situation impeded maintenance, as the long enumeration-based pointcuts had to
be adapted on every non-trivial source code change, and changes to the advice
logic had to be percolated to all duplicates of the advice. To resolve these prob-
lems, Bruntink et al. [33, 34] have developed a domain-specific language (DSL)
for parameter checking, which is translated by a preprocessor to AspectC advice.
Although they show that their solution greatly improves the source code quality, it
still remains an ad hoc solution. Aspect languages for legacy systems should pro-
vide support for writing robust pointcuts and to specify generic advice, i.e. advice
which is robust to small variability in types and context across all join points it
advises.

As an answer to the need for writing robust pointcuts, De Schutter [202] has
proposed to make pointcut languages more expressive such that pointcuts can rely
on sophisticated patterns expressed in terms of program structure and meta data
instead of being enumeration-based. He has based the pointcut language of Cob-
ble [142, 202], his aspect language for Cobol, on the pointcut language require-
ments proposed by Gybels et al.4 [108]:

set of predicates to select join points with the right properties and to do general-
purpose actions like list handling, mathematical operations, string manipu-
lation, etc.;

Prolog-like unification to make pattern matching and variable bindings available
in an elegant way;

3C does have void pointers, which can point to anything, but using them precludes compile-time type checking.
4A join point is a run-time concept. However, for each join point a corresponding location in the source code

can be found (join point shadow) which contains the actual code which is executed by the join point. E.g. an actual
procedure call forms the shadow of a call join point. Shadows are used by compile-time weavers to statically weave
aspects.



148 ASPICERE

access to join point shadows for navigation through the (static) structure of the
base program;

parametrisable pointcut definitions to facilitate reuse;

recursion to render the pointcut language computationally complete.

Support for all these features makes the pointcut language Turing-complete,
which may be overkill feature-wise and may induce performance overhead [109].
However, the erosion of program structure in legacy environments needs more
declarative and descriptive pointcuts instead of unevolvable enumerations of pro-
cedure names. The support for reusable pointcut definitions enables experts to
implement a library of domain-specific pointcuts [30] which can be used by base
code developers. Hence, only a limited group of experts needs to face the full
complexity of the pointcut language. This reconciles the expressive pointcut lan-
guage with the base integration requirement, and prevents manageability, security
and reliability problems.

The fourth requirement, i.e. sophisticated access to join point context, refers to
the base elements in terms of which pointcuts are expressed. To be able to specify
robust patterns of join point, Gybels et al. [108] and De Schutter [202] have pro-
posed access to program structure as a prerequisite. De Schutter has elaborated on
this by stressing the importance of weave-time meta data in pointcuts, i.e. logic
facts which represent design information or results of reverse-engineering analy-
sis. They allow to write more robust pointcuts which is synchronised with design
changes or more precise analysis results. In general, any kind of information could
be offered as context to pointcuts [185].

To summarise, aspect languages for legacy systems should blend naturally
with the base programming language, should support generic advice, should of-
fer means for composing expressive pointcuts and should offer access to sophisti-
cated join point context. The next section discusses one additional aspect language
requirement for dealing with co-evolution of source code and the build system.

5.1.2 Goal L2: Integration of the Build System with the Aspect
Language

This section extracts one important aspect language requirement from the four
roots of co-evolution to be able to deal with co-evolution of source code and the
build system, i.e. to make this co-evolution as easy as possible. The requirement
follows directly from an observation made for RC4 in the context of AOP (Sec-
tion 2.4.5 on page 67): the build system should be integrated with the aspect lan-
guage. This integration lets build system information flow to the aspects, both to
pointcut and advice, to make them robust to build system and source code changes.
Recently, Nagy et al. [179] have suggested a similar requirement.



CHAPTER 5 149

In the context of co-evolution of source code and the build system, the inte-
gration of the build system with the aspect language facilitates exchange of build
structure and configuration information. The former enables access to the build
components and their dependencies. As the build system is typically used to model
high-level source code architecture [84], this means that integration of the build
system with the aspect language enables aspects to exploit this high-level infor-
mation for specifying more expressive pointcuts which are automatically synchro-
nised with the build system’s current understanding of the source code architecture.
This facilitates dealing with co-evolution problems related to RC1 and RC2. It is
less obvious how RC3 can benefit from this, although knowledge of pruned build
dependencies during incremental weaving could contribute to a more advanced in-
cremental weaving implementation by limiting the scope of aspects to the actually
used build dependencies. The advantages to RC4 have been explained before in
Section 2.4.5. Configuration information can enable advice to replace traditional
conditional compilation in e.g. C-based systems.

Note that, conversely, the aspect language could also be integrated with the
build system to make the build system AOP-aware. This would mean that the fine-
grained composition offered by aspects would be understood by the build system,
such that the build system could directly deal with any of the problems caused by
co-evolution of source code and the build system. We do not pursue this further,
because replacing the build system in a legacy system is not feasible, as outlined in
Chapter 2. Moreover, this integration is not general enough to deal with arbitrary
paradigm changes in the source code.

To summarise, we have proposed that the build system information should be
integrated with an aspect language for legacy systems, to improve the co-evolution
of source code and the build system in the presence of AOP. The next section
discusses existing aspect languages for C to evaluate their support for our require-
ments for aspect languages for legacy systems.

5.2 Evaluation of Existing Aspect Languages for C

To experimentally validate the existence of problems caused by co-evolution of
source code and the build system when AOP technology is introduced in a legacy
system, we need an aspect language to complement MAKAO. The choice for an
aspect language assumes that a particular base programming language has been
selected, which restricts the case studies we can perform. De Schutter e.g. has
focused on aspects in Cobol [202]. Because no aspect language for Cobol existed,
he has designed and implemented his own aspect language, Cobble [142]. This
has offered him more control, but at the same time Cobol’s extensive language
specification with many different dialects made finding a case study much harder.
Only industrial Cobol code bases could be found, tied to one particular Cobol



150 ASPICERE

dialect, but no open source systems to experiment with.

To avoid this kind of problems, we have considered other, more recent lan-
guages which still have a large share in legacy systems. C turns out to be an ideal
trade-off between legacy language and availability. Millions of lines of C code
have been written for the Linux/Unix platform, as well as for Windows. Many
current open source projects still choose C as their main programming language.
The TIOBE Programming Community Index5, which collects data from major
search engines as well as takes into account the worldwide availability of skilled
engineers, courses and third party vendors, nominates C as the second most popu-
lar programming language in January 2008, with a share of 13.92% (Java reaches
20.85%, Visual Basic 10.96). Although we do not have precise numbers to back
this statement, we consider CâĂŹs rank in the industrial popularity poll as very
close behind Cobol.

Contrary to the Cobol case, there are many existing aspect languages for C.
None of them supports all requirements of goals L1 and L2, and there are many
languages for which no weaver implementation readily is available. In this section,
we discuss the existing aspect languages for C, including newer ones which have
arisen during the course of our research (except for Mirjam, which is discussed in
Section 5.3.6). It is our intention to give a fair comparison of available features
and to make clear why we eventually have designed our own aspect language for
C, Aspicere (Chapter 5).

Our findings are summarised in Table 5.1 and Table 5.2, grouped by weaving
time. Each table contains six sets of rows. The first four correspond to the available
support for the four requirements of goal L1, the next one to goal L2 and the last
set of rows gives characteristics of the languages’ weaver implementation. The
tables are grouped by category of weaver, i.e. compile-time, run-time and VM
weaving. The same order is used in the next subsections to discuss the aspect
languages for Cobol and C. We also briefly discuss a Model-Driven Engineering
(MDE) approach for weaving C systems.

5.2.1 Aspect Languages with a Compile-time Weaver

These aspect languages are accompanied by a weaver which transforms the base
code and all involved aspects into a regular C program. This represents the woven
system and can be compiled like any normal C system. Because it has had a big
influence on Aspicere, we include a description of Cobble, the aspect language
for Cobol designed by De Schutter [202, 142]. Table 5.1 gives an overview of the
characteristics of all aspect languages discussed in this subsection.



CHAPTER 5 151

C
obble

A
spectC

A
spectC

++
A

spectX
C

4
W

eaveC
A

C
C

dom
ain

general
kernel

general
general

system
s

general
general

base
integration

+
+

.h
X

M
L

+
X

M
L

+
preprocessor

N
/A

-
-

#include
+

-
-

PC
D

robustness
L

M
P

-
regexp

X
Path

-
regexp

regexp
(function)pointers

N
/A

-
-

-
+

-
c
a
l
l
p

IT
D

-
-

+
+

+
+

+
basic

join
points

C
obol

A
spectJ

A
spectJ

+
no

c
a
l
l

A
spectC

+
dynam

ic
join

points
-

A
spectJ

A
spectJ

-
-(c

f
l
o
w)

+
(pro)

+
advanced

join
points

-
-

c
a
l
l
s
t
o/

com
m

ents
-

-
p
r
e
t
u
r
n

r
e
a
c
h
a
b
l
e

variable
access

+
-

-
+

-
-

+
generic

advice
L

M
P

-
+

+
-

+
-

aspectinteraction
build

build
explicit

build
patching

priority
convention

advice
interaction

lexical
lexical

lexical
lexical

lexical
priority

lexical
context

+
-

+
+

-
+

+
thisJoinPoint

-
-

+
-

-
-

+
annotations

-
-

-
-

-
+

-
build

integration
-

-
-

-
+

-
-

availability
+

+
+

+
+

-
+

w
eavertype

source
source

source
source

source
source

source
optim

isation
-

-
+

-
-

+
(pro)

-
K

&
R

support
-

+
-

+
+

-
+

ID
E

-
-

+
-

-
-

-

Table 5.1: Overview of existing aspect languages for Cobol and C (part 1: compile-time
weavers). The upper four sets of rows correspond to the provisions for the four

requirements of goal L1, the next one for goal L2, and the lowest rows characterise
the languages’ weaver. A +/- indicates good/bad support for a feature, whereas

“N/A” signals when an entry is not applicable to a language. Because every
aspect language supports access to function arguments and global variables, a “-”

for “context” means that there is no additional means for access to context.



152 ASPICERE

µ
D

iner
TinyC

2
A

rachne
TO

SK
A

N
A

K
L

A
SY

TO
SK

A
N

A
-V

M

dom
ain

system
s

general
system

s
B

SD
kernel

B
SD

/L
inux

kernel
general

base
integration

+
+

+
+

X
M

L
?

preprocessor
-

-
-

-
-

-
PC

D
robustness

-
regexp

+
-

-
?

(function)pointers
-

-
-

-
+

-
IT

D
-

-
-

-
+

-
basic

join
points

+
no

c
a
l
l

+
no

c
a
l
l

+
+

dynam
ic

join
points

+
-

+
-

-
-

advanced
join

points
s
e
q
u
e
n
c
e

-
+

-
-

-
variable

access
+

-
+

-
+

+
generic

advice
-

+
-

-
+

?
aspectinteraction

deploym
ent

deploym
ent

deploym
ent

deploym
ent

deploym
ent

?
advice

interaction
lexical

lexical
lexical

lexical
lexical

?
context

-
-

+
-

+
?

thisJoinPoint
-

-
-

-
-

?
annotations

hookable
-

-
-

-
-

build
integration

-
N

/A
N

/A
N

/A
N

/A
N

/A

availability
-

-
+

-
+

-
w

eavertype
run-tim

e
run-tim

e
run-tim

e
run-tim

e
run-tim

e
V

M
optim

isation
-

-
-

-
-

+
K

&
R

support
-

N
/A

N
/A

N
/A

N
/A

N
/A

ID
E

-
-

-
-

-
-

Table 5.2: Overview of existing aspect languages for C (part 2: run-time and VM weavers).
The upper four sets of rows correspond to the provisions for the four requirements

of goal L1, the next one for goal L2,whereas the lowest rows characterise the
languages’ weaver. A +/-/? indicates good/bad/unknown support for some feature,
whereas “N/A” signals when an entry is not applicable to some language. Because
every language supports access to function arguments and global variables, a “-”

for “context” means that there is no additional means for access to context.



CHAPTER 5 153

1 USE BEFORE (ADD OR SUBTRACT)
2 AND BIND VAR-ITEM TO SENDER
3 *> Disregard the item if it is a receiving data item, too.
4 AND NOT IS RECEIVER VAR-ITEM
5 MY-SENDER-ADVICE.
6 *> Count the sending data item if it equals zero.
7 IF VAR-ITEM = ZERO
8 ADD 1 TO COUNT-ZERO-ITEMS.

Figure 5.1: Cobble aspect which counts the number of zero-valued sending data
items [142].

5.2.1.1 Cobble

Cobble is the aspect language for Cobol developed by De Schutter [142, 202]. Sup-
ported join points correspond to the major Cobol statements, program execution
and procedures. Cobble’s weaver6 is tied to one particular dialect (hence the “-”
for “K&R support”), i.e. acucobol. No inter-type declaration is supported by the
Cobble prototype, nor more advanced or dynamic join points. Interaction between
aspects and advice is determined by the order of weaving and lexical ordering
respectively.

An example aspect is shown in Figure 5.1. This aspect counts the number of
zero-valued operands of add and subtract expressions. Lines 1–4 form the pointcut
(with a comment on line 3), while the actual advice body is given by lines 7–8.
The use of LMP makes the pointcut robust to changes in the base code, as the
pointcut is expressed in terms of program structure (accessed via selectors like
RECEIVER) and join point context can be bound freely using BIND. If there are
multiple solutions for some selector, the weaver backtracks and finds all matches
instead of choosing only one. In the current example, the pointcut matches for
both operands A and B of a statement like ADD A B TO C. The advice body is
also robust to variability of join points because it can access the context captured
via the pointcut (VAR-ITEM). Any statement which has a sender can be matched
(line 2), and the advice is able to adapt to all possible statements. The captured
context also enable access to variables.

Cobble is the only aspect language for Cobol we consider. All other related
languages target C or C++ as base programming language.



154 ASPICERE

1 pointcut allocating_buffers(vm_object_t obj,
2 vm_pindex_t pindex):
3 execution(vm_page_t vm_page_lookup(obj, pindex))
4 && cflow(execution(int allocbuf(struct buf*, int)));
5

6 around(vm_object_t obj, vm_pindex_t pindex):
7 allocating_buffers(obj, pindex){
8 vm_page_t m = proceed(obj, pindex);
9 if ((m != NULL) && !(m->flags & PG_BUSY)

10 && ((m->queue - m->pc) == PQ_CACHE)
11 && (pages_available() < vfs_page_threshold()))
12 pagedaemon_wakeup();
13 return m;
14 }

Figure 5.2: AspectC aspect for page daemon wake-up in the FreeBSD kernel [49].

5.2.1.2 AspectC

AspectC has been the first aspect language for C, inspired by AspectJ’s con-
structs. Figure 5.2 illustrates this, as familiar pointcut, execution, cflow
and proceed7 constructs are used. There is no explicit aspect construct, as file
boundaries are used for this. The join point model is similar to AspectJ-without-
objects. This means that procedure calls (call) and executions8 (execution)
can be advised. The dynamic cflow pointcut selects all join points which occur
in the control flow of another join point. Contrary to AspectJ, variable accesses
cannot be advised and there is no ITD support either.

The advice signature does not specify a return type (line 6). Instead, the aspect
developer should determine the right return type when it is needed in the advice
body, e.g. to declare local variables (line 8). Regular expressions cannot be used
either in pointcuts, which means that for every possible return type a separate
pointcut and advice has to be written. This has caused the problems of Bruntink
et al. discussed in Section 5.1.1. Access to typed context is possible (line 6).
Initially [50], aspects were hand-compiled, but later on [49], a real weaver has
been built. AspectC seems unmaintained since 2003 without any official releases,
but a weaver prototype has been available by request.



CHAPTER 5 155

1 aspect ThrowWin32Errors{
2

3 pointcut Win32API() = "% CreateWindow%(...)"
4 || "% BeginPaint(...)"
5 || "% CreateFile%(...)"
6 || ...
7 ...
8 advice call(Win32API()): after () {
9 if(win32::IsErrorResult(*tjp->result())){

10 ostringstream os;
11 DWORD code=GetLastError();
12

13 os << "WIN32 ERROR " << code << " : "
14 << win32::GetErrorText(code) << endl;
15 os << "WHILE CALLING: "
16 << tjp->signature( << endl;
17 os << "WITH: " << "(";
18

19 // Generate join point-specific sequence of
20 // operations to stream all argument values
21 stream_params<JoinPoint,
22 JoinPoint::ARGS>::process(os,tjp);
23 os << ")";
24 throw win32::Exception(os.str(),code);
25 }
26 }
27 }

Figure 5.3: AspectC++ aspect which converts return value error codes into C++
exceptions [214].

5.2.1.3 AspectC++

AspectC++ [213, 214] is the most mature and general-purpose aspect language for
C++ to date, but since its inception people have tried to use it for C too. Official
support for this has never been a priority, however. Non-ANSI C code (so-called
“K&R”-code) cannot be parsed by the weaver. It is also not clear which constructs
and pointcuts can be used for C and which ones cannot. The AspectC++ weaver is
heavily based on template instantiation to reduce memory footprint and execution
time. Hence, the woven code is valid C++ which needs a modern C++ compiler.
There is a (commercial) IDE plugin.

5http://www.tiobe.com/
6http://homepages.vub.ac.be/~kdeschut/cobble/
7This enables to resume the advised join point from within an around-advice.
8A call join point corresponds to the actual call at the caller site, whereas an execution join point denotes a

call at the callee site.

http://www.tiobe.com/
http://homepages.vub.ac.be/~kdeschut/cobble/


156 ASPICERE

As Figure 5.3 shows, AspectC++ is heavily influenced by AspectJ. There is an
explicit aspect construct which is similar to a C++ class, hence an aspect needs
to be declared inside a special “aspect header file”. Join point, advice and point-
cut types are comparable to AspectJ. Contrary to AspectJ, advice and inter-type
declarations (“slices”) can be specified in the same way. Because of this, the join
point model is said to be “unified”. Join points are implicitly typed, such that the
weaver may check that they are only advised by correctly typed advice. Regu-
lar expressions can be used to specify pointcuts (lines 3–6 on Figure 5.3). Two
new pointcut types are provided. The callsto pointcut takes an execution
pointcut and deduces which call join points can call the join points described by
the execution pointcut. The reachable pointcut is analogous, but it calcu-
lates (via static analysis) all join points from which its argument join points can be
reached. There are no set and get pointcuts, i.e. access to variables is not reified
as a join point, because of aliasing problems introduced by pointers and because
of the unsound semantics of set regarding operator=. Just like AspectJ, there
are precedence directives to derive a total order between aspects. Advice ordering
within an aspect is ordered via lexical conventions.

AspectC++ has coined the term “generic advice” [159] to refer to the power-
ful capabilities of templates for obtaining highly reusable and robust advice. The
idea is that AspectJ’s distinction between static and dynamic context provided by
a thisJoinPoint-like construct is generalised to C++’s strong compile-time
templating mechanism. Compile-time context can be used to instantiate tem-
plated advice and functions, such that there is no run-time overhead to dynami-
cally allocate or access context. Lines 21–22 of Figure 5.3 gives an example of
this. Because JoinPoint is just a class name and JoinPoint::ARGS stati-
cally resolves to the correct number of function arguments of the advised call join
point, the stream_params<JoinPoint,JoinPoint::ARGS> template is
instantiated at compile-time using template meta-programming. This mechanism
allows for very reusable and robust advice, which varies automatically based on
the particular join point and advice context. As a downside, the templates can eas-
ily get very complex to understand, especially for C programmers which are used
to the simpler semantics of the C preprocessor.

AspectC++’s weaver9 is based on the PUMA-framework, a C++ source code
transformation system [213] with a custom C preprocessor implementation. As-
pects are transformed into singleton classes in which advice corresponds to a mem-
ber function. Generic advice is turned into a template member function with a
specific JoinPoint type as template parameter. Each join point shadow is replaced
by a call to a wrapper member of a local class which is specifically generated
for that shadow and encodes the chain of advice which matches at that shadow.
The implementation of advised functions is replaced by a template wrapper, i.e.

9http://www.aspectc.org/

http://www.aspectc.org/


CHAPTER 5 157

1 <pointcut name="targetFloatNameGetter" type="src:name"
2 constraint="(text()=’_flt’) and
3 (not(contains(following-sibling::text()[1],’=’)) or
4 (contains(following-sibling::text()[1],’==’)))">
5 <restriction type="within">
6 <pointcutRef ref="anySampleClassExpr" type="src:expr"/>
7 </restriction>
8 </pointcut>
9

10 <advice name="targetFloatNameGetter" type="replace">
11 <pointcutRef ref="targetFloatNameGetter"
12 aspect="PointcutLibrary" type="src:name"/>
13 <codeModifier type="codeFragment">
14 <xsl>pDB-&gt;getParameterFloat(PD<xsl:value-of
15 select="upper-case(current())"/>)</xsl>
16 </codeModifier>
17 </advice>

Figure 5.4: Accesses to a float member are replaced by the result of a method call with
XWeaver (see http://www.xweaver.org/).

a template which inherits from a class and wraps superclass methods with advice
functionality. As a result, the overhead of advice invocation is constant, just as the
size of woven code. Possible compiler optimisations include inlining of code and
removing spurious parameter copies via local alias analysis.

Gilani et al. [98] extend the AspectC++ weaver with a family-based dynamic
weaver implementation. They decompose aspect language and weaver features
into a product family with associated time and memory costs. Depending on the
application domain, features can be stripped or added to decrease or increase the
weaving cost. AspectC++ advice simulates dynamic weaving by adding calls to a
run-time monitor which determines whether a registered aspect matches the cur-
rent join point. The dynamic aspects are not described within AspectC++, but
implemented in an OO framework instead. Aspects are loaded via a dynamic li-
brary at run-time.

5.2.1.4 AspectX/XWeaver

XWeaver10 [197] is the name of the aspect weaver associated with the AspectX
aspect language. It is conceived for tailoring software frameworks to control sys-
tems. As quality control is important for this, XWeaver’s task is to generate woven
code which syntactically resembles the base code layout and even updates com-
ments (to document the woven code) such that the woven code can be manually

10http://www.xweaver.org/

http://www.xweaver.org/
http://www.xweaver.org/


158 ASPICERE

investigated. XWeaver does not work on the program AST, but on srcML. This is
an XML representation of a program in which only high-level program constructs
are accessible. Comments and include/import statements are retained. This format
makes XWeaver language-independent, in the sense that initial C++ support has
been extended to Java once srcML was released for Java. Just as is the case with
AspectC++, XWeaver can be used for C systems too.

The AspectX language is also XML-based, as the advice in Figure 5.4 shows.
XML Schema is used to type-check the syntax of the XML aspects. AspectX al-
lows the usage of XPath and XSLT technologies in the pointcut (lines 2–4) and
advice (lines 14–15) respectively. XPath is able to select the right XML nodes by
navigating across the XML tree. In the example, nodes of type float are selected
(line 2) which do not occur as the left-hand side of an assignment or “equals”
condition (lines 3–4). The advice of lines 10–17 replaces (line 10) the selected
elements using the XSLT transformation of lines 14–15. This transformation capi-
talises the name of the advised join point XML node. Hence, the user should have
considerable knowledge of the program XML-model. Special symbols need to be
escaped, as the “&gt;” on line 14 shows. Inclusion of XML documents can be
exploited to reuse a library of pointcuts. To summarise, the AspectX language is
a very low-level aspect language which resides on the border with pure program
transformation.

Join point context (argument types/names, return types, etc.) is accessible via
dollar-variables like ${className}. Under the hood, XWeaver transforms as-
pects in XSLT transformations, which means that join point context actually cor-
responds to an XSLT query. Hence, users can extend XWeaver with new context
queries. New join point types can be added in a similar manner, and they can
be very fine-grained like e.g. if-blocks, return-statements, etc. More traditional
join points like execution exist, but all of them are purely statically determined
based on the AST. There are no provisions for dynamic join points. On the other
hand, the focus on program transformation enables syntactic ITD of comments and
even include/import statements.

XWeaver is implemented in Java. There is an Eclipse plugin (AXDT) akin to
the AspectJ AJDT, but command line or build script access (via Ant) is also pos-
sible. XWeaver can generate an Ant file based on a project file (XML). The latter
specifies the important directories in the project and also the aspect configuration
per subset of base code modules and header files.

5.2.1.5 C4

C411 (CrossCutting C Code) [93] aims at replacing the traditional “patch” system
by a simplified AOP-driven, semantic approach. Basically, the idea is that a pro-

11http://c4.cs.princeton.edu/

http://c4.cs.princeton.edu/


CHAPTER 5 159

1 void func(int var, char *str) {
2 aspect_around(foobar) {
3 printf("Inside around-advice\n");
4 if(var == 20) proceed(20,"Twenty");
5 else proceed(0,"ZERO");
6 };
7

8 ... /* Function body */
9 }

Figure 5.5: C4 aspect which overrides a function body [245].

grammer writes down advice (so-called “woven C4”) inline with the base program,
which means that there are no pointcuts or separate aspect modules. Figure 5.5
(lines 2–6) shows around-advice of the foobar aspect. Access to join point
context is easy, because the advice can reuse variables available in the surrounding
base code.

The C4 unweaver extracts the inline aspects into a separate “unwoven C4” file,
i.e. a semantic patch. This can be freely distributed to everyone or (if needed)
converted to a plain patch first. The unwoven C4 can be re-woven by other de-
velopers to resume development with the latest changes. At compile-time, the
unwoven C4 is physically woven with the base code, i.e. all aspect constructs are
transformed into pure C code. Physical weaving is implemented on top of the
XTC-framework [104], an advanced macro facility for C. To deal with C prepro-
cessor code, developers do not work on the actual C code, but on an intermediate
representation called ASTEC [166, 245]. This reifies preprocessor constructs in a
slightly higher-level representation.

The unwoven C4 file is in fact a (tweakable) classic aspect written in an AspectC-
based dialect. This dialect is capable of ITD in structs/unions and can also
advise global variables. There are no call or cflow pointcuts in the dialect, pri-
marily because of C function pointers. Instead, one is encouraged to extract base
code into new procedures, which can be advised directly.

5.2.1.6 WeaveC

WeaveC12 [75] is an aspect language developed within the Ideals project as a pro-
totype of the Mirjam [179] aspect language (discussed in Section 5.3.6). Just like
AspectX (Section 5.2.1.4), pointcuts and advice are written in XML-files. WeaveC
has the same join point and advice types as AspectC, but no around-advice.
Pointcuts are name-based (which may contain wildcards), and can be restricted in
their scope (“*.c” on line 4 of Figure 5.6). Dynamic pointcut types like cflow

12http://weavec.sourceforge.net/

http://weavec.sourceforge.net/


160 ASPICERE

1 <?xml version="1.0" encoding="UTF-8"?>
2 <aspect id="insert_f_name">
3 <pointcut id="insert function names">
4 <elements files="*.c" identifier="function" data=".*"/>
5 <advices>
6 <adviceapplication id="insert_f_name" type="before"/>
7 </advices>
8 </pointcut>
9 <advice id="insert_f_name"

10 type="function_variable_introduction" priority="200">
11 <code>
12 <![CDATA[ static const char* f_name = "%FUNC_NAME%"; ]]>
13 </code>
14 </advice>
15 </aspect>

Figure 5.6: Introduction of a static local variable in WeaveC (example suggested by Pascal
Durr).

are only provided in an advanced version of WeaveC13. WeaveC can introduce
new local and global variables. The latter is illustrated in the snippet of Figure 5.6
(line 12). Line 10 shows that advice is prioritised to handle conflicts at shared join
points.

A number of powerful, predefined context variables like %MODULE_NAME%
are available which represent the advised function’s module name, argument types,
etc. Variables which appear near the join point shadow can be used freely in the
advice body. It is not clear from the documentation whether truly generic advice
can be written by using these context variables. WeaveC has limited support for
annotations.

WeaveC’s weaver is implemented in Java, and transforms an XML-representation
of the AST of the preprocessed base program. In the advanced version, CodeSurfer14

is used to perform the necessary analyses.

5.2.1.7 ACC

ACC15 [102] is the most regularly released aspect language for C, designed by
the people behind TinyC2 (Section 5.2.2.2). It is in fact an updated version of the
original AspectC (Section 5.2.1.2), but it sports a number of improvements. ACC
e.g. adds an AspectJ-like thisJoinPoint-struct (this) to provide join point context
like the names of argument types (lines 8, 10 and 12) or to provide access to func-

13The advanced version has never been released.
14http://www.grammatech.com/products/codesurfer/
15http://www.aspectc.net/

http://www.grammatech.com/products/codesurfer/
http://www.aspectc.net/


CHAPTER 5 161

1 before(): call($ $(...)) {
2 printf("%s \" %s \" in function %s \n", this->kind,
3 this->targetName, this->funcName);
4

5 if(this->argsCount == 0) printf("no parameter \n");
6 else{
7 for(int i = 1 ; i <= this->argsCount; i++){
8 printf("arg[%d] = %s ", i, this->argType(i));
9

10 if(strcmp(this->argType(i), "int") == 0){
11 printf(", value = %d ", *(int *)(this->arg(i)));
12 }else if(strcmp(this->argType(i), "double") == 0){
13 printf(", value = %.2f ",
14 *(double *)(this->arg(i)));
15 }
16

17 printf("\n");
18 }
19 }
20

21 printf("return type = %s \n \n", this->retType);
22 }

Figure 5.7: ACC tracing advice (see
http://research.msrg.utoronto.ca/ACC/Examples/).

tion arguments (lines 11 and 13–14). Arguments passed to around-advice cannot
be changed directly by modifying the captured context. Instead, the this struct
contains pointers to the advised function’s arguments through which the original
arguments can be modified prior to calling proceed. The result pointcut
should be used to modify the return value of a join point.

ACC provides a number of new pointcuts like callp (function pointer calls),
infunc, infile and intype, and there are get/set join points for advising
accesses to global variables (not of a struct type). New members can be in-
troduced into struct and union types. Additionally, ACC provides exception
handling aspects, which are based on a special pointcut for exception handling
called preturn(errorvalue). This construct is based on the delimited con-
tinuation join points we have proposed [8] (more on this in Chapter 8). Basically,
preturn(errorvalue) returns from the enclosing procedure of a call join
point shadow with the provided error value errorvalue as return value.

The ACC weaver is based on an ANSI-C compiler (implemented in C), and it
supports K&R-, ANSI- and GNU-C. It expects preprocessed aspects and base code
as input. Each advice is transformed into a unique function with as arguments the
context parameters. There is a thread-safe cflow-implementation based on GCC

http://research.msrg.utoronto.ca/ACC/Examples/


162 ASPICERE

1 prevent_propagation :[
2 int handle_request(char* req) :[
3 int relay_request(struct req_data* request) :[
4 { #include ‘‘prefetching.h’’
5 if(is_prefetching_request(request)){
6 return NO_NEIGHBOUR_HAS_FILE;
7 }
8

9 return continue_relay_request(request);
10 }
11 ]
12 ]
13 ]

Figure 5.8: Prefetching policy aspect in µDiner [203].

extensions for thread-local state. Also, #line-directives for debugging can be
generated, to facilitate stepping through base and advice code. Powerful weaver
conventions and build system drivers have been developed to improve weaver us-
age.

5.2.2 Aspect Languages with a Run-time Weaver

The biggest group of aspect languages for C features a compile-time weaver, pri-
marily because the typical domains where C shines (systems software!) require
highly efficient woven code. However, these systems have other desirable prop-
erties too, such as availability and debuggability. These are the application areas
run-time weavers can be beneficial [190] for.

All aspect languages discussed in this section have a weaver based on instru-
mentation libraries or techniques like code splicing [78], i.e. tweaking of assem-
bler code to jump to the aspect code instead of the advised base code. As the
run-time weavers process binary code, they do not need to parse the actual source
code, except for µDiner. The platform-independence of the instrumentation mech-
anisms used by these weavers is questionable, however. There is also no oppor-
tunity to optimise the advised application after the dynamic weaving, such that
the woven systems tend to become patch works. All dynamic approaches provide
some sort of around-advice or a combination of before and after. They all
support procedure call join points. Typically, there is not enough context informa-
tion available at the binary level. Writing generic advice is impossible, hence even
slightly heterogeneous advice results in duplication of advice.



CHAPTER 5 163

1 onexit int retv group * :
2 (int errorno, char* errormsg){
3 if ( retv < 0 ){
4 errorno=ILLEGAL RESULT;
5 errormsg="Result cannot be negative";
6 }
7 }

Figure 5.9: Checking return values using TinyC2 [249].

5.2.2.1 µDiner

µDiner is the sole aspect language with a run-time weaver which needs to parse the
base code. It requires base code procedures to be annotated as “hookable” (which
expands to volatile) to mark them as advisable [203]. A support library needs
to be linked with the resulting executable.

In return for this slight inconvenience (one needs to mark in advance which
join points can dynamically be advised later on), µDiner offers an advanced kind
of pointcut which selects a sequence of nested procedure call join points. As an
example, Figure 5.8 shows an advice named “prevent_propagation” which only
matches on a call to a procedure relay_request (line 3) if it is called from
within a call to handle_request (line 2). The advice body (lines 4–9) is exe-
cuted around the matched call join point. The procedure call on line 9 corresponds
to a proceed-call in AspectJ. The continue_nameoffunction-function
pointer is automatically defined for a matched join point. Within the advice body,
one can access arguments and global variables. Variable access join points (get
and set) can also be advised.

5.2.2.2 TinyC2

TinyC2 relies on the DynInst-instrumentation library [249]. An aspect is trans-
formed into a self-contained C application which controls the instrumentation of
a running base program through the DynInst API. The pointcut language supports
name patterns, as shown on line 1 of Figure 5.9. Instead of before- and after-
advice, TinyC2 talks about onentry and onexit, but there is no around-
advice. Except for arguments and global variables, there is no join point context
available.



164 ASPICERE

1 seq( call(void* malloc(size t)) && args(allocatedSize)
2 && return(buffer);
3 write(buffer) && size(writtenSize)
4 && if(writtenSize > allocatedSize)
5 then reportOverflow(); *
6 call(void free(void*)) && args(buffer); )

Figure 5.10: Buffer overflow detection aspect in Arachne [68].

5.2.2.3 Arachne

Arachne16 improves on the µDiner framework [68]. The pointcut language has
been reworked, inspired by Prolog. The sequence of nested calls has been gener-
alised to an arbitrary sequence of procedure call and/or (in)direct variable access
join points, whether or not they are nested. The resulting sequence pointcut
is a natural means for advising protocol-like behaviour, as each element of the
sequence can be advised individually. The advice of Figure 5.10 detects when
more data is written into a heap-allocated buffer (lines 3–4) than initially allocated
(lines 1–2). In that case, overflow is reported (line 5). The sequence ends when the
buffer is deallocated (line 6). The latter is required to avoid that further run-time
checks are performed for the buffer allocated at that address.

To increase the expressivity of this language, Loriant et al. [164] later have
added the possibility to bind specific context to each instance of a sequence.
Also, a fakeEvent construct has been introduced to simulate calls to an arbitrary
procedure when some join point matches. These fake events can then trigger other
advice of which the pointcut is expressed in terms of that event.

Clever assembler manipulation techniques are used to instrument a running
system without having to pause it. Despite claims of robustness across computer
architectures, these techniques did not work on the various test machines we have
tested Arachne on17. The last public release of Arachne dates back to March 2005.

5.2.2.4 TOSKANA (Toolkit for Operating System Kernel Aspects with Nice
Applications)

TOSKANA [78] is targeted specifically at C code running in the kernel mode of
BSD-like operating systems. As a consequence, the aspect language has been
kept as simple as possible. It e.g. lacks name patterns and abundant join point
context. Figure 5.11 shows an example aspect which tries to recover (lines 11–16)
from a particular error. On line 6, the map_aspect is woven onto the uvm_map
function. The aspect is deployed explicitly onto the desired join points, as there

16http://www.emn.fr/x-info/arachne/
17Arachne is distributed as a live Linux distribution.

http://www.emn.fr/x-info/arachne/


CHAPTER 5 165

1 #include <aspects.h>
2

3 int error;
4

5 void aspect_init(void){
6 AROUND(uvm_map, map_aspect);
7 }
8

9 ASPECT map_aspect(void){
10 error = PROCEED();
11 if (error == ENOMEM) {
12 /* no memory available */
13 kernel_alloc_swapfile(SWAPFILE_SIZE);
14 /* try again */
15 error = PROCEED();
16 }
17

18 return error;
19 }

Figure 5.11: Self-healing aspect in TOSKANA [78].

are no pointcuts.

TOSKANA’s weaver applies a weaving strategy (named “code splicing”) which
is similar to the one Arachne uses. There are no public releases of TOSKANA.

5.2.2.5 KLASY (Kernel Level Aspect-oriented SYstem)

KLASY is analogous to TOSKANA, but is targeted at the Linux kernel instead. It
allows to advise struct member access (e.g. to function pointers) and procedure
calls. Available join point context includes access to structs, local variables and
arguments [244]. There is no around-advice. As shown on Figure 5.12, aspects
are XML files. Just like with AspectX (Section 5.2.1.4), special symbols have to
be escaped (line 14). Data can be passed from the advice to a user land application
via the STORE_DATA macro. Notice the special $pc$ variable on line 13 which
gives direct access to the program counter.

KLASY needs a modified GCC compiler to generate symbol information dur-
ing the weaving process, and the “kerninst” Linux kernel module and daemon to
control the dynamic weaving (via a socket). Aspects are compiled into standalone
applications which steer the “kerninst” daemon.



166 ASPICERE

1 <aspect>
2 <import>linux/sched.h</import>
3 <import>asm/page.h</import>
4 <advice>
5 <pointcut>
6 access(task_struct.timestamp) AND
7 within_file(sched.c) AND target(arg0)
8 </pointcut>
9 <before>

10 struct task_struct *p = (struct task_struct *)arg0;
11 unsigned long long timestamp;
12 DO_RDTSC(timestamp);
13 STORE_DATA($pc$);
14 STORE_DATA(p-&gt;pid);
15 STORE_DATA(timestamp);
16 </before>
17 </advice>
18 </aspect>

Figure 5.12: Process switch tracing aspect in KLASY [244].

5.2.3 Aspect Language with a Virtual Machine Weaver

TOSKANA-VM [79] is a proposal of the researchers behind TOSKANA for an
aspect weaver based on a virtual machine running on top of LLVM (Low-Level
Virtual Machine). This is a compiler framework with a universal IR and life-
long analysis facilities. This infrastructure would be capable of optimising the
dynamically woven system based on profiling date. At the same time, the IR is
richer in information than assembler code, so the amount of context available at
join points would be larger.

TOSKANA-VM’s aspect language has not been published, so there are many
question marks in Table 5.2. Only some details about the weaver have been pub-
lished. A micro-kernel (L4) runs directly on hardware, with on top of it a weaver
and various LLVM instances. The weaver can monitor the VM instances and dy-
namically (re)weave the operating systems or user applications which run within
the VM instances. No implementation of TOSKANA-VM has ever been released.

5.2.4 Model Driven Weaving

WEAVR18 [53] is an MDE-system of Motorola which provides an AOP language
at the model level, i.e. in terms of UML 2.0 behavioural models. Join points
correspond to state transitions in state machines. Weaving corresponds to trans-

18http://www.iit.edu/~concern/weavr/

http://www.iit.edu/~concern/weavr/


CHAPTER 5 167

formation of these state machine models. After aspects have been woven in the
model, C code can be generated from it. In other words, this aspect language
weaves aspects in C systems via a model of the system. In fact, the whole system
is generated from that model. WEAVR is especially targeted at checkpointing,
tracing, timing, etc.

5.2.5 Evaluation

Given the comparison of features in Table 5.1 and Table 5.2, we now evaluate the
degree to which the existing aspect languages satisfy goals L1 and L2 presented in
Section 5.1.1 and Section 5.1.2 respectively.

First, for the base code integration requirement of goal L1, we have observed
that most aspect languages blend well with the base code, with C4 as an extreme
case. Other aspect languages require a custom XML format (AspectX, WeaveC
and KLASY). Second, regular expressions are the most widespread mechanism
to obtain expressive pointcuts. AspectX and Arachne are more powerful because
of their syntactic program transformation and sequence pointcuts respectively.
Third, except for Cobble and AspectC++, the aspect languages obtain some form
of generic advice especially by allowing access to a rich set of join point variables
in various ways inside the advice body. Cobble and AspectC++ on the other hand
respectively rely on LMP and C++ templates instead. They do not require develop-
ers to change the weaver implementation to add extra context for obtaining more
expressive pointcuts. Fourth, aspect languages with generic advice all have access
to a wealth of join point context, except for TinyC2. Conversely, ACC does not
enable a form of generic advice, but offers access to a rich set of join point con-
text. Overall, AspectC++, AspectX and Arachne conceptually are the best aspect
languages for C based on L1.

However, if we consider the integration of the build system with the aspect
language, we observe that only Cobble and C4 enable integration of the build
system with the aspect language. C4 enables this in an ad hoc way, as aspects
are specified inline with the base code. Cobble in principle enables integration
by asserting build system information as weave-time meta data, but facts can only
be specified inside the aspect. Hence, no aspect language for C fundamentally
supports integration of the build system with its pointcuts or advices.

Because AspectC++ does not fully support C (e.g. no K&R parser) and gener-
ates C++ code instead of C, AspectX reasons in terms of XML transformations in-
stead of in terms of join points, and Arachne does not provide generic advice and is
not platform-independent, none of the languages which fulfill L1 are really suited
for the legacy system environment we are targeting. Because they in addition do
not satisfy L2 either, we have decided to design and implement a new aspect lan-
guage for C, i.e. Aspicere. As Cobble’s features fare well in the comparison with



168 ASPICERE

AspectC++ Arachne Aspicere1 Aspicere2 Mirjam

domain general systems general general general
base integration .h + + + +

preprocessor - - - - -
PCD robustness regexp + LMP LMP relational

(function) pointers - - - - ?
ITD + - - properties -

basic join points AspectJ + + + +
dynamic join points AspectJ + - + -

advanced join points callsto/ + - cHALO -
reachable

variable access - + - - -
generic advice + - + + +

aspect interaction explicit deployment build build build?
advice interaction lexical lexical lexical lexical order

context + + + + +
thisJoinPoint + - + + +

annotations - - - + +
build integration - N/A + + +

availability + + + + -
weaver type source run-time source link-time source
optimisation + - - + ?

K&R support - N/A + + ?
IDE + - - - ?

Table 5.3: Comparison between the two incarnations of Aspicere and the most related
aspect languages (taken from Table 5.1 and Table 5.2). Mirjam is discussed in
Section 5.3.6. The upper four sets of rows correspond to provisions for the four

requirements of goal L1, the next one for goal L2, and the lowest rows characterise
the languages’ weaver. A +/- indicates good/bad support for some feature,

whereas “N/A” signals when an entry is not applicable to some language. Because
every language supports access to function arguments and global variables, a “-”

for “context” means that there is no additional means for access to context.

the other aspect languages, and because it intrinsically supports integration of the
build system with the aspect language, we have based Aspicere on Cobble. The
next section presents the design of Aspicere.

5.3 Language Design of Aspicere

Aspicere [248] is an aspectual extension to C developed upon the same founda-
tion as Cobble [142]. This section discusses the basic language specification of
Aspicere, without taking into account the more advanced features which are dis-
cussed during the case studies (in later chapters). Table 5.3 relates Aspicere to the
most expressive and powerful aspect languages for C described in Section 5.2, or



CHAPTER 5 169

presented later on in Section 5.3.6. Aspicere has two weavers, i.e. Aspicere119

and Aspicere220. The Aspicere1 weaver does not support some basic features of
Aspicere and none of the advanced ones.

We first briefly summarise how Aspicere deals with goals L1 and L2 (Sec-
tion 5.3.1). Then, we elaborate on Aspicere’s join point model (Section 5.3.2),
advice structure (Section 5.3.3) and pointcut language (Section 5.3.4). We con-
clude this section with an example which combines all basic language features
(Section 5.3.5). Later chapters provide more advanced applications. Finally, Sec-
tion 5.3.6 evaluates Aspicere’s features with respect to those of a recently proposed
aspect language for industrial C systems, i.e. Mirjam. We defer the presentation
of the implementation of the two Aspicere weavers to Section 5.4.

5.3.1 How Aspicere Deals with Goals L1 and L2

Aspicere deals with the four requirements of L1 and with the integration of the
build system with the aspect language (L2).

First, integration with the base language is achieved by only introducing a ded-
icated advice and ITD structure. Aspects correspond to normal C modules with the
same visibility rules for global and static variables and procedures. The sec-
ond requirement, an expressive pointcut language, is satisfied by choosing Prolog
as the underlying language for pointcut specifications, akin to Gybels et al. [108].
Arachne is the only other aspect language for C which does something similar,
but in a more restricted way. As Prolog is a logic programming language, it satis-
fies the pointcut language characteristics suggested by Gybels et al. Pointcuts are
composed of various Prolog predicates. These can either be defined in Prolog files
(libraries), or inline in the advice definition. To reconcile Prolog’s expressiveness
with the first L1 requirement, inline pointcut definitions within an advice can make
use of well-known conditional operators like “&&”, “||” and “!!” instead of “,”, “;”
and “\+”.

The third L1 requirement is fulfilled by enabling context bound during join
point matching by the advice’s pointcut to be used either as normal procedure ar-
guments or instead as a kind of C++-like template parameter to represent a type21.
Aspicere1 supports even more powerful template parameters (e.g. to represent
a statement), but we have not yet pursued this further. The available join point
context (fourth requirement) either corresponds to Prolog facts which model the
program structure, or weave-time metadata, similar to Cobble [142, 202].

Weave-time meta data is also the key to integrate the build system with the
aspect language (goal L2). It suffices to assert (parts of) the build structure and

19http://users.ugent.be/~badams/aspicere/
20http://users.ugent.be/~badams/aspicere2/
21Note that besides the fact that Aspicere’s template parameters can abstract over types, there are no other simi-

larities with C++ templates. More advanced features like template meta-programming are overkill, and would violate
the first L1 requirement.

http://users.ugent.be/~badams/aspicere/
http://users.ugent.be/~badams/aspicere2/


170 ASPICERE

configuration as logic facts before the actual weaving starts. Pointcuts can freely
make use of this meta data, and hence reason about the high-level program archi-
tecture or configured features.

To summarise, Aspicere fulfills all requirements of L1 and L2. The remainder
of this chapter elaborates on the design of the Aspicere language and on the two
existing aspect weavers for it.

5.3.2 Aspicere’s Join Point Model

This sections first presents the join points which are supported by Aspicere, and
afterwards the provisions for static crosscutting.

5.3.2.1 Supported Join Points

When introducing AOP-techniques into a base language, the first thing to consider
is how the base language and the new aspect language should interact. Because
C is a procedural programming language, procedures are the ideal abstraction for
join points. Just as in AspectJ-like languages, a distinction is made between call
and execution join points. However, because C modules are not mapped to a
type, the concepts of this (caller) and target (callee) do not really make sense.

There are various reasons for distinguishing between call and execution.
One should advise an execution join point to make sure that a function is al-
ways, except for a limited number of cases, advised by some aspect. If on the other
hand only in a minority of cases a function should be advised, a call join point is
preferable. This is not just a technical argument based on weaver implementation
details, as it has other implications. If one wants to advise a library, choosing an
execution join point will weave the advice into the library itself, making it ac-
tive anywhere the library is linked with an application. However, source-to-source
weavers cannot advise compiled code. They can only advise call join points
which access the library. This restricts the scope of the aspect to that application,
i.e. the advice does not transfer to other systems in which the library is used.

Polymorphism is a second area where the difference between call and exe-
cution becomes visible. In procedural languages like C, polymorphism is ob-
tained via function pointers. These correspond to addresses of functions which
can freely be be passed as arguments or invoked. Pointers are generally hard to
reason about because of “aliasing”. A given (global) variable or function can be
accessed directly or via some pointer to it. Because pointer variables can be freely
passed as procedure arguments, cast to other types or assigned to other pointers, it
becomes impossible to statically predict in all cases which variable is accessed or
which function invoked by looking at a (function) pointer.

Aspect languages can do four things to deal with function pointers:

• ignore them;



CHAPTER 5 171

• treat them like normal procedure calls;

• treat them specially;

• handle them indirectly via execution join points.

The first approach is not desirable, as in many systems function pointers are
heavily used. The second one seems to be the best one at first sight, but here it is
important to take into account the efficiency of the woven code. Whichever weav-
ing implementation is chosen, only run-time checks can determine accurately the
actual method which is called, even in the presence of advanced points-to analysis.
It is better to give developers more control over this, such that they explicitly can
choose to avoid this performance penalty at the expense of less precision. This
corresponds to the third approach, as chosen e.g. by ACC (Section 5.2.1.7). Here,
a dedicated callp pointcut for function pointer calls can be used to ensure that
every function pointer is checked at run-time.

However, even without this dedicated support, there is a simple way to avoid
overhead while giving up only some expressivity: advising the execution join
point instead of the function pointer call. Indeed, advice on the execution
join point ensures that every execution of a function is advised, whether or not it
has been invoked via a function pointer, but without run-time check overhead. In
practice, we have not encountered cases where the reduced expressivity is a real
problem. Hence, Aspicere does not have a callp-like join point, but instead uses
execution join points.

Join points for access to variables suffer from a similar problem as the function
pointers. However, there are no real alternatives to handle them. Arachne (Sec-
tion 5.2.2.3) e.g. uses the operating system’s page fault mechanism to detect vari-
able access, but this causes extreme performance penalties. Similar to AspectC++
(Section 5.2.1.3), Aspicere does not support variable access join points.

The last kind of behavioural join point is the “delimited continuation join
point”. This is an advanced kind of join point which abstracts over the remain-
ing execution of a procedure after a join point which has been directly invoked by
that procedure, has returned. As such, around-advice on a delimited continuation
join point can control whether the enclosing procedure continues its execution or
not by judicious use of a proceed-call inside the advice. For didactic purposes, a
more detailed explanation of delimited continuation join points and an application
of them is presented in the third case study (Chapter 8 on page 223). Note that
Aspicere’s continuation join points differ from those of Endoh et al. [77]. These
researchers use the same term to refer to a formalisation technique used for defin-
ing the fine-grained semantics of their join point model. We, instead, use the term
in the sense of an aspect language concept.

Aspicere does not consider the following constructs as valid join points:



172 ASPICERE

macro expansion The lack of type checking and the problems to easily parse pre-
processor code makes macro expansions undesirable as join points. We do
believe that replacing macros and other preprocessor constructs by aspects
makes more sense. This statement is revisited in Chapter 10.

inline assembler code This is definitely too platform-dependent and low-level.

5.3.2.2 Join Point Properties for ITD

For static crosscutting, i.e. ITD, a literal translation of AspectJ would require
introduction of new members to C structs, unions and maybe also enums.
This is not straightforward in realistic systems, because one needs to make sure
that no base code depends on the memory size of a struct or union, as this is
changed by the ITD, and that the whole system uses the modified (advised) data
structure instead of the original types.

Aspicere treats ITD differently. The primary reason why ITD is part of As-
pectJ, is because some crosscutting concerns can only be modeled cleanly when
extra state and behaviour can be associated with participating objects. As these
objects are passed through the system, they transport this state and behaviour to
other join points where advice can access them. A different way to interpret this,
is to associate state22 with a join point and to relate different join points with each
other, if needed, to make this state accessible to the other join points.

Aspicere follows this approach by using join point properties [178]. These are
(name,value)-pairs attached to individual join points. The familiar thisJoin-
Point-object of AspectJ can actually be interpreted as a container of system-
provided join point properties. Nagy et al. [178] propose to let the user add custom
properties to communicate between various advices and, even more importantly,
between independently developed aspects. This eases advice interactions, and,
if the properties are thread-local, it fits nicely with multi-threading environments
too. The main benefit for C is that the extra state can be completely managed by
aspects, i.e. the base code is oblivious to them. Hence, the introduced state is
much more manageable, and can be implemented efficiently (more on this later).

A prerequisite for this approach to work is that relations between join points
can be easily expressed. Aspicere’s expressive logic pointcut language and its
temporal extension (discussed in Chapter 9) enable this. This is also how Arachne
accomplishes ITD. Arachne associates state to a particular sequence of join points
via its bind construct [164]. This is less general than join point properties, as the
latter are accessible to any advice of which the pointcut matches a join point with
a property attached to it.

To summarise, the join point model of Aspicere is a compromise between lan-
guage expression power, ease of integration in the build system and customisation

22In C, ITD of behaviour does not make sense, because structs only contain state.



CHAPTER 5 173

1 ReturnType safe_ato(TYPE ReturnType,char* Src) around Jp:
2 invocation(Jp,"ato.")
3 && args(Jp,[Src]))
4 && type(Jp,ReturnType){
5 ReturnType dst;
6

7 if(Src == NULL) dst = 0; /* compiler does the cast */
8 else dst=proceed();
9

10 return dst;
11 }

Figure 5.13: Aspicere aspect to make standard conversion from strings to numbers null
pointer-proof.

to C’s typical application areas, in which efficiency and performance play an im-
portant role. The next section presents Aspicere’s advice model.

5.3.3 Aspicere’s Advice Model

As explained in Section 5.3.1, Aspicere aspects correspond to ordinary C mod-
ules with a special advice and join point property construct. These constructs are
described in the two following subsections.

5.3.3.1 Advice Structure

Figure 5.13 shows an example advice. It secures calls to the standard atoi, atol
and atof procedures to prevent a program from crashing when a null pointer is
passed as an argument. These three procedures parse a string (char*) argument
into an int, long or double. One advice suffices to advise all three procedures
because of the use of template parameter ReturnType (lines 1 and 5). This
advice is used later on in the first case study (Section 6.2).

An advice structure specifies:

• the advice return type (useless in case of before- or after-advice);

• the name of the advice;

• a list of bound context variables23 which are visible to the advice body;

• the type of advice (before, around and after (returning));

• (in case of after returning) the binding of the return value to a con-
text variable;

23Their names always start with a capital letter.



174 ASPICERE

• the name of the variable which contains the join point that is matched by the
pointcut;

• a pointcut (behind the colon);

• the advice body.

The advice body contains pure C code enhanced with template parameters,
whereas the advice signature is a new construct and the pointcut (see Section 5.3.4)
consists of Prolog predicates with C-like conjunction, disjunction and negation
operators. This makes our aspects a hybrid of pure C and a Prolog-based pointcut
language.

The advice of Figure 5.13 is around-advice on join points Jp fulfilling the
pointcut on lines 2–4. We explain this one later on, but in any case two context
variables are bound (ReturnType and Src) and are available for use as template
parameters in the advice body. One can hide variables bound during join point
matching by not adding them to the binding list. Bindings are typed. Src is
a simple string, whereas ReturnType represents an actual C TYPE. This is a
custom (meta)type we have added to Aspicere, because C does not have reflective
capabilities. One can use such a type parameter further on in the binding list, as
return type of the advice (line 1) and inside the advice body itself (line 5). This
enables the weaver to statically check the type correctness of advice instead of
deferring this to run-time (with the catch-all void*).

Aside from template parameters, an advice body may contain a proceed-call,
similar to AspectJ. If no arguments are given, the join point’s original arguments
are passed as is to any remaining advices on the same join point or to the join point
itself. If one wants to replace the value of the arguments, one should fill in the
arguments of proceed:

1 ...
2 else dst=proceed(‘‘test’’);
3 ...

Alternatively, assigning the new value directly to the variable binding works
too:

1 ...
2 else{
3 Src=‘‘test’’;
4 dst=proceed();
5 }
6 ...

A third alternative is to access the thisJoinPoint-like struct which is accessible
via the join point variable (Jp):



CHAPTER 5 175

1 ...
2 else{
3 Jp->args[0]=‘‘test’’;
4 dst=proceed();
5 }
6 ...

This struct contains the following fields with information about the join
point:

nrArgs number of arguments

args array of arguments

returnValue pointer to the return value

fileName name of the file in which the advised join point resides

functionName name of the advised function

Contrary to Aspicere1, the Aspicere2 weaver does not support these fields,
primarily because this struct can be costly to create, store and access. Instead,
binding these values as context variables in the pointcut is preferred.

There is a fourth and final way to access and modify only the return value of
an advised procedure. When using after returning-advice, the return value
is automatically bound to a context variable:

1 void safe_ato(TYPE ReturnType,char* Src) after Jp
2 returning (ReturnType Res):
3 ...{
4 ...
5 *Res=0;
6 ...
7 }

Note that, just like in the context struct above, ReturnType represents
the corresponding pointer type of the actual return type, such that assignment to
the bound return value is possible via dereferencing of this pointer (line 4).

5.3.3.2 Join Point Property Declaration

Apart from advice, an aspect may contain a join point property declaration. Fig-
ure 5.14 gives an example of this. It attaches an integer identification number to
the same call join points which are advised by Figure 5.13. The property can be
accessed by any advice on these join points if a context variable is bound to the
property. The advice on lines 4–8 of Figure 5.14 binds a pointer to the index
property to the Index context variable on line 6. This context parameter is used
on line 7 to store the value of a global variable.



176 ASPICERE

1 int index on Jp:
2 invocation(Jp,"ato.");
3

4 void count(int* Index) before Jp:
5 invocation(Jp,"ato.")
6 && property(Jp,index,Index){
7 *Index=global_counter++;
8 }

Figure 5.14: Join point property associated with the advised join points of Figure 5.13.

This concludes the discussion of Aspicere’s advice and join point declaration
structures. The next section presents the logic pointcut language.

5.3.4 Aspicere’s Pointcut Language

As mentioned in Section 5.3.1, Aspicere’s pointcut language is heavily influenced
by LMP [237, 30, 202]. The basic idea is that a program is represented as a col-
lection of logic facts and that a Turing-complete logic language is used to reason
about these facts. There are two flavours of LMP: a generative and a query-based
approach. De Volder’s TyRuBa [237] uses template-based meta-programming
to generate the woven system based on facts and logic rules which model pro-
gram fragments and aspects respectively. More in particular, the weaving hap-
pens by means of the logic rules which generate new facts and modify existing
ones. Gybels’ CARMA [108] (then: Andrew) on the other hand, uses a hybrid
Smalltalk/Prolog language (SOUL) as a pointcut language to query the base code
for join points. Weaving is then performed imperatively using Smalltalk’s meta-
programming facilities instead of via the logic rules. Similar to Cobble, Aspicere
applies the query-based LMP approach.

Basically, the base code is reified as a database of logic facts (Prolog in our
case). Pointcuts can be expressed in terms of those facts and hence are able to
compose powerful patterns based on program structure using conjunction, disjunc-
tion and or negation (by unprovability). Ultimately, any kind of fact source could
be used [185], such as data from execution control flow, meta-information from
annotations, etc. As argued in [202], legacy languages like C lack sufficient struc-
ture or reflective capabilities to be able to write crisp and robust pointcut patterns
and advice. LMP is a good solution for these mismatches. Adding new pointcuts
boils down to defining new logic predicates. A clean, layered pointcut language
can be constructed by carefully specifying more advanced predicates in terms of
more primitive ones. By raising the level of abstraction, pointcut predicates can be
brought closer to the actual problem domain.

We can now understand the pointcut of Figure 5.13. This advice matches all



CHAPTER 5 177

calls24 (line 2) to procedures of which the name matches the regular expression
“ato.”, i.e. the name starts with ato and the fourth letter is arbitrary. Because
Aspicere does not allow advising a call via a function pointer (see Section 5.3.2),
this advice only matches explicit function calls. To connect the invocation
predicate to the ones on lines 3 and 4, Prolog’s unification allows us to reuse the
previously bound join point variable (Jp). This is actually a very natural way to
express that two bound variables should be equal25. The args predicate binds
the sole argument of the advised calls26 to the Src variable and also captures
the procedure call’s return type as ReturnType. Of the bound variables, the
interesting ones can be exported to the advice via the binding list on line 1.

The unification has an interesting side-effect. Consider the following pointcut:

1 invocation(Jp, _) && args(Jp,Params) && member(P, Params)

This corresponds to the following Prolog rule:

1 /*rule name*/:-
2 invocation(Jp, _),
3 args(Jp,Params),
4 member(P, Params).

The unification semantics of Prolog dictate that if a variable can have multiple
values, each one is eventually used to find a complete solution for the logic rule.
In this case, Params is a list of function arguments. The member predicate on
line 4 binds every argument in the list in turn to P, which can be used as a template
parameter in the advice body. Because there are potentially many function argu-
ments passed to the Jp call join point, the rule, and hence the pointcut, matches
multiple times. This particular advice matches as many times as there are function
arguments.

Aspicere’s logic facts contain base program structure information or may rep-
resent weave-time meta data. The recorded program structure consists of the exist-
ing procedure and variable definitions and declarations of the base code, together
with arguments, file information, etc. The meta data can contain any user-specified
information. It can record information obtained via reverse-engineering and make
it accessible in other advice which is used to re-engineer the system, or convey
design information, information about the actual composition of source modules
(is one executable built or multiple libraries?), information of base code modules
which have been selected by the user, etc. As argued for the L2 goal, weave-time
meta data is very important for AOP in legacy systems.

Logic facts are useful to store meta data separately (loose coupling) from the
base code, but sometimes meta data should be attached to specific program entities.

24Because of name clash issues in our weaver implementations, we use invocation instead of call.
25Prolog also allows one to express that certain variables can have an arbitrary value, by writing an underscore.
26Src stands between [...] because procedures can have in general a list of arguments.



178 ASPICERE

Because of this, we have added an annotation facility to C. Annotations are well-
known by now as AspectJ 1.527 has had them for some time. Put briefly, they
correspond to meta data which is associated directly to program elements by means
of a kind of tags. They convey information, especially semantical, which is not
expressible in the programming language itself. As C does not have annotations by
default, we abuse comments for this, similar to the style in Java before annotations
were turned into first-class entities. Our annotations are associated with the first
statement or (nested) expression which follows them:

1 int main(void){
2 /*@repeat(‘‘Jack’’,66)*/
3 printf(‘‘This line will be repeated.\n’’);
4 }
5

6 int repeat_printf(char* Name,int Iter) around Jp:
7 invocation(Jp,"printf")
8 && annotation(Jp,repeat,[Name,Iter]){
9 int i=0,res=0;

10

11 printf(‘‘Hi %s,\n’’,Name);
12 for(;i<Iter;i++) res+=proceed();
13

14 return res;/*do not care*/
15 }

Based on meta data attached to a call to printf, this advice greets the user
and repeats the call a number of times based on the meta data. The annotation on
line 2 has a name (repeat) and may contain an arbitrary number of attributes.
Based on a join point and the annotation name, the list of attributes can easily be
retrieved in a pointcut (line 8) for use in the advice body. In Chapter 8, a more
interesting application of annotations is presented.

Aspicere supports the dynamic cflow pointcut of AspectJ. To provide more
advanced dynamic pointcuts, Aspicere’s pointcut language has been extended into
a history-based language, i.e. pointcuts can be expressed in terms of temporal
operators to relate two or more distinct join points in time. This means that more
precise and advanced pointcuts can be developed. Aspicere’s temporal extension
is named cHALO and is discussed in the fourth case study (Chapter 9). The next
subsection combines the presented elements of Aspicere’s join point, advice and
pointcut model into a larger example.

5.3.5 Aspicere at Work: Database Error Recovery

In this section, we give a more complete example to illustrate various facets of
Aspicere, and some of its shortcomings. Consider an application which accesses

27http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/


CHAPTER 5 179

1 int recover(int ErrNr, int Retry, char* ErrStr) around Jp:
2 critical_call(Jp)
3 && sql_redo(ErrNr,Retry)
4 && sql_code(ErrNr,ErrStr){
5 int res=0, i=0;
6 for(i=0;i<Retry;i++){
7 res=proceed();
8 if(res!=ErrNr) return res;
9 }

10

11 printf(‘‘Recovery did not succeed: %s\n’’,ErrStr);
12 return res;
13 }

Figure 5.15: Database error recovery advice.

1 sql_code(-666,’Time limit exceeded.’).
2 %> Some other codes with their description...
3

4 sql_redo(-666,2).
5 %> Some other codes with the relevant number of
6 %> retry attempts...
7

8 critical_method(‘‘monthlyPayment’’).
9 critical_call(Jp) :-

10 invocation(Jp,‘‘_iqcftch’’),
11 critical_method(Name).
12 execution(CMethod, Name),
13 cflow(CMethod,Jp).

Figure 5.16: Prolog predicates associated with the database error recovery advice of
Figure 5.15.



180 ASPICERE

a database. We would like to catch database errors in such a way that failed SQL-
queries are retried a number of times, depending on the specific error code. This
recovery procedure should only be active if the error occurs during execution of an
important method. As the concept of recovery is the same across all error codes,
we can encode this knowledge as meta data and use this information directly in a
pointcut.

The resulting advice is shown in Figure 5.15 and its accompanying Prolog
rules are shown in Figure 5.16. The latter file specifies a number of meta data
facts which declare the error explanations (lines 1–2) and the number of retrial
attempts (lines 4–6) for various error codes. These facts are bound in the pointcut
on lines 2–4 of Figure 5.15 to variables ErrNr, Retry and ErrStr respectively.
Within the advice body, a loop retries the failed function invocation the prescribed
number of times for the specific error corresponding to ErrNr. If all attempts
fail, the advice exits with the correct error message. Otherwise, i.e. no error has
occurred (line 8), the advice exits normally.

The particular join point on which the recovery advice applies is described on
line 2 as a critical_call. The definition of this predicate is listed on lines 9–
13 of Figure 5.16. A critical_call is a call to the _iqcftch procedure
(part of the SQL library) which occurs in the cflow of the execution of a pro-
cedure CMethod. CMethod has to be registered explicitly as a critical_method.
There is only one such method, i.e. monthlyPayment. In other words, only
calls to _iqcftch in the cflow of the monthlyPaymentmethod are advised.
This pointcut makes explicit use of weaving meta data. Alternatively, one could
annotate the critical methods instead of listing them as facts.

Because of unification during join point matching, each advised call to _iqcftch
is matched as many times as there are registered error codes. In the ideal case (no
error), each advice only executes up to line 8. If there are on average a retrial
attempts per error code and there are n different error codes, then the database
query will be run an times in the worst case: for every iteration of the outermost
recovery advice instance, the next instance will at most iterate a times, etc. This
corresponds to the notion of “handler chains” mentioned by Lohmann et al. [160],
i.e. multiple advices are chained together on one and the same join point, each
checking for one particular thing. As advice usually is transformed by a static
weaver into a procedure, inlining of the advice (like Aspicere2 does) is a necessity
to avoid the potential overhead of an procedure invocations.

A more efficient solution could be based on De Schutter’s generative aspect
approach [202]. Instead of using the meta data to determine how many instances
of the advice match, the meta data could be used to construct the advice itself:

1 int recover() around Jp:
2 critical_call(Jp){
3 [for each match of sql_redo(ErrNr,Retry)]



CHAPTER 5 181

4 int retry_ErrNr=Retry;
5 [end]
6

7 while(1){
8 res=proceed();
9 [for each match of sql_code(ErrNr,ErrStr)]

10 if(res==ErrNr){
11 if(retry_ErrNr--) continue;
12 else{
13 printf(‘‘Recovery did not succeed: %s\n’’,
14 ErrStr);
15 return res;
16 }
17 }else
18 [end]
19 return res;
20 }
21 }

This kind of advice template is currently not supported by Aspicere, but Mir-
jam [179] (discussed in the next section) does. It is similar to e.g. JavaServer
Pages28, except that the variables accessed in the templates (lines 3 and 8) are
context variables bound by a pointcut. This style has some similarities with C++
templates or “class morphing” [122].

5.3.6 Comparison with an Industrial Aspect Language for C:
Mirjam

To put the design of Aspicere in perspective, we compare it in detail to the design
of a new aspect language for C which has been proposed29 during the writing
of this dissertation [179], independently from our work. It originates from the
“Ideals” project. This project was concerned amongst others with dealing with
crosscutting concerns in the industrial C code base of ASML (more on this in
Chapter 8). Many researchers have explored various facets of the re-engineering of
the system with aspects [36, 33, 34, 35, 75, 32]. This has led to a number of desired
aspect language features, on which Mirjam has been based [179]. Mirjam is meant
to be an industrial-strength, general purpose aspect language for C suited for large-
scale software development. WeaveC (Section 5.2.1.6) is the actual weaver back
end of Mirjam. As the Ideals report is the first written description of Mirjam,
which means that Mirjam is state-of-the-art, we consider Mirjam to be the ideal
reference point to evaluate the design of Aspicere. The design of Mirjam confirms
the requirements we have proposed in Section 5.1.

28http://java.sun.com/products/jsp/
29Only a language description has been published, but no weaver implementation has been released yet.

http://java.sun.com/products/jsp/


182 ASPICERE

1 context{
2 #include <stdio.h>
3 }
4

5 aspect database{
6 advice printParams(Variable@JP[] Args)
7 before (FunctionJP JP){
8 printf("Function %s in module %s executes with arg(s) "
9 @StringConstant<

10 [arg in Args:
11 strConcat(arg.name, "=",formatString(arg))],
12 "; " //semicolon as separator
13 >@
14 ,JP.name
15 ,JP.module.name
16 ,@VarargExpression<[arg in Args:
17 formatExpression(arg)]>@);
18 }
19

20 query Q5() provides (FunctionJP JP, Variable@JP[] V){
21 JP: |JP.formalParameters()| >= 1;
22 V : V == JP.formalParameters();
23 }
24

25 binding{
26 foreach (thisFunc, vars) in Q5{
27 apply on thisFunc {
28 printParams(vars);
29 }
30 }
31 }
32 }

Figure 5.17: Mirjam example adapted from Nagy et al. [179] (their Listing 5.9).

Figure 5.17 shows an example aspect written in Mirjam. Aspects do not align
with file boundaries. Instead, there is an explicit aspect construct (line 5) and
the usual C declarations and inclusions have to be specified within a context dec-
laration closure (lines 1–3), which is preprocessed before weaving starts. Within
the aspect declaration, advice, query and binding constructs may occur,
which can all be referenced from the outside as the aspect defines a name scope.
This increases reusability, at the expense of more additions to the C base language.

The advice on lines 6–18 prints out the argument names and values before
an advised execution join point is resumed. Mirjam provides before and
after advice on call and execution join points. It is not clear how function



CHAPTER 5 183

pointers are handled. The advice’s signature (lines 6–7) specifies that the advised
join point JP is an execution join point (FunctionJP) which may expose a list
of formals or global/local variables bound to context variable Args in scope at the
join point (Variable@JP[]). In addition to bound context, the advice body can
also access other context like the name of the join point (line 14) or the enclos-
ing module’s name (line 15). Note that the “.”-notation enables easy navigation
through the structure of the context and also enables access to methods. Aspicere
on the other hand only provides one-level deep access to join point variable con-
text, unless the right context is bound directly to a variable in the pointcut.

The two expressions between @...<...> (lines 9–13 and lines 16–17) are
advice generators, which are similar to De Schutter’s generative aspect approach [202].
Because Mirjam does not provide around-advice, we could not rephrase the ex-
ample from Section 5.3.5. Instead, the first generator in the advice of Figure 5.17
(lines 9–13) generates a string (StringConstant) which consists of the con-
catenation (with ; as separator) of statements of the form “argument name = ar-
gument value”, one for each captured argument. The latter is achieved via the it-
erator on lines 10–11 (between [...]). The strConcat and formatString
methods are executed at generation-time. Lines 16–17 contain a similar genera-
tor, but this one returns a comma-separated list of all argument values. Each list
element returned by method formatExpression matches the corresponding
format string generated by formatString on line 11. Advice generators are
more powerful than Aspicere’s template parameters, because they generate code
expressed in terms of names of variables instead of in terms of the build-time value
of bound context. This is a consequence of the generative approach compared to a
traditional aspect language.

Mirjam pointcuts are queries which return for each match a tuple consisting
of join point locations and context, analogous to Aspicere. Contrary to Aspicere,
context variables of pointcuts are explicitly typed. The query on lines 20–23 re-
turns a tuple of two elements: an execution join point JP and a tuple V of variables
which are accessible at JP (with the type Variable@JP). The query is actually
a relational query which returns all tuples (JP,V) for which JP has at least one for-
mal parameter (line 21) and V is the complete list of formal parameters (line 22).
An equivalent predicate in Aspicere would look like:

1 Q5(JP,V):-
2 execution(JP,_),
3 args(Jp,V),
4 nth0(0,V,_).%>=1 elements

Finally, the binding closure on lines 25–31 contains binding definitions like
the one on lines 26–30. This explicitly allows to bind a particular join point to con-
crete advice, by capturing the results of a query (line 26) and applying a particular
advice (line 28) to each captured join point (line 27). The apply-construct on



184 ASPICERE

lines 27–29 is a “binding entity”. There can be multiple binding entities within the
same binding definition. Other kinds of binding entities can control the order
of advices at shared join points, or generate warnings/errors. State can be declared
within a binding closure for use by all binding definitions (and hence advice),
or within a binding entity to restrict access to the state to particular join points only.
The former corresponds in Aspicere to global variables within aspects, while the
latter is related to join point properties.

Mirjam provides annotations to specify weave-time meta data. Nagy et al. [179]
acknowledge the important role of build-time meta data (goal L2):

In our investigation, we recognized that information derived from the
build process is also used in the idioms that realize crosscutting con-
cerns in software. [...] Hence, information about product and platform
can serve as variation points; these are typically originated from the
configuration of the build processes.

Mirjam provides information from the build process to advice via the join point
variable and the “.”-notation. WeaveC/Mirjam has been integrated into the build
system of ASML [179], but no more details have been given about this process.
Two concerns (tracing and timing) have been implemented as aspects thusfar on
more than one thousand base modules.

From this detailed discussion, we can conclude that Mirjam in various ways is
more powerful than Aspicere, especially regarding the generative advice, but at the
expense of a more complex aspect language (pointcuts and advice). In any case,
the fact that Mirjam satisfies almost all our requirements is an important indication
about the validity of the L1 and L2 goals. Real validation of these requirements,
both for L1 and L2, is done in the five chapters following this chapter. These
are introduced in Section 5.5, but first the next section presents the two weaver
implementations of Aspicere.

5.4 Two Weaver Implementations for Aspicere

Two aspect weavers have been built for Aspicere. The first one, which we name
“Aspicere1”30, is a source-to-source weaver [248] like AspectC and AspectC++.
The second one, “Aspicere2”31, is a link-time weaver [8]. This section discusses
their main characteristics without going into too much detail. More information
about their internals can be found as documentation distributed with the source
code of these weavers.

30http://users.ugent.be/~badams/aspicere/
31http://users.ugent.be/~badams/aspicere2/

http://users.ugent.be/~badams/aspicere/
http://users.ugent.be/~badams/aspicere2/


CHAPTER 5 185

Figure 5.18: Architecture of Aspicere1. The .ac-files represent aspects, while .pl-files
contain logic predicates.

5.4.1 Aspicere1, a Source-to-source Weaver

Figure 5.18 shows the architecture of Aspicere1. It is a pure source-to-source
weaver, which takes as input base code (one module at a time), aspects (.ac) and
Prolog modules (.pl), and generates woven C code which can be compiled using
the normal base compiler. This means that the weaver has to be executed before
every compiler invocation, as we will see later on. Aspicere1 is actually built on
the same basic framework as Cobble [142], except for the parser. This one is based
on an existing robust ANTLR-parser32 which is capable to parse K&R-, ANSI- and
GNU-style C.

Inside the weaver, a parser and unparser convert the C code to/from an XML
representation of the AST (analogous to AspectX in Section 5.2.1.4). The Pro-

32http://www.antlr.org/

http://www.antlr.org/


186 ASPICERE

Figure 5.19: Sequence diagram (with methods instead of objects) showing the control flow
through an (around-)advice chain in Aspicere. The respective owners of the

various procedures are also shown.

log modules and the pointcuts (transformed into Prolog rules) are used to locate
the right join point shadows [118], i.e. the appropriate XML nodes of the AST
which correspond to function calls or definitions. Once these have been found,
the XML tree representing the base code module can be transformed. The aspects
themselves are also transformed (more on this later). The woven base code mod-
ule is converted back to C code, whereas the transformed aspect possibly needs
to be transformed further when weaving other base code modules. Eventually
(dashed arrow), the resulting transformed aspect is compiled and linked with the
transformed base code.

Aspicere1 uses a Java-based Prolog engine, i.e. TuProlog [59]. One of its
features is the interaction between logic predicates and Java libraries, which en-
ables us to make use of Java’s extensive XML facilities. Instead of reifying the
whole XML tree as logic facts, we use a layered system of predicates of which
the lowest (“hyperprimitive”) layer looks up XML nodes on demand using XPath
queries. Unfortunately, even with the use of a cache, this turns out to be very slow
(see Chapter 6). The middle (“primitive”) layer defines primitive pointcuts like
call and program structure navigation queries. This layer immediately accesses
the hyperprimitive layer. Finally, the upper (“aspect-specific”) layer is meant for
predicates written by users, tailored to a particular domain [30]. TuProlog also
makes it possible to store meta data inside XML files or a relational database and
access this from a predicate as if this data is stored as a normal Prolog fact.



CHAPTER 5 187

The XML transformation is based on a couple of principles. Advice is con-
verted into multiple C functions, one per combination of type parameters used in
the advice33 body. These generated functions are named “advice instances”, and
they correspond to the XML nodes which are added to a (partially) transformed
aspect (the loop in Figure 5.18). However, care is needed to manage access to
static and global variables.

We have decided to reduce code bloat by decoupling advice instances from
particular sequences of advice on a shared join point. Instead of hardcoding a call
to the next advice or the advised join point inside each advice instance, we make
the instances eligible for reuse by encoding the advice order inside a list of function
pointers, which is stored in the join point struct pointed at by the advice’s join
point variable. This struct forms the sole argument of an advice instance.

The resulting chaining of advices is shown on Figure 5.19. This sequence dia-
gram illustrates both the order of woven advice instances and the order of advice
execution on a shared join point. The list of function pointers is initialised in-
side a generated caller_proxy method called at the join point shadow. This
also marshalls the join point’s context into the context struct argument of the ad-
vice instances. Calls to proceed inside the advice are converted into generic
function pointer arithmetic which selects the next advice instance in the chain un-
til a callee_proxy is invoked. This one demarshalls and restores the (pos-
sibly modified) arguments of the join point. Because the caller_proxy and
callee_proxy are both added by the weaver to the base module, even static
methods can be advised and static variables accessed. There are some special
cases, like calls to exit, which may lead to memory leaks when the memory
allocated by caller proxies for a context struct is not deallocated.

Aspicere1 does not support annotations, join point properties or dynamic point-
cuts like cflow.

5.4.2 Aspicere2, a Link-time Weaver

C is all about writing efficient code, but AOP has been known to add overhead
to build and (most importantly) run-time execution [14, 73] compared to a tan-
gled and scattered implementation. The people from the AspectBench Compiler
for AspectJ (abc) [15] have acknowledged this by creating a common workbench
to experiment with new features, optimisations and analyses for AOP in Java. It
provides an alternative implementation of an AspectJ weaver with an open ar-
chitecture, enabling easy extensions at every level (join points, pointcuts, advice,
weaving, etc.) and speeding up woven code via sophisticated, whole-program
static analysis and optimisation [14, 15]. We have considered a similar workbench
for C to be favourable for the following reasons:

33Aspicere1 does not implement before- and after-advice, only around-advice.



188 ASPICERE

Figure 5.20: Aspicere2 architecture.



CHAPTER 5 189

before

after

around

join point

Figure 5.21: Precedence of advice on shared join points with Aspicere2.

• AOP-researchers in C systems do not need to re-implement basic weaving
functionality from scratch;

• existing optimisations can be applied to C to check their validity and to
examine whether they can be specialised;

• new analysis and optimisation techniques for typical C features like macros
and (function) pointers can be developed and applied directly.

Figure 5.20 shows the resulting architecture of the Aspicere2 weaver. Instead
of a source-to-source weaver, weaving happens at link-time to facilitate whole-
program analysis. This architecture is inspired by abc [15], which consists of
a front- (Polyglot34) and back end (Soot35). Polyglot has provisions to treat the
aspect language as an extension of Java with adequate type checking, while Soot
offers analyses and transformations at link-time to optimise the weaving process
based on whole-program knowledge. abc also has a powerful re-weave facility,
which allows to do an initial weaving pass, to analyse the weaving results, to undo
the weaving and then to re-weave based on the analysis results of the first weaving
attempt.

34http://www.cs.cornell.edu/Projects/polyglot/
35http://www.sable.mcgill.ca/soot/

http://www.cs.cornell.edu/Projects/polyglot/
http://www.sable.mcgill.ca/soot/


190 ASPICERE

For Aspicere2, the role of Soot and Polyglot is played by a framework targeted
specifically at C code. We have opted for LLVM (Low-Level Virtual Machine)36,
i.e. the framework TOSKANA-VM (Section 5.2.3) is built on37. Instead of using
LLVM in a VM setup, we apply it in a traditional compile-link setup, compatible
with classic development traditions. One only needs to replace the normal C com-
piler by llvm-gcc and the standard linker by the combination of llvm-ld and
LLVM. These tools generate or operate on LLVM bitcode instead of on machine
code. LLVM bitcode is a compact SSA-form intermediate representation (IR) sim-
ilar to Soot’s Jimple IR. LLVM offers tools, analyses and optimisations to build
powerful compilers or bitcode transformers. Memory footprint and execution time
are significantly lower than GCC allows. By invoking LLVM at link-time, we
obtain a whole-program view of the base code. This enables us e.g. to reduce
the number of join point shadows where dynamic residues for a cflow-pointcut
should be put by using points-to analysis and control flow graphs, or to perform
aggressive dead code elimination or inlining of the woven bitcode.

We now consider the various components shown on Figure 5.20. A GCC-based
front end compiles C code to LLVM bitcode. The C code and the advice bodies
of aspects (.ac files) are converted into normal C files and then transformed into
bitcode, while the pointcuts are turned into Prolog rules (.pl files). Together with
user-provided Prolog modules and facts extracted from annotations in the source
code (which has been elided from Figure 5.20), the predicates are compiled by
the SWI Prolog38 compiler into a binary state file39. Parsing and transformation is
done via a Perl script, because LLVM’s companion High-Level Virtual Machine
framework (HLVM), comparable to abc’s Polyglot, is still in its infancy. HLVM is
a framework on top of LLVM which will accommodate interpretation of dynamic
languages like Ruby, but (more interesting for Aspicere) will allow easy addition
of new language-level features to a language via generation of extra lexer and
parser functionality.

When all source files have been converted into bitcode, the resulting bitcode
files are glued together at link-time into one link module and the Prolog state is
loaded into an embedded Prolog engine. First, some analyses can be run (if re-
quired by later passes) before a reification pass traverses the link-time module and
asserts all interesting program entities as Prolog facts (inspired by the design of
the LogicAJ aspect language for Java40). Libraries for which no bitcode is pro-
vided cannot be woven into. During the matching phase, all pointcut logic rules
are queried to find join point shadows which may give rise to a pointcut match.

36http://llvm.org/
37CIL (http://cil.sourceforge.net/) is an alternative framework we have considered.
38http://www.swi-prolog.org/
39Such a file contains binary representations of predicates and facts for fast loading by the SWI engine.
40http://roots.iai.uni-bonn.de/research/logicaj/

http://llvm.org/
http://cil.sourceforge.net/
http://www.swi-prolog.org/
http://roots.iai.uni-bonn.de/research/logicaj/


CHAPTER 5 191

As a side note, Aspicere2 still uses a vanilla Prolog engine as back end for
Aspicere’s pointcut language, although Hajiyev et al. [109] claim that Prolog is
not scalable enough for this. To be able to verify this claim once a robust Dat-
alog implementation becomes available, the Prolog manipulation components of
Aspicere2 have been encapsulated in dedicated classes such that they can easily be
replaced.

Armed with the set of pointcut matches, a weaving pass transforms the IR
representation of the whole program. The transformation for around-advice is
similar to Aspicere1’s advice chaining strategy (Figure 5.19), except that advice
instances are not reused. They explicitly call the next instance in the chain or the
advised join point. This causes extra code bloat compared to Aspicere1, but it re-
moves the need for caller and callee proxies, does not require run-time checks and
(most importantly) opens the door for aggressive static optimisations like inlining,
dead argument elimination, etc. Aspicere1’s generic function pointer arithmetic
prohibits this kind of optimisations. Contrary to Aspicere1, before- and after-
advice are implemented. They are transformed into calls before or after the join
point shadow. Join point properties are implemented as global or local variables,
based on the join point (shadow) they are attached to. To implement cflow, we
first construct a control flow graph via a standard LLVM analysis. We use this
control flow graph to deduce which join shadows always yield a match and which
ones possibly do, similar to the approach of Avgustinov et al. [14].

The order of advice on shared join points is determined as shown on Fig-
ure 5.21, which is easy to remember. One just needs to imagine the lexical order
of the definitions of all advices which advise a given join point, and stack the ad-
vices like rectangles41. Then, depending on the kind of advice (before, after
(returning) or around), either the left part, right part or the whole advice
rectangle can be marked. If control flow is depicted as shown on Figure 5.21,
then the crossing of an arrow and a marked rectangle represents execution of ad-
vice. Hence, in the example of Figure 5.21, a sequence of before-, after-
and around-advice results in execution of the before-advice, followed by the
around-advice and eventually, if the around-advice exits, the after-advice.
This precedence model is intuitive, whereas it is still flexible. Aspicere1 imple-
ments a similar precedence model.

Once the bitcode has been transformed by the transformation passes, we first
optimise the woven code by inlining, dead code elimination, etc. The end result is
a bitcode representation of the whole, woven program, which can either be inter-
preted, compiled directly into machine code or translated back to (very low-level)
C code.

Because of LLVM’s flexibility, Aspicere2 supports much more features of As-
picere than Aspicere1 does, e.g. those of Chapter 8 and Chapter 9. Calls via

41The order of aspects given to the weaver determines the order of advices from distinct aspects.



192 ASPICERE

function pointer can now be detected more accurately, but we have not looked at
this in more detail yet. Similarly, support for incremental weaving has not been
investigated either. Contrary to a source-to-source weaver, a change to a C file not
only requires re-compilation and re-weaving of that single file, and re-linking of
the complete system. The whole linked system has to be re-woven, i.e. analysed,
reified, etc. To resolve this, Aspicere2 should be able to trace back from woven
program artifacts to the original base code and aspects. This is considered in the
future work section of Chapter 11.

5.5 Validation of Goals L1 and L2

The next five chapters present five case studies performed with Aspicere and anal-
ysed with MAKAO. Their goal is to prove the existence of problems caused by
co-evolution of source code and the build system in legacy systems in which AOP
technology is introduced, to correlate these problems with the four roots of co-
evolution and to validate MAKAO and Aspicere. The latter validation focuses
both on the degree to which goals L1 and L2 have been met.

Each case study first presents the application of aspects in the source code to
solve a given problem. Two of the cases involve reverse-engineering activities,
while the last three target re-engineering of a legacy system (extraction of excep-
tion handling into aspects, system composition using an architectural description
language and extraction of conditional compilation into aspects). After the dis-
cussion of L1, the impact of the introduction of aspects on the build system is
considered, i.e. build problems which have occurred and an explanation whether
or not we have been able to resolve them. Afterwards, we validate the applicabil-
ity of the four roots of co-evolution as explanation of the build problems, the use
of MAKAO to understand and manage the co-evolution, and the degree to which
Aspicere fulfils goal L2. A summary of the validation results of all case studies is
given in Chapter 11.

5.6 Conclusion

This chapter has derived two categories of requirements, i.e. for aspect languages
for legacy systems in general (L1) and for language support to deal with co-
evolution of source code and the build system (L2). We have evaluated existing
aspect languages for C, and have found that none of them fulfils all requirements.
Instead, we have designed and implemented Aspicere, i.e. an aspect language for
C with an expressive logic pointcut language, provisions for generic advice and
access to any kind of weave-time meta data. The latter is the key for integrating
the build system with the aspect language. We have evaluated the L1 and L2 re-



CHAPTER 5 193

quirements w.r.t. a recently proposed industrial aspect language for C. Finally, we
have discussed the two weaver implementations of Aspicere.

The next chapter presents the first case study, which reverse-engineers a legacy
system using aspects.





Substituting gce for gcc in a makefile can range from
very easy to extremely difficult. [...] In systems that
use many makefiles, or that are specifically dependent
on the value of the $CC variable, the substitution task
may be considerably more difficult, and additional
modifications of the makefile may be required.

Instructions of the SWAG toolkit [222]

6
Case Study 1: Reverse-engineering of

the Kava System using Aspects

THIS chapter1 discusses a first case study in which AOSD, i.e. Aspicere, is in-
troduced in a legacy system. It serves as a validation of the suggestion made

by two of the four roots of co-evolution (RC1 and RC2) about the occurrence of
co-evolution problems between source code and the build system in AOSD sys-
tems. At the same time, MAKAO (goal T2) and Aspicere (goal L1) are validated
as well.

The case study uses dynamic analysis [248] to extract knowledge about the in-
ternal composition of the Kava system (Section 3.5), a C code base of 453 kSLOC.
A tracing aspect has been applied to facilitate a web mining technique [246], for
measuring the degree of coupling between compilation units, and for the visuali-
sation [247] of the results of “Frequency Spectrum Analysis”, aimed at assessing
cohesion within modules. This chapter does not go into detail about these analyses
or the results. Instead, we focus on the role of aspects and the build system.

The next section describes the context of the case study, followed by a discus-
sion of the aspects we have applied (Section 6.2). Then (Section 6.3), we report
on the build system problems we have encountered to facilitate the aspects in the
source code. Section 6.4 validates the prediction of two of the four roots of co-
evolution about co-evolution of source code and the build system in legacy systems
in which AOSD has been introduced. Section 6.5 evaluates the ability of MAKAO

1Parts of this chapter are based on [248].



196 CASE STUDY 1: KAVA

to deal with this. Finally, Section 6.6 presents the conclusions of this case study.

6.1 Rationale behind the Case Study
Contrary to static analysis, dynamic analysis does not consider a system’s source
code, but rather a specific program trace obtained by making the system execute
a well-defined, well-chosen scenario. This trace can be analysed off-line. The
developers at Kava have pointed us to the so-called TDFS2 batch application. They
use TDFS as a check to see whether adaptations in the system have any unforeseen
consequences. As such, TDFS should be considered as a functional application —
it outputs a detailed invoice of all prescriptions, ready to be sent to the health care
insurance institutions—, but also as a form of regression testing. As an added
bonus, the program trace could be reused to calculate test coverage of the Kava
system.

There are many ways to obtain a program trace. The easiest one is to run a
program like “strace”, which writes out all system calls invoked by an application.
However, system calls are in general too low-level and do not contain any corre-
spondence with the actual source code. At the other extreme, adding fprintf
statements throughout the code enables the human tracer to print out any desired
info to a file, at the expense of huge manual effort and an unevolvable tracing im-
plementation. In practice, dedicated tools like DTRACE [38] or ATOM [217] are
the preferred way of gathering sufficiently detailed tracing information in a custom
format. Still, new mechanisms for tracing could be interesting to further lower the
barrier of obtaining a dynamic program trace. AOP is one of those mechanisms.
From an AOP point of view, a program trace can be obtained via a basic tracing as-
pect. Such an aspect is the prototypical example of a homogeneous [51], extremely
scattered aspect which matches join points throughout the whole system to record
information about the program. Unless it has to replace an existing, inconsistently
used base code implementation of tracing [32], it is very straightforward to im-
plement and it can be easily customised to record the tracing information the user
needs in the right format. Additionally, if the aspect is written well [54], the origi-
nal semantics of the application are left untouched, which makes the woven system
easier to understand. As such, a tracing aspect resembles the typical “Hello World”
program people use as a first example of a new programming language.

We have seized the opportunity given by the Kava case study to:

• assess the feasibility of using AOP for future re(verse)-engineering tasks;

• stress-test Aspicere’s template parameters and pointcut language;

• integrate Aspicere1 with Kava’s build system.

2“TariferingsDienst Factuur en Statistiek”, or “Tarification Service for Invoices and Statistics”.



CHAPTER 6 197

1 ReturnType trace(TYPE ReturnType,char* FileStr) around Jp:
2 invocation(Jp, ‘‘^(?!.*printf$|.*scanf$).*$’’)
3 && type(Jp,ReturnType)
4 && !!is_void(ReturnType)
5 && trace_file(FileStr) {
6 FILE* fp=fopen(FileStr,"a");
7 ReturnType i;
8

9 fprintf (fp,"before ( %s in %s ) \n",
10 Jp->functionName,Jp->fileName);
11 fflush(fp); /* call sequence */
12

13 i = proceed (); /* continue normal control flow */
14

15 fprintf (fp,"after ( %s in %s ) \n",
16 Jp->functionName,Jp->fileName);
17 fclose(fp); /* return sequence */
18

19 return i;
20 }

Figure 6.1: One of the two applied tracing aspects, i.e. the one for non-void procedures.

The last bullet deserves the most attention, as it touches the core topic of this
dissertation: How does one reconcile the introduction of AOP technology at the
source code level with the build system? The next section discusses the application
of AOP in the source code, whereas Section 6.3 considers the implications on the
build system.

6.2 Application of AOP in the Source Code

We first present the aspects which have been used in the Kava case study. Then,
we evaluate whether Aspicere has fulfilled the L1 goal.

6.2.1 Trace and Pointer Guard Aspects

To enable the dynamic analyses and the test coverage to reconstruct the program
call tree, we only need a program trace which contains call- and return-sequences,
i.e. a message upon entry into a procedure, and one on exit. The easiest way to
do this is by writing a before- and an after-advice. To stress-test Aspicere1’s
template parameters, we have used around-advice instead. Figure 6.1 shows one
of the two resulting advices. We need two advices, because we have to store the
procedure’s return value into a temporary variable (line 13). This only works if



198 CASE STUDY 1: KAVA

there is a return value, i.e. the return type is not void. The latter condition is
explicitly added to the pointcut on line 4.

The body of the tracing advice is straightforward, as it only needs to write out
a message to a file before (lines 9–11) and after (lines 15–17) the advised join
point (line 13). We have not dealt with errors originating during the execution of
the advised join point (call to proceed). The join point context struct (bound
to Jp) is used to access the name of the advised function and the file in which
it is implemented. The reason why the file pointer is opened (line 6) and closed
(line 17) during each advice execution will be explained later on. Note that the
name of the trace file is not hardcoded into the advice, but instead is specified
separately as meta data and bound during join point matching on line 5. This
makes the advice body reusable. The pointcut uses a complex regular expression
on line 2 which states that calls to any procedure except for those of the standard
printf and scanf families should be advised. Although we are interested in
calls to the standard library, these two families of procedures introduce too much
noise. More elaborate control of the scope of aspects can be obtained by using
weaving meta data, as we show in Chapter 8. The choice to advise call join
points instead of execution join points is governed by the need to record access
to libraries. Because no function pointers were used in the code base, this did not
introduce additional impreciseness.

As a side track, during the case study we have discovered the usefulness of
an aspect to guard calls to atoi, atol and atof against null pointer arguments.
On the original UnixWare platform on which the Kava system had been developed,
null pointer arguments for these procedures were gracefully ignored. After migra-
tion to Linux, subtle errors appeared. It turned out that the C standard library there
did not cope well with null pointer arguments. Kava initially solved the problem
(“temporarily”) by redeclaring atoi and its colleagues as a macro which checks
the arguments first before calling the actual Linux implementation. This approach
clearly works, but is not maintainable or evolvable. The advice of Figure 5.13 on
page 173 obtains the same effect, but in a localised and concise way. It represents
a simple, non-intrusive refactoring of the base code using aspects.

6.2.2 Validation #1: Aspicere Meets Goal L1

All four requirements of goal L1 have contributed to the aspects applied in the
Kava case study. Aspicere’s pointcut language and generic advice have enabled
the concise notation of tracing and pointer guard aspects, and weave-time meta
data has been applied to make abstraction of the name of the trace file.

This is promising for future reverse-engineering experiments, which should
try to gather more focused tracing data. The current aspects trace every procedure
call in the system, which generates too much information. By encoding the re-



CHAPTER 6 199

sults of earlier dynamic analysis as Prolog facts and by using dynamic pointcuts
like cflow or even temporal ones [70], the scope of the tracing aspects could be
better controlled and more concrete information could be retrieved. Besides more
focused tracing, reverse-engineering aspects could of course perform more work
themselves than only writing out messages to a file. Care is needed, however, to
prevent the aspects from disturbing the actual things which are measured (Heisen-
berg principle). The next section discusses the impact of AOP on the Kava build
system.

6.3 Impact on the Build System
This section considers the consequences of the introduction of AOP technology on
the build system. Whereas the Kava case has confirmed the design choices behind
Aspicere (Section 6.2.2), it is especially the interaction between the Aspicere1
weaver and the development environment which has sparked the most interesting
results. Aspicere1 is a source-to-source weaver which transforms one C compi-
lation unit at a time (Section 5.4.1). The input file has to be preprocessed first
to resolve all #include-statements, conditional compilation, etc. The output of
each weaver invocation is passed to the normal C compiler. Eventually, the system
linker combines all compiled modules into a library or executable. Hence, integra-
tion of Aspicere1 into the Kava build system requires the weaver to be invoked in
between the C preprocessor and the C compiler. This section shows that this is not
as easy as it may seem.

More in particular, we have observed the following five problem areas:

1. physical integration of Aspicere1 with the build process

2. the notion of “whole program”

3. the influence of C language features

4. build time increase

5. run-time overhead

We discuss these five issues in detail. Afterwards, the next two sections sum-
marise how this case study validates the four roots of co-evolution and MAKAO’s
ability to support in understanding and managing the co-evolution of source code
and the build system.

6.3.1 Integration of Aspicere1 with the Build Process

The Kava system uses GNU Make to automate the build process. Historically,
all 272 makefiles have been hand-written by several developers. During a recent



200 CASE STUDY 1: KAVA

1 $(CC) -c -o file.o file.c

(a)

1 $(CC) -E -o tempfile.c file.c
2 cp tempfile.c file.c
3 aspicere -i file.c -o file.c \
4 -aspects $HOME/kava/aspects.lst
5 $(CC) -c -o file.o file.c

(b)

Figure 6.2: (a) Original makefile snippet for .c files. (b) After transformation.

1 .ec.o:
2 $(ESQL) -c $*.ec
3 rm -f $*.c

(a)

1 .ec.o:
2 $(ESQL) -e $*.ec
3 chmod 777 *
4 cp ‘ectoc.sh $*.ec‘ $*.ec
5 $(ESQL) -nup $*.ec $(C_INCLUDE)
6 chmod 777 *
7 cp ‘ectoicp.sh $*.ec‘ $*.ec
8 aspicere -verbose -i $*.ec -o
9 ‘ectoc.sh $*.ec‘

10 -aspects $HOME/kava/aspects.lst
11 $(CC) -c ‘ectoc.sh $*.ec‘
12 rm -f $*.c

(b)

Figure 6.3: (a) Original makefile snippet for .ec (“esql”) files. (b) After transformation.

migration operation from UnixWare to Linux, a considerable number of make-
files, but not all, have been re-generated with the help of “automake” (see Sec-
tion 2.1.3.2). As a consequence, the structure of the makefiles is still heteroge-
neous, which is a typical phenomenon in practice. This heterogeneity has com-
plicated the integration of Aspicere1 into the Kava build system, because we did
not have a tool like MAKAO at our disposal at that time. Hence, the only way to
understand the makefiles was by manual inspection.

6.3.1.1 Necessary Changes to the Makefiles

The makefiles clearly show that the build system uses a “recursive make”, as make-
files in directories which only contain subdirectories explicitly transfer build con-



CHAPTER 6 201

trol to the makefiles in the subdirectories. This pattern has been acknowledged
later when we applied MAKAO on the Kava build system, as reported in Sec-
tion 3.5.1.1. However, we had no idea about the actual structure of the source code
and the build system, i.e. the mapping of source code to build system components.
Although we only had to focus on the TDFS application, the actual extent of this
system was not clear. We did not know which executables were part of TDFS,
which object files and libraries were linked into it, etc. Hence, we conservatively
decided to weave the tracing aspect of Figure 6.1 in the entire code base. A sec-
ond problem was the uncertainty about the tools in use. Occasionally, we have
encountered unknown messages and errors in the build trace. While some of these
had to do with dead code (Section 3.5.2.1), others originated from tools like e.g.
Informix “esql” (embedded SQL) or report generation tools. Only after manual
inspection of the build trace the complete collection of build tools became clear.
To summarise, we only had a partial understanding of how the Kava build system
worked.

6.3.1.2 Wrapping the Compiler does not Work

The uncertainty about the build system has turned out to be a big problem when
trying to physically integrate Aspicere with the C compiler. We have first tried the
obvious solution: creating a wrapper script around the C compiler (GCC) which
first invokes Aspicere1 before pursuing the actual compilation. This is one of
the most popular and conceptually simple ways of integrating source-to-source or
bytecode weavers like AspectC++, KLASY, ACC, AspectJ, etc. into a build sys-
tem. The reason for the success of wrappers is the seemingly ease of using them
instead of the wrappee (in this case: GCC), as this often involves just changing a
build variable like CC or a symbolic link. The C4 people e.g. have been able to
weave advice in the Linux 2.6.12.3 kernel like this3. However, there are some pit-
falls too. The instructions of the SWAG toolkit [222], a utility kit from the research
group of Michael Godfrey [228], explicitly warns that “In systems that use many
makefiles, or that are specifically dependent on the value of the $CC variable, the
substitution task may be considerably more difficult, and additional modifications
of the makefile may be required.”. A second problem is that most wrappers be-
gin as simple Bash scripts, but quickly become very complex, especially when
trying to make them robust w.r.t. the accepted program arguments and to the var-
ious versions and platforms supported by the wrappee. Third, when wrappers are
being integrated, it is often not clear whether the wrapper has been installed ex-
actly where it is needed, or whether some commands still call the wrappee directly.
Fourth, there can be strange, undocumented interactions between wrappees which
precludes correct functioning of the wrappers.

3http://c4.cs.princeton.edu/files/Patches/Makefile.patch

http://c4.cs.princeton.edu/files/Patches/Makefile.patch


202 CASE STUDY 1: KAVA

In the Kava system, we have encountered most of these problems. First of all,
the non-uniformity of the makefiles did not guarantee that assigning the wrapper
to CC would suffice to redirect all invocations of GCC to the wrapper. Some com-
piler invocations do not use environment variables to abstract over the compiler
name, whereas other ones use different environment variables than CC. This prob-
lem could be circumvented by physically replacing the actual compiler programs
themselves by symbolic links to our wrappers. This would cause more serious is-
sues, however. The most important one is that the other compilation tools which
were used besides GCC, like “esql”, internally call the original C compiler. As we
had replaced this by our own wrapper, the embedded SQL files eventually would
be woven twice, i.e. once by the “esql” wrapper and a second time by the GCC
wrapper script. We eventually gave up on using a wrapper script.

6.3.1.3 Regular Expression-based Transformation lacks Context

Instead, we have built a small tool to parse the makefiles via regular expressions
and to make the necessary adaptations. A typical example of this transformation
is shown in Figure 6.2a and Figure 6.2b. What the transformation does is that
instead of the single compilation command of Figure 6.2a, the preprocessor should
be called first (line 1), followed by a destructive4 renaming of the preprocessed file
to the original C file (line 2), invocation of Aspicere1 (lines 3–4) and the original
compilation command (line 5). The aspect configuration, i.e. the configuration
of which aspects which should be woven by the weaver, was stored in a central
location.

The context-free regular expressions were not able to deal with minor and ma-
jor variations in compiler commands, whereas we had to extract the name of the
input file from the commands to compose the backup and Aspicere commands.
This was an important source of problems. The situation becomes even more dif-
ficult when e.g. Informix “esql” preprocessing needs to be done (see Figure 6.3a
and Figure 6.3b). As Aspicere1 requires preprocessed source code as input, we
need to perform the extra commands shown on lines 2–7 and line 12 in Figure 6.3b
to only invoke esql’s preprocessor, followed by compilation with the normal C
compiler. Notice how we assume that the environment variable $(C_INCLUDE)
has been defined on line 5. If this variable is not defined or another variable is used
to abstract over header file directories, the regular expression script fails.

Using our scripts to alter the makefiles took a few seconds to run. Detecting
where exactly our tool failed (due to heterogeneously structured makefiles) and
making the necessary manual adaptations took several hours. To truly automate
the above integration of Aspicere1, we would have needed at least the following
context information:

4We had backed up the original source code, so in case of an error we could easily rollback.



CHAPTER 6 203

• the mapping of source code components to build system components

• names of all tools in use

• environment variables defined in each build script

6.3.1.4 MAKAO is able to Help

In Chapter 3, we have seen how MAKAO can provide us with this information. We
have described the Kava build system in Section 3.5.1.1. The graph visualises the
build-time dependencies of the TDFS application, i.e. the object files and libraries
it depends on. This information would suffice to determine the scope of weav-
ing, assuming that no dynamic libraries are used or other executables invoked.
Probably, filtering would be needed to filter out too much detail from Figure 3.4a.
The names of tools in use and the defined environment variables can be identi-
fied via querying, similar to the Tool Mining query in Section 3.5.2.2. In fact,
the re-engineering example presented in Section 3.5.5 on page 100 could be ap-
plied directly to the integration of Aspicere1 in the Kava case. The join points (C
compiler invocations) should be restricted to the extent of the TDFS system iden-
tified above. Before each join point, advice should be executed which performs
the makefile code of Figure 6.2b or Figure 6.3b. The robustness of the MAKAO
aspects to join point variability makes errors during the integration of Aspicere1
less likely, but verification (Section 3.5.4) could be applied to be absolutely sure
about this. We are confident that if MAKAO had been around at the time of the
case study, the integration problems discussed above could have been solved eas-
ier. Unfortunately, there were more problems to solve, which we discuss in the
next section.

6.3.2 The Notion of “whole-program”

The Kava experiment gives evidence of how the changes introduced by AOSD on
RC1 (Section 2.4.2) and RC2 (Section 2.4.3) have an impact on the build system,
and how inadequate support to deal with this impact in the build system may back-
fire on the aspects at the source code level. We illustrate this via the problems
encountered with Aspicere1’s partially transformed aspects.

6.3.2.1 An Illustration: Partially Transformed Aspects

As we have seen in Section 5.4.1, Aspicere’s weaver transforms aspects into C
compilation units. The advice constructs are transformed into C procedures (the
so-called “advice instances”), whereas all advised procedure calls in the base code
are replaced by (indirect) calls to the right chain of advice instances. So far, so
good. An aspect module has been transformed completely if all base code modules



204 CASE STUDY 1: KAVA

with which the aspect has been composed have been woven into. The resulting
transformed aspect module should be compiled and linked with every object file
it has been composed with, as these contain calls to the aspect’s advice instances.
The biggest advantage of this weaving system is that aspect state is unique and is
accessible to all advice instances. In our case, this would mean that a global file
pointer variable could be added to the aspect which could remain open throughout
the whole program execution and would only close during program shutdown.

However, this mechanism is fundamentally flawed, for a number of reasons.
The most important one is that knowledge of the build system architecture is re-
quired to realise this weaving approach, i.e. a concrete overview of how generated
build artifacts like libraries and executables are organised and used in the build
system. We give an example of this. Consider a subdirectory of which the source
code yields a library, and a second subdirectory of which the source code is linked
with the library into an executable. By virtue of the adaptations in Figure 6.2a
and Figure 6.2b, the tracing advices (and the null pointer guard) are woven into all
source files of the first subdirectory. Then, the generated object files and the par-
tially transformed tracing aspect are linked into the library. Next, the source files
of the second subdirectory have to be woven. Because the same tracing aspect is
used throughout the whole system (it has been stored centrally), the partially trans-
formed aspect of the library can either be reused during weaving of the source files
of the executable, or can be thrown away and rebuilt from scratch.

The first approach is the easiest one to implement, as it requires no special
makefile transformation in addition to those of Section 6.3.1. However, because
part of the transformed aspect overlaps with the version linked into the library, we
encounter duplicate symbol definition problems5. Even if the partially transformed
aspect would not be linked into the library, but only into executables, the partially
transformed aspect eventually would grow too big to be practical. This would defy
the actual point of partially transformed aspects, i.e. sharing state between advice
and reuse advice instances. Hence, the first approach is not useful.

The second approach starts a new partially transformed aspect within each di-
rectory. Unfortunately, directories can yield more than one executable or library,
with several source code modules reused among them. On the other hand, source
code of multiple directories can be combined into one system too. Making sure that
each application gets its own copy of a partially transformed aspect and is linked
with it, drastically complicates the regular expression-based makefile transformer.
Without precautions, some systems can end up with three global file pointers in-
stead of one, each used within a subcomponent of the system without access to
the other ones. Each of them would be writing to the same physical file, causing
synchronisation problems. It is clear that this has semantic consequences for the

5An error which happens during linking if multiple definitions of the same symbol are found. In C, multiple
declarations will be accepted by the compiler, but there should only be one definition of a procedure.



CHAPTER 6 205

source code.
Taking all these factors into account, we eventually have taken the decision to

add a “legacy mode” to Aspicere1. When using this mode, no partially transformed
aspect is used anymore. The generated advice instances are added to the specific
base code module which is woven into. This eliminates all possibilities for reuse of
advice instances, but avoids too complex makefile changes. No base code module
needs additional aspect modules anymore. Unfortunately, this rules out globally
shared state as well. This is the reason why the advice of Figure 6.1 manages its
own file pointer instead of reusing a global file pointer variable. In other words,
build system problems backfire at the aspect in the source code.

6.3.2.2 Defining the Notion of “whole program”

These problems seem to be caused by questionable weaver implementation choices,
but there is actually a much more fundamental cause. Aspect composition can be
described as inversion of dependencies (see Section 2.4.3). Source-to-source and
bytecode weavers (like AspectJ) actually reinstate a tangled and scattered version
of the composed system by distributing the aspect logic back across the base code.
The latter action of distributing is what causes the problems outlined in this sec-
tion, as it implicitly assumes knowledge of the range of the distribution. This range
is either the predefined scope of the aspect (if this has been explicitly specified),
or the “whole program” [135], i.e. Griswold et al.’s “global configuration” [105].

In the first case, the scope makes the issue of using partially transformed as-
pects easy to solve. The second case on the other hand requires knowledge about
the source code components which constitute the “whole program”. RC2 has
shown that programming-in-the-large [60, 84] usually is the build system’s re-
sponsibility, by outlining the boundaries of programs and libraries, i.e. the build
architecture. This means that this precious information is buried inside the make-
files. If the notion of “whole program” is not made visible somehow, it should be
reverse-engineered or re-specified. Without tool support, wrong assumptions can
be made in doing this, which cause the problems described in Section 6.3.2.1. This
has a direct impact on the semantics of the aspects, as the new notion of “whole
program” may either acknowledge or refute the aspect developer’s assumptions.
To summarise, the combination of whole-program reasoning (RC1) and inversion
of dependencies (RC2) require explicit knowledge and control over the build ar-
chitecture to support the aspect developer.

6.3.2.3 Supporting the Notion of “whole program”

Most source-to-source and bytecode weavers have the additional disadvantage that
even when the notion of “whole program” is defined, this cannot directly be ex-
ploited by them because they process only one file at a time. The latter approach



206 CASE STUDY 1: KAVA

has been the default mode of compilers for years, and blends with the “trickle-
down” [9] recompilation offered by “make”. Weavers which try to continue this
tradition either have to make assumptions during each compilation, or they should
store relevant state in between compilations, contrary to the usual stateless nature
of compilers. A straightforward way to tackle this problem is to incorporate inter-
weaving communication into the weaver, like e.g. the join point repositories of
AspectC++ and Compose*, or Aspicere1’s partially transformed aspects. As such,
the weaver can keep track of matched join points, generated program artifacts, etc.

The management of the repository can prove difficult, however. First, it is al-
most impossible to know whether the repository state is consistent with the current
compilation of the system or dates back to previous, possibly corrupted build runs.
It is very common to halt the build when a developer notices compiler errors fly-
ing by. Removing the repository file before each build is not an option, as this
likely erases valuable information for incremental weaving or for resuming inter-
rupted builds. Another problem is that subcomponents of a system might require
separate repositories, as we have discussed for the partially transformed aspects.
The right location of the repository could be dependent (and hence vary) on the
particular configuration of the system, i.e. which files should be built, and the re-
sulting component (library versus executable). Upon switching between configura-
tions, old repository files of earlier compilations could accidentally become active
again. Unless inter-weaving communication is tightly controlled, non-trivial build
or even run-time errors might ensue. Hence, RC1 forces source-to-source and
bytecode weavers to emulate the notion of “whole program” by using techniques
like inter-weaving communication. Without knowledge of the build architecture,
these techniques are hard to manage.

Note that there are other kinds of weavers besides source-to-source and bytecode-
weavers. Run-time weavers (Section 5.2.2) and load-time (VM) weavers [25, 24,
26, 100, 76] are dynamic weavers, in the sense that they operate during program
execution and hence offer rapid feedback. Unfortunately [79], binary code is too
low-level to provide sufficient join point context or to enable portable run-time
weaving. Load-time weavers do not have these problems, but they are not used
commonly in legacy systems. Standard linkers typically exhibit the same limita-
tions as run-time weavers, but Aspicere2’s choice for a higher-level bitcode IR in-
stead of machine code improves platform-dependence and the richness of the pro-
gram representation (Section 5.4.2). Hence, static link-time and source-to-source
weavers are well-founded choices in legacy systems. This means that the problems
they face during integration in the build system are representative for introduction
of AOSD in legacy environments.



CHAPTER 6 207

6.3.3 The Influence of C Language Features

Even though the Kava system has been migrated to a modern Linux platform,
some remains of the original non-ANSI C implementation are still visible in the
system. In non-ANSI C (also called “K&R” C), procedure declarations with an
empty argument list are allowed, even if the procedure expects arguments. The
actual declaration of the arguments can be postponed to the procedure definitions.
This is not just a minor detail, as this means that source-to-source weavers have
to infer the type of procedure call arguments from the context of the call, unless
the weaver can access the procedure definitions. This, however, requires extra care
in integrating the weaver into the build system, because typical source-to-source
weavers only process one file at a time (see Section 6.3.2.3). Type inferencing
on the other hand increases build time and risks imprecise or even incorrect type
information.

For the reasons outlined in the previous two sections, Aspicere1 uses the type
inferencing approach to deal with K&R C code. However, because of time restric-
tions, we have not pursued handling every possible type inference case and instead
have tolerated a number of join points to be “skipped”, i.e. not advised. Especially
complex struct members passed as procedure argument have caused us trou-
ble. Eventually, we have advised 367 source files, of which 125 contained some
skipped join points. Of the 57015 discovered join points, there were only 2362 fil-
tered out, or a minor 4 percent. Several screenings of the code confirmed that calls
to the same small group of procedures were responsible for skipped join points.
These procedures turned out to be very low level, not even part of the business
logic, and therefore ignoring them did not impact our analyses.

Note that macros and conditional compilation did not cause any trouble for As-
picere1, as Aspicere1 works on preprocessed code. This however requires point-
cuts to be expressed in terms of the base code into which macros expand instead
of in terms of the macros. In the Kava case, this was not a restriction.

To summarise, undisciplined features of legacy programming languages like
incomplete procedure declarations or preprocessor usage (more on this in Chap-
ter 10) represent problems for weaver technology. The compromises which have to
be taken on this level have repercussions on the aspect developer’s understanding
of the program.

6.3.4 Build Time Increase

The original compile cycle of the Kava application suite (407 C modules corre-
sponding to 453 kSLOC) takes more or less 15 minutes6. When Aspicere1 is
included in the build process, it takes 17 hours and 38 minutes to complete. The
reason for this substantial increase in time can be attributed to several factors. The

6Timed on a Pentium IV, 2.8 GHz running a vanilla Slackware 10.0 system.



208 CASE STUDY 1: KAVA

most fundamental one is that a source-to-source weaver adds additional function-
ality on top of a build in the form of transformation of the base code. This means
that the code is parsed, transformed and written out to file twice.

Apart from this inherent slowdown, Aspicere1 is a research prototype, and
no production system. The framework on which it is built [202] combines many
different Java-based technologies (XML, Prolog engine, etc.), and was especially
geared towards rapid prototyping. We did some initial profiling, and the biggest
time loss occurs during join point matching, i.e. when the Prolog engine kicks
in. Aspicere1’s on-demand program reification and heavy backtracking slow down
this phase considerably. A second source of slowdown (and memory consumption)
is the XML generation and processing. We have used the standard XML DOM
implementation, so there is still room for improvement in this area.

Because we did not frequently alter the base and aspect code, but rather spent
time with debugging Aspicere1, incremental weaving would not have helped us to
reduce the weaving time. The time stamps of object files were always newer than
those of source code files, but this did not tell anything about the correctness of
the woven code produced by Aspicere1. Hence, if a weaving error was detected,
the source code was synchronised with a backup and weaving was performed from
scratch again. RC3 was not an issue in the Kava case study.

6.3.5 Run-time Overhead

Not only the compilation time has been influenced by our aspect weaving process.
The run-time speed has heavily slowed down as well. The TDFS scenario we
used normally runs in about 1.5 hours. With the tracing advice, it took 7 hours to
complete due to the significant file I/O. This file activity is inherent to a tracing
aspect, but the inability to reuse a unique file pointer throughout the application
has had a large influence on this as well. The overhead of the function pointer
manipulation inserted by Aspicere1 is negligible compared to the file I/O overhead.
The combination of long build and execution time has a negative impact on the
debuggability of an AOP system.

6.4 Validation #2: Roots of Co-evolution Experimen-
tally Confirmed

The five build problems described in Section 6.3 have given evidence of RC1 and
RC2, and also have shown how MAKAO is able to support understanding and
management of co-evolution of source code and the build system. This section
summarises the evidence of the two roots of co-evolution, whereas the next section
considers tool support.



CHAPTER 6 209

The main lesson from the Kava case study is that there is an impedance mis-
match between the notion of modules in traditional “make”-based build systems
and the “whole program” implied by AOP (RC1). The former implies a build style
based on Parnas’ notion of modules [187] in which each module is compiled in
separation and type-checked based on imported interfaces. Only at link- or class
loading time, compiled modules are composed. Aspects on the other hand, require
a view of the whole system, not just one module at a time. We have seen how
the definition of “whole program” is specified by the build system and as such is
not easily accessible or understandable. Redefinition of this concept without tool
support introduces impreciseness which has consequences for the semantics of the
aspects, as illustrated by the desired global file pointer. This mismatch can either
be resolved by adapting a build system to aspects (AOP-aware build system), as-
pects to the build system or finding another common base. The middle solution
is the one in use today, but it requires numerous compromises between language
semantics and the integration of AOP in the development environment.

Second, the inversion of dependencies (RC2) offered by AOSD, combined with
whole-program reasoning (RC1), has consequences for weaver technology. The
popular source-to-source weavers, which continue the tradition of compiling one
source file at a time before linking the results together, have problems to deal
with this. They require workarounds like inter-weaving communication to have
knowledge about the whole build configuration while processing each source file.
These workarounds are not easy to manage, as they require explicit control and
understanding of the build system. Without this, compromises have to be made
with possibly disadvantageous effects on the semantics of aspects, as shown by
the partially transformed aspects in Section 6.3.2.1.

To summarise, the Kava case has given evidence that RC1 and RC2 indeed
lead to build problems when AOP technology is introduced into a legacy system.

6.5 Validation #3: MAKAO Achieves Goal T2

We have seen how ignorance about the build architecture (RC1 and RC2) has
caused problems for physical integration of the weaver in the build system, un-
derstanding and definition of “whole program” and management of inter-weaving
compilation. During the actual Kava case study, MAKAO did not yet exist. Sec-
tion 3.5 has shown however, how MAKAO’s visualisation, querying, filtering,
verification and re-engineering support the understanding and management of co-
evolution of source code and the build system. Visualisation offers an intuitive
overview of the possible definition of “whole program”, which can be improved
by filtering out redundant dependencies or subsystems. Querying provides access
to specific build context like compilers and values of build-time variables. Re-
engineering support facilitates invasive, robust changes to the build system. The



210 CASE STUDY 1: KAVA

correctness of the re-engineering can be verified with the verification support, but
the latter has not been done yet. Many build problems could have been prevented
by the use of MAKAO.

6.6 Conclusion
This chapter has identified evidence of problems of co-evolution of source code
and the build system caused by RC1 and RC2 in a legacy system in which AOSD
is introduced. Many of these problems could be solved by MAKAO. On the source
code level, Aspicere fulfils goal L1.

The Kava case study has focused on a reverse-engineering case, i.e. an evolu-
tion step which introduces AOP technology into an existing build system to gather
information from the system, possibly as preparation of further re-engineering ac-
tivities. The next chapter presents a similar case study, but uses Aspicere2 instead.
MAKAO is used from the start to mitigate build problems.



Divide et impera!

Philippus II of Macedon

7
Case Study 2: Component-aware

Reverse-engineering of Quake 3 using
Aspects

THIS chapter describes a second case study in which aspects are introduced
into a legacy system, i.e. the Quake 3 video game. Similar to the Kava case

study of the previous chapter, the aspects are used for reverse-engineering. In-
stead of Aspicere1, the Aspicere2 link-time weaver is used in combination with
MAKAO. Evidence of RC1, RC2 and RC3 is found and the tool and aspect lan-
guage support provided by MAKAO (goal T2) and Aspicere (goals L1 and L2) is
evaluated.

Similar to the previous chapter, we first describe the case study (Section 7.1).
Then, we discuss the actual application of aspects in the source code (Section 7.2).
Afterwards, we discuss the impact on the build system of the introduction of AOP
technology (Section 7.3). The experimental evidence of co-evolution problems
explained by RC1, RC2 and RC3 is summarised in Section 7.4, followed by the
evaluation of the support offered by MAKAO for goal T2 (Section 7.5) and by As-
picere (Section 7.6) to deal with co-evolution of source code and the build system
(goal L2). Section 7.7 presents the conclusions of the Quake 3 case study.



212 CASE STUDY 2: QUAKE 3

7.1 Rationale behind the Case Study

As introduced in Section 3.5, Quake 3 Arena is a popular, commercial 3D video
game [191]1 written in C. Like older versions of the game, it has been released
as open-source. A community has formed to maintain and improve the released
system2. We have focused on revision 1041 (released in February, 2007) made by
this community.

Similar to the Kava case study, we were interested in reverse-engineering the
internal structure of Quake 3 via dynamic analysis. Contrary to the Kava case,
we did not intend to unravel the architecture of the whole system. Rather, we
have focused on each component of the Quake 3 engine in separation, to find
out the most important functionality they provide and the internal cohesion of the
components. The same analyses as for the Kava system have been used for this,
based on one execution trace per main component. We do not elaborate on the
results of this analysis. Instead, we discuss how the main components have been
determined and how we have integrated Aspicere2 into the build system. The next
section highlights the identification of Quake 3’s main system components and
discusses the aspects which have been used.

7.2 Application of AOP in the Source Code

First, we discuss how we have identified the main components of the Quake 3
system. Then, we present the tracing aspect we have used. Afterwards, we evaluate
whether Aspicere has been able to fulfil goal L1.

7.2.1 Determining the Main System Components

Before embarking on the Quake 3 case study, we had no previous experience with
the source code and build system. Available documentation [240] and skimming
through the source code suggest that the system consists of a client-server archi-
tecture and contains components for rendering, artificial intelligence (AI), sound,
etc. There is even a VM to prevent game cheaters from bringing down a running
game engine. However, there was no clear overview of dependencies and internal
structure.

To resolve this, we have compiled Quake 3 and have studied the build depen-
dency graph of Quake 3 with MAKAO. We have shown this build DAG in Fig-
ure 3.6a on page 92. Despite the source code complexity (222 kSLOC spread over
487 files, without counting assembler code), the Quake 3 build system only has
six build scripts (2000 SLOC), of which only one contains the actual composition

1http://www.idsoftware.com/games/quake/quake3-arena/
2http://ioquake3.org/

http://www.idsoftware.com/games/quake/quake3-arena/
http://ioquake3.org/


CHAPTER 7 213

dependencies of the whole system in the form of a “non-recursive make”. This
seems a much simpler case than the Kava one (which had more than 45 times as
many build scripts), but without MAKAO we would not have realised as quickly
how the build architecture is structured.

As explained in Section 3.5.1.3, Quake 3 has a very clear high-level structure
consisting of three dynamic libraries and one main executable. From the names of
the source code files making up these libraries and executable, it seems that the “ui”
library implements the logic for the main and in-game menus (client side), “game”
provides layout and AI (server side), “cgame” manages communication with the
server and drawing (client side), and the executable provides rendering, sound, etc.
(client side). As these four components constitute the complete Quake 3 system,
it makes sense to consider them as the main systems components and to apply the
dynamic analyses on each of them. Based on the resulting recovered knowledge,
subcomponents could be identified and used as the target of further analysis.

It is clear that to be able to gather information for each component in separa-
tion, the knowledge of the extent of the build architecture has to be used to define
the scope of the reverse-engineering aspects. A separate trace should be generated
per dynamic library or executable. The particular scenario to execute is easy to de-
termine: playing a game. This more than likely exercises all Quake 3 components
and gives a representative idea about the dynamic behaviour. The next section
presents the aspects used to gather the four execution traces.

7.2.2 The Tracing Aspect

To capture the four program traces, we principally have reused the Kava tracing
aspect of Figure 6.1 on page 197. However, the clear overview of the build archi-
tecture has made it easy to identify the high-level build components and hence, to
understand and define the notion of “whole program” in the Quake 3 system. As
a consequence, many of the problems discussed in the previous chapter could be
avoided, especially the absence of a global file pointer. As we need four program
traces, one for each Quake 3 component, we could either declare four file point-
ers and weave the aspect into all four components at once, or restrict the notion
of “whole program” to the individual components. The former approach is not
reusable, as it would be specialised to the Quake 3 system and would not cater
for systems with e.g. six components. Hence, we have chosen for the second
approach, which considers each component as a “whole program”.

The resulting aspect is shown in Figure 7.1. Lines 4–23 contain the file pointer
management code. The idea is that the aspicere2_getFilePtr method pro-
vides access to the file pointer. This lazily initialises the file pointer of line 4 if
needed. During initialisation (lines 13–16) a cleanup handler is registered (line 14)
which flushes the log file and closes it if the file pointer has ever been initialised



214 CASE STUDY 2: QUAKE 3

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 FILE* aspicere2_fp=0;
5

6 void aspicere2_cleanup(void){
7 if(aspicere2_fp){
8 fflush(aspicere2_fp);
9 fclose(aspicere2_fp);

10 }
11 }
12

13 FILE* aspicere2_init(char* fileName){
14 atexit(aspicere2_cleanup);
15 return fopen(fileName,"a");
16 }
17

18 FILE* aspicere2_getFilePtr(char* fileName){
19 if(!aspicere2_fp){
20 aspicere2_fp=aspicere2_init(fileName);
21 }
22 return aspicere2_fp;
23 }
24

25 ReturnType trace(TYPE ReturnType,char* FileName,
26 char* FunctionName,char* LogFile) around Jp:
27 execution(Jp, FunctionName)
28 && type(Jp,ReturnType)
29 && !!is_void(ReturnType)
30 && program_name(LogFile)
31 && filename(Jp,FileName){
32 FILE* myfp=aspicere2_getFilePtr(LogFile);
33 ReturnType res;
34

35 fprintf (myfp,"before ( %s in %s ) \n",
36 FunctionName,FileName);
37 res=proceed();
38 fprintf (myfp,"after ( %s in %s ) \n",
39 FunctionName,FileName);
40

41 return res;
42 }
43

44 /* Similar advice for void-procedures. */

Figure 7.1: The build architecture-aware tracing aspect applied to Quake 3.



CHAPTER 7 215

by the code on lines 6–11.
The advice for non-void procedures is shown on lines 25–42 of Figure 7.13.

It now accesses the global file pointer on line 32 via a lazy getter method. A
second difference with the Kava aspect is the use of context obtained via a binding
instead of via the join point context struct (lines 35–36 and 37–38), as this is
more efficient (speed and memory). Third, we advise execution join points
instead of call join points, because the Quake 3 code contains a lot of function
pointer callbacks. The most important difference with the Kava advices, is the
determination of the right log file name based on the component into which the
advice is woven (line 30). To accomplish this, we need to know for each join point
shadow the build component it belongs to. This information is only available at
build time. Hence, we need Aspicere’s support for integration of the build system
with the logic fact base to communicate the build system architecture to the advice.
In the advice of Figure 7.1, the program_name-predicate (line 30) binds to the
LogFile variable the name of the library or executable to which the current join
point shadow belongs, which is used on line 32 as the name of the file into which
the advice will write its output. The library and executable names form a part of
the reification of the build architecture as logic facts.

7.2.3 Validation #1: Aspicere Meets Goal L1

The integration of the build system with the logic fact base enables to write com-
pact advice which can exploit knowledge of the high-level structure of the base
code. In the Quake 3 case study, this has enabled tracing advice to vary its out-
put based on the particular build architecture. This advice can be reused in other
systems as long as the corresponding build system is reified as logic facts and is ac-
cessible during weaving. The next section discusses the build problems and issues
involved in introducing Aspicere2 into the Quake 3 build system.

7.3 Impact on the Build System

This section discusses the impact of the introduction of AOP on the build system.
More in particular, we provide evidence of problems attributed to three roots of
co-evolution (RC1, RC2 and RC3) and show how MAKAO and Aspicere have
helped in understanding and managing build problems.

We consider the following build problems:

1. integration of Aspicere2 with the build process

2. communication between Aspicere2 and the build system

3Just as in the Kava case study, we do not show the advice for void procedures, as this is rather straightforward.



216 CASE STUDY 2: QUAKE 3

1 CC=gcc
2 ...
3 DO_CC=$(CC) $(NOTSHLIBCFLAGS) $(CFLAGS) -o $@ -c $<
4 DO_SMP_CC=$(CC) $(NOTSHLIBCFLAGS) $(CFLAGS) \
5 -DSMP -o $@ -c $<
6 ...
7 $(B)/client/cl_cgame.o : $(CDIR)/cl_cgame.c; $(DO_CC)
8 ...
9 $(B)/ioquake3.$(ARCH)$(BINEXT): $(Q3OBJ) $(Q3POBJ) \

10 $(LIBSDLMAIN)
11 $(CC) -o $@ $(Q3OBJ) $(Q3POBJ) $(CLIENT_LDFLAGS) \
12 $(LDFLAGS) $(LIBSDLMAIN)

Figure 7.2: Original build commands and rules in the Quake 3 makefiles.

1 override BUILD_DIR=aobuild
2 override LDD=link.sh \
3 -aspects $(BUILD_DIR)/../aspects/aspects.lst \
4 -modules $(BUILD_DIR)/../aspects/modules.lst
5 override LD=lto.sh
6 override CC=llvm-gcc -fno-builtin -g -emit-llvm
7 override O_FLAG=-O0
8 override ASPECTS=‘paste -s -d\ \
9 $(BUILD_DIR)/../aspects/aspects.lst‘

Figure 7.3: Local makefile which overrides the important makefile variables.

3. the influence of C language features

4. build time increase and incremental weaving

5. run-time overhead

7.3.1 Integration of Aspicere2 with the Build Process

The combination of MAKAO, the consistent build architecture of Quake 3 and
Aspicere2’s link-time weaving have made the integration of Aspicere2 into the
Quake 3 build system much easier than for the Kava case. In fact, because the
build system is easy to manage, we did not have to use MAKAO’s re-engineering
capabilities (Section 3.5.5). MAKAO’s reverse-engineering features, especially
visualisation and querying, have sufficed to find out the right places to change
the makefiles and to obtain the required context. The latter was easy to find, be-
cause environment variables are consistently used, and there are many makefile
comments.



CHAPTER 7 217

1 $(B)/ioquake3.$(ARCH)$(BINEXT): $(LIBSDLMAIN) \
2 $(B)/ioquake3.$(ARCH)$(BINEXT).bc
3 $(LD) -o $@ $(B)/ioquake3.$(ARCH)$(BINEXT).bc \
4 $(CLIENT_LDFLAGS) $(LDFLAGS) $(LIBSDLMAIN)
5 ...
6 $(ASPECTS): ;
7 $(B)/ioquake3.$(ARCH)$(BINEXT).bc: $(Q3OBJ) $(Q3POBJ)\
8 $(LIBSDLMAIN) $(ASPECTS)
9 $(LDD) -o $(B)/ioquake3.$(ARCH)$(BINEXT) $(Q3OBJ) \

10 $(Q3POBJ) $(CLIENT_LDFLAGS) $(LDFLAGS) \
11 $(LIBSDLMAIN)

Figure 7.4: Modified build commands and rules in the Quake 3 makefiles for weaving into
the libraries and the executable.

Figure 7.2 shows the most crucial makefile variables and rules. Compiler
names are hidden behind standard build variables (line 1) and combined with other
variables into a complete compiler command, one for normal builds (line 3) and
one for SMP4 builds (lines 4–5). Object files are compiled via a simple rule like
the one on line 7. They only depend on their corresponding source file and are
compiled via the single $(DO_CC) command. Libraries and executables are built
via a rule similar to the one on lines 9–12. They depend on a number of object
files (Q3OBJ and Q3POBJ) and the SDL5 library for graphics and sound support.
The normal compiler’s ($(CC)) internal linker is used to link the object files and
library into a library or executable (lines 11–12).

The Quake 3 build system is really developer-friendly, as there is built-in sup-
port for overriding existing build variables in a makefile called “Makefile.local”
(Figure 7.3). This has made it easy to override the CC variable to use the LLVM
front end instead of GCC (line 6). This front end generates bitcode instead of
machine code. Because the CC variable was also used for invoking the linker, we
have replaced the use of $(CC) for linking by a new variable (LD on line 5) which
points to an Aspicere2 script (lto.sh) which does the actual link-time weaving.
As such, the original build rules for libraries and executables have almost remained
the same (lines 1–4 of Figure 7.4). We only have moved the dependencies on the
object (actually: bitcode) files and the SDL library to a separate rule (lines 7–
11), which compiles the aspects, compiles the Prolog state (see Section 5.4.2 on
page 187) and combines all bitcode modules into one link module (see Figure 5.20
on page 188). This is handled by the LDD variable defined on lines 2–4 of Fig-
ure 7.3. This rule also depends on the aspects which should be woven. The com-
plex shell expression on lines 8–9 of Figure 7.3 merely concatenates all aspect

4For multiprocessor computer architectures.
5http://www.libsdl.org/

http://www.libsdl.org/


218 CASE STUDY 2: QUAKE 3

paths in the aspect configuration file with a space between them (more on this in
Section 7.3.4).

To summarise, integration of Aspicere2 into the Quake 3 build system has been
easy because of the clean build system, MAKAO and the link-time weaver. The
latter simplified the integration because we only had to focus on the four rules for
the executable and the three libraries instead of on the compilation of each source
file. Note that a source-to-source weaver would have been easier to integrate than
in the Kava case as well. However, the partially transformed aspect should have
been used instead of the legacy weaving mode to obtain the global file pointer,
which would have required more integration effort than with Aspicere2.

7.3.2 Communication between Aspicere2 and the Build System

To enable the integration of the build system with the aspect language, build-time
data should be passed to the weaver. Ideally, the whole build dependency graph
constructed by “make” should be reified as weave-time meta data. Likewise, all
the available configuration data should be communicated. In general, this is not
straightforward to achieve, as it requires modification of e.g. GNU Make to be
able to extract the build dependency graph at build-time. A second problem is that
the graph should be filtered to only retain the build components which correspond
to actual source code components. For this, the semantics of the build architec-
ture should be taken into account. Also, the extraction of the dependency graph at
build-time should be able to deal with the “recursive make” idiom, in which mul-
tiple “make” processes are invoked without clear links between each other. Apart
from efficiency concerns, this means that the weaver should be provided with the
architecture of the whole build system, rather than the data of one “make” process.
We have not yet embarked on an attempt to solve these problems in the general
case.

In the Quake 3 system, however, we did not need the whole build architecture
and configuration, only the names of the libraries and the executable which is
currently woven into, i.e. the current “whole program” (RC1). As Aspicere2 is
only called at link-time, it gets the name of the constructed library or executable as
one of its program arguments. It suffices to change the link.sh script (used on
line 2 of Figure 7.3) to parse the arguments with which it is invoked for the library
or executable name6 and to assert this as a logic fact when the Prolog state (see
Figure 5.20) of the Aspicere2 invocation is compiled. This is straightforward to
do and still generic, as libraries and executables are by definition high-level build
components.

To summarise, the combination of restricting the notion of “whole program” to
the library and executable which is currently being woven into, and asserting the

6Technically, it should only look for the string behind the -o switch.



CHAPTER 7 219

1 $(B)/ioquake3.$(ARCH)$(BINEXT): $(Q3OBJ) $(Q3POBJ) \
2 $(LIBSDLMAIN)
3 $(WEAVE) -o $@ $(Q3OBJ) $(Q3POBJ) $(CLIENT_LDFLAGS) \
4 $(LDFLAGS) $(LIBSDLMAIN)

Figure 7.5: Original build rule and command for building a library in the Quake 3
makefiles.

name of the “whole program” as a logic fact before weaving starts has enabled us to
integrate a restricted portion of the build architecture with the logic fact base. The
restriction only passes names of build components (RC1), but not dependencies
between them (RC2). Although limited, this case has shown that this kind of
integration facilitates development of compact, reusable advice expressed in terms
of the high-level base code architecture.

7.3.3 The Influence of C Language Features

Because Aspicere2 operates on a uniform bitcode representation, it does not need
to deal with assembler code, the preprocessor, etc. The potential for duplicate def-
initions caused by name clashes is drastically reduced as well, as during weaving
identity is determined by memory address, not by names. Type inferencing of
K&R code is automatically taken care of by the LLVM framework.

This robustness to typical C problems has been valuable in the Quake 3 system,
because it features e.g. 1 kSLOC of assembler code. Most of this is part of a
custom VM implementation on top of which Quake 3 is built. This VM interacts
either with the dynamic libraries or with a 32-bit RISC pseudo-assembly bytecode
format. Its purpose is to form a kind of sandbox with a limited number of system
calls, with the aim of preventing cheating or hacking7. Client and server logic
contain system calls to the code which is running in the VM. Complex pointer
arithmetic is used to dispatch to the right function definition and to fetch the system
call arguments. This is all hidden from Aspicere2 because of the LLVM IR.

7.3.4 Build Time Increase and Incremental Weaving

Not all is perfect, however. In Figure 7.4 we have split the rules for linking libraries
and executables in two. One is concerned with generating the bitcode link module
(lines 7–11), while the other one does the actual weaving (lines 1–4). Originally,
there was only one rule and one weaver command as shown on Figure 7.5. How-
ever, during development of the aspect and the debugging of some weaver errors,
we have noticed that if none of the bitcode files which is part of the link module

7Quake 3 is mostly targeted at online multiplayer gaming.



220 CASE STUDY 2: QUAKE 3

has been regenerated (no source code changes), the rule would still link all bitcode
modules together again and then weave the aspects into the new link module. The
rule did not detect either whether a change had been made to some aspect. Hence,
we have decided to split the rule in two parts. If the weaver fails, we do not need
to rebuild the bitcode link module again. Only if a base code module or an as-
pect would change, relinking is necessary. We have added the dependencies on the
aspects via the ASPECTS variable of Figure 7.3 (lines 8–9).

Unfortunately, two problems remain. First, the linking of bitcode modules is
slow. This is an LLVM issue, but it can get tedious very quickly. From our mea-
surements, weaving takes six times as long as normal compilation. A significant
part of the time is spent while linking the bitcode modules. Second (and more
fundamental), making a link-time weaver implement incremental weaving is not
straightforward (RC3). Splitting the build rules in two has allowed to decouple
weaving from linking, but if at least one base module has changed, the whole sys-
tem needs to be relinked and re-woven. In a source-to-source weaver, the system
would also need to be relinked, but only the changed base code module would
have to be re-woven and recompiled. This “trickle-down” weaving [9] behaviour
is automatically enabled by “make”. However, this incremental weaving behaviour
cannot be achieved for a link-time weaver, as linking corresponds to only one build
action. Hence, whereas a source-to-source weaver benefits from file-level support
by “make”, as it aligns with single files, a link-time weaver has to deal with incre-
mental weaving by itself.

Aspicere2 currently does not provide incremental weaving. The biggest hurdle
to implement it, is traceability from the link module back to base code modules and
the ability to unweave previously woven code. The former is needed to identify the
regions inside the link module which have changed, whereas the latter tracks down
the changes, reverts previous weaving attempts and only re-weaves in the affected
regions. An additional problem is the invalidation of interprocedural static analysis
results [52], which is used e.g. to implement the cflow pointcut [14]. If analysis
previously has shown that a join point shadow will e.g. never lie in the cflow
of another join point, these results could have become invalid by now. Hence, the
weaver should now suddenly add code to invoke the advice at that shadow. This
means that base code modules which have not been changed, can still be affected
by the invalidated analysis results. This makes incremental weaving in a link-time
weaver hard to implement. As incremental weaving is a necessity for practical use,
there are still many opportunities for research in this area.

7.3.5 Run-time Overhead

Contrary to the build speed, the optimisations inside LLVM and the global file
pointers per build component have resulted in relatively fast, playable woven code.



CHAPTER 7 221

While generating the traces during a game, there was a noticeable delay, but the
game was still possible to play. We have not made concrete measurements of the
run-time overhead (like e.g. the number of frames per second). As tracing is an
extremely scattered aspect with lots of file I/O, this is very promising with the eye
on re-engineering aspects (as presented in the next case studies).

7.4 Validation #2: Roots of Co-evolution Experimen-
tally Confirmed

We have found evidence for build problems and issues explained by RC1, RC2
and RC3 in the Quake 3 case study. The explicit knowledge of the architecture of
the system has facilitated making an appropriate choice for the “whole program”
boundaries in the system (RC1 and RC2), in this case the three libraries and the ex-
ecutable. The usage of a link-time weaver has resolved the problems encountered
in the Kava case with the sharing of aspect state (global file pointer), hence this
kind of problems associated with RC2 has not occurred. Reification of the build
system components (RC1), but not dependencies (RC2), has allowed to specialise
the tracing advice to the particular build component it was woven into.

On the other hand, incremental weaving (RC3) has shown to be a problem. Tra-
ditional “trickle-down” compilation [9] does not provide opportunities for speed-
ing up the link-time weaver, as linking looks like only one atomic activity for
“make”. Incorporating incremental weaving into Aspicere2 is not straightforward,
however, and requires means for mapping back to the base code modules, undoing
previous weaving and dealing with static analysis results.

7.5 Validation #3: MAKAO Achieves Goal T2

MAKAO has enabled us to identify the main architectural components of the
Quake 3 system, i.e. the three libraries and the executable. This knowledge has en-
abled us to estimate how Aspicere2’s link-time weaver could be integrated into the
build system, by virtue of visualisation and querying. Manual changes sufficed in-
stead of applying MAKAO’s re-engineering support. MAKAO has also helped to
determine how build system information could be passed to Aspicere2 to facilitate
the integration of the build system into the logic fact base.

7.6 Validation #4: Aspicere Meets Goal L2

Integration of build system information with Aspicere’s logic fact base has enabled
us to write compact, reusable advice for tracing a particular build component’s



222 CASE STUDY 2: QUAKE 3

behaviour. This has shown great promise for advanced applications, where besides
build components, also build dependencies should be reified as logic facts.

7.7 Conclusion
Just like the Kava case, the Quake 3 experiment corresponds to a reverse-engi-
neering activity which is used to evaluate the effects of co-evolution when AOP
technology is introduced in the build system. Evidence has been found of build
problems associated with RC1, RC2 and RC3. Except for the latter problem (in-
cremental weaving), MAKAO and Aspicere have been able to mitigate the prob-
lems caused by co-evolution of source code and the build system. Integration of
aspect technology has been very straightforward in this case, both on the source
code and build level. The high quality of the very compact non-recursive build sys-
tem has also played a key role in this. Incremental weaving in a link-time weaver
has shown to be a problem which cannot be solved from the outside.

In the next chapters, we consider three re-engineering case studies with as-
pects. Just as the past two case studies, they are used to find experimental evidence
of co-evolution problems caused by the four roots of co-evolution, and to evaluate
the ability of MAKAO and Aspicere to understand and deal with these problems.



There are still several crosscutting concerns for which
no modular implementation strategy could be devel-
oped. The most obvious example is exception han-
dling, which seems to defy a modular implementation
because of its very detailed interaction with the con-
trol flow of the base program.

“Ideals” project end report [194]

8
Case Study 3: Extracting the

Return-code Idiom into Aspects

THIS chapter1 focuses on the refactoring of an idiom-based exception han-
dling strategy in an existing C system using aspects. This work proposes an

alternative solution for a problem described by Bruntink et al. [35]. They have un-
masked various idioms used in the 15 MLOC C code base of ASML, the world’s
biggest lithography machine manufacturer, as crosscutting concerns [36, 33, 34,
35, 32]. A scalable aspect-based implementation for these idioms has not been
identified yet. We have come up with a concise aspect-based implementation for
ASML’s exception handling idiom by judiciously combining join point properties,
annotations and type parameters, to which we have added Aspicere’s concept of
(delimited) continuation join points. Our solution takes care of the error value
propagation mechanism (which includes aborting the main success scenario), log-
ging, resource cleanup, and allows for local overrides of the default aspect-based
recovery. The highly idiomatic nature of the problem in tandem with the aformen-
tioned aspect language concepts renders our aspects very robust and tolerant to
future base code evolution.

We have not yet evaluated this approach on the actual ASML system. Never-
theless, application on the simple example program used by Bruntink et al. [35] al-
ready teaches us valuable lessons about the existence of build problems explained
by the roots of co-evolution and also about the possible application of MAKAO

1This chapter is based on [8].



224 CASE STUDY 3: RETURN-CODE IDIOM

(goal T2) and Aspicere (goals L1 and L2) to solve these problems. First (Sec-
tion 8.1), we describe the general context of the case study, followed by a detailed
account of the aspect refactoring at the source code level (Section 8.2). Section 8.3
discusses the build system issues and problems which arise from the aspect refac-
toring and how they relate to the roots of co-evolution. Finally, validation of prob-
lems explained by the roots of co-evolution (Section 8.4), and of the ability of
MAKAO (Section 8.5) and Aspicere (Section 8.6) to deal with these problems is
examined. Section 8.7 concludes this chapter.

8.1 Rationale behind the Case Study

Exception handling is one of the more fundamental issues encountered in software
development, especially for legacy programming languages like C or Cobol. C in
particular lacks any dedicated means to tackle exceptions, hence over time people
have resorted to all kinds of tricks to emulate them [131]: setjmp/longjmp,
global error variables, signals, returning error values, etc. Bruntink et al. [35] have
discussed a variant of the so-called “return-code idiom” as the preferred means for
exception handling in the 15 MLOC C code base of ASML, the world’s biggest
lithography system manufacturer. There are estimates that this idiom represents up
to 20% of the total source code, while on average two errors per kSLOC are related
to it. The return-code idiom is part of a global idiom-based software development
strategy for safeguarding the machines’ reliability and functioning. There are also
other idioms for checking null pointer function parameters, logging, timing, etc.

However, for idioms to work properly, developers need to be disciplined enough
to use them correctly and consistently [34]. Bruntink et al. [32] have studied the
variability of the trace idiom implementation in four components of the ASML
system. They have found a surprisingly large variation e.g. in the way tracing
is invoked (7.5% of functions have done it correctly) or types are converted into
a string representation (57.5% traced correctly). While some of this variability
corresponds to developer errors (“accidental variability”), much of it is intentional
(“essential”) to adapt the idioms to local needs. A second problem with idioms
is that the choice for one particular idiom ties the code base almost exclusively
to the chosen pattern, making it very hard to migrate to or experiment with other
approaches. These problems suggest that something should be done to enforce
correct usage of idioms, and to decouple idioms from the source code.

Many of the idioms, in particular the return-code idiom, have been identified
as typical crosscutting concerns before [34, 157], as they exhibit excessive scatter-
ing (throughout the whole system) and tangling. Exception handling e.g. severely
obscures normal flow. Aspects would in theory be able to enforce consistency
among idioms instead of having to rely on disciplined programming, and to al-
low for experimenting with other implementations, as idiom implementation are



CHAPTER 8 225

modularised. No proof has been made yet about the resistance of aspects to the in-
troduction of new variability in the extracted idiom implementations, however. In
any case, an aspect implementation of one of these idioms requires explicit means
to model essential variability, because duplicated advices are unmaintainable [32].

We have come up with an aspect-based implementation of ASML’s exception
handling strategy. Our findings partially confirm the quote at the beginning of
this chapter, because abstraction of the return-code idiom into an aspect requires
a combination of concepts which are not mainstream in aspect languages. With-
out these features, writing a useful, flexible exception handling aspect for systems
written in legacy programming languages is hard to achieve. Note that Bruntink et
al. [32] independently have proposed new aspect features to implement the tracing
idiom as aspects. These do not overlap with our features, but they are actually
highly compatible with Aspicere, especially with its combination of a logic point-
cut language and template parameters.

In this chapter, we describe our aspect-based implementation of the “return-
code idiom” in Aspicere. More in particular, we:

• analyse the various concerns related to the ASML exception handling idiom;

• explain Aspicere’s delimited continuation join points, which are required to
model the idiom using aspects;

• present the aspects which co-operate to implement the idiom-based excep-
tion handling pattern;

• discuss the implications of this aspect-based approach on the co-evolution
of source code and the build system.

8.2 Application of AOP in the Source Code
First (Section 8.2.1), we introduce the specific details of ASML’s return-code id-
iom using the running example of [35], eventually identifying the core aspect of
the problem. This concern is modeled using delimited continuation join points,
which are introduced and applied on the running example in Section 8.2.2. Sec-
tion 8.2.3 treats the logging part of the idiom using join point properties and an-
notations, whereas Section 8.2.4 looks at the resource cleanup concern. Finally,
Section 8.2.5 validates whether or not Aspicere satisfies goal L1.

8.2.1 The Return-code Idiom

As its name implies, ASML’s return-code idiom is based on the dedicated use of
return values to pass error values up the call stack. As an extra requirement, errors
have to be logged in a so-called “event log” for off-line exception analysis. In the



226 CASE STUDY 3: RETURN-CODE IDIOM

1 int f(int a, int** b){
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int**) b);
5 allocated = (r == OK);
6

7 if((r == OK) && ((a < 0) || (a > 10))){
8 r = PARAM_ERROR;
9 LOG(r,OK); /*root error*/

10 }
11 if(r == OK){
12 r = g(a);
13 if(r != OK){
14 LOG(LINKED_ERROR,r); /*linked error*/
15 r = LINKED_ERROR;
16 }
17 }
18 if(r == OK) r = h(b);
19 if((r != OK) && allocated) mem_free(b);
20 return r;
21 }

Figure 8.1: Running example which applies the return-code idiom [35].

following subsections we dive deeper into the actual code behind this idiom, based
on the extensive reports of Bruntink et al. [35, 33].

8.2.1.1 Specification of the Idiom

Each procedure allocates a special local variable in which the current error status
(initially OK) is stored. More than one variable is necessary in some cases like
parallel execution or errors during resource cleanup. Whenever an error occurs
directly inside a procedure, i.e. not within a called procedure, the developer should
react in one of the following ways:

• recover from the error immediately, or

• abort the procedure and propagate the error back to the caller.

In the latter case, the error should be logged in an entry (“root error”), before
transferring the control flow to the procedure’s caller. Figure 8.1 shows an example
of this idiom (based on Bruntink et al.’s running example [35]). The variable called
r on line 2 holds the error status of procedure f. On line 7, parameter a is checked
to see whether it lies in the range of [0, 10]. If not, the error status gets updated
(line 8), and this error is logged as a root error (line 9). The remaining logic is then
skipped until line 19, where cleanup takes place.



CHAPTER 8 227

When a procedure call returns an error, the calling procedure has a similar
choice of either handling the propagated error or passing it on. In the latter case,
the calling procedure can possibly add extra context information by replacing the
original error value by another, (possibly) more meaningful one. This change
of error value has to be logged, and this kind of entry is now called a “linked
error” because it links a higher-level error value to a lower-level one. The resulting
sequence of linked errors gives rise to an “error link tree”, i.e. an exception trace
for a particular error. Line 14 of Figure 8.1 demonstrates the logging of a linked
error. The original error has occurred during the execution of procedure g on
line 12. Note that a root error is a special case of a linked error, as it links an
error to the OK value. If ultimately no exception handler is found, the system will
probably go down.

Aside from error variable management, control flow transfer and logging, re-
source (memory) cleanup plays an important role (line 19 on Figure 8.1). If an er-
ror has occurred, any previously allocated memory in the current procedure needs
to be de-allocated. This concern is not treated in [35], but we consider it to illus-
trate how the various concerns fit together.

It is clear from the example that the idiom’s logic seriously overcrowds the
procedure’s main control flow. There is both serious tangling and scattering, as
the idiom is applied system-wide. Even for such a simple example as Figure 8.1
it is hard to deduce e.g. what are all possible execution paths which get through
the if-checks of lines 18 or 19. This of course hampers any maintenance and/or
re(verse)-engineering efforts. From the analysis of Bruntink et al. [35], it turns out
that most developer errors regarding the idiom are caused by erroneous guards (i.e.
checks) on the error variable r and inconsistencies between the logged error value
and the one assigned to r. Other common errors include forgetting to return an
error value, returning the wrong value, logging incorrect things, etc.

We would like to use aspects to relieve the base code developer from the return-
code idiom burden, while still giving him or her the power to override default
exception handling if desired. In order to do this, we first take a closer look at
hidden patterns in Figure 8.1 which suggest a possible solution.

8.2.1.2 Distinguishing between all Crosscutting Concerns

What contributes most to the program complexity is the delicate interplay of main
logic, exception handling and resource (memory) cleanup. Moreover, exception
handling actually encompasses various subconcerns: error variable management,
control flow transfer, logging linked errors, detecting root errors, etc. To make
these patterns stand out in the code, we have rewritten Figure 8.1’s abbreviated
programming style into the equivalent, more canonical Figure 8.2. From this, we
can clearly identify the various concerns:



228 CASE STUDY 3: RETURN-CODE IDIOM

BLABLABLABLABLABLAII
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BLABLABLABLABLABLBLABLABLABLABLABL

BLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLBLABLABLABLABLABLABLABLABLABLABLABL

BLABLABLABLABLABLABLABLABLABBLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABBLABLABLABLABLABLAB

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BLABLABLABLABLABLBLABLABLABLABLABL

BLABLABLABLABLABLA

BLABLABLABLABLABLABI
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BLABLABLABLABLABLBLABLABLABLABLABL

BLABLABLABBLABLABLAB

BLABLABLABLABLABLABI
I
I
I
I
I
I
I
I
I
I
II

BLABLABLABLABLABL

BLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLABLBLABLABLABLABLABLABLABLABLABLABL

BLABLABLABLABLABLABLABLABLABLABL

BLABLABLABLABLABLABLABLABLABLABLABLABL

BLABLABLABLABLABLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLABLABLABLABLABLABLABLAB

1 int f(int a, int** b){
2 int r = OK;
3 r = mem_alloc(10, (int**) b);
4

5 if(r != OK){
6 /* no logging needed */
7 /* no deallocation needed */
8 return r;
9 }else{

10 if((a < 0)||(a > 10)){
11 r = PARAM_ERROR;
12 LOG(r,OK);
13 if(r != OK) mem_free(b);
14 return r;
15 }else{
16 r = g(a);
17 if(r != OK){
18 LOG(LINKED_ERROR,r);
19 r = LINKED_ERROR;
20 if(r != OK) mem_free(b);
21 return r;
22 }else{
23 r = h(b);
24 if(r != OK){
25 /* no logging needed */
26 if(r != OK) mem_free(b);
27 return r;
28 }else{
29 /* no deallocation needed */
30 return r;
31 }
32 }
33 }
34 }
35 }

Figure 8.2: Restructured version of the running example of Figure 8.1. Crosscutting
concerns are marked with colored F-shapes, rectangles and underlining.

• the declaration, initialisation and returning of a unique error variable (the
doubly underlined code on lines 2 and 30),

• the “assign return values to the error variable”-concern (singly underlined
lines),

• the control flow transfer which either continues normal execution of a pro-
cedure or aborts it by returning the error value (the three orange F-shapes),

• the logging of linked errors (the three pink rectangles),



CHAPTER 8 229

1 /*@range("a",0,10)*/
2 int f(int a, int** b){
3 mem_alloc(10, (int**) b);
4

5 /*@log("LINKED_ERROR")*/
6 g(a);
7 h(b);
8 }

Figure 8.3: The main logic from Figure 8.1 to which all aspects and their logic rules and
facts presented later in this chapter are applied.

• memory cleanup (the green rectangles),

• the argument range checking concern (the gray F-shape), and

• the main logic (remaining code).

Our intention is to extract all concerns into aspects such that the base code can
be reduced to its main concern, as shown on Figure 8.3 (ignoring the comments
on lines 1 and 5 for now). We impose the following restrictions, which we revisit
later on:

• The procedure signatures remain unaltered to facilitate gradual, stepwise
migration from the original idiom-based implementation to an aspect-based
one without breaking interfaces. All procedures retain their integer typed
return value, which can be used as an error value by some aspect-based
exception handling implementations, while others may ignore it.

• In our aspects, we remain as close to the spirit of the return-code idiom
as possible, again keeping in mind a gradual, stepwise migration. However,
once the original idiom has been extracted into aspects, one can freely exper-
iment with other aspect implementations based on e.g. setjmp/longjmp
or global error variables.

8.2.2 Control Flow Transfer with Delimited Continuation Join
Points

From the list of concerns, the one governing the transfer of control flow strikes us
as being the most fundamental and hardest one. We therefore discuss it first.

8.2.2.1 The Core Problem of Control Flow Transfer

The following pseudo-code forms the heart of the control flow transfer problem:



230 CASE STUDY 3: RETURN-CODE IDIOM

1 int f(int a, int** b){
2 int r = OK;
3 bool allocated = FALSE;
4 r = mem_alloc(10, (int**) b);
5 allocated = (r == OK);
6 if((a < 0) || (a > 10))
7 ROOT_LOG(PARAM_ERROR,r);
8 LINK_LOG(g(a),LINKED_ERROR,r);
9 NO_LOG(h(b), r);

10 if((r != OK) && allocated)
11 mem_free(b);
12 return r;
13 }

Figure 8.4: Macro solution for the return-code idiom in Figure 8.1.

1 if(r != OK){
2 return r;
3 }else{
4 /* continue */
5 }

After each idiomatic (i.e. returning an error value) procedure call, the execution of
the enclosing procedure either halts or continues depending on the call’s returned
error value (see the orange F-shapes of Figure 8.2).

This is actually a poor man’s version of exception throwing in e.g. Java or C++.
It is much easier to use and manage than C’s setjmp/longjmp (which is a kind
of interprocedural goto), but its downside is the heavy tangling with the main
control flow and the fact that it is not generally portable. A classic trick to avoid
this, is by using macros, as abstraction of language constructs as syntactic sugar is
one of the common uses of macros [80]. Figure 8.4 shows the macro-based solu-
tion presented by Bruntink et al. [35] for Figure 8.1’s example procedure. Macros
ROOT_LOG, LINK_LOG and NO_LOG hide assignments to the error value as well
as any needed LOG-calls. Cleanup code has not been elaborated on [35] as this is
considered as a separate concern. The macros already significantly improve the
program’s clarity, but they still need to be called manually. Hence, people are still
not enforced to do exception handling in the right way, and the code is still closely
tied to the return-code idiom. One cannot plug in another exception handling strat-
egy.

We have tried to model the core of the idiom (Java-style exception handling)
using aspects instead, but found out that this behaviour is not possible to achieve
with traditional aspect technology for legacy languages like C. A naive approach
would be to put advice around every procedure call in order to only continue the



CHAPTER 8 231

call if no error has occurred yet in the enclosing procedure. When an error hap-
pens, all remaining calls within the current procedure are then short-circuited, i.e.
the advice detects the error and skips the call (i.e. does not call proceed). Un-
fortunately, accesses to local variables, arithmetic calculations (more than likely
containing bad operands by now), loops, gotos, etc. cannot be advised, hence they
are executed and potentially lead to catastrophe. Adding extra join point types for
loops, gotos, variable accesses, etc. and short-circuiting them would help, but the
continuous checks to find out whether to skip a join point or not incurs a lot of
overhead. It looks also more like a hack than a fundamental solution.

Exception handling based on unwinding the stack is actually an example of
an “escape continuation”2. A “continuation” at any point in the execution of a
program can be informally defined as the future execution of that program from
that point on. E.g. in:

1 printf (getLine ());

The initial continuation is the entire program. The continuation after application
and evaluation of getLine is the application and evaluation of printf, i.e. a
function which maps a value to the end result of the full program. An escape con-
tinuation is a limited form of a continuation, which can only be used to jump back
to the context where it has been created (like longjmp). Somewhere in between
full and escape continuations, lie delimited or partial continuations [90, 123].
These are continuations which do not generate the result of the whole program,
but rather an intermediate value. In other words, the scope of the continuation has
been restricted and the boundary between the rest of the program and the contin-
uation’s scope is called the “delimiter” or “prompt” (e.g. the body of a particular
procedure). This concept can e.g. be used [136] to model a context switch within
an operating system or to obtain transactional file systems. One can “capture” a
continuation to resume it later, possibly more than once. This is mainly used to
return to the point at which the continuation has been made [72].

If we would be able to capture the delimited continuation of a procedure call
and to choose between resuming or aborting it based on the procedure call’s return
value, the return-code idiom’s control flow transfer would be modeled completely.
The approach that comes closest to this is to rewrite procedures in continuation
passing style [107] such that the call to the continuation argument can be circum-
vented by withholding a proceed-call. Migrating to this style of programming is
as huge an undertaking as would be abandoning the act of returning an error value.
Instead, we have integrated continuations with aspects via Aspicere’s delimited
continuation join points. We have already very briefly introduced these in Sec-
tion 5.3.2, but the context of the return-code idiom makes them more tangible and
easier to explain. We first consider the definition and syntax of delimited contin-

2Another interpretation would be the error or exception monad [238].



232 CASE STUDY 3: RETURN-CODE IDIOM

1 void f(void){
2 printf("A");
3 do_something();
4 printf("B");
5 }

6 int main(void){
7 f();
8 printf("C");
9 return 0;

10 }

Figure 8.5: Small example which highlights the differences between continuation join
points and delimited continuation join points.

uation join points, and then apply them on the implementation of the control flow
transfer concern.

8.2.2.2 Definition of Delimited Continuation Join Points in Aspicere

In the context of AOP, we first turn the concept of a continuation into a join point:

The continuation of a join point p is a join point representing the fu-
ture execution after conclusion of p.

The reification of the continuation of a join point as another join point is what
makes it possible for this continuation to become the target of aspectual advice. A
continuation join point is defined in terms of a second join point.

Let us apply this definition to the code in Figure 8.5. Without any advice this
program outputs “ABC”. Short-circuiting the continuation of the call to do_some-
thing on line 3 yields “A” only, as the entire remainder of the program is skipped.
The return value of the continuation corresponds to the return value of the program
(i.e. int) and could e.g. hold a meaningful error value.

As it is, this construct is too strong for our purposes. Indeed, it captures the
entire future execution of a program, which is too coarse-grained. In the current
case study e.g. we are only interested in this future execution up to the end of the
current executing procedure, i.e. a delimited continuation. We therefore introduce
a reduced version:

The delimited continuation of a join point p is a join point representing
the future execution after conclusion of p, limited to the scope of the
procedure in which p is active.

Let us again apply this to the code in Figure 8.5. Short-circuiting the delimited
continuation join point of the call on line 3 now yields “AC”, as only the remaining
execution within procedure f is skipped. Hence, f is the prompt of the delimited
continuation of the call to do_something. There is no return value here, as f is
a void-procedure.

In practice, the concept of a delimited continuation join point allows us to
capture the “remainder of the execution of a procedure”, which can be used for



CHAPTER 8 233

an exception handling mechanism. Only around-advice on delimited continu-
ation join points of calls or variable accesses seems to be useful. An execution
join point’s delimited continuation corresponds to nothing (or rather a no-op),
while before- or after-advice on a call’s delimited continuation is identical
to after-advice on the call or its enclosing execution join point respectively.

A delimited continuation join point can be advised in Aspicere as follows.
Given a join point Jp, the delimited continuation of that join point is:

1 delimited_continuation(ContinuationJp, Jp)

In the spirit of the pointcut language of Aspicere2, delimited_continuation
is a logic-based predicate. It takes any join point (Jp) and deduces the associated
delimited continuation join point (ContinuationJp). The value for this is then
available for further use in the pointcut and advice. In the case of around-advice,
calling proceed will activate the join point (and hence the continuation) as ex-
pected. This (re-)activation can in theory be done as many times as needed, includ-
ing zero. The latter situation is at the heart of the exception handling mechanism.
Aspicere2 does not support multiple activations of a delimited continuation join
point, because we have not yet found a need for this and because single invoca-
tions can be implemented more efficiently (more on this later).

Instead of having to advise delimited continuation join points, a new keyword
can be added to the aspect language for use inside advice: break(some_value).
Its semantics are analogous to the break-keyword used to jump out of loops, ex-
cept that it stops the advised join point’s enclosing procedure. We have not yet
extended Aspicere with such a keyword.

8.2.2.3 Application to the Control Flow Transfer concern

Aspicere’s delimited continuation join points give us everything we need to im-
plement the exception handling concern in the example of Figure 8.2. The re-
sulting exception handling aspect is shown in Figure 8.6, while its accompany-
ing logic rules are depicted in Figure 8.7. For now, we focus on the control
flow transfer advice of lines 37–45 (code with the shaded background). Advice
error_code_passing implements the three orange F-shapes of Figure 8.2.
Indeed, the advice body on lines 41–44 is nearly identical to the pseudo-code
of Section 8.2.2.1. The thing to note here is that the advice superimposes on
join points Jp (line 37) which represent the delimited continuation of join points
JpCall (line 40). The latter are so-called “idiomatic calls” (line 38), of which
exception handling should not be manually overridden (line 39).

What exactly are idiomatic calls? It is very likely that standard library pro-
cedures which accidentally return an integer do not have anything to do with ex-
ception handling. Likewise, it is possible that some in-house modules or external
libraries deliberately do not take part in the return-code idiom. These two groups



234 CASE STUDY 3: RETURN-CODE IDIOM

1 /*necessary imports*/
2

3 int error_var() on Jp:
4 idiomatic_proc(Jp);
5

6 int error_code_mgmt(int* R) around Jp:
7 idiomatic_proc(Jp)
8 && property(Jp,error_var,R){
9 *R=OK;

10 proceed();
11 return *R;
12 }
13

14 void error_code_resetting(int* R) after Jp:
15 idiomatic_call(Jp,R)
16 && manual(Jp){
17 *R = OK;
18 }
19

20 void error_code_logging(int* R,
21 int ErrorCode) after Jp returning (int* Return):
22 idiomatic_call(Jp,R)
23 && log(Jp,ErrorCode){
24 if(*R != OK){
25 LOG (ErrorCode, *R);
26 *R = ErrorCode;
27 *Return = ErrorCode;
28 }
29 }
30

31 void error_code_update(int* R)
32 after Jp returning (int* Result):
33 idiomatic_call(Jp,R){
34 *R=*Result;
35 }

37 int error_code_passing(int* R) around Jp:
38 idiomatic_call(JpCall,R)
39 && !!manual(JpCall)
40 && delimited_continuation(Jp,JpCall){
41 if(*R!=OK)
42 return *R;
43 else
44 return proceed();
45 }

Figure 8.6: The idiom-based exception handling aspect. The shaded area corresponds to
Figure 8.2’s orange F-shapes (control flow transfer).



CHAPTER 8 235

1 error_code("LINKED_ERROR",0).
2

3 int_invocation(Jp,FName):-
4 invocation(Jp,FName),
5 type(Jp,Type),
6 type_name(Type,"int")
7 .
8

9 idiomatic_proc(Jp):-
10 execution(Jp,_),
11 filename(Jp,"main.c")
12 .
13

14 idiomatic_call(JpCall,R):-
15 int_invocation(JpCall,FName),
16 \+wildcard(".*printf",FName),
17 enclosingMethod(JpCall,JpEncl),
18 idiomatic_proc(JpEncl),
19 property(JpEncl,error_var,R)
20 .
21

22 manual(JpCall):-
23 annotation(JpCall,manual,_)
24 .
25

26 log(JpCall,ErrorCode):-
27 annotation(JpCall,log,[ErrorName]),
28 error_code(ErrorName,ErrorCode)
29 .

Figure 8.7: Accompanying Prolog meta data of the aspect in Figure 8.6.



236 CASE STUDY 3: RETURN-CODE IDIOM

Call

successful_alloc

error_code_resetting

error_code_logging

error_code_update

Cont.

error_code_passing

Proc.

range_check

cleaning_up

error_code_mgmt

Figure 8.8: Schematic order of execution of all aspects woven into an idiomatic procedure
like the one of Figure 8.1. Full arrows denote execution flow, while dashed ones

indicate that the sequence in between them can show up zero or more times.
Rounded rectangles represent advice, while hexagons indicate execution, call and

delimited continuation join points. The advice name is centered for
around-advice, while it is right-aligned for after-advice.

of procedures should be excluded, and this happens via the idiomatic_call
and idiomatic_proc predicates shown in Figure 8.7. The former states (lines
14–20) that idiomatic calls are nothing more than invocations (calls) returning an
integer and located inside idiomatic procedures (lines 17–18). We will discuss
line 19 in Section 8.2.3. We can avoid calls to standard library procedures which
accidentally return integers by excluding them through a wildcard pattern like the
one on line 16. Idiomatic procedures specify the in-house modules which take part
in the return-code idiom (lines 9–12). The idiomatic_proc-predicate limits
the aspects’ scope to the relevant modules (e.g. “main.c” on line 11). This is ac-
tually build configuration data which should be integrated into the logic fact base,
similar to the build dependency graph information in Section 7.3.2.



CHAPTER 8 237

To summarise, whenever an error value is returned from an idiom-participating
procedure call, the remaining execution of the enclosing procedure is skipped.
Otherwise, normal execution is resumed. This is clearly illustrated in Figure 8.8,
which gives an overview of the role of each advice described in this chapter and
the join points it applies at. The error_code_passing-advice can decide
between resuming the delimited continuation (Cont.) or aborting the current
procedure (Proc.). The other aspects are explained in the next two sections.

8.2.3 Logging and Overriding with Join Point Properties and
Annotations

The previous section’s control flow transfer advice is only part of the story. In this
section we consider the logging concern, as well as the possibility of overriding the
default aspect behaviour. Afterwards, the next section discusses resource cleanup.

8.2.3.1 Challenges for Logging and Overriding

As discussed in Section 8.1, developers should be able to override flow transfer
in case the default idiom does not suffice. Sometimes, one needs to perform extra
resource cleanup or to actually handle an expected error right after the erroneous
procedure call. We also need a way to automatically log linked errors, and here
again developers should be able to decide whether linking is necessary and if so
what the new error value should be. Both cases are concerned with giving the
developers the necessary power to control advice execution.

A second issue relates to advice interaction. How does each advice know when
an error has occurred and what its value is? Using a global error variable (or a stack
thereof) will lead to race conditions in multi-threaded architectures. This problem
even gets worse for the resource cleanup aspect. Also, it is at odds with the actual
semantics of an error status, as these are tied to procedures.

Overriding the default behavior is achieved using the concept of annotations
(Section 5.3.4), whereas we use join point properties (Section 5.3.2) to deal with
the communication between advice on shared join points. We prefer manipulation
of advice through annotations to custom advice written by a base code developer
for various reasons:

• During examination of advice interaction in the whole system, one can focus
on the few known system-wide aspects which are guided by developer anno-
tations instead of having to understand (possibly) hundreds of small advices
added by individual developers every day. This makes proving correctness
of the aspect-enabled system more reasonable.

• Annotations can be checked by a tool to detect errors in their usage.



238 CASE STUDY 3: RETURN-CODE IDIOM

• Existing development tools (IDEs) do not need to change. Care must be
taken that the weaver for system-wide aspects can be integrated nicely into
the compiler chain (cf. the Kava and Quake 3 cases).

• Aberrant exception handling behaviour remains local to the place at which
it occurs.

We now apply these concepts to the aspects for logging and overriding of the
basic exception handling. We use Figure 8.8 to chronologically discuss the various
advices.

8.2.3.2 Implementation of Logging and Overriding

The exception handling aspect of Figure 8.6 shows the application of join point
properties and annotations for the developer overriding and logging advices (lines
1–35). Lines 3–4 contain the declaration of a join point property called error_var
which represents the error variable3 associated with each idiomatic procedure Jp.
We could just as easily have named this property r (in line with the original code in
Figure 8.1), but this is less self-documenting. The variable should be initialised to
the OK status every time a procedure starts executing and should be used as the pro-
cedure’s return value at the end. This is handled by advice error_code_mgmt
(lines 6–12). The advice accesses the right property instance at the current ex-
ecution join point Jp (line 7) by binding R to a pointer to the instance of the
error_var property attached to Jp. A join point property is really a part of a
join point’s context, and hence the error_var property is conceptually equiva-
lent to a local variable of the procedure it is attached to.

As discussed in Section 5.4.2, the lexical order of advice determines the prece-
dence at shared join points. This is illustrated on Figure 8.8. The lexical order
of e.g. the three advices on idiomatic_call join points in Figure 8.6, di-
rectly corresponds to the execution order on the shared call join point (Call).
However, because these three advice are after-advice, the first one in the as-
pect is the last to be executed, as the arrows indicate. This means that advice
error_code_update (lines 31–35) is actually the first (of the exception han-
dling aspect) to execute after an idiomatic call. Its task is to record the call’s error
status into the enclosing procedure’s error_var property. As such, it provides
the shared join point property with the right error value to let the other advices do
their job.

After error_code_update, annotations kick in. First, logging of linked
errors is only meaningful if a developer provides a new error value. Hence, a log
annotation can be used to specify the new error value. The absence of a log anno-
tation can be interpreted as if logging is not necessary. Line 5 in Figure 8.3 shows

3In Aspicere2, properties and return values are accessible from within advice by pointers instead of by their real
type to enable modification of their value.



CHAPTER 8 239

1 int f(void){
2 int tmp=OK;
3 ...
4 /*@manual()*/
5 tmp=g();
6

7 if(tmp==EASY_TO_FIX_ERROR){
8 /* recover manually */
9 }else if(tmp==INITIAL_CLEANUP_ERROR){

10 ...
11 rethrow(tmp);
12 }
13

14 ...
15 }
16

17 int rethrow(int a){
18 return a;
19 }

Figure 8.9: Small example which illustrates overriding of exception handling by
developers.

such an annotation, which consists of the name “log” and one attribute with the
new error value (“LINKED_ERROR”). Advice error_code_logging (lines
20–29 on Figure 8.6) tells us that when an annotated (line 23), idiomatic procedure
call (line 22) returns, there will be a linked error log (line 25) if the error_var
property signals an error (line 24). Both the error variable and the call’s return
value need to be updated to the newly provided error value (lines 26–27). Annota-
tions ensure that logging only happens when needed.

To override the error_code_passing-advice of lines 37–45 for manual
recovery (lines 14–18), it suffices to reset the error variable (line 17) when a de-
veloper uses a @manual-annotation. Indeed, as this restores the error variable to
OK again, the error_code_passing-advice will not notice anything and just
proceed (see Figure 8.8). The developer should then add a check in the base code
to find out whether or not the procedure call returns an expected error return value,
and recover from the error the way he or she wants. Figure 8.9 illustrates this
mechanism on lines 7–8. Hence, control flow transfer happens by default, while
logging and manual overriding should be explicitly asked for.

What if the developer just wants to do some initial recovery manually, fol-
lowed by the default exception handling behaviour (“rethrowing” the exception)?
This is actually easy to deal with (lines 9–12 of Figure 8.9): we just need to use the
@manual-annotation and to call the identity procedure (aptly called rethrow,



240 CASE STUDY 3: RETURN-CODE IDIOM

1 /*necessary imports*/
2

3 int range_check(int* R,int Arg,
4 int LowerBound,int UpperBound) around Jp:
5 idiomatic_proc(Jp)
6 && property(Jp,error_var,R)
7 && range(Jp,Arg,LowerBound,UpperBound){
8 if((Arg < LowerBound)||(Arg > UpperBound)){
9 *R=PARAM_ERROR;

10 LOG(*R,OK);
11 return *R;
12 }else{
13 return proceed();
14 }
15 }

Figure 8.10: Parameter range checking aspect.

1 range(Jp,Arg,LowBound,UpBound):-
2 annotation(Jp,range,[ArgName,LowBound,UpBound]),
3 nth_arg(Jp,Arg,ArgName)
4 .

Figure 8.11: Accompanying Prolog meta data of the aspect in Figure 8.10.

see lines 17–19) after local recovery has been done. This again triggers the as-
pectised exception handling on the original error value, or a higher-level one. The
advantage of a rethrow statement to just using a return statement, is that the
latter ties the base code again to the specific return-code idiom. A rethrow is a
generic exception handling concept which is equally applicable when using return
values or e.g. setjmp/longjmp.

Although not necessarily a part of the return-code idiom, we can extract the ar-
gument range checking concern as well, which yields the aspect of Figure 8.10 and
its accompanying Prolog file (Figure 8.11). It only involves looking for @range-
annotations on procedures (see line 1 of Figure 8.3). These annotations specify the
relevant argument name and the two bounds. The advice body is similar to Fig-
ure 8.2’s gray F-shape. Figure 8.11’s predicate allows easy access to the annotation
info (line 2) and the checked argument Arg (line 3).



CHAPTER 8 241

1 /*necessary imports*/
2

3 int memory_op_success() on Jp:
4 memory_allocation(Jp,_,_);
5

6 Type memory_op_alloc(TYPE Type) on Jp:
7 memory_allocation(Jp,_,Type);
8

9 void successful_alloc(int* SuccessVar,
10 TYPE Type,Type AllocVar,Type Actual)
11 after Jp returning (int* Code):
12 memory_allocation(Jp,Actual,Type)
13 && property(Jp,memory_op_success,SuccessVar)
14 && property(Jp,memory_op_alloc,AllocVar){
15 if(*Code==OK){
16 *SuccessVar=1;
17 *AllocVar=*Actual;
18 }
19 }
20

21 void cleaning_up(int* R,int* SuccessVar,
22 TYPE Type,Type AllocVar) after Jp:
23 idiomatic_proc(Jp)
24 && enclosingMethod(JpCall,Jp)
25 && memory_allocation(JpCall,_,Type)
26 && property(Jp,error_var,R)
27 && property(JpCall,memory_op_success,SuccessVar)
28 && property(JpCall,memory_op_alloc,AllocVar){
29 if((*R!=OK)&&(*SuccessVar==1)){
30 mem_free(AllocVar);
31 }
32 }

Figure 8.12: Memory handling aspect.

1 memory_operation("mem_alloc").
2 memory_operation("mem_calloc").
3

4 memory_allocation(Jp,Actual,Type):-
5 invocation(Jp,FName),
6 memory_operation(FName),
7 nth_arg_type(Jp,1,Type),
8 nth_actual(Jp,1,Actual)
9 .

Figure 8.13: Accompanying Prolog meta data of the aspect in Figure 8.12.



242 CASE STUDY 3: RETURN-CODE IDIOM

8.2.4 Memory Cleanup with Join Point Properties and Type
Parameters

Having tackled the error propagation and logging concerns, we now focus on the
cleanup of resources in case of errors, and more in particular on the cleanup of
any dynamically allocated memory. The exact problem involves detecting which
variables refer to allocated memory (need to be cleaned up) and which ones are
just dangling pointers which have not been initialised yet (no cleanup). It suffices
to store the memory allocation procedure’s return value and to use it when an error
is going to be thrown to identify dynamically allocated memory in the current
procedure. Of course, there should also be a way to access the allocated memory.
For both these purposes, join point properties on memory allocation procedure
calls are a good fit.

Figure 8.12 shows the resulting memory cleanup aspect. The two mentioned
join point properties are declared on lines 3–4 and 6–7. The first one (initialised
by default to OK) signals whether the corresponding memory allocation has been
a success, in which case the second one holds a reference to the allocated memory
area. The properties are associated with memory_allocations, i.e. calls to
memory_operations (lines 4–9 on Figure 8.13) of which some examples are
given on lines 1 and 2. For each call, both the second4 actual Actual (line 8) as
well as its type Type (line 7) are captured. The latter is needed to deal with alloca-
tion of both simple and compound types. As C lacks polymorphism or something
similar, and void-pointers are not type-safe (although they would work in this
case), we apply Aspicere’s type parameters (Section 5.3.1) here.

Advice successful_alloc (lines 9–19) catches the return error value of
allocation procedure calls (line 11) and stores a reference to the allocated memory
area (line 17), but only if no error occurred. Advice cleaning_up (lines 21–32)
frees allocated memory after the continuation has been skipped (the error_var-
property differs from OK) for each successfully allocated variable (line 29). This
advice makes heavy use of Aspicere’s logic pointcut language. Backtracking en-
sures that for every idiomatic procedure Jp (line 23), all memory_allocation-
calls within it (JpCall on lines 24–25) will trigger a match of the advice on Jp,
each time with the right instances of the memory_op_success and memo-
ry_op_alloc properties. The logic facts enable easy navigation through the
program structure (line 24).

Notice on Figure 8.8 that memory allocation and cleanup do not take place
when a range violation occurs, as the range_check-advice does not proceed
in that case. This is semantically correct, as careful investigation of Figure 8.2
learns. On line 13, the mem_free-call will always be run to cleanup the alloca-
tion of line 3 (which has succeeded when a range violation happens). As this is

4Indexing in Prolog starts from zero.



CHAPTER 8 243

a redundant transaction (allocate, detect range error and de-allocate), our aspect
just ignores memory allocation and cleanup in this case. An alternative which ad-
heres better to the idiom would be to advise the last memory_allocation’s
delimited continuation join point, provided that all such allocations occur at the
beginning of procedures.

What happens if the call to mem_free on line 30 of Figure 8.12 goes wrong?
Aspicere2 does not allow advice on advice, which would let this error go un-
noticed. Fortunately, replacing calls to mem_free by invocations of a wrapper
procedure around it solves this if the wrapper is part of the base code. Indeed, our
aspects will advise either the wrapper or the mem_free-call it contains to pro-
vide default exception handling. If some more specialised recovery actions should
be needed in this case, one could put them into an additional aspect or just add it
directly to the wrapper.

8.2.5 Validation #1: Aspicere Meets Goal L1

The novel combination of delimited continuation join points, annotations, join
point properties and template parameters is able to extract exception handling and
associated memory cleanup into reusable aspects. The resulting base code is much
cleaner and requires explicit annotations before the default exception handling al-
gorithm can be overridden. This non-standard behaviour can be automatically
detected with a simple tool, if desired. The next subsections discuss the scalability
of our aspects, run-time overhead and adoption of our delimited continuation join
points.

8.2.5.1 Scalability of the Aspects

Looking back at all aspects and Prolog files we have presented, one could argue
that the original code of Figure 8.1 is much shorter. At first sight, it is. However,
we should keep in mind that our aspects have to be written only once and are
superimposed throughout the whole software system. They form in fact an initial
investment which pays itself back once a whole source code module or component
is refactored. The only thing developers need to do is to annotate their code or (in
some cases) override default exception handling behaviour. Bruntink et al. [33]
have measured that in a representative module of 20 kLOC exception handling
accounted for 9% of the module size (1716 LOC), whereas our aspects (together
with the Prolog files) account for 122 LOC. For each logged linked error, there
will be a @log-annotation. If developers want to recover manually, there will be
another extra line of code, i.e. the @manual-annotation. More precise numbers
can only be obtained when applying our aspects in practice, but a rough estimation
suggests that our approach allows for a substantial code reduction. This enhances
base code readability and facilitates software evolution.



244 CASE STUDY 3: RETURN-CODE IDIOM

8.2.5.2 Run-time Overhead

At run-time, the aspects adds some extra complexity which were not there in the
tangled implementation:

• advice is transformed into procedures to which various calls are issued;

• the cleanup aspect adds extra local variables to idiomatic procedures and
contains extra calls to the succesful_alloc-advice.

On the other hand:

• join point properties can be mapped onto local variables;

• advice error_code_passing can be inlined efficiently, resulting in the
same code size as the original base code;

• Figure 8.10’s aspect actually optimises the current implementation as it avoids
unnecessary memory (de-)allocation;

• the bitcode optimisation passes can eliminate lots of redundant code.

The most natural implementation strategy for an around-advice on a delim-
ited continuation join point D of some join point J is to physically extract the
remaining procedure instructions following J into a new procedure and to replace
proceed-calls by invocations of this new procedure. Unfortunately, this can turn
out difficult as soon as multiple if/else-constructs, loops, variable argument
lists, etc. show up. Also, efficiency is seriously influenced by the frequent proce-
dure calls.

Aspicere2 takes a simpler, but slightly restricted approach: the advice body
gets inlined into the base code. If instructionN follows the join point shadow of J ,
then the advice body is pasted right beforeN and any advice calls to proceed are
replaced by jumps toN . The advice’s return statements become return instructions
of the enclosing procedure of J’s shadow (and N ). This is very fast (both for
build- and run-time), but makes the size of the woven code larger. Fortunately,
optimisation passes can reduce the code size. A second drawback is that any advice
statement which physically follows a proceed-statement (by now replaced by a
jump instruction) is never executed, as there is no jump back from the end of the
procedure to the advice instruction following the invoked proceed-call. Hence,
the procedure’s return instruction exits the procedure without ever running any
advice code following proceed-calls. As a consequence, multiple proceeds
after each other in advice do not work either, hence a delimited continuation join
point can only be resumed once with Aspicere2. However, for most purposes this
restriction can be worked around by splitting the intended advice into multiple
advices chained one after the other. In general, inlining makes the woven code
almost identical to the canonical, tangled implementation of Figure 8.2.



CHAPTER 8 245

8.2.5.3 Adoption of Delimited Continuation Join Points

In the meantime, other researchers have adopted our delimited continuation join
points for exception handling. Delimited continuation join points have been incor-
porated into recent releases of ACC (Section 5.2.1.7) via the preturn construct,
which is identical to the special break-keyword mentioned in Section 8.2.2.2. It
exits the advice in which it occurs and the enclosing execution join point (proce-
dure) of the advised join point. ACC has generalised the statement such that it can
also occur in e.g. before-advice instead of only in around-advice. Apart from
preturn, ACC also has a try–catch–throw mechanism at the advice level.
A throw-call within an advice can generate an exception (integer value) that can
be caught by an advice which advises another join point higher up the stack. These
exception handling constructs are only available within aspects, not in the base
code. The underlying exception implementation uses setjmp/longjmp.

This completes the description of this advanced re-engineering application
with aspects. The next section considers the implications on the build system.

8.3 Impact on the Build System

This section discusses the impact of the introduction of AOP technology on the
build system, similar to the previous two chapters. We focus on:

1. integration of Aspicere2 with the build process

2. migration to the re-engineered system

3. build time increase

8.3.1 Integration of Aspicere2 with the Build Process

We have not yet evaluated our approach on the actual ASML system, only on the
running example of Bruntink et al. [35]. Hence, we do not have concrete data
on integration into the build process, except that integration of the configuration
system with the logic fact base is needed to communicate the scope of the return-
code idiom to the aspects (idiomatic_proc in Figure 8.7), i.e. which modules
do not apply the exception handling idiom. This is similar to our remarks in the
Quake 3 case, but now it considers configuration data instead of build data (RC4).

This configuration data heavily relies on a succinct definition of the notion
of “whole program” (RC1) and on knowledge of the interactions between com-
ponents (RC2). Otherwise, part of the frames on the program call stack could
correspond to procedures which have been advised to support exception handling,
whereas others do not know anything about exceptions. As in the worst case these
two categories of stack frames could be interleaved, exception handling would



246 CASE STUDY 3: RETURN-CODE IDIOM

become unreliable. Hence, clear boundaries of the “whole program” should be de-
fined (RC1), and interactions between build components (RC2) should be exam-
ined to ensure that exception handling is semantically consistent across the whole
system.

More detailed analysis of build problems is only possible on a concrete case.
Unfortunately, it is impossible to test our full aspect solution on other systems,
because these do not use the exact same combination of idioms. Nevertheless, the
aspects are robust enough to be easily integrated into other systems. We are plan-
ning to apply our aspects on Quake 3 (OpenGL calls) and on a typical application
which uses OpenSSL5. There are some known problems with error handling with
the latter6, which we aim to address. These cases will give us a better idea on build
process integration problems.

8.3.2 Migration to the Re-engineered System

From the discussion in this chapter it becomes clear that migration from a tangled
implementation of exception handling to an aspect-based approach is not straight-
forward. Contrary to logging or tracing, exception handling is a functional concern
which is deeply intertwined with the base code’s control flow. The migration to an
aspect-based exception handling implementation is a huge evolution step, even be-
tween two different paradigms (procedural and AOP). It is not hard to foresee that
this will have serious consequences on the build system too, i.e. the co-evolution
phenomenon of source code and the build system becomes very apparent.

Bruntink et al. [32] note on this topic that migration from a tangled imple-
mentation of an idiom to an aspect-based one inevitably will be an incremental
process [31]. Functional equivalence between the original system and the new one
has to be verified at every step, especially because of the variability within the
tangled idiom implementation. As the correct usage of idioms cannot be enforced,
there are various small discrepancies. Bruntink et al. identify a trade-off between
on the one hand reducing the risk of introducing errors by maintaining the avail-
able variability, and on the other hand reducing the idiom variability with the risk
of introducing errors in the system that way. Variability makes verification hard to
do.

Keeping this incremental nature in mind, this means that the system has to
migrate step by step to a full AOP implementation. Hence, the build system will
gradually have to evolve from a purely traditional one, i.e. based on the classic
notion of modules, to an aspect-aware system. In between, the two technologies
need to co-exist. Configuration of which base modules have to be advised and
which ones not is crucial (RC4). The idiomatic_proc predicate is the easiest
way to communicate this to the weaver.

5http://www.openssl.org/
6http://blogs.sun.com/alvaro/entry/openssl_error_handling_problem/

http://www.openssl.org/
http://blogs.sun.com/alvaro/entry/openssl_error_handling_problem/


CHAPTER 8 247

However, the configuration of these modules also has direct consequences on
the scope of the weaver. As seen in the Kava and Quake 3 cases, knowledge of the
interplay between object files, libraries and executables is a prerequisite for being
able to assess when (source-to-source, link-time, etc.) and where (which directory,
etc.) a weaver should be invoked. Language-level features like shared state rely on
this. If the source code, and hence the build system, is constantly in flux, managing
the changing architecture becomes a full-time concern (RC1 and RC2), especially
if we take into account the possible inconsistency problem mentioned in the pre-
vious subsection. Without proper tool support, this becomes an impossible task.
A powerful testing infrastructure is required to assess the semantic consequences
of this. As the build system is in charge of unit and integration testing and the
presence of aspects might require a different testing infrastructure than the base
code, a lot of communication and co-ordination is needed to keep both subsystems
operational.

During each migration step the migrated base code components need a thor-
ough conversion. First, the actual main concern should be recovered from the
tangled representation it is held captive in (cf. Figure 8.2). Second, the relevant
error values should be looked up. Third, all error handling code should vanish and
annotations should be inserted to guide the aspects. This is indeed a major effort,
requiring extensive test suites to validate the migration results and the remaining
old subsystems. The automated approach for concern verification presented in [33]
could be applied here. Automatic extraction of pointcut and advice, however, is
unnecessary. Indeed, our major pointcuts are based on “semantic” concepts like
returning an integer, delimited continuation join points, annotations and join point
properties.

As return values were used to indicate an error status in the original imple-
mentation, they are now pretty much useless in the base code. Instead of changing
them into void, keeping them adds extra possibilities for aspect implementations.
The two restrictions of Section 8.2.1.2, i.e. keeping the procedure signatures fixed
and implementing the original idiom in the aspects, were aimed at limiting the
migration effort and to leverage the base code developers’ understanding of the
return-code idiom during the migration. Once this is completed, and behaviour
preservation has been verified, one can switch to other aspects and teach the new
exception concepts to the base code developers. The resulting code of Figure 8.3
could in fact be the starting point for any exception handling strategy, hence the
cleanup effort is not a waste of time. Changing exception handling strategies is
now just a matter of writing and using another aspect. The build system should
be capable of flexibly switching between different strategies, perhaps even per
subcomponent of the system. If certain exception handling algorithms cannot co-
exist together (in different components of the system e.g.), the aspect configuration
should be verified to not break these constraints (RC4).



248 CASE STUDY 3: RETURN-CODE IDIOM

8.3.3 Build Time Increase and Incremental Weaving

We have not applied our aspects in practice yet, except for the running example of
Bruntink et al. [35] where they behave as explained in this chapter. Because delim-
ited continuation join points are implemented by Aspicere2, the same incremental
build problems as in the Quake 3 case will occur.

Second, during migration from the original system to the AOP incarnation,
the configuration of the base code modules into which the exception handling as-
pects should be woven actually corresponds to a high-level incremental weaving
approach. More in particular, the choice to weave aspects into some parts of the
systems and to migrate other parts later on, corresponds to pruning the dependency
graph, in this case not for speeding up but to migrate stepwise. This incremental
weaving conflicts with the desire to keep the build dependency graph intact, i.e.
problems related to RC3 ensue. Knowledge of the interactions and dependencies
between components are required to resolve these problems, but this knowledge is
buried in the source code or can only be detected by examining the semantics of
base code modules. Tool support, for build systems and source code, is indispens-
able to deal with these issues.

8.4 Validation #2: Roots of Co-evolution Experimen-
tally Confirmed

This section discusses evidence in this chapter’s case study of build problems ac-
cording to the four roots of co-evolution. All four roots are applicable. RC1 and
RC2 surface because developers need to have a clear definition of “whole pro-
gram”, and of the dependencies and interactions between build components to
keep exception handling semantically consistent across the system. This is es-
pecially a challenge in the face of migration from the old system to the aspect
implementation, as the collection of components which do or do not rely on the
aspects constantly changes. Keeping track of this is a challenge. Tool support,
both for managing the build process and the source code, is a prerequisite.

At each moment during the migration, the partition of the build dependency
graph into regions in which aspects are applied, others which still use the original
idiom implementation and even components which do not use any idiom for ex-
ception handling at all, has important consequences on the completeness of the de-
pendency graph. Dependencies between base components are in some regions re-
placed by dependencies between aspects and base code, but elsewhere not. Hence,
from the perspective of the weaver, the dependency graph misses various depen-
dencies, as if the system is incrementally woven (RC3). Indeed, the partitioning
of the build dependency graph at all times has to ensure that no semantic inconsis-
tencies arise in the source code. This is not straightforward to manage.



CHAPTER 8 249

Finally, the build configuration has serious implications on the aspects too,
as the idiomatic_proc-predicate in Figure 8.7 relies on this information to
steer the advices. Hence, this configuration information should be passed from the
build system to the logic fact base. A second implication of RC4 is that the config-
uration of base code and aspect modules should respect the semantic interactions
and dependencies between them, to ensure consistency in the exception handling
semantics (similar to above).

8.5 Validation #3: MAKAO Achieves Goal T2

Even though we have not applied the aspects in practice, the explanation has shown
parallels with the earlier two case studies, i.e. knowledge of the build architecture
is indispensable to manage the scope (“whole program”) of aspects, detect struc-
tural dependencies between build components and to give at all times an up-to-date
overview of the migration of the system and of the testing framework. MAKAO’s
visualisation and querying are indispensable in this regard. Given the scale of the
system, filtering is a powerful feature as well. We estimate that application of
MAKAO’s re-engineering and verification can be important too, although this de-
pends for a great deal on the consistency of the build system. As observed in the
Quake 3 case, a disciplined build system can handle some drastic changes better.

8.6 Validation #4: Aspicere Meets Goal L2

Just as in the Quake 3 case, we have exploited the integration of the build system
into the logic fact base. This time, configuration information is required instead of
build layer data. The actual mechanism to communicate between the configuration
layer and the aspect weaver depends on the technology used. It may range from as-
serting file names from a configuration specification to extracting this information
from makefiles or custom build system infrastructure. Any mechanism suffices, as
long as the logic fact base is synchronised with the build configuration.

8.7 Conclusion

We have shown how a combination of carefully crafted aspects relieves the de-
velopers from the return-code idiom administration, unless they explicitly choose
to do manual recovery themselves. At the heart of our approach lies the concept
of delimited continuation join points, giving aspect developers the power to skip
the remainder of a procedure at any (join) point during its execution. Join point
properties are used to decouple advices from each other, while annotations allow
developers to override the default exception handling scheme. The latter, together



250 CASE STUDY 3: RETURN-CODE IDIOM

with type parameters and the fact that all procedures keep returning an integer error
value, results in fairly robust pointcuts and advice. We have argued that the aspects
considerably improve code readability, understandability and evolvability, by ex-
tracting all exception control flow and (in general) reducing code size. Compared
to the original code, the woven application should have similar run-time efficiency.
These claims still need to be backed by practical application to a real-world case,
but conceptually goal L1 has been satisfied.

On the build system level, we have explained that because the migration from a
tangled exception handling strategy to an aspect-based one is extremely invasive,
the demands for the build system are equally high. It needs to evolve from a
traditional build architecture to an aspect-aware one in a gradual fashion. As a
consequence, both philosophies need to co-exist and co-operate at each migration
step, while they are constantly changed. Configuration of aspects, controlling the
scope of weavers and keeping two distinct testing frameworks operational are only
some of the challenges ahead. This has consequences which can be understood
based on all four roots of co-evolution, and contrasts with the Kava and Quake 3
cases, where the weaver had to be integrated at once into a “stable” build system.
MAKAO (goal T2) and Aspicere (L2) are able to support the migration to the re-
engineered system. The following chapter discusses a second invasive change to
an existing system.



Beware of little expenses; a small leak will sink a
great ship.

Benjamin Franklin

9
Case Study 4: Temporal Pointcuts to

Support the Re-engineering of the
CSOM VM

THE fourth case study is concerned with the re-engineering of the implementa-
tion of the CSOM virtual machine (VM) based on a domain-specific architec-

tural description language (ADL) [168] named VMADL [112]. Aspicere is used
as the underlying implementation of the VMADL compiler. To support the expres-
sive VMADL descriptions, we have added history-based (also called “temporal”
or “stateful”) pointcuts to Aspicere. The resulting temporal pointcut language ex-
tension is named “cHALO”, from the HALO [115] aspect weaver implementation
it is based on. The primary incentive behind cHALO is to make memory and run-
time overhead associated with temporal pointcut languages in C more explicit to
the aspect developer, and to enable him or her to extend cHALO with new kinds
of pointcuts which exploit the developer’s knowledge about existing join points to
reduce overhead. This chapter1 describes in detail the rationale behind cHALO
and its implications on the build system.

First (Section 9.1), the context of the case study is described, followed by
the discussion of the design of cHALO (Section 9.2) and its application in the
CSOM VM implementation. Section 9.3 considers the implications on the build
system of the introduction of AOP technology (VMADL and Aspicere) in CSOM.
Section 9.4 validates the existence of build problems suggested by the four roots

1This chapter is based on [6].



252 CASE STUDY 4: CSOM AND CHALO

of co-evolution, and Section 9.5 evaluates MAKAO’s ability (goal T2) to support
the understanding and management of co-evolution of source code and the build
system. The conclusions of this chapter are presented in Section 9.6.

9.1 Rationale behind the Case Study

The context of this case study are virtual machine (VM) implementations [208]
like Java HotSpot or Parrot (see Chapter 10). A VM is a kind of infrastructure
software, like operating systems, which provides services to user-level programs
running on top of them. As such, application programmers do not need to worry
about the underlying hardware, or the internal complexity of exception handling
strategies or garbage collection algorithms. In other words, non-functional re-
quirements and concerns of applications are fulfilled or implemented in the VM.
Because the end-user is not interested in the VM itself, its implementation should
be as inconspicuous as possible, i.e. fast and with a small memory footprint.

As VMs by definition make abstraction of the underlying hardware, they are
usually heavily ported to multiple platforms like desktop computers, cell phones
or PDAs. Because the capabilities of the underlying operating systems on these
platforms vary quite a lot, the optimal garbage collection algorithm or multithread-
ing implementation for a VM varies as well. Unfortunately, the internal structure
of VM implementations erodes very easily, even if the VM services originally
were modularised well [48, 112]. The need for blazing speed and reduction of
memory usage forces VM implementers to bypass the original module interfaces.
More fundamentally, the fine-grained interaction between e.g. object layout and
garbage collection is impossible to modularise with traditional programming lan-
guage technology. To solve these problems, Haupt et al. [112] have proposed an
AOP-based approach to specify the architecture of a VM, i.e. the Virtual Machine
Architectural Description Language (VMADL).

VMADL is a domain-specific ADL geared towards declarative specifications
of VM implementations. It considers a VM as a collection of “service modules”
(“service” in short), i.e. subsystems which provide a specific functionality to user-
level programs. Like normal modules, service modules have an API which de-
clares the module functionality exposed to other services as methods. On top of
this, services also have a Crosscut Programming Interface (XPI), i.e. a collec-
tion of pointcuts to advertise the join points which are guaranteed to exist within
the service implementation and hence are safe to advise. XPIs correspond to a
possible design rule to decouple aspects from base code implementation details
(see Section 2.4.2). They form a contract between the service implementer, which
promises not to invalidate the exposed join points, and the client, which does not
need to worry about fragile pointcuts if he or she only advises an exposed pointcut
or invocations of methods of the API. Services can interact in much more fine-



CHAPTER 9 253

grained ways with each other by advising specific service-exposed join points.
This composition is declaratively specified by a VMADL program, which selects
the right service modules to combine and determines how they should be con-
nected via their public APIs and XPIs.

Because of the intricate interactions between services, dynamic switching of
exposed XPIs based on the state of the VM and the fact that a service interface
can have different implementations, the pointcut language within VMADL should
be very expressive. It should be able to express robust pointcuts which can either
relate join points exposed by multiple services or join points within the services’
internal implementation. A number of required pointcut constructs have been iden-
tified [112], e.g. to bind any desired join point context. One of the most important
ones are stateful aspects [67], i.e. pointcuts which incorporate the notion of time in
some way, like Arachne’s sequence-pointcuts do (Section 5.2.2.3). In VMADL,
temporal pointcuts enable developers to elegantly specify the complex interactions
between services.

In this chapter, we focus on a case study performed on a small VM, CSOM,
with a first prototype of a VMADL compiler. CSOM is a VM for a Smalltalk di-
alect and is used for teaching purposes at the Hasso-Plattner-Institut in Potsdam
(Germany). The architecture of CSOM is deliberately simple (37 source and 39
header files, accounting for 4753 SLOC). The standard implementation features
a Smalltalk parser and compiler, a corresponding object model for representing
Smalltalk entities, a simple bytecode interpreter, and a standard library of more or
less two dozen classes. By default, garbage collection and multithreading are not
provided. For our case study, CSOM has been extended with four extra services,
two for garbage collection (mark-and-sweep and reference counting [124]) and
two for multithreading (green and native threading [149]). For each of these ser-
vices, we have first modified the original CSOM and afterwards we have extracted
these modifications as VMADL aspects. We have done this for each service in iso-
lation, i.e. we have not yet combined multiple services at the same time. Advanced
topics like resolving interactions or modularising the full VM implementation are
considered as future work.

The VMADL compiler transforms high-level VMADL-constructs to Aspicere
aspects. This transformation is straightforward, as VMADL pointcuts are con-
verted to Aspicere Prolog predicates and advice is mapped to Aspicere advice.
As a consequence, this means that Aspicere needs support for temporal point-
cuts. Various optimisations and program history retention strategies have been
proposed by researchers to make such a history-based pointcut language feasi-
ble, but, except for Arachne, they are mainly targeted at Java-based aspect lan-
guages. Because C programmers want explicit control over pointcut behaviour
and memory footprint, we have based Aspicere’s temporal pointcut language on
the HALO [115] pointcut language for Lisp. This one is built around a limited



254 CASE STUDY 4: CSOM AND CHALO

set of fine-grained temporal pointcut primitives with well-known memory and be-
haviour. This transparency between primitives and weaver implementation is ac-
complished via a Rete-based [94] run-time engine. Because of its roots, we have
named the resulting extension of Aspicere “cHALO”.

VMADL is discussed in detail elsewhere [48, 112]. For this chapter, it suffices
to know that each VMADL file is transformed into one Aspicere aspect and Prolog
module. Instead, we elaborate on the design of cHALO, as it has important conse-
quences on the build system. After the explanation of cHALO in the next section,
we discuss the impact of the CSOM case study on co-evolution of source code and
the build system.

9.2 Application of AOP

The rationale behind cHALO is discussed in the next subsections. Section 9.2.1
sketches the general problems of history-based aspect languages for C and how
cHALO intends to deal with these. To illustrate the main design choices, this chap-
ter uses a running example which we first implement in two existing history-based
pointcut languages (Section 9.2.2), i.e. Arachne [68] and tracematches [12]. Then
(Section 9.2.3), the required HALO features for the design of cHALO are pre-
sented. Section 9.2.4 rephrases the basic temporal operators of Arachne and trace-
matches in terms of HALO’s primitive predicates to better understand the seman-
tics and memory requirements of Arachne and tracematches. HALO’s key ideas
are transformed to Aspicere in the form of cHALO (Section 9.2.5), and we briefly
discuss the accompanying Aspicere2 implementation. We illustrate the flexibil-
ity of cHALO with an example from the CSOM case study. Shortcomings of the
resulting system, which represent future work, are discussed in Section 9.2.6. Fi-
nally, Section 9.2.7 validates whether or not Aspicere satisfies goal L1.

9.2.1 Problems of History-based Pointcut Languages for C

History-based pointcuts have originally been proposed by Douence et al. [70].
More specifically, temporal pointcuts express patterns over the program execution
history. This program trace corresponds to a sequence of AspectJ-like join points.
In general, the various pointcut designators which together form a complete tem-
poral pointcut2 are composed via temporal operators or some other means (e.g.
regular expressions) to express certain patterns of events. An alternative inter-
pretation is that the particular join points a pointcut is interested in may change
depending on earlier events in the base code (“stateful aspects” [67]). This lends
itself naturally for modeling protocol-like concerns [1, 68, 115] or complex be-
havioural patterns [12].

2We will call them “sub-pointcuts” from now on.



CHAPTER 9 255

Despite its promises, adoption of history-based pointcuts has been slow to
catch up [16], primarily because of efficiency issues. There are roughly two areas
of concern: memory space and execution time. Intuitively, the idea of matching
join points based on program trace elements requires that these traces and available
context have to be stored somewhere as long as they can contribute to a pointcut
match. Additionally, “partial matches” have to be maintained to keep track of se-
quences of join points which are matched by the first part of a temporal pointcut,
but have not yet given rise to a complete match. Unfortunately, some of this state
may need to be retained indefinitely if no future join point completes a partial
match. In the meantime, context values associated with past join points may have
gone out of scope, which makes partial matches inconsistent and rules out their
ability to form a complete match. As for execution time overhead, the process
of deciding whether a join point satisfies a given pointcut based on past program
events is in general not statically decidable. A run-time component is needed to
make the final residual checks for a match, introducing overhead. It is clear that the
temporal pointcut language of VMADL needs to take precautions for the memory
and run-time problems, otherwise the resulting VM is not usable in practice.

We have looked at solutions and workarounds for both problem areas. For the
design of cHALO, we have focused especially on program history retention strate-
gies, i.e. policies which limit the number of needed trace data elements in memory
and/or the period during which they are stored. It is our belief that current ap-
proaches hide too much complexity from the programmer, without the possibility
to get in charge if desired. This clashes with the spirit of C, similar to the way C
programmers do not like garbage collection because it takes away too much pow-
er/freedom from them. Additionally, existing program history retention techniques
almost all exploit garbage collection facilities of the underlying base language. In-
frastructure software like VMs, traditionally implemented in C or C++, cannot
benefit from this garbage collection. Hence, history-based pointcuts may cause
serious memory issues in these systems. Lack of memory control and explicit re-
tention strategies in the absence of garbage collection, severely limits adoption of
history-based pointcut languages in C and C++ systems.

Although many dedicated analyses [27, 28] and optimisations [16, 17] have
been proposed to reduce execution time overhead, history retention strategies have
a large impact on this too. C programmers do not want to use coarse-grained
temporal operators. In many cases, these match more join points than needed,
and hence occupy more memory than desired. In most cases, there is not even a
way to estimate the memory footprint, because this is either undocumented or too
complex. Hence, history-based pointcut languages in C need fine-grained temporal
operators with clear guarantees on memory behaviour.

To deal with history retention and fine-grained operators within cHALO, we
propose to apply ideas introduced by HALO [115], an expressive history-based



256 CASE STUDY 4: CSOM AND CHALO

1 void f(char* s,int d);
2 void g(char* s);
3 BOOL shorter(char* s,int d);

Figure 9.1: Procedure declarations of the running example used in this chapter.

pointcut language for Lisp. HALO features a limited set of logic-based point-
cut primitives with well-known memory space and cleanup characteristics, and a
run-time weaver implemented in terms of a slightly customised Rete-engine [94].
HALO’s temporal operators and their history retention strategies are clearly mapped
onto join nodes of the Rete-network. This mapping facilitates improvement of the
(memory) behaviour of operators or the addition of new operators. We have trans-
lated these ideas to Aspicere2 in the form of cHALO.

To summarise, the design philosophy behind cHALO is that:

• History-based pointcut languages for C/C++ need to provide the program-
mer with explicit control over behaviour and memory footprint of temporal
pointcuts.

• The clear mapping between temporal operators and join nodes of the Rete-
network, makes HALO an ideal choice for providing the aspect developer
with more control on memory and execution overhead.

The next section discusses two existing history-based pointcut languages and
how they implement a running example which is used throughout this chapter.

9.2.2 The Design and Implementation of Two Major History-
based Pointcut Languages

There are dozens of history-based pointcut languages, which primarily differ by
the design of their language and their specific focus. Except for some approaches [45,
239, 185], they all have a similar state machine-based implementation, often with-
out memory retention strategies [185]. For these reasons, we limit the discussion
of related work to Arachne and tracematches, two of the most well-known history-
based aspect languages. Later on (Section 9.2.3), we consider a third temporal
aspect language, i.e. HALO.

To illustrate the claims of Section 9.2.1 about memory and execution overhead
in the context of Arachne and tracematches, we use Figure 9.1 as a running ex-
ample throughout this chapter. This example program consists of two functions, f
and g, and a boolean function which checks whether or not the length of a string
(s) is shorter than a given integer (d). We have to model a history-based pointcut
which looks for (possibly non-consecutive) invocations of f and g which have the



CHAPTER 9 257

1 seq(call(void f(char*,int)) && args(s,d)
2 && if(shorter(s,d));
3 call(void g(char*)) && args(s2) && if(s==s2) then ...)

Figure 9.2: Arachne pointcut with dots instead of concrete around-advice.

same string value as their first argument. Furthermore, we are only interested in
invocations of f for which shorter returns TRUE.

The next two subsections present the design and implementation of Arachne
(as an instance of event-based AOP) and tracematches.

9.2.2.1 Event-based AOP and Arachne

Event-based AOP (EAOP) [70, 69] is a history-based aspect technology which is
expressed in terms of execution monitors. Join points are reified as events in the
execution of a program and pointcuts describe patterns of events which should
be intercepted by the monitor. Douence et al. [70] have proposed a formally de-
fined, domain-specific event-based aspect language with operators for join point
sequences, parallel execution, filtering of join points, etc. They have developed a
Java prototype in which the monitor is synchronously called by the base program.
The specific instrumentation points where the monitor is invoked are automatically
generated from the pointcut. The distinction between a run-time component (mon-
itor) and the broadcasting of events from within the base code (instrumentation)
is widely used in history-based aspect languages. Åberg et al. [1] have proposed
another implementation of EAOP. They use rewriting rules, expressed in temporal
logic, to select all join point shadows statically, i.e. without any dynamic residues,
based on the intra-procedural control flow graph of a program. This static trans-
formation avoids run-time overhead.

The most advanced incarnation of EAOP is Arachne [68], which we have
described in Section 5.2.2.3. Arachne retains only the sequencing construct of
EAOP, but this forms the backbone of Arachne. Figure 9.2 shows a pointcut that
matches a sequence of calls to f and g which have equal first arguments and pass
the shorter boolean check. The check for equality of the first arguments has
to be specified explicitly (if(s==s2)). Arachne allows to associate advice to
sub-pointcuts of a sequence, hence the advice represented by “...” is actually
around-advice on the call to g, not on the sequence as a whole. This clearly
gives aspect developers more control, but it can be misleading in the sense that ad-
vice is executed for any partial match, regardless whether it will eventually yield a
complete match.

Run-time efficiency of the woven code has been an important concern during
the design of Arachne. Aspects are transformed into a dynamic library which can



258 CASE STUDY 4: CSOM AND CHALO

1 tracematch(String s,int d){
2 sym f around: call(void f(..)) && args(s,d)
3 && if(shorter(s,d));
4 sym g around: call(void g(..)) && args(s);
5

6 f g{
7 ...
8 }
9 }

Figure 9.3: A tracematch definition equivalent to the Arachne advice in Figure 9.2.

direct a weaver daemon to add instrumentation logic to the machine code of a
running application, without halting it. The locations where modifications should
be performed, can be derived from offline pointcut analysis.

For memory management, Arachne associates a linked list with each sub-
pointcut (except the last one) of a sequence. Each list node stores the contents
of a partial match, with values for all context variables which appear in the whole
pointcut. At any moment, multiple partial matches can be associated with a given
sub-pointcut. Conceptually, when a new trace element matches a sub-pointcut,
every partial match of the previous sub-pointcut is examined to see whether the
values of bound context variables are consistent with the context of the new trace
element. If they are, the partial match’s state can be updated and its node moved
to the current sub-pointcut’s list. Associated advice (if any) is executed. If the last
sub-pointcut has been matched, the partial match’s node is freed, i.e. returned to
a pool. If a partial match never yields a complete match, the accompanying set of
bindings remains indefinitely in one of the linked lists. This is actually inevitable,
but we come back to this point in our discussion.

The next section discusses the design and implementation of tracematches.

9.2.2.2 Tracematches

Tracematches [12] consist of a set of events (symbols) which are considered in-
teresting, a regular expression expressed in terms of those symbols and an advice
body which is activated once the regular expression pattern is satisfied. Symbols
correspond to a combination of an AspectJ advice kind (e.g. before) and a
primitive pointcut. A tracematch model of the Arachne pointcut of Figure 9.2 is
shown in Figure 9.33. Two symbols are declared (f and g). Prolog-like unifica-
tion of (and back-tracking over) the string arguments is enforced by reusing the
same free variable name (args(s)). This forms the biggest difference between

3Tracematches are expressed in Java, whereas Arachne and Aspicere2 are based on C. For this example, only the
temporal pointcut matters, not the advice.



CHAPTER 9 259

tracematches and prior history-based pointcut languages, and has had a big im-
pact on the memory behaviour of the tracematch implementation (more on this
later). Line 6 contains a simple regular expression in terms of the two symbols.
It expresses the same sequence as the Arachne implementation does. Contrary
to Arachne, tracematch advice applies only to the last join point matched by the
pattern, not to each sub-pointcut.

As introduced by EAOP, the tracematch weaver conceptually distinguishes be-
tween base code instrumentation and run-time support for deciding whether there
is a match. Tracematches are translated into multiple AspectJ advices. Some of
these advise the appropriate instrumentation join points with event signaling logic.
Other advice contains specialised code to set up and run the run-time component.
Finally, there is still the actual tracematch advice code. Many optimisation tech-
niques have been proposed to optimise either the instrumentation or run-time side
of the woven system [16, 17, 27, 28].

Tracematches use a specialised, deterministic finite automaton to keep track
of the matching process. The automaton is automatically generated from and spe-
cialised to the tracematch. As automata are not designed to hold memory (for
partial matches), some advanced concepts have been added on top of them [12].
Every state is labeled by a number of disjunctive constraints. These contain all
partial matches for a given state in the automaton. Upon arrival of new events, the
constraints are incrementally updated. Conceptually, partial matches are moved to
the next state until they disappear from the automaton. It is not clear whether this
automaton-based approach easily allows extending it with new temporal operators
or history retention strategies.

The biggest problem in the tracematch implementation is the need to avoid
memory leaks [12, 17] in the presence of free variables. Apart from HALO [115],
tracematches is one of the only approaches which is worried about this. The prob-
lem is that bindings inside a partial match may suddenly refer to garbage-collected
data without discarding the partial match from memory. To resolve this, the trace-
match implementation uses in some cases weak references to hold context vari-
ables. As such, if a weak reference is garbage collected, the partial matches re-
ferring to it are also cleaned up. Still, getting this memory behaviour correct has
proven to be very hard [12, 17]. As is the case with Arachne, leaks are inevitable
if non-garbage collected partial matches never contribute to a complete match.

The next section presents the HALO history-based aspect language, which
is later used to express the behaviour and memory requirements of Arachne and
tracematches, and has been the main inspiration to cHALO.



260 CASE STUDY 4: CSOM AND CHALO

1 2

mr

<lotte>5

gf-call

<lotte>2

?user'checkoutT1

<dvd>4 <lotte>

<kris> <book>3

gf-call ?article

<cd><lotte>1

?user'buyT2

<lotte>5 <dvd>

?user

<lotte> <cd>2

?articleT3

...

((gf-call 'checkout (?user))

 (most-recent (gf-call 'buy (?user ?article))))

1

(gf-call 'checkout <lotte>)

2

5

3

4 (gf-call 'buy <lotte> <dvd>)

(gf-call 'buy <kris> <book>)

(gf-call 'checkout <lotte>)

(gf-call 'buy <lotte> <cd>)

Figure 9.4: HALO’s Rete representation for a most-recent pointcut (shown at the
bottom) and a given program trace (bottom right table) [115].

9.2.3 HALO, a History-based Aspect Language for Lisp

HALO [115] is a history-based pointcut language for Lisp. It provides a limited
number of temporal operators: most-recent, cflow, since and all-past.
All of these relate an outer sub-pointcut to an inner sub-pointcut (two in case of
since):

a most-recent b A new match for outer sub-pointcut a only matches with
the most recent partial match of inner sub-pointcut b with which it can unify
bound context variables.

a cflow b Similar to most-recent, but the join point satisfying a should
lie within the control flow of a join point satisfying b (i.e. AspectJ’s cflow).

a since b c A new partial match for outer sub-pointcut a matches with the
partial matches of inner sub-pointcut c with which bound context variables
can be unified and which have occurred later in time than the most recent
partial match satisfying inner sub-pointcut b.

a all-past b A new partial match for outer sub-pointcut a matches with all
partial matches of inner sub-pointcut b with which bound context variables
can be unified.

We have listed these operators based on their memory footprint, from low to
high. These memory requirements are transparently linked to the implementation
of the HALO weaver [115]. This is a dynamic weaver based on a Rete engine [94]



CHAPTER 9 261

which has been extended with time stamps and extra logic corresponding to the
temporal operators. The Rete algorithm is a forward chaining technique4 spe-
cialised in checking whether a sequence of asserted logic facts satisfies a logic
formula (in the case of HALO: a logic pointcut matches a join point). The al-
gorithm is based on a network of nodes, node connections and memory tables
attached to the nodes, as shown on Figure 9.4. Round nodes are “filter nodes”, as
they filter newly asserted facts based on specified values for logic variables5. The
filter nodes correspond to the conditions from the logic formula. In HALO, they
correspond to sub-pointcuts. The rectangular node is a “join node”, which tries to
unify a new partial match which has entered via the node’s left or right input node
with the other input’s partial matches. If there is a match, the node memorises it
and sends the new match to its output. Partial matches are stored within memory
tables attached to filter and join nodes.

By default, join nodes perform a logical “and” on the partial matches in their
input nodes’ memory tables. In HALO, each temporal operator is matched onto
a custom join node (multiple in the case of since). The one on Figure 9.4 e.g.
represents the most-recent operator in the HALO pointcut at the bottom. In-
stead of just performing a logical “and”, the time stamps which have been added
by HALO to memory tables (gray columns) are taken into account. Upon a new
partial match in its left input node, the mr join node combines this entry with
the most recent matching entry in the memory table of the right input node. This
means that both entries need to have the same values for common variables (like a
normal “and” requires) and that the time stamp of the right partial match is lower
than the time stamp of the left entry. For this reason, if the mr gets a new partial
match from its right input instead of from its left input, there will not be a match.

To illustrate HALO’s weaver implementation, Figure 9.4 shows how the net-
work has processed the program trace on the lower right. The asserted fact of time
stamp 1 is only inserted and memorised by the right filter node, because it is a call
to buy with two arguments. The join node does nothing, because it cannot match
with the empty memory table of its left input. The fact at time 2, however, does
trigger a full match, as it matches the left filter node and can be unified with an
older fact memorised by the right filter node. The resulting match is stored inside
the join node’s memory table and is also sent to the output of the network to signal
a full match to the weaver. By the time the fifth fact has been asserted, a pure
Rete join node would match it with the partial matches of time stamps 1 and 4.
However, the mr node is only interested in the most recent partial match on the
right which matches with its left input, and hence only one full match is made and
stored.

4Contrary to Prolog, which is a backward chaining programming language.
5Variable names start with a ’?’.



262 CASE STUDY 4: CSOM AND CHALO

1 (gf-call ’f <aa> <1>)
2 (gf-call ’f <aa> <3>)
3 (gf-call ’f <aa> <4>)

4 (gf-call ’g <bb>)
5 (gf-call ’g <aa>)
6 (gf-call ’g <aa>)

Figure 9.5: Example trace of the system in Figure 9.1.

1 ((gf-call ’g ?s)
2 (since (most-recent (gf-call ’g ?s))
3 (all-past (gf-call ’f ?s ?d)
4 (if ’shorter ?s ?d))))

Figure 9.6: HALO pointcut corresponding to the Arachne pointcut in Figure 9.2 and the
tracematch in Figure 9.3.

Until now, we have only focused on the direct mapping between temporal
pointcuts and Rete network. Contrary to approaches like Alpha [185], the naive
memory requirements of Figure 9.4 can be drastically optimised [115]. There are
various history retention strategies which are based on time stamps and on the
known behaviour of the temporal operators. Because the mr node is not connected
with any other join node and just sends its partial matches to the output of the
network, it does not need to store its partial matches, and hence does not need a
memory table. A similar remark holds for the left filter node, as a newly asserted
fact is not used anymore once it has been sent to the join node. Finally, the seman-
tics of the most-recent operator suggests that duplicate partial matches stored
within the filter node’s right input can be removed, as only the most recent one is
interesting. The interpretation of “duplicate” is more general than usual, as in the
context of the most-recent operator it boils down to “having identical values
for variables which are common between the inner and outer sub-pointcut”. Other
variables are not used during matching of left and right partial matches. Hence, in
the example, fact 1 will become obsolete once fact 4 is stored in the right memory
table, even though they have different values for the ?article variable. This
means that at time 5, the network in Figure 9.4 only requires memory space for
two facts in the right input’s memory table, nothing more.

With these concepts in mind, we now revisit Arachne and tracematches to
express their behaviour and memory requirements in terms of HALO’s tempo-
ral operators. This enables better understanding of problems related to memory
footprint.



CHAPTER 9 263

9.2.4 Modeling Arachne and Tracematches in Terms of HALO

To better understand the semantics and memory requirements of Arachne and
tracematches, we rephrase the example Arachne and tracematch implementations
of Figure 9.2 and Figure 9.3 in terms of HALO. As a side-effect, this exercise
gives an indication on the fine-grainedness of these three pointcut languages with
reference to each other, and on the link between temporal operators and memory
management. We use the sample program trace in Figure 9.5 for the example sys-
tem of Figure 9.1. Despite its simplicity, this example suffices to convey the main
message.

For our example, the Arachne and tracematch implementations conceptually
yield the same program output and memory consumption for partial matches.
More precisely, the first event is ignored, as the integer is smaller than two (the
string argument’s length). The next two invocations do match the first sub-pointcut
of the sequence and tracematch. Both approaches record the bindings (?s
-> <aa> ?d -> <3>) and (?s -> <aa> ?d -> <4>). The next three
events try to extend the partial matches into a complete match. The fact on line 4
does not succeed, since <aa> differs from bb. The next one does trigger two com-
plete matches, one per partial match. Hence, the advice is executed twice, once for
(?s -> <aa> ?d -> <3>) and once for (?s -> <aa> ?d -> <4>).
Arachne now removes the two partial matches from the linked list associated with
the sequence’s first sub-pointcut. Tracematches do the same by manipulating
the constraints associated with the automaton’s first state. This is important, as it
means that the last event in the trace (line 6) will not trigger any advice. There are
simply no partial matches left anymore.

So far, we have considered the program output and we have also observed that
the behaviour is affected by the retention of partial matches. Arachne and trace-
matches by default retain every matching event as a partial match for a given sub-
pointcut until it gives rise to a longer partial match and moves on to the next linked
list or state, or is discarded on a complete match. Second, tracematches can also
remove partial matches, as negative symbols cause constraints to disappear from
a state. Third, analyses and optimisations indirectly influence the bindings. They
try to shift as much decision logic as possible to compile-time, or to accelerate
access to partial matches [16, 17, 27, 28]. Handling retention of program history
is merely a side-effect, not the primary goal of these analyses. As the analyses are
optional as well, programmers do not have control over the retention policy. This
means that, in our example, all corresponding invocations of f need to be retained
between two consecutive full matches for a given string argument. Assuming that
these invocations are more frequent than calls to g, a lot of space is required.

We can express this execution and memory behaviour in terms of HALO con-
cepts. Figure 9.6 shows the corresponding pointcut. The previous full match for a
given string ?s is modeled by most-recent (gf-call ’g ?s), while the



264 CASE STUDY 4: CSOM AND CHALO

pointcut expression on lines 3–4 selects all past calls to f for which the shorter
test is satisfied. Taken together, lines 2–4 collect all calls to f for a given string ?s
since the previous full match of the whole pointcut. This is the set of partial match-
es with which each new call to g can be combined to form a complete match. This
pointcut corresponds to the behaviour and memory requirements of the Arachne
and tracematch pointcuts. The memory footprint consists of one entry to record
the context of the last call to g for any given string ?s, as well as facts for keeping
the context of all partial matches of the call to f since the last corresponding g
invocation.

From this, we can make a couple of observations. First, the basic history-
based pointcut primitives in approaches like Arachne and tracematches are actually
coarser-grained compared to the temporal primitives HALO provides. The reason
is that both want to make sure that any event which gives rise to an initial partial
match will get a chance to form a complete match. No partial match is considered
redundant or a duplicate, except when there are negated sub-pointcuts, a new sub-
pointcut is matched or when a binding is garbage-collected. This behaviour is
sometimes desired, but in many use cases it suffices to act just once on a series
of more or less identical events. Timer alarms, scheduling requests, etc. in a VM
could be implemented using the simpler, finer-grained temporal operators of e.g.
HALO to reduce unnecessary execution and memory overhead.

A second observation is a consequence of the above coarse-grained language
semantics. As illustrated by the extensive coverage of memory leaks by the trace-
match team [12, 17], the memory requirements of history-based pointcut imple-
mentations are rather opaque and implicit. This conflicts with the spirit of C and
C++, as explicit, intuitive control over memory is one of the hallmarks of these
languages. It is not immediately clear how to map the memory retention policy
of a temporal operator to one specific concept of the run-time components. In
HALO, an operator corresponds by design to one specific join node of the Rete
network, with guarantees on memory retention of the associated partial matches.
This also means that adding a new operator boils down to introducing a new join
node type. As a consequence, the aspect developer has more control. This gives
systems software developers the possibility to tailor temporal pointcuts to the ap-
plication at hand, and to make well-founded assessments of memory requirements
and execution speed.

Based on these observations, we have designed Aspicere’s temporal pointcut
extension, cHALO, based on some of HALO’s key features. We present the re-
sulting system in the following section.



CHAPTER 9 265

1 ((gf-call ’g ?s)
2 (most-recent (gf-call ’f ?s ?d)
3 (if ’shorter ?s ?d)))

Figure 9.7: Sequence pointcut in HALO which is finer-grained than Arachne and
tracematch sequences.

1 void fg_sequence(char* S,int D) around [around F,around G]:
2 invocation(F,"f") && args(F,[S,D]) && if(shorter,S,D) =>
3 invocation(G,"g") && args(G,[S]){
4 ...
5 }

Figure 9.8: Aspicere2 pointcut which corresponds to the HALO pointcut of Figure 9.7.

9.2.5 cHALO, a History-based Extension of Aspicere

This section first presents the design of cHALO (Section 9.2.5.1), followed by a
brief overview of the underlying implementation (Section 9.2.5.2) and a demon-
stration of cHALO’s extensibility in the CSOM case study (Section 9.2.5.3).

9.2.5.1 Language Design of cHALO

Figure 9.7 shows a variant of the Arachne and tracematch pointcuts from Sec-
tion 9.2.2, similar to Figure 9.4. A call to g can trigger at most one complete
pointcut match, because there can only be one f fact in memory with the same
values for common bindings (see Section 9.2.3). The others have been identi-
fied as duplicates (based on ?s) and have been removed subsequently. In many
cases, this pointcut’s behaviour suffices instead of the coarser-grained semantics
of Figure 9.2 and Figure 9.3. Furthermore, for the example of Figure 9.7, at most
one fact is stored for the calls to f in the trace of Figure 9.5, while none of the
calls to g warrants storage. Note that the most recent partial match which satisfies
the inner sub-pointcut is not removed upon a complete match [115], contrary to
Arachne [68] and tracematches [12]. Although partial match 1 in Figure 9.4 has
contributed to the complete match on time stamp 2, it is only removed from the
second filter node’s memory table on time stamp 4, i.e. when it has become a
duplicate.

Figure 9.8 shows the corresponding pointcut (and advice) in cHALO, i.e. the
history-based extension of Aspicere. Line 1 tells us that fg_sequence is around-
advice which matches on a sequence of two symbols, F and G. It provides two con-
text variables, the string (char*) and integer arguments, to the advice. Lines 2
and 3 show that F and G correspond to invocations (calls) to the f and g procedures



266 CASE STUDY 4: CSOM AND CHALO

1 ((gf-call ’g ?s)
2 (very-most-recent (gf-call ’f ?s ?d)
3 (if ’shorter ?s ?d)))

Figure 9.9: Sequence pointcut with more limited fact retention policy. This behaviour can
be obtained in Aspicere2 if the => is replaced by ∼> in Figure 9.8.

mentioned in Figure 9.1. The arguments of these calls are captured (args) and the
F symbols are filtered by the shorter boolean function. The => arrow identifies
the semantics of the sequence, in this case HALO’s most-recent operator.

9.2.5.2 Weaver Implementation of cHALO

This section discusses the implementation of cHALO’s weaver. HALO has a dy-
namic weaver which relies on a slightly customised Rete [94] engine, whereas
Aspicere2 sports a link-time weaver based on a Prolog engine. These two ap-
proaches are not at odds with each other. As we have seen in Section 9.2.2.1,
most implementations of temporal aspect languages [70, 16] conceptually com-
bine base code instrumentation with run-time decision logic. The former makes
sure that only interesting events are signaled, while the latter decides at run-time
whether the recorded join points match a pointcut or not. As identified by Av-
gustinov et al. [16], both components can be optimised independently to reduce
memory footprint and execution time. Using static analysis, one can filter out join
point shadows which can never lead to a match, specialise the run-time logic to
the pointcuts in use or even eliminate run-time checks altogether. Many optimisa-
tions are obvious and do not require whole-program analysis [16], but especially
instrumentation can be sped up considerably via whole-program analyses [27].

For cHALO, we apply Aspicere2’s Prolog-based link-time weaver to pinpoint
suitable instrumentation join points, while a run-time Rete-engine (a modified ver-
sion of CLIPS6) is linked with the woven application to perform the run-time
checks. Instrumentation then amounts to asserting facts to the engine, and check-
ing whether or not a rule has been triggered, in which case advice should be ex-
ecuted. Internally, Aspicere2 transforms the advice of Figure 9.8 into normal ad-
vice. Static analysis, inter- (whole-program) or intra-procedural, can be added to
limit the number of join point shadows where facts need to be asserted. Run-time
optimisation can be achieved by garbage collection of facts based on the temporal
operators’ semantics. Because the CLIPS engine is highly configurable, redundant
functionality can easily be excluded from the library to reduce its footprint. Note
that Aspicere2’s cflow implementation is not based on this Rete-engine, but is
implemented “natively” via whole-program analysis on the static call graph of the

6http://clipsrules.sourceforge.net/

http://clipsrules.sourceforge.net/


CHAPTER 9 267

1 void Shell_start(){
2 ...
3 SEND(current_frame, set_bytecode_index, bytecode_index);
4

5 /*HERE*/
6 SEND(current_frame, push,
7 Universe_new_instance(runClass));
8

9 SEND(current_frame, push, it);
10 ...
11 }

Figure 9.10: CSOM shell initialisation code. The statement on the line marked
“/*HERE*/” should be advised by the native threading service.

1 void run_class_pushing(pVMObject RunInstance,pVMObject*
2 Jp1Ret,pVMFrame CurrentFrame,pVMClass* RunClassPtr)
3 after [after_returning Jp1,after Send]:
4 shell_class_instantiation(Jp1,RunClassPtr,RunInstance)
5 && dereference(Jp1Ret,RunInstance)
6 && withincode(Jp1,"Shell_start")
7 ∼> current_frame_pushing(Send,CurrentFrame,RunInstance)
8 && if(RunInstance,is_shell_class_instance){
9 // load the system class and create an instance of it

10 pVMObject sys_obj = Universe_new_instance(system_class);
11

12 //push system on stack
13 SEND(CurrentFrame, push, sys_obj);
14

15 //push shell class on stack
16 SEND(CurrentFrame, push, (pOOObject)*RunClassPtr);
17 }

Figure 9.11: Aspicere2 advice which performs extra initialisation for the native threading
service when the marked statement of Figure 9.10 is executed.

base code [14].

9.2.5.3 Application of cHALO to CSOM

To demonstrate the extensibility of cHALO, we consider an example from the
CSOM case study. Figure 9.10 shows part of the implementation of the CSOM
shell’s initialisation code. The shell is an interactive environment in which code
can be entered for execution by the CSOM VM. Our service implementation of



268 CASE STUDY 4: CSOM AND CHALO

1 shell_class_instantiation(Jp,RunClassPtr,RunInstance):-
2 invocation(Jp,"Universe_new_instance"),
3 get_local_variable_ref(Jp,"runClass",RunClassPtr).
4

5 current_frame_pushing(Send,CurrentFrame,RunClassInstance):-
6 execution(Send,"_VMFrame_push"),
7 args(Send,[CurrentFrame,RunClassInstance]).

Figure 9.12: Prolog predicates used by Figure 9.11.

native threading7 needs to advise the statement marked by /*HERE*/ for initial-
ising itself. The problem is that this statement is located in the middle of the
Shell_start procedure, and that there are multiple expansions of the SEND
macro with push as its second argument. This means that conceptually the push
instance method is invoked on the current_frame object. The only way to dis-
tinguish the marked statement from other ones without changing the base code8,
is to take temporal information into account.

A temporal pointcut based on Figure 9.8 seems appropriate to explicitly match
the execution of the push instance method with the most recent invocation of the
Universe_new_instance procedure. However, as we have noticed earlier
about the most-recent operator, the partial match corresponding to the exe-
cution of the push method is not discarded on a complete match. This is only
done when a duplicate entry of this partial match is memorised. In the meantime,
the partial match can contribute to other complete matches, which is not what we
intend the advice to do. Hence, we want to limit the life time of partial matches to
change the semantics of the advice and to reduce the memory footprint. This can
be done by extending cHALO.

Extension of cHALO happens by defining new kinds of join nodes, with spe-
cific matching and memory cleanup behaviour. For the CSOM case study, we
have added a very-most-recent operator which extends most-recent by
removing the partial match of the inner pointcut on a match with a new event of
the left filter node. To choose this operator instead of the default one, one just
needs to replace => by ∼>. Figure 9.11 shows an advice with a temporal point-
cut which uses the very-most-recent operator (line 7). The pointcut matches
when a current_frame_pushing event can be unified with the most recent
shell_class_instantiation. The former corresponds (Figure 9.12) to
the execution of the _VMFrame_push procedure (internal name for the push in-
stance method), whereas the latter denotes a call to Universe_new_instance.

7This is a technique which implements multithreading in the VM itself instead of relying on the operating system’s
threads or processes.

8If the base code can be changed, the marked statement can be extracted into a procedure such that its invocation
can be advised.



CHAPTER 9 269

On a match, the partial match for shell_class_instantiation is immedi-
ately discarded. In practice, before and after the marked statement of Figure 9.10
no memory is taken to store partial matches.

cHALO gives aspect developers the possibility to define more specialised tem-
poral operators which give them more explicit control over semantics and memory
footprint if this is needed. Other operators like all-past and since have not
been added yet to cHALO, but in principle the same approach can be followed.

9.2.6 Open Problems of History-based Pointcut Languages for
C

Explicit program history retention strategies can only stabilise memory footprint
of history-based pointcuts if the latter are well thought out. Suppose that in the
example trace of Figure 9.5, invocations to f with identical string arguments are
very rare. This would mean that the garbage collection optimisation does not kick
in, and almost all calls to f are memorised. This could get worse when calls to
g would also be infrequent, or would not contain matching string arguments. In
that case, even the very-most-recent operator would not be able to reduce
the memory footprint. The same problems exist in Arachne and, to a lesser extent
(because of weak references), in tracematches.

Apart from memory starvation, there is a second danger. If a very old partial
match suddenly leads to a complete pointcut match, chances are high that its con-
text variables are not valid anymore. They could refer to local variables which
have gone out of scope already, or to pointers which have become dangling by
now. Tracematches can easily deal with this via weak Java references, but in C
or C++ no such mechanism exists, simply because these languages do not provide
garbage collection. This is the largest obstacle history-based pointcuts are facing
in the context of C and C++ systems. Providing more explicit control on memory
requirements of temporal pointcuts, is our suggestion to deal with this problem as
long as no solution has been found. Such a solution could e.g. advise any function
with instrumented shadows in its body to invalidate all partial matches which bind
local variables when control reaches the end of the function. Alternatively, some
kind of smart pointer could be used to refer to bound context instead of native
pointers. This second problem should be dealt with before cHALO, or any other
history-based pointcut language, can be safely used in practice.

In our examples, we have used a boolean function to check a condition on
captured context. This is trickier than it appears at first sight. Approaches like
Alpha [185] check for matches using a backward chaining logic language. As
such, the current values of context variables are used to match past facts. HALO’s
forward chaining weaver works the other way around. Facts are asserted in the
past with the then current value of context bindings. This value may differ from



270 CASE STUDY 4: CSOM AND CHALO

the one in use when the complete pointcut eventually matches, e.g. in the case
of pointers where the value pointed at may have changed in the meantime. This
concept is called “future variables” in HALO [116, 115].

Conceptually, a partial match’s context variables should retain their original
value for as long as they are stored in memory, although several gradations of this
behaviour could be devised [116]. In all cases, some flavour of deep copying is
required to make future variables work in C or C++. This is not easy, as making a
deep copy of a generic void pointer is not possible. Ideally, the weaver should be
able to generate specialised deep copy algorithms for each declared context type,
but this is not straightforward either. Currently, cHALO takes shallow copies of
context variables, i.e. pointer values (addresses) are copied, but not the memory
content they refer to. This means that the original value stored in the referenced
memory is not necessarily preserved.

9.2.7 Validation #1: Aspicere Meets Goal L1

cHALO is an expressive, flexible and fine-grained history-based pointcut lan-
guage, based on HALO. It explicitly deals with retention policies for partial match-
es and offers a transparent connection between temporal operators and memory
footprint. A number of difficult issues remain to be solved before cHALO can
be safely used in the VM setting it originally is conceived for. Profiling data is
required to determine which challenge has to be dealt with first. In the meantime,
extension of cHALO by specialised temporal operators with specific behaviour and
memory requirements enables developers to deal with these issues in well-known
contexts, such as the application of VMADL in the CSOM case study.

9.3 Impact on the Build System
This section discusses the impact on the build system of the introduction of As-
picere and cHALO in the CSOM VM. We consider the following four build prob-
lems:

1. physical integration of Aspicere2 with the build process

2. configuration presents a challenge

3. migration to the re-engineered system

4. increase of build time and incremental weaving

9.3.1 Integration of Aspicere2 with the Build Process

Figure 9.13 shows the build dependency graph of CSOM. It consists of one main
executable (left cluster) and a dynamic library of native code (right cluster) to



CHAPTER 9 271

t.ctalltdylibt.o

Figure 9.13: Build dependency graph of CSOM. The left cluster is the CSOM executable,
while the right one represents the standard library (the header files in the left

cluster have been hidden).

1 CC = gcc
2 ...
3 CSOM_LIBS = -ldl -lpthread
4 ...
5 INCLUDES = -I$(SRC_DIR)
6 ...
7 CSOM_OBJ = $(MEMORY_OBJ) $(MISC_OBJ) $(VMOBJECTS_OBJ) \
8 $(COMPILER_OBJ) $(INTERPRETER_OBJ) $(VM_OBJ)
9 ...

10 CSOM: $(CSOM_OBJ)
11 @echo Linking CSOM
12 $(CC) $(LDFLAGS) ‘./ostool.exe l‘ -o \
13 ‘./ostool.exe x "$(CSOM_NAME)"‘ $(CSOM_OBJ) \
14 $(CSOM_LIBS)
15 @echo CSOM done.

Figure 9.14: Original makefile of CSOM.

support the CSOM standard library. As a side note, the build rule for the library
contains a mistake, as its build target is not the constructed dynamic library, but
rather a virtual target named CORE (white node in the center of the right cluster).
Accidentally, there is a node for the dynamic library which is actually built, but
it occurs as an implicit dependee of the CORE target (black node on top of the
gray hull). In other words, MAKAO’s implicit dependency detection algorithm
(Section 3.4.3) warns us about this small build mistake.

Aspects have been woven into the executable and the dynamic library. This
choice is important, because it means that join points which lead to a partial match



272 CASE STUDY 4: CSOM AND CHALO

1 CC = llvm-gcc -emit-llvm
2 ...
3 CSOM_LIBS = -ldl -lpthread
4 ASPECTS = ‘paste -s -d\ $(ROOT_DIR)/aspects/aspects.lst‘
5 ...
6 INCLUDES = -I$(SRC_DIR) -I/usr/include
7 CSOM_OBJ = $(MEMORY_OBJ) $(MISC_OBJ) $(VMOBJECTS_OBJ) \
8 $(COMPILER_OBJ) $(INTERPRETER_OBJ) $(VM_OBJ) \
9 $(NATIVE_SERV_OBJ)

10 ...
11 .vmadl.ac:
12 vmadl.sh $< -o $@
13 ...
14 CSOM: CSOM.bc
15 @echo Weaving CSOM
16 lto.sh $(LDFLAGS) -Wp,-I$(ROOT_DIR)/src ‘./ostool.exe l‘
17 -Wl,-Y,1455 -mmacosx-version-min=10.4 -Wl,-x \
18 ‘./ostool.exe x "$(CSOM_NAME)"‘.bc -o \
19 ‘./ostool.exe x "$(CSOM_NAME)"‘ -aspects \
20 $(ROOT_DIR)/aspects/aspects.lst -modules \
21 $(ROOT_DIR)/aspects/modules.lst -user \
22 $(ROOT_DIR)/aspects/user.lst -L/usr/lib \
23 $(CSOM_LIBS)
24 @echo CSOM done.
25

26 CSOM.bc: $(ASPECTS) $(CSOM_OBJ)
27 @echo "Removing remains of aspects..."
28 find . -name "*.ac.*" | xargs rm -f
29 @echo Linking CSOM
30 link.sh $(LDFLAGS) -Wp,-I$(ROOT_DIR)/src \
31 ‘./ostool.exe l‘ \
32 -o ‘./ostool.exe x "$(CSOM_NAME)"‘ -aspects \
33 $(ROOT_DIR)/aspects/aspects.lst -modules \
34 $(ROOT_DIR)/aspects/modules.lst -user \
35 $(ROOT_DIR)/aspects/user.lst $(CSOM_OBJ) \
36 $(CSOM_LIBS)
37 @echo "Removing remains of aspects..."
38 find . -name "*.ac.*" | xargs rm -f

Figure 9.15: Modified makefile of CSOM for native threading.



CHAPTER 9 273

number of new. . . number of modified. . . #added
.c .h lines .c .h lines loci lines

reference counting 0 0 0 15 3 22 37 170
mark-sweep 0 0 0 7 2 39 25 332
native threading 3 3 268 5 5 3 13 333
green threading 1 1 148 5 3 2 9 78

Table 9.1: Statistics with the number of new and modified files, and the number of added
lines of code for adding the four extensions to CSOM.

of a cHALO pointcut may generate a complete match for join points which occur
either during execution of code of the executable or of the library. This has been
one of the main reasons for cHALO’s history retention strategies.

Because there is only one important makefile (92 SLOC), we again have man-
ually modified the build scripts guided by MAKAO’s visualisation and querying.
Figure 9.14 shows the relevant makefile snippets for the main executable (CSOM
on line 10) when the native threading service is added. CSOM is compiled from
a list of all relevant object files (CSOM_OBJ). The modified makefile looks like
Figure 9.15. Similar to the Quake 3 case, we have changed a number of variables
to integrate LLVM (CC) and we have split up the linking activities in two, i.e. one
rule for generating the bitcode link module (lines 26–38) and one for the actual
weaving (lines 14–24). Similar rules exist for the dynamic library. MAKAO has
enabled us to manually integrate Aspicere2 in the CSOM build system.

9.3.2 Configuration of Aspects Presents a Challenge

There are some important differences with the Quake 3 case, especially in the
area of configuration. As Table 9.1 shows, the native and green threading imple-
mentations not only consist of an Aspicere aspect and Prolog module generated
from the VMADL description, they also need additional support code to be com-
piled with the system. The two garbage collection algorithms on the other hand
only require extensive changes inside the base modules (in/decrementing refer-
ence count, etc.). Green threading needs one extra module to support the aspect,
whereas native threading requires three modules (for scheduling, signals, etc.) and
the “pthread” library to be linked with the woven application. As a side-effect, the
API (header files) of this library should also be available to the compiler during
the build. From these observations, we can deduce that:

• Support code and libraries for aspects should be taken into account when
integrating AOP into the build.

• Depending on the aspect configuration, these extra artifacts need to be se-
lected during the build or not, and related variables for e.g. header file di-



274 CASE STUDY 4: CSOM AND CHALO

rectories should be modified or not.

The first item presents a big problem when the same aspect is applied in var-
ious subcomponents. Especially if these components later on interact with each
other, e.g. by linking a library and an executable, keeping track of which compo-
nent should control the support code becomes a hassle. There is no silver bullet
to solve this problem, as it depends on the particular build architecture of the soft-
ware system. The second issue is even worse. The inherent flexibility/pluggability
of the aspects at the source code level becomes restricted at the build system level
if there is no direct feedback from the aspect configuration to the compiler com-
mands and build script variables. This is similar to the problems de Jonge [56] has
encountered in systems without AOP (RC1). In the case of CSOM, we have not
yet focused on pluggability or interaction between aspects, hence we have hard-
coded the dependency on pthread on line 3 of Figure 9.15, have specified the
extra header file directory on line 6 and have added the three modules of the native
threading aspect on line 9.

A second observation about configuration is the integration of the VMADL
preprocessor. Because aspect weaving occurs at link-time, we have added the as-
pects as a dependency of the link module rule (line 26) and have written a generic
build rule (lines 11–12) which generates a .ac file (Aspicere) from the correspond-
ing .vmadl file (VMADL). In bigger systems, where possibly multiple aspect con-
figurations are used at once (e.g. one per library), a more sophisticated solution is
needed. Again, a well thought-out strategy is required to keep aspect configuration
manageable.

9.3.3 Migration to the Re-engineered System

Similar to the case study of the previous chapter, we have gradually migrated from
a tangled implementation of each CSOM service to an aspect-based one (with
VMADL). This migration consists of a planning and execution phase. For the plan-
ning phase, we have first specified initial VMADL definitions based on knowledge
about the tangled service implementations. Then, we have marked the affected join
point shadows in the source code with the name of the advice which would advise
them, and have also identified the base code which should be eliminated. After
this process, we have estimated the impact of the advice on the base code, i.e. the
dependencies between advice, and between base code and advice. The outcome
of this process is an ordered list which specifies the weaving order of advice and
gives indications about which base code fragments have to be commented out.
This concludes the planning phase.

The execution phase is a long iterative process in which for every advice of
the list, the obsolete base code is commented out, the advice is woven and the test
suite of the system is re-executed. In case of problems, we modified the VMADL,



CHAPTER 9 275

regenerated the aspects and re-executed the current iteration of the migration. Even
in an application of the size of CSOM, this gradual process takes a long time.
This only reinforces the arguments made for the migration of the ASML system.
However, during the migration, we have not needed to change the build scripts.
The changes of Figure 9.15 only had to be made once. In larger systems like
ASML, this is unlikely.

The test suite of CSOM consists of a number of CSOM programs with known
output. Testing only required to run these programs and to automatically compare
the outputs. As such, no changes were needed to accommodate aspects in the test
infrastructure.

9.3.4 Increase of Build Time and Incremental Weaving

There are a number of factors which slow down weaving. As described in Sec-
tion 9.2.5, whole-program static analysis is very useful to reduce the execution
overhead of temporal pointcuts or cflow. This has implications on the choice of
a weaver (e.g. compile-time vs. link-time), as discussed multiple times before,
but also on the duration of the build process. These analyses are known to be
slow [26] and, worse, they usually cannot be performed incrementally. This adds
to the link-time weaving overhead reported in the Quake 3 case.

Our gradual migration approach causes extra problems. Each change to a base
code file or VMADL declaration causes the bitcode link module to be regenerated,
followed by re-weaving of the whole system. This is very costly in developer time.
A source-to-source weaver on the other hand does not have these problems, but
such a weaver cannot easily perform whole-program analysis. Gluing all source
files together right before compilation is not an option, as visibility rules cause
conflicts. Some overhead could be prevented by using a check sum tool and a code
pretty-printer instead of “make”’s time stamps, as minor changes to comments
should not cause re-weaving.

9.4 Validation #2: Roots of Co-evolution Experimen-
tally Confirmed

The CSOM case study has confirmed various build problems (RC1 and RC2) we
have encountered in earlier cases, but has also given evidence of new problems,
especially regarding RC3 and RC4. Incremental weaving is important for devel-
oper productivity (RC3). During the migration from the CSOM VM with a tangled
implementation of a service to a VMADL version (based on Aspicere), bug fixes
in the base code and aspects have required frequent re-weaving. We have noticed
that significant weaving speedups cannot be made through techniques like “trickle-
down” recompilation [9]. Instead, the weaver should provide direct support for in-



276 CASE STUDY 4: CSOM AND CHALO

cremental weaving. This is not straightforward, because the static analyses which
are used to optimise the woven code (e.g. to limit the instrumentation for cHALO)
mostly cannot incrementally update their results with the changes made in the
base code. Even worse, prior weaving results can be invalidated. Optimisations
performed on base code modules which have not been changed since, suddenly
can be based on (by now) invalid analysis results. Hence, these modules should
also be re-woven. This is a serious threat for weaver implementers. The build
system cannot readily solve this because it does not understand the fine-grained
aspect dependencies.

Second, aspects require better means for configuration than systems without
AOSD (RC4). The migration of the original system to the fully re-engineered one
has been hampered by dependencies of aspects on accompanying support modules
and libraries. These have to be built at the right time if an aspect has been selected
during configuration. If the aspect is not selected, the support code is also redun-
dant. This means that configuration information should be linked to build rules,
commands and variables in the build scripts. The problem is that during evolution
of the aspects, new aspects and support code will be added, whereas others will
disappear or be modified. By virtue of co-evolution of source code and the build
system, these source code changes should be converted to corresponding changes
in the build system. This is not easy, as the invocation of an aspect weaver is highly
dependent on the build architecture and configuration system. In the CSOM case,
support code was limited, hence we have been able to deal with this manually.

9.5 Validation #3: MAKAO Achieves Goal T2

MAKAO has enabled us to understand the build architecture of the CSOM system.
Visualisation and querying have facilitated the physical integration of Aspicere2
with the build system, and the management of support code.

9.6 Conclusion

In this chapter, we have examined the CSOM case study, in which Aspicere has
been used as the underlying implementation of the VMADL architectural descrip-
tion language. For this, we have enhanced Aspicere with an expressive, history-
based pointcut language for C, cHALO, which is aimed at providing the program-
mer with sufficient control over memory usage (goal L2). Existing program his-
tory retention strategies have been designed explicitly for languages with garbage
collection. Second, they make the connection between a temporal operator’s be-
haviour and its memory footprint implicit. This clashes with the philosophy of
C/C++ programmers. We have illustrated this via a running example implemented



CHAPTER 9 277

in Arachne, tracematches and HALO. To remedy these problems, we have pro-
posed to apply key ideas from the HALO pointcut language. HALO contains a
limited set of temporal operators, each with a well-known behaviour and mem-
ory footprint. A clear connection between operators and the weaver’s underlying
Rete-engine enables developers to estimate the run-time costs of their pointcuts.
We have translated these concepts to Aspicere2, and have illustrated the resulting
cHALO system’s extensibility by adding a new temporal operator which has been
used in the CSOM case.

On the level of the build system, we have identified similar issues like in the
previous cases, but also found new evidence for RC3 and RC4. Aspects often re-
quire support code which needs to be built along with the base code. However,
depending on the aspect configuration the support code should be compiled or not.
This decision also depends on the build architecture, which is reified by MAKAO
(goal T2). A second new element is the introduction of the VMADL preprocessor,
i.e. a new construction tool, the gradual migration to an AOP-based implementa-
tion and the necessity of static analysis to optimise the weaving results. Together,
these introduce a lot of extra weaving activity. Hence, incremental weaving is a
key property to successfully apply AOP in this case. The next chapter presents the
fifth and final AOP case study.





[...] preprocessors are pragmatic tools which bridge
the gap between PITS [(programming-in-the-small)]
and PITL [(programming-in-the-large)]. On the one
hand, most preprocessors have been designed by PITS
practitioners and are themselves (degenerated) lan-
guages. On the other hand, preprocessors try to par-
tially solve a major PITL problem: software varia-
tion. Unfortunately, their extensive use leads to severe
maintenance problems.

Jean-Marie Favre [83]

10
Case Study 5: Extracting Preprocessor

Code into Aspects

IN systems software, the C preprocessor is heavily used to manage variability
and to improve efficiency. It is the primary tool to model crosscutting concerns

in a very fine-grained way, but leads to extremely tangled and scattered preproces-
sor code. In this chapter1, we present a case study in which the Parrot 0.4.14 VM
is re-engineered with aspects to decouple the base code from preprocessor-driven
conditional compilation. This re-engineering is based on a classification of exist-
ing conditional compilation patterns in the Parrot VM. Note that this VM is a new,
and not a legacy system, but because it makes heavy usage of the preprocessor this
case study suffices to distill important lessons in the context of this dissertation.
Integration of the configuration layer with Aspicere’s logic fact base (goal L2)
controls whether advice should match or not. MAKAO is used to support build
system understanding and re-engineering of the build system (goal T2).

We first describe the context of the case study (Section 10.1), followed by an
explanation of the aspects which have been used (Section 10.2) and the impact of
this on the build system (Section 10.3). Afterwards, Section 10.4, Section 10.5
and Section 10.6 present the validation results for build problems suggested by the
four roots of co-evolution, MAKAO (goal T2) and Aspicere (goal L2). Finally,
Section 10.7 presents the conclusions of this chapter, which is the final AOP case
study of this dissertation.

1Parts of this chapter are based on [7].



280 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

10.1 Rationale behind the Case Study

Systems software manages and controls the hardware to support the tasks of appli-
cation software. Over the years, a large body of long-living systems has accumu-
lated, entailing operating systems, device drivers, compilers, virtual machines, etc.
Many of these systems have configurable parameters built into the source code to
tailor the product to one specific hardware platform or to allow different variants
to be configured. Usually, such systems are developed in C or C++, with heavy
usage of the C preprocessor to handle this variability.

In Section 2.3.4.4 and Section 2.1.3.1, we have discussed the C preprocessor’s
three most important constructs (#define, #include and #ifdef) and the
many mechanisms through which these constructs, especially conditional compi-
lation, are driven by the build system’s configuration layer. As a concrete illus-
tration of the powerful, flexible nature of the resulting coupling between configu-
ration layer and base code, we have observed in Chapter 4 how the Linux kernel
build system exploits these mechanisms to manage the kernel’s variability.

However, the preprocessor’s flexibility and the fact that it treats source code as
text files without respecting the C syntax rules, make the C preprocessor an im-
portant source of programming errors and of confusion during source code anal-
ysis [211]. The programmer actually writes two programs: the C preprocessor
program and the C program. The result of the C preprocessor program can be one
of a multitude of C programs. To understand the software system, one can either
examine the preprocessed code or the unpreprocessed version. The former corre-
sponds to normal C code, but only represents one configuration. Unpreprocessed
code is the opposite, as it contains all configuration code, but is not necessarily
valid C code. This is not the only problem which hampers program understand-
ing. Complicated macro bodies, side-effects and dynamic scoping, unsafe and
inconsistent usage, multiple definitions, etc. are frequent sources of confusion.
Nevertheless, every C programmer has to deal with the C preprocessor, because it
is the primary mechanism for C to deal with different variants, to handle platform-
dependent code, to make features disablable, to define syntactic sugar, etc. Even
C++ systems still use the C preprocessor [169].

Singh et al. [204] have proposed to extract conditionally compiled code into
aspects, as conditional compilation corresponds to a scattered and tangled repre-
sentation of crosscutting concerns, i.e. the preprocessor is a fine-grained, but low-
level aspect weaver. Conditional compilation is typically used to manage platform-
dependent code, to enable or disable features, to guard debugging logic, etc. in a
fine-grained way. As a consequence of this fine-grainedness, source code rapidly
becomes a maze in which normal program flow is hard to distinguish from (often
nested) conditional compilation checks, i.e. the conditional code is tangled with
the main logic. Support for a particular platform, or debugging guards are spread



CHAPTER 10 281

(scattered) throughout the system. These scattered code blocks highly differ from
one place to another, and hence correspond to “heterogeneous concerns” [51]. In
other words, conditionally compiled code implements crosscutting concerns, but
cannot mitigate tangling and scattering phenomena. Hence, extraction of this logic
into aspects could disentangle the base code from conditional compilation logic,
while the variant code would be modularised.

There are many challenges involved with extracting conditionally compiled
code into aspects. To make these challenges explicit, we have made an out-
line [7] of an approach for exploration and extraction [130, 170] of aspects from
preprocessor-driven source code, based on a set of typical conditional compilation
patterns. Exploration and extraction tools and techniques have to be able to parse
heavily preprocessed code, to derive dependencies between preprocessor flags, to
identify free variables in conditional logic, to automatically generate a pointcut,
etc. The aspect language on the other hand should provide fine-grained join points
and should be able to express highly variable advice [32]. Dealing with these
challenges for automatic exploration and extraction is still work-in-progress.

Instead, this chapter investigates existing patterns of conditional compilation
usage in a concrete virtual machine implementation, i.e. the Parrot VM. Such
characterisations have been made before [80, 221], but here we explicitly focus
on the ability of their structure to be extracted into advice. The categorisation
corresponds to the one presented in [7], but has been elaborated. Knowledge of
this categorisation is necessary to determine which features (join points, pointcut
primitives, etc.) aspect languages should have to be able to model the fine-grained
crosscutting exposed by conditional compilation. This is a prerequisite before
automatic exploration and extraction techniques can be designed.

The next section presents the identified categories, and discusses for each of
them the possible aspect implementations. Section 10.2.4 validates whether As-
picere is able to model the extracted conditionally guarded code as advice. After-
wards (Section 10.3), we discuss the impact on the build system.

10.2 Application of AOP in the Source Code

This section discusses the patterns of conditional compilation we have identified in
the Parrot VM, and how we have managed to implement some of them as aspects.
We have distilled these patterns by manual examination of the source code of the
actual VM, i.e. not of the compiler or specific language implementations on top of
Parrot. The investigated source code comprises 150 kSLOC of C code (129 files)
and 15 kSLOC of PMC (“Parrot Magic Cookie”) code (88 files). The latter is C
code which is enhanced with syntactic sugar for defining classes which represent
user-defined data types used inside the VM. A preprocessor tool expands PMC
files into C code (100 kSLOC). In 79 C and 14 PMC files, conditional compilation



282 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 #ifdef NDEBUG
2 # define TRACE_FM(i, c, m, sub)
3 #else
4 static void
5 debug_trace_find_meth(PARROT_INTERP, NOTNULL(PMC *_class),
6 NOTNULL(STRING *name), NULLOK(PMC *sub)){
7 ...
8 }
9 # define TRACE_FM(i, c, m, sub) \

10 debug_trace_find_meth(i, c, m, sub)
11 #endif

Figure 10.1: Conditional Definition of the debug_trace_find_meth procedure in
src/objects.c.

occurs.
We have distilled three classes of conditional compilation: “Conditional Defi-

nitions” (Section 10.2.1), “Fine-grained Conditional Compilation” (Section 10.2.2)
and “Coarse-grained Conditional Compilation” (Section 10.2.3). The latter two
can be further divided in respectively five and two subcategories. This categorisa-
tion is presented in the following subsections. For each of them, a representative
example is given and we discuss whether an aspect implementation is feasible
and if so, how this would look like. Afterwards, we discuss our findings (Sec-
tion 10.2.4).

10.2.1 Class 1: Conditional Definitions

Conditional Definitions are the cleanest application of conditional compilation, as
the conditional guards are used to decide whether a complete C construct like a
type or procedure definition should be compiled or not. This pattern is also used
to conditionally include header files and to guard header files against problems of
multiple inclusion (e.g. duplicate definitions of types). As a special case, we have
found several cases where conditional compilation is used to adapt the signature
of procedures to ANSI C or K&R C, based on the capabilities of the compiler.

Figure 10.1 shows an example of a Conditional Definition, in which the defi-
nition of the debug_trace_find_meth procedure (lines 4–8) is only selected
in debugging mode (NDEBUG is not defined), in which case it is used for the im-
plementation of a trace macro (lines 9–10).

There are various ways in which we can decouple the base code from condi-
tional compilation logic. The most straightforward approach is to extract the code
on line 2 and on lines 5–10 into separate base code modules, as two different im-
plementations of debugging, and to make the configuration layer select the right



CHAPTER 10 283

module based on the chosen mode (debugging or not). This conceptual simplicity
has a number of drawbacks, however. First, control over the selection of defini-
tions is moved completely to the build system, which means that developers need
to know how this configuration is connected to the source code. They now have
to develop code in different modules instead of using conditional compilation, and
they need to be able to control how these modules interact with each other. In
the case of Figure 10.1, there is only one conditional check. Second, conditional
guards can in general be nested such that many different combinations of condi-
tions are possible instead of only two. This not only means that developers should
be able to understand these different cases [144, 204], but also that the number
of modules may explode. Hence, extraction into separate modules is not always
viable.

A second technique is to use AOP’s ITD techniques to introduce definitions in
the base code. The largest difference with the separate modules, is that pointcuts
are used to select whether or not the weaver should perform the ITD, instead of
making this decision dependent on selection of modules. Pointcuts should be en-
hanced with access to build configuration information, such that the weaver can
directly exploit the knowledge of the current configuration to steer ITD. As ex-
plained in Section 2.4.5 on page 67, such a mechanism fosters the decoupling of
the base code from configuration logic (RC4). As Aspicere does not provide ITD,
we have not been able to implement this technique.

Note that the example of Figure 10.1 involves more than just ITD, as there are
two alternatives for the tracing macro. One way to deal with this is to put the empty
macro definition in the base code and let ITD override the macro definition. Al-
ternatively, the macro could be replaced by a procedure such that around-advice
can redefine the tracing implementation. Third, similar to the extracted modules,
two aspects could be used to introduce the tracing, but this would suffer from the
same state explosion issues as the module extraction technique. A more drastic ap-
proach is to make the base code completely oblivious to tracing and to let aspects
decide how they implement tracing and where it should apply. Later, we will see
that this is not easy because of the large variability in tracing invocation [32]. This
explanation shows that even in the clean case of Conditional Definitions extraction,
decoupling the base code from configuration logic is not trivial.

10.2.2 Class 2: Fine-grained Conditional Compilation

The second category of conditional compilation patterns we have identified con-
siders fine-grained selection of behaviour or state implementations. With “fine-
grained”, we refer to intra-procedure and intra-type definition patterns. These pat-
terns exploit the preprocessor’s capabilities to its fullest, although almost all cases
we have observed in the Parrot VM more or less obey to the C syntax rules. This



284 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 static INTVAL
2 ret_int(Interp *interp, const char *p, int type){
3 switch (type) {
4 case enum_type_INTVAL:
5 return *(const INTVAL*) p;
6 #if INT_SIZE == 4
7 case enum_type_int32:
8 case enum_type_uint32:
9 #endif

10 #if INT_SIZE == 8
11 case enum_type_int64:
12 case enum_type_uint64:
13 #endif
14 ...
15 case enum_type_uchar:
16 return *p;
17 default:
18 real_exception(interp, NULL, 1,
19 "returning unhandled int type in struct");
20 }
21 return -1;
22 }

Figure 10.2: General Fine-grained Conditional Compilation in the implementation of the
ret_int procedure in src/pmc/unmanagedstruct.pmc.

is in line with the findings of Ernst et al. [80], who have measured that on average
two thirds of preprocessor usage in general is sufficiently disciplined.

For our purposes, i.e. determining whether the structure of the patterns is
amenable to an aspect implementation, we have distilled five subcategories of
Fine-grained Conditional Compilation:

1. General Case

2. Scattered Conditional Compilation

3. Simple Conditional Compilation

4. Simple Conditional Compilation with Dependencies

5. Simple Conditional Compilation with Declarations

We consider each of these subcategories in turn in the following subsections.

10.2.2.1 The General Case

In general, the preprocessor facilitates fine-grained (de)selection of code lines,
statements or even parts of tokens based on whether certain preprocessor constants



CHAPTER 10 285

1 static void compact_pool(PARROT_INTERP,NOTNULL(Memory_Pool
2 *pool)){
3 INTVAL j;
4 UINTVAL object_size;
5 UINTVAL total_size;
6 ...
7 /* ever increasing allocations but fewer collect runs */
8 #if WE_WANT_EVER_GROWING_ALLOCATIONS
9 total_size += pool->minimum_block_size;

10 #endif
11

12 /* Snag a block big enough for everything */
13 new_block = (Memory_Block *)alloc_new_block(interp,
14 total_size, pool, "inside compact");
15 ...
16 }

Figure 10.3: General Fine-grained Conditional Compilation in the implementation of the
compact_pool procedure in src/malloc.c.

have been defined and/or the specific value they have. Figure 10.2 gives a common
example of such Fine-grained Conditional Compilation. On lines 6–9 and 10–13,
the inclusion of specific case-entries of a conditional switch structure depends
on the specific value of the INT_SIZE preprocessor constant. A module-based
approach is too coarse-grained to deal with this2, whereas there are no sufficiently
fine-grained join points and pointcuts to use with conventional ITD or advice.

Figure 10.3 gives a second example of Fine-grained Conditional Compilation.
On lines 8–10 an assignation is conditionally guarded to let developers control
the strategy used for managing the pool of objects in memory. This case seems
easier to deal with than Figure 10.2, but still there is no straightforward way to
extract this single conditional block into advice. If assignments would be valid
join points, succinct selection of a particular assignment join point would heavily
depend on implementation details and hence would not be maintainable. Extract-
ing the assignment into a procedure and managing the variability of this procedure
is a feasible technique. However, in most cases multiple conditional blocks like
the one on Figure 10.3 (often with a different condition) occur in a given proce-
dure body. Hence, this could lead to a proliferation of short procedures with a
dedicated, i.e. not reusable, advice. Just as for Conditional Definitions, there is
no unique way to decouple the base code from the General Case of Fine-grained
Conditional Compilation. Later subsections consider special cases of Fine-grained
Conditional Compilation which offer better opportunities for extraction.

2Unless one tries to maintain multiple versions of the compact_pool in parallel.



286 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 void Parrot_STM_waitlist_wait(Parrot_Interp interp) {
2 struct waitlist_thread_data *thr;
3 thr = get_thread(interp);
4 LOCK(thr->signal_mutex);
5 #if WAITLIST_DEBUG
6 fprintf(stderr, "%p: got lock, waiting...\n", interp);
7 #endif
8 while (!thr->signaled_p) {
9 pt_thread_wait_with(interp, &thr->signal_mutex);

10 #if WAITLIST_DEBUG
11 fprintf(stderr, "%p: woke up\n", interp);
12 #endif
13 }
14 UNLOCK(thr->signal_mutex);
15 #if WAITLIST_DEBUG
16 fprintf(stderr, "%p: done waiting.\n", interp);
17 #endif
18 }

Figure 10.4: Scattered Conditional Compilation in the implementation of the
compact_Parrot_STM_waitlist_wait procedure in src/stm/waitlist.c.

As a side note, there are many conditional blocks with a constant condition,
e.g. #if 0 or #if 1. This typically corresponds to temporary experimental or
buggy code, and can be easily understood because of the simple condition. Hence,
extraction into a different module is overkill in this case.

10.2.2.2 Scattered Conditional Compilation

Scattered Conditional Compilation is a first special case of Fine-grained Condi-
tional Compilation. One procedure contains multiple conditional blocks, each of
which uses the same condition and guards highly similar code. In Figure 10.4, the
blocks on lines 5–7, 10–12 and 15–17 all depend on the definedness of WAIT-
LIST_DEBUG and print out a debugging message to the error stream. These
blocks are not only tangled with the main logic, they are also scattered across mul-
tiple places in the compact_Parrot_STM_waitlist_wait and elsewhere.
Hence, conventional aspect technology should be able to deal with this.

Figure 10.5 gives a possible aspect implementation (lines 18–22). To deal
with the variable advice bodies, annotations are used in the base code (lines 6, 9
and 13) to specify the appropriate debugging messages, similar to the approach in
Chapter 8. In general, not all Scattered Conditional Compilation instances guard
similar uniform code as Figure 10.4 depicts. Second, the required context of the
conditional block (in this case interp) cannot be reused anywhere WAIT_LIST



CHAPTER 10 287

1 /*base code*/
2 void Parrot_STM_waitlist_wait(Parrot_Interp interp) {
3 struct waitlist_thread_data *thr;
4 thr = get_thread(interp);
5

6 /*@waitlist_debug("%p: got lock, waiting...\n",interp)*/
7 LOCK(thr->signal_mutex);
8 while (!thr->signaled_p) {
9 /*@waitlist_debug("%p: woke up\n",interp)*/

10 pt_thread_wait_with(interp, &thr->signal_mutex);
11 }
12

13 /*@waitlist_debug("%p: done waiting.\n",interp)*/
14 UNLOCK(thr->signal_mutex);
15 }
16

17 /*aspect*/
18 void debug(char* String,Parrot_Interp Interp) after Jp:
19 invocation(Jp,_)
20 && annotation(Jp,waitlist_debug,[String,Interp]){
21 fprintf(stderr, String, Interp);
22 }

Figure 10.5: Aspect implementation of the Scattered Conditional Compilation example of
Figure 10.4.

conditional blocks occur. Hence, the variability of conditional blocks is an impor-
tant factor to take into account when deciding on a particular aspect language to
extract Scattered Conditional Compilation into an aspect.

Third, we have assumed that LOCK (line 4 of Figure 10.4) and UNLOCK (line 14)
are procedure calls. However, these actually correspond to macro expansions. Ac-
cidentally, this might align with a procedure call, but in general they can expand
into data accesses, multiple statements, etc. Hence, the aspect language should
support these constructs as possible join points, unless macros are extracted into
procedures (as discussed in Section 10.2.1).

Finally, we should consider the efficiency of the advice in comparison with
that of the conditional code it replaces. As a preprocessor generates preprocessor-
less C code, this means that all configuration choices have been hardcoded in the
resulting source code file. Hence, no run-time checks are needed anymore to deal
with this, nor should the compiler know about the configuration decisions. In the
case of the advice on Figure 10.5, the efficiency benefits seem to have vanished,
as conceptually the advice is implicitly called at the advised join points. How-
ever, as discussed before (in Section 5.4.2 and Section 8.2.5.2), static weavers like
Aspicere2 incorporate various optimisations like inlining or constant propagation



288 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 PMC* pt_transfer_sub(Parrot_Interp d, Parrot_Interp s,
2 PMC *sub){
3 #if THREAD_DEBUG
4 PIO_eprintf(s, "copying over subroutine [%Ss]\n",
5 Parrot_full_sub_name(s, sub));
6 #endif
7 return make_local_copy(d, s, sub);
8 }

Figure 10.6: Simple Conditional Compilation inside src/thread.c for the implementation of
the pt_transfer_sub procedure.

1 static void add_entry(STM_waitlist *waitlist,
2 struct waitlist_entry *entry) {
3 int successp = -1;
4 assert(entry->next == NULL);
5 do {
6 PARROT_ATOMIC_PTR_GET(entry->next, waitlist->first);
7 assert(successp != -1 || entry->next != entry);
8 assert(entry->next != entry);
9 PARROT_ATOMIC_PTR_CAS(successp, waitlist->first,

10 entry->next, entry);
11 } while (!successp);
12 #if WAITLIST_DEBUG
13 fprintf(stderr, "added %p(%p) to waitlist %p\n",
14 entry, entry->thread->interp, waitlist);
15 #endif
16 }

Figure 10.7: Simple Conditional Compilation inside src/stm/waitlist.c for the
implementation of the add_entry procedure.

to remove redundant dynamic checks. In the case of Figure 10.5, this means that
the resulting woven code is equivalent to the preprocessor approach, as the an-
notations statically determine the relevant join point shadows and inlining can be
applied. No additional function calls or checks are needed. Hence, if advice is
able to implement the conditionally guarded logic, the consequences on run-time
efficiency are not necessarily worse than for preprocessed code. However, the use
of a weaver incurs a higher compilation cost (more on this later).

10.2.2.3 Simple Conditional Compilation

This section considers a second special case of Fine-grained Conditional Compo-
sition, i.e. the appearance of one conditional block at the beginning or end of a



CHAPTER 10 289

1 /*base code*/
2 PMC* pt_transfer_sub(Parrot_Interp d, Parrot_Interp s,
3 PMC *sub){
4 return make_local_copy(d, s, sub);
5 }
6

7 /*aspect*/
8 void debug_transfer(Parrot_Interp S, PMC* Sub) before Jp:
9 execution(Jp,‘‘pt_transfer_sub’’)

10 && args(Jp,[_,S,Sub])
11 && thread_debug(_){
12 PIO_eprintf(S, "copying over subroutine [%Ss]\n",
13 Parrot_full_sub_name(S, Sub));
14 }

Figure 10.8: Aspect implementation of the Simple Conditional Compilation example of
Figure 10.6.

procedure. Figure 10.6 and Figure 10.7 give examples of these two cases respec-
tively. Note that the latter shows another manifestation of the scattered conditional
block of the previous subsection.

Simple Conditional Compilation can be implemented via normal before- or
after-advice on the base code procedures, in which the conditional code has
been completely removed. Figure 10.8 shows such an aspect for the example of
Figure 10.6. A similar approach can be used for Figure 10.7. The main observation
from these aspects, is that the pointcut is expressed in terms of build configuration
information (thread_debug on line 11). The configuration layer should com-
municate this information to the weaver’s database of meta data (in Aspicere: the
logic fact base) before join point matching can start. Hence, the build system is
coupled to the aspects instead of to the base code. Again, optimisations by the
weaver can eliminate redundant dynamic checks.

An alternative approach is the use of annotations, similar to the Scattered Con-
ditional Compilation (Figure 10.5). The disadvantage of this is that the base code
still contains configuration-like constructs, but on the upside base code developers
do not need to write aspects and can more easily integrate the desired logic with
the base code. Hence, a trade-off should be made between code readability and
development responsibilities.

10.2.2.4 Simple Conditional Compilation with Dependencies

A special case of Simple Conditional Compilation is depicted on Figure 10.9.
Here, there is still one conditional block at the end of a procedure, but it nests mul-
tiple levels of conditional compilation and contains the procedure’s return state-



290 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 static opcode_t fetch_op_be_4(NOTNULL(unsigned char *b)){
2 union {
3 unsigned char buf[4];
4 opcode_t o;
5 } u;
6 fetch_buf_be_4(u.buf, b);
7

8 #if PARROT_BIGENDIAN
9 # if OPCODE_T_SIZE == 8

10 return u.o >> 32;
11 # else
12 return u.o;
13 # endif
14 #else
15 # if OPCODE_T_SIZE == 8
16 return (opcode_t)(fetch_iv_le((INTVAL)u.o) & 0xffffffff);
17 # else
18 return (opcode_t) fetch_iv_le((INTVAL)u.o);
19 # endif
20 #endif
21 }

Figure 10.9: Simple Conditional Compilation with Dependencies in the implementation of
the fetch_op_be_4 procedure in src/packfile/pf_items.c.

ment. Based on the byte order (line 8) and the size of opcodes (lines 9 and 15), the
return value of the fetch_op_be_4 differs. There are four potential cases, but
in general nesting can lead to many more combinations.

Figure 10.10 shows a possible way to deal with this. One particular config-
uration is chosen as the base configuration (PARROT_BIGENDIAN defined and
OPCODE_T_SIZE different from 8) in the body of fetch_op_be_4. The two
advices on lines 13–30 encode the other configurations as C conditions and checks
based on the chosen configuration (lines 16–17 and 24–25). Aspicere2 imple-
ments advice on execution join points as a call to a procedure which contains
the advice body. Because the value for Size is constant, inlining and further opti-
misation techniques eliminate the call and the conditional checks. Eventually, the
woven code is equivalent to the code generated by the preprocessor. Normal C
development environments help developers in understanding the different control
flows, i.e. the possible configurations, in the extracted advice bodies. Annotations
are less desirable, because multiple ones are needed to control the choice of the
right return value.



CHAPTER 10 291

1 /*base code*/
2 static opcode_t fetch_op_be_4(NOTNULL(unsigned char *b)){
3 union {
4 unsigned char buf[4];
5 opcode_t o;
6 } u;
7 fetch_buf_be_4(u.buf, b);
8

9 return u.o;
10 }
11

12 /*aspect*/
13 opcode_t big_endian(int Size) after Jp
14 returning (opcode_t* Op):
15 execution(Jp,‘‘fetch_op_be_4’’)
16 && parrot_bigendian(_)
17 && opcode_t_size(Size){
18 if(Size==8) *Op=*Op >> 32;
19 }
20

21 opcode_t little_endian(int Size) after Jp
22 returning (opcode_t* Op):
23 execution(Jp,‘‘fetch_op_be_4’’)
24 && !!parrot_bigendian(_)
25 && opcode_t_size(Size){
26 if(Size==8){
27 *Op=(opcode_t)(fetch_iv_le((INTVAL)(*Op))
28 & 0xffffffff);
29 }else *Op=(opcode_t)fetch_iv_le((INTVAL)(*Op));
30 }

Figure 10.10: Aspect implementation of the Simple Conditional Compilation with
Dependencies example of Figure 10.9.

10.2.2.5 Simple Conditional Compilation with Declarations

A second special case of Simple Conditional Compilation, and the last subcategory
of Fine-grained Conditional Compilation, is Simple Conditional Compilation with
Declarations. Figure 10.11 illustrates this. Basically, this corresponds to Simple
Conditional Compilation at the end of a procedure with dependencies on local vari-
ables which have been declared inside a conditional block at the beginning of the
procedure. This can actually be implemented in a similar way as Figure 10.10, be-
cause the declared variable is only used in the advice. Figure 10.12 illustrates this.
Note that the check on line 19 incurs overhead compared to the original code in
Figure 10.11, as the return value of the procedures has to be dynamically checked



292 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 void* parrot_pic_opcode(PARROT_INTERP, INTVAL op){
2 const int core = interp->run_core;
3 #ifdef HAVE_COMPUTED_GOTO
4 op_lib_t *cg_lib;
5 #endif
6

7 if(core == PARROT_SWITCH_CORE ||
8 core == PARROT_SWITCH_JIT_CORE)
9 return (void*) op;

10 #ifdef HAVE_COMPUTED_GOTO
11 cg_lib = PARROT_CORE_CGP_OPLIB_INIT(1);
12 return ((void**)cg_lib->op_func_table)[op];
13 #else
14 return NULL;
15 #endif
16 }

Figure 10.11: Simple Conditional Compilation with Declarations in the implementation of
the parrot_pic_opcode procedure in src/pic.c.

for a null-pointer. This is the only way to distinguish between the return state-
ments on lines 7 and 9 of Figure 10.12, provided that the incoming Op argument
of parrot_pic_opcode is not NULL.

10.2.3 Class 3: Coarse-grained Conditional Compilation

Next to Conditional Definitions and Fine-grained Conditional Compilation, the
third main category of conditional compilation in the Parrot VM is Coarse-grained
Conditional Compilation. In essence, this is similar to Fine-grained Conditional
Compilation, but instead of controlling parts of a procedure definition, the whole
body (not the definition) is conditional. We consider two subcategories, i.e. Parti-
tioned Conditional Compilation and Semi-partitioned Conditional Compilation.

10.2.3.1 Partitioned Conditional Compilation

Partitioned Conditional Compilation encloses the whole procedure body. Typically
(Figure 10.13), there are two major implementations for a procedure body (line 5
and lines 7–22). In this case, there is nesting of conditional compilation, as the
second branch of the conditional block has two possible implementations as well
(lines 8–9 and 11–21).

Because the conditional logic fills the whole procedure body, extracting the
different configurations into separate modules and deciding at build-time which
module to use, seems a feasible approach. As mentioned for Conditional Defini-



CHAPTER 10 293

1 /*base code*/
2 void* parrot_pic_opcode(PARROT_INTERP, INTVAL op){
3 const int core = interp->run_core;
4

5 if(core == PARROT_SWITCH_CORE ||
6 core == PARROT_SWITCH_JIT_CORE)
7 return (void*) op;
8

9 return NULL;
10 }
11

12 /*aspect*/
13 void* computed_goto(INTVAL Op) after Jp
14 returning (void** Tmp):
15 execution(Jp,‘‘parrot_pic_opcode’’)
16 && args(Jp,[_,Op])
17 && have_computed_goto(_){
18 op_lib_t* cg_lib;
19 if(!(*Tmp)){
20 cg_lib = PARROT_CORE_CGP_OPLIB_INIT(1);
21 *Tmp= ((void**)cg_lib->op_func_table)[Op];
22 }
23 }

Figure 10.12: Aspect implementation of the Simple Conditional Compilation with
Declarations example of Figure 10.11.

tions, the number of modules may explode, however. Alternatively, one imple-
mentation can be chosen and the others can be implemented as around-advice
which is triggered by configuration information, as we have seen earlier in this
chapter. No run-time overhead is to be expected, as any configuration is uniquely
determined by the value of build-time configuration parameters.

Note that fetch_iv_le has a dual form, i.e. fetch_iv_be, in which the
conditional logic is negated by omitting the !-sign on line 4. Reuse of modules or
advice depends on the ability to assign different configuration conditions to them
in the configuration layer or the pointcut.

10.2.3.2 Semi-partitioned Conditional Compilation

The second incarnation of Coarse-grained Conditional Compilation, i.e. Semi-
partitioned Conditional Compilation, is similar to Partitioned Conditional Compi-
lation, except that the procedure’s return statement is not conditionally guarded.
This is illustrated on Figure 10.14 (line 22). In principle, Semi-partitioned Con-
ditional Compilation does not require a drastically different approach from Par-



294 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 PARROT_WARN_UNUSED_RESULT
2 PARROT_CONST_FUNCTION
3 INTVAL fetch_iv_le(INTVAL w){
4 #if !PARROT_BIGENDIAN
5 return w;
6 #else
7 # if INTVAL_SIZE == 4
8 return (w << 24) | ((w & 0xff00) << 8) |
9 ((w & 0xff0000) >> 8) | (w >> 24);

10 # else
11 INTVAL r;
12

13 r = w << 56;
14 r |= (w & 0xff00) << 40;
15 r |= (w & 0xff0000) << 24;
16 r |= (w & 0xff000000) << 8;
17 r |= (w & 0xff00000000) >> 8;
18 r |= (w & 0xff0000000000) >> 24;
19 r |= (w & 0xff000000000000) >> 40;
20 r |= (w & 0xff00000000000000) >> 56;
21 return r;
22 # endif
23 #endif
24 }

Figure 10.13: Partitioned Conditional Compilation of the implementation of the
fetch_iv_le procedure in src/byteorder.c.

titioned Conditional Compilation. The return statement can be distributed over
the conditional blocks to enable the same solutions as for Partitioned Conditional
Compilation.

This concludes the categorisation of conditional compilation patterns in the
Parrot VM. The next section discusses our findings.

10.2.4 Validation #1: Aspicere Meets Goal L1

The classification of conditional compilation patterns has taught us a number of
things. First, separation of different variants into modules can in some cases avoid
the use of aspects. However, it requires tight control over the configuration layer,
and often results in explosion of modules because of nested conditional compila-
tion.

Second, aspects prevent this proliferation of modules by encoding configura-
tion logic inside the pointcut (Simple Conditional Compilation) or inside the ad-
vice body (Simple Conditional Compilation with Dependencies/Declarations). In



CHAPTER 10 295

1 PARROT_API
2 opcode_t *
3 Parrot_sleep_on_event(PARROT_INTERP, FLOATVAL t,
4 opcode_t *next)
5 {
6 #if PARROT_HAS_THREADS
7 if (interp->sleeping)
8 fprintf(stderr, "nested sleep might not work\n");
9 /*

10 * place the opcode_t* next arg in the event data, so
11 * that we can identify this event in wakeup
12 */
13 Parrot_new_timer_event(interp, (PMC *) next, t,
14 0, 0, NULL, EVENT_TYPE_SLEEP);
15 next = wait_for_wakeup(interp, next);
16 #else
17 /*
18 * TODO check for nanosleep or such
19 */
20 Parrot_sleep((UINTVAL) ceil(t));
21 #endif
22 return next;
23 }

Figure 10.14: Semi-partitioned Conditional Compilation of the implementation of the
Parrot_sleep_on_event procedure in src/events.c.

the latter case, redundant dynamic checks can mostly be eliminated by the weaver.
However, the General Case of Fine-grained Conditional Composition often can-
not be modeled as robust advice, because it needs very fine-grained join points
like assignments and macro expansions, which potentially couple the advice too
closely with implementation details. This is an important problem to solve. A
second important issue is advice variability, as mentioned for Scattered Condi-
tional Compilation. To avoid multiple copies of the same advice with only minor
differences [33], advice should be robust to variability and accessible context.

Third, except for the Scattered Conditional Compilation example given in Fig-
ure 10.4, the advices we have shown exploit build configuration information in
their pointcut to decide whether the advice should match or not. This commu-
nication channel between the build system and the weaver is crucial to decouple
the base code from configuration logic. This concept has been suggested in the
context of RC4 in Section 2.4.5 on page 67, and it actually is an extension of the
use of build system information in pointcuts as used in the Quake 3 and ASML
case studies. In the case of preprocessor-driven systems, it is the key technique to
couple configuration decisions to advice instead of to the base code.



296 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

To summarise, Aspicere is able to extract some, but not all conditionally guard-
ed base code into advice. It needs finer-grained join points to be able to implement
more cases as advice, but in that case the advice could become too dependent on
and coupled with the base code. Hence, this should be investigated in more depth.
The next section considers the impact on the build system of the application of the
presented aspects in the Parrot VM.

10.3 Impact on the Build System

This section discusses the impact on the build system of the introduction of aspects
in the Parrot VM. We consider the following four build problems:

1. physical integration of Aspicere2 with the build process

2. migration to the re-engineered system

3. build time increase and incremental weaving

4. communication between Aspicere2 and the build system

10.3.1 Integration of Aspicere2 with the Build Process

Just as in the Quake 3 and CSOM cases, we have first generated the build de-
pendency graph of a complete build of the Parrot VM. Figure 10.15a shows the
resulting build DAG. There is a yellow cluster in the middle (header files), with a
red border (object files) and blue satellite nodes (C files). In the lower left half of
the graph, .pmc and .pm files occur. As .pmc files are transformed into .c files (as
mentioned earlier), many .c files depend on .pmc files. On the upper right, run-
time support files of the Parrot VM are constructed. To summarise, we only need
to take into account the central cluster.

Figure 10.15b shows a filtered version of Figure 10.15a, in which the lower left
targets have been hidden and all header files as well. What is left is a red cluster
in the middle with .c files around it. The object files are actually linked into two
libraries, i.e. a static one (green node) and a dynamic one (black node). The static
one is always built, whereas the dynamic library is only constructed if the build
engineer has configured the build like this. Hence, the build architecture of the
Parrot VM is very simple. The actual VM implementation is built into a library,
and this is linked with a main file and a Perl library into the VM executable (“par-
rot”). There is also a “miniparrot” executable, which is a dependee of “parrot”.
This is used for bootstrapping the build of “parrot” (cf. compilers), and also de-
pends on the static or dynamic library. To summarise, we can consider the libraries
as “whole program” for the aspects.



CHAPTER 10 297

t.ot.ct.dylibt.ht.pmct.pm

(a)

t.ot.ct.dylibt.a

(b)

Figure 10.15: Build DAG of Parrot 0.4.14, (a) in full and (b) after hiding .pm, .pmc, .dump,
.pl and header files. A dynamic (black) and static (green) library are built from all

object files at once.



298 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

1 CC = @cc@
2 CFLAGS = $(CC_INC) @ccflags@ @cc_debug@ @ccwarn@ \
3 @cc_hasjit@ @cg_flag@ @gc_flag@ $(CC_SHARED)
4 ...
5 LD = @ld@
6 ...
7 LINK = @ld@
8 ...
9 $(LIBPARROT_SHARED): $(O_FILES)

10 $(MKPATH) @blib_dir@
11 $(LD) $(LD_SHARE_FLAGS) $(LDFLAGS) \
12 @ld_out@$@ @libparrot_soname@ \
13 $(O_FILES) $(C_LIBS) $(ICU_SHARED)
14 #CONDITIONED_LINE(libparrot_shared_alias): \
15 ( cd @blib_dir@ ; ln -sf \
16 @libparrot_shared@ @libparrot_shared_alias@ )

Figure 10.16: Original build commands and rules in the Parrot build script template
(config/gen/makefiles/root.in).

We have integrated Aspicere2 with the construction of the dynamic library.
The approach for doing this is similar to previous cases, except that Parrot uses
a custom build layer generation and configuration layer. Figure 10.16 shows the
relevant parts of the “root.in” build script template. Similar to Quake 3, build
variables are consistently used for abstracting the name of the C compiler (line 1)
and linker (lines 5 and 7). As shown in Figure 10.17, these variables could eas-
ily be overridden by the name of the LLVM front end, and extra variables were
added on lines 3–7 for the Aspicere2 weaver scripts. The library construction
rule of lines 9–16 on Figure 10.16 is split in two on lines 9–21 of Figure 10.17.
The extra compilation flags for the LLVM front end (-fno-builtin -g -c
-emit-llvm) had to be provided during configuration of the build layer, together
with the decision to build a dynamic library.

To conclude, visualisation of the build architecture, and the querying and fil-
tering features of MAKAO have been able to support us in integrating Aspicere2
in the Parrot VM build.

10.3.2 Migration to the Re-engineered System

Decoupling the base code from conditional logic entails removing the conditional
preprocessor constructs from the source code. Depending on the specific category
of conditional compilation (Section 10.2), conditional blocks should be imple-
mented in a particular way. Each technique has different consequences for the
conditional logic: extraction to advice body, extraction of different variants to dif-



CHAPTER 10 299

1 CC = llvm-gcc
2 ...
3 FLAGS = @ccflags@ @cc_hasjit@ @cg_flag@ @gc_flag@
4 LDD = lto.sh
5 LDDD = link.sh -aspects /path/to/aspects/aspects.lst \
6 -modules /path/to/aspects/modules.lst
7 ASPECTS =‘paste -s -d\ /path/to/aspects/aspects.lst‘
8 ...
9 $(LIBPARROT_SHARED) : $(LIBPARROT_SHARED).bc

10 $(LDD) $(LD_SHARE_FLAGS) $(LDFLAGS) \
11 @ld_out@$@ @libparrot_soname@ \
12 $(LIBPARROT_SHARED).bc $(C_LIBS) $(ICU_SHARED)
13 #CONDITIONED_LINE(libparrot_shared_alias): \
14 ( cd @blib_dir@ ; ln -sf \
15 @libparrot_shared@ @libparrot_shared_alias@ )
16 $(ASPECTS): ;
17 $(LIBPARROT_SHARED).bc : $(O_FILES) $(ASPECTS)
18 $(MKPATH) blib/lib
19 $(LDDD) $(FLAGS) $(LD_SHARE_FLAGS) $(LDFLAGS) \
20 @ld_out@$@ @libparrot_soname@ \
21 $(O_FILES) $(C_LIBS) $(ICU_SHARED)

Figure 10.17: Modified build commands and rules in the Parrot build script template
(config/gen/makefiles/root.in).

ferent modules, etc. Automatic extraction is not straightforward because of the
different trade-offs between modularity and manageability, speed and modularity,
etc. Hence, a one-time migration from a tangled preprocessor-driven implementa-
tion to an aspect-based one is not feasible.

In the ASML case, stepwise migration from the initial system to an aspect-
based implementation required support in the build system to support the co-
existence of old and new components. However, in the Parrot case this is not
really a problem. If aspects are applied to the whole dynamic library at once and
compilation flags are still passed to the compiler, preprocessor-based conditional
compilation can co-exist with a (partial) aspect implementation. We have been
able to conclude this from knowledge of the build architecture.

10.3.3 Build Time Increase and Incremental Weaving

Because all source code files end up in the same dynamic library, the linking takes
relatively long. We have no exact measurements of the weaving time, but as ob-
served in earlier case studies, incremental weaving is a necessity to not reduce the
developers’ productivity. Splitting up the build rules and adding the aspects as
dependee (lines 9–21 of Figure 10.17) is only a partial solution. The Aspicere2



300 EXTRACTING PREPROCESSOR CODE INTO ASPECTS

link-time weaver lacks internal incremental weaving support to succinctly resolve
this problem completely.

10.3.4 Communication between Aspicere2 and the Build Sys-
tem

Two mechanisms are needed to support extraction of conditional compilation logic.
The first one deals with extraction of conditional logic into source code modules.
We have not experimented with this, but (de)selection of modules requires con-
ditional build logic in the build script template. By either setting environment
variables or by using variables defined during configuration, the right collection of
modules can be selected.

The second mechanism is the exchange of build configuration decisions to the
weaver. By querying the build dependency graph in Figure 10.15b, we have ob-
served that preprocessor constants are defined in the CFLAGS variable on lines 2–3
of Figure 10.16. Only a couple of the configuration variables used in the definition
of CFLAGS contain preprocessor flags. Hence, we have defined a new variable
(FLAGS on line 3 of Figure 10.17) with only these variables. By passing this
variable to the build rule which links all base modules together in a link module
(line 19 of Figure 10.17), the “link.sh” script can deduce the values of active pre-
processor flags and assert these flags as facts during compilation of the Prolog fact
base. Existing modules which still contain preprocessor constructs are not broken
(the flags are still passed to the compiler), whereas the aspects have direct access
to the chosen configuration options.

Note that preprocessor constants are not only passed via compiler flags, but
also (similar to autoconf in Section 2.1.3.1) via macro definitions in header files,
i.e. parrot/config.h and parrot/feature.h. To deal with this, we have used an ad
hoc Perl script for extracting such definitions during the execution of the “link.sh”
script. The results of this script are asserted afterwards in the Prolog fact base.
We have not taken into account other header or implementation files which could
define macro constants.

10.4 Validation #2: Roots of Co-evolution Experi-
mentally Confirmed

The case study in this chapter provides a fifth and last experimental validation of
the roots of co-evolution in a (legacy3) system in which AOP has been introduced.
We especially have encountered problems regarding RC3 and RC4.

3As mentioned before, the Parrot VM is not a legacy system, but its preprocessor usage is representative for legacy
systems.



CHAPTER 10 301

RC1 and RC2 have not caused actual trouble because the Parrot VM has a
relatively simple build system and because MAKAO has enabled us to understand
its architecture. Incremental weaving (RC3) is, just as in earlier cases, a problem
which we have only been able to deal with partially. Internal support is needed in
the weaver. RC4 has required us to communicate configuration information to the
aspect weaver, or alternatively to select the right base modules if conditional logic
is not extracted into advice. Knowledge of the build internals, especially the values
of build variables, has enabled us to integrate Aspicere2 with the build system.

10.5 Validation #3: MAKAO Achieves Goal T2
The knowledge obtained via MAKAO’s visualisation, querying and filtering fea-
tures have enabled us to integrate Aspicere2 in the build system via manual mod-
ification of the build script template. Visualisation has taught us how the Parrot
VM build architecture works, assisted by filtering to reduce detail. Querying has
allowed us to query for the values of build variables.

10.6 Validation #4: Aspicere Meets Goal L2
Aspicere’s logic-based pointcut language has shown to be a perfect mechanism
to integrate build system data, in this case configuration choices, to the advices.
Combined with generic advice, it is able to replace conditional compilation by
aspects in various cases. However, as discussed in Section 10.2.4, Aspicere has
some limitations to fully be able to implement conditional logic as advice.

10.7 Conclusion
In this chapter, we have explored how aspects can be used to extract conditional
compilation from the base code. This decouples the base code from the build
system. We have categorised the different patterns of conditional compilation us-
age in the Parrot VM to identify aspect language challenges, and have described
which build problems did occur by introducing AOP into Parrot. Especially RC3
and RC4 have been considered. MAKAO has been used to understand the build
architecture (goal T2), whereas Aspicere’s integration with the build system has
enabled configuration of advice by the build system (goal L2).

This chapter has described the last case study of this dissertation. A summary
of the validation results of each case study is given in the next chapter, which
presents the conclusions of this dissertation.





The End is the Beginning is the End...

The Smashing Pumpkins

11
Conclusions and Future Work

THIS chapter presents the conclusions of this dissertation and directions for
future work. First (Section 11.1), we recapitulate the six research questions

we have addressed in the introduction. A detailed account on conceptual contri-
butions (Section 11.2.1) summarises how we have addressed these research ques-
tions. Afterwards, technical contributions (Section 11.2.2) are discussed as well as
various directions for future work (Section 11.3). Section 11.4 presents our final
conclusions.

11.1 Problem Statement

Legacy systems are old, mission-critical software systems which are still plagued
by constantly changing requirements [21, 58]. To cope with these requirements,
legacy systems have to be re-engineered, because re-implementation from scratch
is economically not feasible. Unfortunately, re-engineering is hampered by a lack
of knowledge of the system’s internals and the fear of changing critical function-
ality. AOSD [134] has been proposed as a means to overcome these two prob-
lems [51, 103, 142, 202, 170]. We have conjectured that the introduction of AOP
technology in a legacy system is hampered by the phenomenon of co-evolution of
source code and the build system. This forms the core topic of this dissertation.

Co-evolution is not a new phenomenon in software development, as various
researchers have shown how different software models and different levels of de-
scribing and thinking about software can be causally connected to one another [243,



304 CONCLUSION AND FUTURE WORK

co-
evolution

co-
evolution

Aspicere

source
code

AOSD
source
code

build
system

build
system

MAKAO

???

Figure 11.1: High-level overview of co-evolution of source code and the build system.

232, 85, 128, 172]. Co-evolution has been generalised by Favre [85] into a poten-
tial phenomenon between any two (or more) software artifacts. If one end of the
co-evolution changes, the other side has to follow to enforce consistency between
the two artifacts.

This dissertation has focused on co-evolution of source code and the build
system, for which initial indications and early experimental evidence has been
described in the literature [57, 58]. The primary focus has been to determine what
kind of tools can manage the problems caused by co-evolution of source code
and the build system. The design and scope of such tools depends on a crisp
notion of what co-evolution of source code and the build system actually means.
However, these fundamental reasons for co-evolution had not been investigated
before. Based on a conceptual explanation of co-evolution of source code and
the build system, tool support has been designed. This has been used to collect
empirical evidence in legacy systems to validate the conceptual explanation of co-
evolution of source code and the build system, and the ability of tool support to
assist in understanding and managing the co-evolution.

The consequences of co-evolution of source code and the build system become
particularly visible in the context of the introduction of AOP technology in legacy



CHAPTER 11 305

systems, either when aspects are applied to reverse-engineer the base system or
to re-engineer it. AOSD brings with it a major paradigm shift in the source code,
i.e. one end of the co-evolution relation undergoes a drastic change. Because of
co-evolution of source code and the build problem, major changes are necessary in
the build system to keep both ends of the co-evolution consistent with each other.
This is depicted in Figure 11.1 by means of the question marks.

Unfortunately, legacy systems have a legacy build system, of which the be-
haviour is not well-understood anymore. Because this lack of understanding pre-
cludes making changes to the build system, the build system is bound to become
unsynchronised w.r.t. the source code. The uncertainty about the build system’s
behaviour and structure leads to compromises in the integration of AOP technol-
ogy with the build system, e.g. because the notion of “whole program” is not
clearly defined or the configuration of aspects cannot be sufficiently controlled.
These compromises put restrictions on the potential of AOSD technology in the
source code.

This dissertation has examined the conceptual explanation of the problems
related to integration of AOP technology in the build system, by linking these
problems to the conventional co-evolution of source code and the build system.
This conceptual explanation has sparked ideas for adaptation of AOSD technol-
ogy for dealing with co-evolution of source code and the build system. Experi-
mental evidence has been collected to validate the existence of problems caused
by co-evolution of source code and the build system when AOP technology is in-
troduced in the source code. This evidence has also evaluated the ability of AOSD
technology to deal with co-evolution.

To summarise, these are the six research questions addressed in this disserta-
tion:

1. What are the fundamental reasons for co-evolution of source code and the
build system?

2. What kind of tools do we need to understand and manage the co-evolution
phenomena of source code and the build system in legacy systems?

3. Can we use our tools to confirm the conceptual reasons experimentally by
applying them to third-party legacy systems?

4. How does the introduction of AOSD add to the fundamental reasons for
co-evolution of source code and the build system?

5. How do we design AOSD technology which adequately deals with the co-
evolution when applied to legacy systems?

6. Can we validate this technology by using it to manage co-evolution phe-
nomena in existing legacy systems?



306 CONCLUSION AND FUTURE WORK

The next section considers how the contributions of this dissertation have ad-
dressed these six research questions.

11.2 Contributions

This section summarises the conceptual (Section 11.2.1) and technical (Section 11.2.2)
contributions made in this dissertation. The conceptual contributions each address
one research (sub-)question.

11.2.1 Conceptual Contributions

We cover the aforementioned research questions one by one in order to discuss the
contributions made in this dissertation to address these questions.

11.2.1.1 What is Co-evolution of Source Code and the Build System?

Applying Favre’s [85] taxonomy, co-evolution of source code and the build sys-
tem corresponds to “asynchronous evolution of source code and the build system
during which changes on one artifact have a vertical impact on the other one and
vice versa”. Corrective actions are required to enforce consistency between the
two artifacts.

To be able to understand, observe and act upon co-evolution of source code
and the build system, four roots of co-evolution have been postulated:

RC1 Modular reasoning in programming languages and compilation units in build
systems are strongly related.

RC2 Build dependencies are used to reify the architectural structure of the source
code.

RC3 Architectural interfaces in the source code are not always respected by in-
cremental build processes.

RC4 Build system configuration layers are used as a poor man’s support for prod-
uct line-styled variability of source code.

Each of these roots has been distilled from research on build systems and pro-
gramming languages, and represents a partial explanation for co-evolution. The
four roots of co-evolution form the basis for understanding the co-evolution of
source code and the build system, and for tool and aspect language support to deal
with it.



CHAPTER 11 307

RC1 RC2 RC3 RC4

Linux kernel ViQF ViQF ViQF

Kava ViQFRVe ViQFVe

Quake 3 ViQI ViQ

ASML ViQFVeR ViQFVeR ViQFVeR I

CSOM ViQ ViQ ViQ

Parrot ViQ ViQ ViQFI

Table 11.1: Evaluation of the proposed tool (Visualisation, Querying, Filtering,
Verification and Re-engineering) and language support (Integration of the build

system with the aspect language) for understanding of and dealing with
co-evolution problems which are explained by each root of co-evolution. Colored

cells highlight build problems related to incremental weaving or the understanding
of configuration layer which have not been solved by our tool and aspect language

support. Empty cells indicate that a particular root of co-evolution is not
applicable to a given case study.

11.2.1.2 Tool Support to Understand and Manage Co-evolution Phenom-
ena?

Based on the conceptual explanation of co-evolution of source code and the build
system (the four roots of co-evolution), we have proposed tool support to help with
the understanding and management of build system problems in general (goal T1)
and of the co-evolution of source code and the build system (goal T2). MAKAO
is a re(verse)-engineering framework for build systems which is able to visualise,
query, filter, verify and re-engineer build systems. The build system model on
which MAKAO is based is the dependency graph of a concrete build run, enhanced
with dynamic values of variables, static information of build scripts and derived
knowledge about implicit dependencies.

We have validated MAKAO’s ability to identify symptoms of co-evolution of
source code and the build system on six case studies, as shown in Table 11.1.
For a given case study, this table specifies for each root of co-evolution the tool
and aspect language support which has helped in understanding and managing co-
evolution of source code and the build system.

A first observation is that visualisation and querying of build systems have
been useful for every case study. This is not surprising, as visualisation provides
an intuitive overview of a build system, whereas querying allows direct access to
static and dynamic build data. However, neither of these two tool features con-
veys explicit data about the build configuration. As indicated for the Linux case,
MAKAO has not helped us to understand the custom configuration layer of the
Linux kernel build system. This is an explicit design choice of MAKAO, but sys-



308 CONCLUSION AND FUTURE WORK

tems like the Linux kernel which are extremely configurable require configuration
layer tool support for understanding and managing symptoms of co-evolution of
source code and the build system.

Second, filtering of the build system has only been needed for large build sys-
tems with complex build recursion. Similarly, re-engineering of the build system
has only been used (or expected to be used) for invasive, large build script changes.
In the other case studies, the information obtained via visualisation and querying
has sufficed to steer manual build changes. Verification is expected to be crucial
for checking the validity of build changes when MAKAO’s re-engineering is used,
but in the Kava case this has not been necessary.

In general, the proposed tool support has proven to be capable of improving
understanding of co-evolution of source code and the build system in most cases.

11.2.1.3 Experimental Evidence of the Roots of Co-evolution in Legacy Sys-
tems?

To validate the four roots of co-evolution, we have investigated the evolution of
the Linux kernel build system from its inception until now. Co-evolution of source
code and the build system forms a common thread throughout the evolution of
the Linux kernel build system. There has been a continuous struggle to improve
the “recursive make” build to facilitate the integration of new source code com-
ponents (RC1) and the synchronisation of the build system dependencies with the
source code architecture (RC2). Explicit evidence has been found about the per-
petual trade-off between omitting source code dependencies in the build process
to improve build speed and safeguarding build correctness (RC3). The configura-
tion layer lives under extreme pressure to manage the abundant potential of source
code configurability, which has clearly determined its evolution (RC4).

Hence, we have found concrete experimental evidence of co-evolution of source
code and the build system, and this evidence can be attributed to the four roots of
co-evolution. This validates the four roots of co-evolution.

11.2.1.4 What is the Relation between the Introduction of AOSD and Co-
evolution?

By relating the introduction of AOP technology in a legacy system (horizontal
arrow on top of Figure 11.1) to the four roots of co-evolution, we can infer that the
build system also has to change to retain consistency between source code and the
build system (horizontal arrow at the bottom of Figure 11.1).

Aspects require whole-program reasoning at the source code level [219, 162,
135] instead of traditional modular reasoning [187] (RC1). Inversion of dependen-
cies [182, 160, 162], combined with fine-grained composition of aspects and the
intensional selection of join points via pointcuts hamper synchronisation of source



CHAPTER 11 309

code and build system dependencies (RC2). Consistent composition of aspects
induces new challenges for incremental weaving because of whole-program rea-
soning [135], fine-grained composition and aspect interaction [137, 113, 114, 74]
(RC3). The higher potential of source code modularity [219, 162], the influence of
weaving order [163, 137, 113, 114, 74] and the existence of dependencies between
aspects [75] lead to higher demands on the configuration system (RC4). However,
aspects also have the ability to decouple the base code from configuration param-
eters if the build system can exchange the build configuration and structure with
the aspects, i.e. if the build system is integrated with the aspect language.

Given these influences of the introduction of AOP on the source code, the four
roots of co-evolution suggest that these non-trivial changes require corresponding
changes on the build system. Otherwise, the source code and the build system
become inconsistent.

11.2.1.5 AOSD Technology to Deal with Co-evolution?

Apart from tool support, the four roots of co-evolution have also contributed to
aspect language support for managing co-evolution of source code and the build
system. RC1, RC2 and RC4 suggest that the exchange of build system information
between the build system and the aspects can improve the robustness of aspects to
the build architecture and configuration (goal L2). The build architecture e.g. con-
tains knowledge about the main components in the source code architecture [84],
while the configuration choices can be used to extract configuration logic into as-
pects. The case studies have provided evidence of this.

We have presented the design and implementation of Aspicere, i.e. an as-
pect language for C which is based on the principles of logic meta-programming
(LMP) [237, 30]. Aspicere fulfils goals L1 and L2. To deal with legacy systems
(goal L1), Aspicere only introduces two new constructs to C, has an expressive
pointcut language, is capable of specifying generic advice and provides access to
a variety of join point context and weave-time meta data. The pointcut language is
based on a logic programming language (with a temporal extension) to compose
robust pointcuts in terms of Prolog queries and facts. The logic facts form the key
entry point for the integration of the build system with Aspicere (goal L2), i.e. to
pass build system structure and configuration information to Aspicere’s logic fact
base. This enables access to configuration decisions and build dependencies in
pointcuts and advice, which is more powerful than the traditional integration of
preprocessor constructs with the base code.

11.2.1.6 Validation of AOSD Technology to Deal with Co-evolution?

We have performed five case studies in which AOP technology is introduced in a
legacy C system (Table 11.1 below the Linux kernel). These case studies have col-



310 CONCLUSION AND FUTURE WORK

lected additional experimental evidence of the existence of co-evolution of source
code and the build system (attributed to RC1, RC2, RC3 and RC4), and of the abil-
ity of Aspicere to deal with legacy systems (goal L1) and to manage co-evolution
of source code and the build system (goal L2). At the same time, these cases have
validated MAKAO’s ability to help in understanding and managing symptoms of
co-evolution of source code and the build system in the presence of AOSD tech-
nology (see Section 11.2.1.2).

The main co-evolution problem attributed to RC1 and RC2 is the understand-
ing and definition of the notion of “whole program”, i.e. the scope of aspects.
Theoretically, aspects apply across the whole base code, but the boundaries of
libraries and executables, and complex interactions between these build compo-
nents blur this notion. In fact, the build system has explicit control over the scope
of aspects and hence the semantics of the composed AOSD system.

Current aspect weavers require more time to build a system than base code
compilers. Because of the fine-grained aspect composition, the build system is not
able to externally accelerate the weaving process without making overly simplistic
assumptions which might cause inconsistent builds (RC3). Either weavers should
provide internal support for incremental weaving, or build systems should become
aware of AOP composition. As witnessed by the colored cells in Table 11.1, a lot
of work is still needed to solve the co-evolution problems caused by RC3.

The increased potential for configurability in an AOSD-based system requires
tight control. Apart from determining the high-level scope of aspects (“whole
program” of RC1), configuration entails selection of a consistent set of aspects
to apply on a system and the association of aspects to specific sets of base code
modules. This is a challenging task, especially when the configurations heavily
fluctuate, e.g. during migration of the system (cf. the ASML case study).

Aspicere’s support for integration of build structure and configuration infor-
mation with the logic fact base (goal L2) has been useful in three cases. The
Quake 3 case uses build component information, the aspect implementation of
ASML’s return-code idiom exploits knowledge of the current build configuration
and the Parrot case study applies the currently active configuration options. No
application of build dependency information has been presented, but we believe
that exchange of build system information with the aspect language in general is
an effective means to deal with problems caused by co-evolution of source code
and the build system. In general, Aspicere has shown to be capable of dealing with
legacy systems (goal L1).

11.2.2 Technical Contributions

Apart from conceptual contributions directly aimed at addressing the six research
questions, various technical contributions have been made. This section lists these



CHAPTER 11 311

contributions.

Investigation of GBS The GNU Build System has been presented as an illustra-
tion of the build system model used throughout this dissertation, i.e. the combina-
tion of a build and configuration layer, and of the extensive range of channels for
configuration between source code and the build system.

Survey of Build Problems We have analysed the research and practice of build
systems and have come up with a list of build problems which hamper build sys-
tems in legacy systems. Solving the majority of these build problems corresponds
to goal T1.

MAKAO Prototype We have built a prototype of MAKAO1 based on Perl scripts,
the GUESS graph manipulation framework2 and the SWI Prolog engine3. This
prototype has been used throughout all case studies.

Application of MAKAO on Build Problems Apart from support for co-evolu-
tion of source code and the build system, MAKAO has been designed to deal with
most of the identified build problems (goal T1). We have validated this on typical
build problems in the context of the Kava system, Quake 3 and Linux 2.6.16.18
build systems. The five core features of MAKAO have been capable of tackling
the majority of build problems.

Survey of Aspect Languages for C We have made a survey of aspect languages
for C in order to compare their language and weaver characteristics. This informa-
tion has been used to evaluate the existing aspect languages w.r.t. the requirements
resulting from goals L1 and L2.

Aspicere Aspicere is our aspect language for C which is based on LMP [237, 30]
and has been inspired by Cobble [142, 202], an aspect language for Cobol. Apart
from conventional join points like call and execution, Aspicere provides de-
limited continuation join points to enable control over the resumption of a proce-
dure. The Prolog-based pointcut language facilitates robust pointcuts which can
make use of build structure and configuration meta data stored as logic facts (goal
L2). Advice is generic to make it robust to variability in join point context, and
Aspicere does only introduce a limited number of new constructs to C (goal L1).
Aspicere has been applied in the five AOP case studies.

1http://users.ugent.be/~badams/makao/
2http://graphexploration.cond.org/
3http://www.swi-prolog.org/

http://users.ugent.be/~badams/makao/
http://graphexploration.cond.org/
http://www.swi-prolog.org/


312 CONCLUSION AND FUTURE WORK

Aspicere1 Aspicere14 is a source-to-source weaver for Aspicere which has been
used in the Kava case. It is implemented in Java, and is based on XML process-
ing [142, 202].

Aspicere2 Aspicere25 is a link-time weaver for Aspicere built on top of the
LLVM framework6 and the SWI Prolog engine7. This foundation enables pow-
erful static analysis and optimisation of the woven code, and fosters extensibility
of the weaver. Aspicere2 has been used in all case studies except for the Kava
case.

cHALO cHALO is a history-based extension of Aspicere which is based on the
HALO [115] aspect language for Lisp. At run-time, a modified Rete-engine (based
on CLIPS8) manages program history and determines whether or not join points
match. The transparent connection between pointcut primitives and the history
retention strategy enables tight control of memory and run-time requirements.

11.3 Future Work

This section presents opportunities for future work. We have made a distinction
between minor (Section 11.3.1) and major (Section 11.3.2) areas of future work.
The former correspond to more technical problems, whereas the latter represent
fundamental open problems.

11.3.1 Minor Future Work

This section considers five areas of more technical future work.

Incremental Weaving in Aspicere2 As identified on various occasions in this
dissertation and in Table 11.1, Aspicere2 does not provide incremental weaving.
Aspicere1 did not either, but this weaver could benefit from the natural ability
for incremental weaving source-to-source weavers have. The main issues to build
incremental weaving into Aspicere2 are to keep track of which link modules corre-
spond to which source files, to find out which link modules have been woven into
and which ones not, to selectively (un)weave certain parts of the link module and
to enable incremental execution of static analyses. The latter is the most complex
problem to deal with.

4http://users.ugent.be/~badams/aspicere1/
5http://users.ugent.be/~badams/aspicere2/
6http://llvm.org/
7http://www.swi-prolog.org/
8http://clipsrules.sourceforge.net/

http://users.ugent.be/~badams/aspicere1/
http://users.ugent.be/~badams/aspicere2/
http://llvm.org/
http://www.swi-prolog.org/
http://clipsrules.sourceforge.net/


CHAPTER 11 313

Support for the Configuration Layer in MAKAO MAKAO has only focused
on the build layer enhanced with build-time data. In the case of the Linux kernel,
support for analysis of configuration specifications could have given us informa-
tion about constraints between source code components, explicit mappings be-
tween source code and the build system, etc. A simplified model of configuration
specifications should be derived from product line research and should be inte-
grated into MAKAO. The enhanced MAKAO could be used to revisit the Linux
kernel case study.

Online Filtering Support in MAKAO The current MAKAO prototype only
allows offline filtering with logic rules. Integration into GUESS requires online
synchronisation of the Gython graph model and the Prolog fact base.

Optimising Speed of Weaving and Woven Code Aspicere2 has not yet been
thoroughly profiled. The woven programs it generates have not been instrumented
either to measure their performance. Refactoring of Aspicere2 should be steered
by identification of areas for speed improvement.

Generative Advice Cobble [202] and Mirjam [179] both have provisions for
generative advice, which is a more advanced form of generic advice. We are
interested into an extension of Aspicere2 with generative advice to improve the
robustness of advice to join point variability.

11.3.2 Major Future Work

This section discusses seven major areas of future work.

An AOP-aware Build System We have argued how the four roots of co-evo-
lution suggest major changes in the build system for keeping the build system
consistent with the source code changes introduced by AOSD. Because the re-
implementation of a legacy system’s build system is not feasible because of in-
vestments and the lack of internal knowledge, this dissertation has focused on
external tool support to find workarounds and hacks for resolving the symptoms
of co-evolution of source code and the build system.

However, an important area of future work would be to investigate whether a
build system which has explicit knowledge of aspects and fine-grained composi-
tion is better capable of understanding and dealing with co-evolution in the pres-
ence of AOSD. This corresponds to the integration of the aspect language with the
build system (instead of the inverse), as described in Section 5.1.2 on page 148. A
new build model should be distilled, which should be more general than “make”’s
directed acyclic graph model. Similarly, a fine-grained configuration model should



314 CONCLUSION AND FUTURE WORK

be derived. Unfortunately, applying the AOP-aware build system to existing sys-
tems is hampered by the need to re-implement the old build system’s functionality
first.

An even more ambitious project would be to design a build system which is
capable of modeling any kind of composition, i.e. to decouple the build system
from a particular technology or paradigm.

More Experimental Validation of the Roots of Co-evolution More experimen-
tal evidence should be gathered about co-evolution of source code and the build
system to further validate the roots of co-evolution. New roots of co-evolution
could be identified, or other means for tool support. We should broaden the scope
of the experiments by looking at other real-world systems, both open and closed
source. This is needed in order to check whether or not our observations hold for a
larger class of software. Other categories of systems like compilers, word proces-
sors, etc. should be investigated as well. Not only C systems, but also legacy Java
or Fortran systems should be examined.

A concrete case study we are thinking of is the Mozilla suite9. The Mozilla
suite is the open source continuation of the Netscape browser and consists of a
web browser, email client, etc. Although the source code now lives on under a
different name, the original Mozilla has been abandoned in favour of the separate
Firefox browser 10 and Thunderbird email client 11. A comparison between the
build system and source code organisation of the Mozilla Suite and those of Firefox
and Thunderbird could teach us a lot about RC1 and RC4.

Analysis of Synchronised Changes of Source Code and Build System When
defining the scope of tool support, we explicitly have chosen not to develop sup-
port for source code understanding and manipulation. In our case studies, we have
used available documentation to fill this void, and in the Linux case in particular,
we explicitly have focused on relatively coarse-grained changes of the build sys-
tem. As an interesting area of future work, a detailed analysis of dependencies
between individual changes in the source code and the build system in a given
software system could shed light on the low-level consequences of co-evolution of
source code and the build system. A reviewer of one of our papers [4] has sug-
gested to also take e.g. information of the bug tracking system into account. These
measurements could identify finer-grained roots of co-evolution.

Reify the Whole Build DAG as Weaving Meta Data Aspicere provides access
to build structure and configuration data to the weaver. However, currently only a

9http://www.mozilla.org/
10http://www.mozilla-europe.org/nl/products/firefox/
11http://www.mozilla-europe.org/nl/products/thunderbird/

http://www.mozilla.org/
http://www.mozilla-europe.org/nl/products/firefox/
http://www.mozilla-europe.org/nl/products/thunderbird/


CHAPTER 11 315

limited amount of information is passed to the aspects, i.e. the names of selected
modules, active preprocessor flags and the names of libraries and executables.
Conceptually, the whole build dependency graph and configuration layer should
be reified as logic facts. Unfortunately, this can only be achieved by modifying
existing build tools. It is also not clear whether the complete build dependency
graph should be passed or only the processed parts. Likewise, separate “make”
processes which break the build dependency graph should be dealt with somehow.
The impact of this reification in practice should be investigated as well, especially
to evaluate whether this improves management of co-evolution of source code and
the build system (goal L2).

History Retention in cHALO A detailed account of problems with history re-
tention for history-based pointcut languages in C has been given. The choice for
specific pointcut primitives with limited retention of facts is not a silver bullet.
Hence, the issues identified in avoiding dangling pointers and unbounded growth
of memory should be dealt with. If this is impossible, run-time support, possibly
from the operating system, should be pursued.

Aspect Mining in Preprocessed Code We have proposed an outline for an as-
pect mining approach to (semi-)automatically extract C preprocessor usage into
aspects [7], based on a combination of existing techniques and open issues. We
have discussed a characterisation of conditional compilation usage in the fifth case
study, but the automatic detection and extraction steps and their application in prac-
tice is still important future work. These techniques have a direct consequence on
RC4.

11.4 Conclusion
This dissertation has investigated the phenomenon of co-evolution of source code
and the build system. We have distilled conceptual and gathered experimental evi-
dence of the existence and nature of this co-evolution, and we have shown how the
co-evolution causes problems for legacy systems to deal with source code changes
introduced by AOSD. To understand and manage co-evolution of source code and
the build system, we have distilled requirements for tool and aspect language sup-
port. We have validated this support on six case studies. These case studies have
shown that co-evolution of source code and the build system is indeed a real prob-
lem, but that tool and aspect language support are able to assist in understanding
and dealing with it.





A
Example GBS Application

This appendix contains an example GBS build system. It is based on a sample
system implemented by Alexandre Duret-Lutz for his GBS tutorial1, which was
released to the public domain. It is a simple “Hello World”-program written in C
with the following directory layout:

• Makefile.am (Figure A.5)

• configure.ac (Figure A.4)

• lib:

– Makefile.am (Figure A.6)

– say.c.in (Figure A.3)

– say.h (Figure A.2)

• src:

– Makefile.am (Figure A.7)

– gettext.h

– main.c (Figure A.1)

Header file “gettext.h” has been copied from the “gettext” internationalisation
tool2 for distribution with the sample system.

1http://www.lrde.epita.fr/~adl/autotools.html
2http://www.gnu.org/software/gettext/

http://www.lrde.epita.fr/~adl/autotools.html
http://www.gnu.org/software/gettext/


318 APPENDIX A

After issuing autoreconf -install, the following important files have
been added:

• Makefile.in

• aclocal.m4

• autom4te.cache

• config.h.in (Figure A.8)

• configure

• lib:

– Makefile.in

• po:

– Makefile.in.in

• src:

– Makefile.in

The “*.in” files are makefile templates generated from an automake specifica-
tion with some remaining platform-dependent parameters. The most crucial file
is “configure”, a shell script which is used by anyone wishing to compile the sys-
tem on his or her machine. “aclocal.m4” contains all third party m4 macros in
use, while “autom4te.cache” is the autotools cache. To pass configuration choices
to the source code, the “config.h.in” template can be used. The “po” directory
contains localisation code for the source code, i.e. translations.

After distributing the source code archive (generated by “make dist”) to a user
and unpacking it, the user first has to “./configure –prefix /path/to/install”. In the
build directory, the following important files are generated (amongst others):

• Makefile

• config.status

• lib:

– Makefile

• po:

– Makefile.in

• src:



EXAMPLE GBS SYSTEM 319

– Makefile

The “config.status” is the shell script which is able to fill in all the remaining
platform-dependent values in the parametrised source code and build scripts. Now,
all what is left to do is compiling the application (“make”) and installing it in
the indicated installation directory (“make install”). By fiddling with the $LANG
environment variable, the specific user localisation can be manipulated.

The installation directory looks like this:

• bin:

– hello

• lib:

– libhello.la

– libhello.a

– . . .

• share

The “share” directory contains the localisation resources.

1 #include <config.h>
2 #include <locale.h>
3 #include "gettext.h"
4 #include "say.h"
5

6 int main (void){
7 setlocale(LC_ALL,"");
8 bindtextdomain(PACKAGE,LOCALEDIR);
9 textdomain(PACKAGE);

10

11 say_hello();
12 return 0;
13 }

Figure A.1: src/main.c



320 APPENDIX A

1 #ifndef AMHELLO_SAY_H
2 #define AMHELLO_SAY_H
3 void say_hello (void);
4 #endif

Figure A.2: lib/say.h

1 #include <config.h>
2 #include <stdio.h>
3

4 #ifdef HAVE_GETTEXT
5 #include "../src/gettext.h"
6 #define _(string) gettext (string)
7 #else
8 #define _(string) (string)
9 #endif

10

11 void say_hello (void){
12 puts (_("Hello World (with%s gettext)!"),
13 ("@USE_NLS@"=="yes"?_(""):_("out")));
14 printf (_("This is %s.\n"), PACKAGE_STRING);
15 }

Figure A.3: lib/say.c.in

1 AC_INIT([amhello], [2.0], [bug-report@address])
2 AC_CONFIG_AUX_DIR([build-aux])
3 AM_INIT_AUTOMAKE([foreign])
4 AM_GNU_GETTEXT_VERSION([0.14.5])
5 AM_GNU_GETTEXT([external])
6 AM_CONDITIONAL(GETTEXT_INSTALLED, [test x$USE_NLS = xyes])
7 AC_SUBST([USE_NLS])
8 AC_PROG_LIBTOOL
9 AC_PROG_CC

10 AM_CONFIG_HEADER([config.h])
11 AC_CONFIG_FILES([Makefile lib/Makefile src/Makefile \
12 po/Makefile.in lib/say.c m4/Makefile])
13 AC_OUTPUT

Figure A.4: configure.ac



EXAMPLE GBS SYSTEM 321

1 SUBDIRS = po lib src
2

3 ACLOCAL_AMFLAGS = -I m4
4

5 EXTRA_DIST = build-aux/config.rpath

Figure A.5: Makefile.am

1 AM_CPPFLAGS = -DLOCALEDIR=\"$(localedir)\"
2 lib_LTLIBRARIES = libhello.la
3 libhello_la_SOURCES = say.c say.h
4 libhello_la_LDFLAGS = -version-info 0:0:0
5

6 localedir = $(datadir)/locale
7 DEFS = -DLOCALEDIR=\"$(localedir)\" @DEFS@

Figure A.6: lib/Makefile.am

1 AM_CPPFLAGS = -I$(srcdir)/../lib \
2 -DLOCALEDIR=\"$(localedir)\"
3 bin_PROGRAMS = hello
4 hello_SOURCES = main.c gettext.h
5

6 if GETTEXT_INSTALLED
7 LDADD = ../lib/libhello.la $(LIBINTL)
8 else
9 LDADD = ../lib/libhello.la

10 endif
11

12 localedir = $(datadir)/locale
13 DEFS = -DLOCALEDIR=\"$(localedir)\" @DEFS@

Figure A.7: src/Makefile.am



322 APPENDIX A

1 /* config.h.in. Generated from configure.ac by autoheader.

*/
2

3 /* Define to 1 if translation of program messages to the
4 user’s native language is requested. */
5 #undef ENABLE_NLS
6

7 ...
8

9 /* Define if the GNU gettext() function is present or
10 preinstalled. */
11 #undef HAVE_GETTEXT
12

13 ...
14

15 /* Define to 1 if you have the <stdint.h> header file. */
16 #undef HAVE_STDINT_H
17

18 /* Define to 1 if you have the <stdlib.h> header file. */
19 #undef HAVE_STDLIB_H
20

21 ...
22

23 /* Name of package */
24 #undef PACKAGE
25

26 /* Define to the address where bug reports for this
27 package should be sent. */
28 #undef PACKAGE_BUGREPORT
29

30 ...
31

32 /* Define to 1 if you have the ANSI C header files. */
33 #undef STDC_HEADERS
34

35 /* Version number of package */
36 #undef VERSION

Figure A.8: config.h.in



B
Rules for Filtering the Linux 2.6.x

Build Process

This appendix lists all Prolog rules which have been used during the investigation
of the Linux kernel build system (Chapter 4) to filter the Linux 2.6.x build depen-
dency graph. The “FORCE” idiom filtering rule of Section B.4 is explained in
Section 3.5.3 on page 96. This explanation suffices to understand the other rules.
The semantics of the filtered idioms are discussed in Section 4.5.3.2 on page 127.

B.1 Auxiliary predicates

1 %Calculate full path of Target
2 unix_path(Target, PathToTarget) :-
3 target(Target, Name),
4 path_to_target(Target, Path),
5 append(Path, [Name], PathToTarget),
6 simplify_path([], PathToTarget, SimplifiedPathToTarget),
7 concat_atom(SimplifiedPathToTarget, ’/’, PathToTarget).
8

9 %Auxiliary predicates
10 simplify_path(Path, [], Path).
11

12 simplify_path(Path, [End], Simplified) :-
13 \+ End == ’.’,
14 \+ End == ’..’,



324 APPENDIX B

15 append(Path, [End], Simplified).
16

17 simplify_path(Prev, [’.’ | Rest], Simplified) :-
18 simplify_path(Prev, Rest, Simplified).
19

20 simplify_path(Prev, [Up | [’..’ | Rest]], Simplified) :-
21 \+ Up == ’.’,
22 append(Prev, Rest, Todo),
23 simplify_path([], Todo, Simplified).
24

25 simplify_path(Prev, [Up | [Here | Rest]], Simplified) :-
26 \+ Up == ’.’,
27 \+ Here == ’..’,
28 append(Prev, [Up], Current),
29 simplify_path(Current, [Here | Rest], Simplified).
30

31 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
32

33 %Find all directory names occurring
34 folder_target(Folder, Name) :-
35 target(Folder, Name),
36 once((path_to_target(_, P),
37 last(P, Name))).

B.2 Eliminate meta-edges

1 is_base_dependency(Key):-
2 dependency_type(Key,0).
3

4 is_base_target(Target):-
5 once(
6 ((rdependency(Target,_,Key);dependency(Target,_,Key)),
7 is_base_dependency(Key))
8 ).
9

10 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11

12 meta_cached:-
13 forall(dependency(Src,Dst,Key),
14 assert(rdependency(Dst,Src,Key))).
15

16 meta_target(Target, Name):-
17 target(Target, Name),
18 is_base_target(Target).
19

20 meta_dependency(Target, Dependency, Key):-
21 dependency(Target, Dependency, Key),
22 is_base_dependency(Key).



RULES FOR FILTERING LINUX 2.6.X BUILD 325

B.3 Initial cleanup

1 autoconf_target(Target) :-
2 target(Target,’autoconf.h’).
3

4 custom_target(Target):-
5 (autoconf_target(Target);
6 (meta_rdependency_a(Target,Au,_),autoconf_target(Au))).
7

8 custom_dependency(Target,Dependency,_):-
9 (autoconf_target(Target);autoconf_target(Dependency)).

10

11 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12

13 is_tmp_o_target(Target):-
14 target_concern(Target,’o’),
15 meta_rdependency_a(Target,OTarget,_),
16 target_concern(OTarget,’o’),
17 meta_target_a(Target,TName),
18 concat_atom([’’,OName],’.tmp_’,TName),
19 meta_target_a(OTarget,OName).
20

21 is_gcc_dep_target(Target):-
22 (target_concern(Target, ’d’);
23 target_concern(Target, ’tmp’);
24 target_concern(Target, ’cmd’);
25 target_concern(Target, ’ver’);
26 is_tmp_o_target(Target)),
27 \+ meta_dependency_a(Target,_,_).
28

29 is_gcc_dep_dependency(_,Dependency):-
30 is_gcc_dep_target(Dependency).
31

32 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
33

34 looping_dependency(X, X, Key):-
35 meta_dependency_a(X, X, Key).
36

37 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38

39 clean_cached:-
40 forall(meta_target(Target,Name),
41 assert(meta_target_a(Target,Name))),
42 forall(meta_dependency(Src,Dst,Key),
43 assert(meta_dependency_a(Src,Dst,Key))),
44 forall(meta_dependency_a(Src,Dst,Key),
45 assert(meta_rdependency_a(Dst,Src,Key))).
46



326 APPENDIX B

47 clean_target(Target, Name):-
48 meta_target_a(Target, Name),
49 \+ is_gcc_dep_target(Target),
50 \+ custom_target(Target).
51

52 clean_dependency(Target, Dependency, Key):-
53 meta_dependency_a(Target, Dependency, Key),
54 \+ looping_dependency(Target, Dependency, Key),
55 \+ is_gcc_dep_dependency(Target,Dependency),
56 \+ custom_dependency(Target,Dependency,Key).

B.4 FORCE idiom

1 force_target(Force, ’FORCE’) :-
2 clean_target_a(Force, ’FORCE’).
3

4 force_dependency(Target, Force, Key) :-
5 force_target(Force, _),
6 clean_rdependency_a(Force, Target, Key).
7

8 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9

10 forceless_cached:-
11 forall(clean_target(Target,Name),
12 assert(clean_target_a(Target,Name))),
13 forall(clean_dependency(Src,Dst,Key),
14 (assert(clean_dependency_a(Src,Dst,Key)),
15 assert(clean_rdependency_a(Dst,Src,Key)))).
16

17 forceless_target(Target, Name):-
18 clean_target_a(Target, Name),
19 \+ force_target(Target,_).
20

21 forceless_dependency(Target, Dependency, Key):-
22 clean_dependency(Target, Dependency, Key),
23 \+ force_dependency(Target,Dependency,Key).

B.5 Shipped targets

1 is_shipped_target(Target):-
2 target_concern(Target,Concern),
3 concat_atom(ConcernPieces,’.’,Concern),
4 last(ConcernPieces,’c_shipped’).
5

6 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7

8 shipless_cached:-
9 forall(forceless_target(Target, Name),



RULES FOR FILTERING LINUX 2.6.X BUILD 327

10 assert(forceless_target_a(Target, Name))),
11 forall(forceless_dependency(Target, Dep,Key),
12 assert(forceless_dependency_a(Target, Dep,Key))).
13

14 shipless_target(Target,Name):-
15 forceless_target_a(Target,Name),
16 \+is_shipped_target(Target).
17

18 shipless_dependency(Target,Dep,Key):-
19 forceless_dependency_a(Target,Dep,Key),
20 \+is_shipped_target(Dep).

B.6 Source-level abstraction

1 is_leaf_c_target(Target):-
2 target_concern(Target,’c’),
3 \+shipless_dependency_a(Target,_,_).
4

5 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
6

7 abs_cached:-
8 forall(shipless_target(Target, Name),
9 assert(shipless_target_a(Target, Name))),

10 forall(shipless_dependency(Target, Dep,Key),
11 assert(shipless_dependency_a(Target, Dep,Key))).
12

13 abs_target(Target,Name):-
14 shipless_target_a(Target,Name),
15 \+is_leaf_c_target(Target).
16

17 abs_dependency(Target,Dep,Key):-
18 shipless_dependency_a(Target,Dep,Key),
19 \+is_leaf_c_target(Dep).

B.7 Composite object abstraction

1 is_simple_o_target(Target):-
2 target_concern(Target,’o’),
3 \+ abs_dependency_a(Target,Dep,_),
4 forall(abs_rdependency_a(Target,Dep,_),
5 target_concern(Dep,’o’)).
6

7 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8

9 com_cached:-
10 forall(abs_target(Target, Name),
11 assert(abs_target_a(Target, Name))),
12 forall(abs_dependency(Target, Dep,Key),



328 APPENDIX B

13 (assert(abs_dependency_a(Target,Dep,Key)),
14 assert(abs_rdependency_a(Dep,Target,Key)))).
15

16 com_target(Target,Name):-
17 abs_target_a(Target,Name),
18 \+ is_simple_o_target(Target),
19 assert(com_target_a(Target,Name)).
20

21 com_dependency(Target,Dep,Key):-
22 abs_dependency_a(Target,Dep,Key),
23 com_target_a(Dep,_).

B.8 Circular dependency chain

1 linux___build_target(Build, ’__build’) :-
2 com_target_a(Build, ’__build’).
3

4 recursive_make_idiom(Build, Folder, Name) :-
5 folder_target_a(Folder, Name),
6 linux___build_target(Build, _),
7 com_dependency_a(Build, Folder, _),
8 com_dependency_a(Folder, Build, _),
9 once((com_rdependency_a(Folder,SimpleObject, _),

10 target_concern(SimpleObject, ’o’),
11 com_rdependency_a(SimpleObject,CompositeObject,_),
12 target_concern(CompositeObject, ’o’))),
13 com_dependency_a(Build, CompositeObject, _).
14

15 % - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16

17 circ_cached:-
18 forall(folder_target(Folder, FolderName),
19 assert(folder_target_a(Folder, FolderName))),
20 forall(com_dependency(Target,Dep,Key),
21 (assert(com_dependency_a(Target,Dep,Key)),
22 assert(com_rdependency_a(Dep,Target,Key)))).
23

24 circ_target(Target, Name) :-
25 com_target_a(Target, Name).
26

27 circ_dependency(Target, Dependency, Key) :-
28 com_dependency_a(Target, Dependency, Key),
29 \+recursive_make_idiom(Target,Dependency,_).



References

[1] R.A. Åberg, J.L. Lawall, M. Südholt, G. Muller, and A.-F. Le Meur. On
the automatic evolution of an OS kernel using temporal logic and AOP. In
Proceedings of the 18th Conference on Automated Software Engineering
(ASE), pages 196–204, 6-10 Oct. 2003.

[2] Bram Adams. AOP on the C-side. In Proceedings of the 2nd Linking As-
pect Technology and Evolution Workshop (LATEr), AOSD, Bonn, Germany,
2006.

[3] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter.
Design recovery and maintenance of build systems. In Ladan Tahvildari and
Gerardo Canfora, editors, Proceedings of the 23rd International Conference
on Software Maintenance (ICSM), pages 114–123, Paris, France, October
2007. IEEE Computer Society.

[4] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter.
The evolution of the Linux build system. In Informal Proceedings of the
3rd International ERCIM Workshop on Software Evolution at ICSM, pages
93–102, Paris, France, October 2007.

[5] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter.
The evolution of the Linux build system. Electronic Communications of the
ECEASST, 8, February 2008.

[6] Bram Adams, Charlotte Herzeel, and Kris Gybels. cHALO, stateful aspects
in C. In Proceedings of the 7th Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS), AOSD, Brussels, Belgium,
2008.

[7] Bram Adams, Bart Van Rompaey, Celina Gibbs, Yvonne Coady, and Her-
man Tromp. Aspect mining in the presence of the C preprocessor. In
Proceedings of the 4th Linking Aspect Technology and Evolution Workshop
(LATE), AOSD, Brussels, Belgium, 2008.

[8] Bram Adams and Kris De Schutter. An aspect for idiom-based excep-
tion handling (using local continuation join points, join point properties,



330 REFERENCES

annotations and type parameters). In Proceedings of the 5th Software-
Engineering Properties of Languages and Aspect Technologies Workshop
(SPLAT), AOSD, Vancouver, Canada, March 2007.

[9] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selec-
tive recompilation and environment processing. ACM Trans. Softw. Eng.
Methodol., 3(1):3–28, 1994.

[10] Eytan Adar. GUESS: a language and interface for graph exploration. In
Proceedings of the Conference on Human Factors in Computing Systems
(CHI), pages 791–800, Montréal, Québec, Canada, April 2006.

[11] Jonathan Aldrich. Open modules: Modular reasoning about advice. In Pro-
ceedings of the 19th European Conference on Object-Oriented Program-
ming (ECOOP), volume 3586, pages 144–168, Glasgow, Scotland, 2005.
Springer.

[12] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-
tampalam, and Julian Tibble. Adding trace matching with free variables to
AspectJ. In Proceedings of the 20th annual ACM SIGPLAN conference on
Object oriented programming, systems, languages, and applications (OOP-
SLA), pages 345–364, San Diego, CA, USA, 2005. ACM.

[13] Glenn Ammons. Grexmk: speeding up scripted builds. In Proceedings of
the international workshop on Dynamic systems analysis (WODA), pages
81–87, Shanghai, China, 2006. ACM.

[14] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. Optimising AspectJ. In Proceed-
ings of the 2005 ACM SIGPLAN conference on Programming language de-
sign and implementation (PLDI), pages 117–128, Chicago, IL, USA, 2005.
ACM Press.

[15] Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc : An Extensible AspectJ Com-
piler. Transactions on Aspect-Oriented Software Development I, 3880:293–
334, 2006.

[16] Pavel Avgustinov, Julian Tibble, Eric Bodden, Laurie Hendren, Ondrej Lho-
tak, Oege de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient
trace monitoring. In Companion to the 21st ACM SIGPLAN conference on



REFERENCES 331

Object-oriented programming systems, languages, and applications (OOP-
SLA), pages 685–686, Portland, OR, USA, 2006. ACM.

[17] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making trace monitors
feasible. SIGPLAN Not., 42(10):589–608, 2007.

[18] John Backus. The history of Fortran I, II, and III. SIGPLAN Not., pages
25–74, 1981.

[19] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modu-
larity. MIT Press, Cambridge, MA, USA, 1999.

[20] M. Baxter, I.D.; Mehlich. Preprocessor conditional removal by simple par-
tial evaluation. Proceedings of the 8th Working Conference on Reverse En-
gineering (WCRE), pages 281–290, 2001.

[21] Keith Bennett. Legacy systems: Coping with success. IEEE Software,
12(1):19–23, 1995.

[22] Ted J. Biggerstaff. Design recovery for maintenance and reuse. Computer,
22(7):36–49, 1989.

[23] Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM
Trans. Program. Lang. Syst., 21(4):813–847, 1999.

[24] Christoph Bockisch, Michael Haupt, Mira Mezini, and Ralf Mitschke.
Envelope-based weaving for faster aspect compilers. In Proceedings of
the 6th Annual International Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a NetworkedWorld
(Net.ObjectDays), pages 3–18, Erfurt, Germany, 2005.

[25] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann.
Virtual machine support for dynamic join points. In Proceedings of the 3rd
international conference on Aspect-oriented software development (AOSD),
pages 83–92, Lancaster, UK, 2004. ACM.

[26] Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew Arnold,
and Mira Mezini. Efficient control flow quantification. In Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (OOPSLA), pages 125–138, Portland,
OR, USA, 2006. ACM.

[27] Eric Bodden, Laurie Hendren, and Ondr̃ej LhotÁk. A staged static program
analysis to improve the performance of runtime monitoring. In Proceed-
ings of the 21th European Conference on Object-Oriented Programming
(ECOOP), pages 525–549, Berlin, Germany, 2007.



332 REFERENCES

[28] Eric Bodden, Patrick Lam, and Laurie Hendren. Flow-sensitive static op-
timizations for runtime monitors. Technical Report abc-2007-3, Sable Re-
search Group, McGill University, July 2007.

[29] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a case
study: its extracted software architecture. In Proceedings of the 21st inter-
national conference on Software engineering (ICSE), pages 555–563, Los
Angeles, CA, USA, 1999. IEEE Computer Society Press.

[30] Johan Brichau, Kim Mens, and Kris De Volder. Building composable
aspect-specific languages with logic metaprogramming. In Proceedings of
the 2nd International Conference on Generative Programming and Com-
ponent Engineering (GPCE), pages 110–127, Pittsburgh, PA, USA, 2002.
Springer-Verlag.

[31] Michael Brodie and Michael Stonebreaker. Migrating Legacy Systems:
Gateways, Interfaces & The Incremental Approach. Morgan Kaufmann,
1995.

[32] Magiel Bruntink, Arie van Deursen, Maja D’Hondt, and Tom Tourwé.
Simple crosscutting concerns are not so simple: analysing variability in
large-scale idioms-based implementations. In Proceedings of the 6th Inter-
national Conference on Aspect-Oriented Software Development (AOSD),
pages 199–211, Vancouver, BC, Canada, March 2007.

[33] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. An initial experi-
ment in reverse engineering aspects. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE), pages 306–307, Delft, The
Netherlands, November 2004. IEEE Computer Society.

[34] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Isolating idiomatic
crosscutting concerns. In Proceedings of the 21st IEEE International Con-
ference on Software Maintenance (ICSM), pages 37–46, Budapest, Hun-
gary, 2005. IEEE Computer Society.

[35] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Discovering faults
in idiom-based exception handling. In Proceeding of the 28th interna-
tional conference on Software engineering (ICSE), pages 242–251, Shang-
hai, China, 2006. ACM Press.

[36] Magiel Bruntink, Arie van Deursen, Tom Tourwé, and Remco van Enge-
len. An evaluation of clone detection techniques for identifying crosscutting
concerns. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM), pages 200–209, Chicago, IL, USA, September 2004.



REFERENCES 333

[37] J. Buffenbarger and K. Gruell. A language for software subsystem compo-
sition. In HICSS ’01: Proceedings of the 34th Annual Hawaii International
Conference on System Sciences (HICSS), page 9072, Maui, HI, USA, 2001.
IEEE Computer Society.

[38] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic in-
strumentation of production systems. In Proceedings of the USENIX Annual
Technical Conference, pages 15–28, Boston, MA, USA, 2004.

[39] Andrea Capiluppi, Maurizio Morisio, and Juan F. Ramil. The evolution of
source folder structure in actively evolved open source systems. In Proceed-
ings of the 10th International Symposium on Software Metrics (METRICS),
pages 2–13, Chicago, IL, USA, 2004. IEEE Computer Society.

[40] Andrea Capiluppi, Maurizio Morisio, and Juan F. Ramil. Structural evolu-
tion of an open source system: A case study. In Proceedings of the 12th
IEEE International Workshop on Program Comprehension (IWPC), page
172, Bari, Italy, 2004. IEEE Computer Society.

[41] Luca Cardelli. Program fragments, linking, and modularization. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL), pages 266–277, Paris, France, 1997.
ACM.

[42] P. M. Cashin, M. L. Joliat, R. F. Kamel, and D. M. Lasker. Experience with a
modular typed language: PROTEL. In Proceedings of the 5th international
conference on Software engineering (ICSE), pages 136–143, San Diego,
CA, USA, 1981. IEEE Press.

[43] Craig Chambers, Jeffrey Dean, and David Grove. A framework for selective
recompilation in the presence of complex intermodule dependencies. In
Proceedings of the 17th international conference on Software engineering
(ICSE), pages 221–230, Seattle, WA, USA, 1995. ACM.

[44] John Champaign, Andrew Malton, and Xinyi Dong. Stability and volatil-
ity in the Linux kernel. In Proceedings of the 6th International Workshop
on Principles of Software Evolution (IWPSE), page 95, Helsinki, Finland,
2003. IEEE Computer Society.

[45] Feng Chen and Grigore Roşu. Mop: an efficient and generic runtime verifi-
cation framework. SIGPLAN Not., 42(10):569–588, 2007.

[46] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.



334 REFERENCES

[47] Geoffrey Clemm and Leon Osterweil. A mechanism for environment inte-
gration. ACM Trans. Program. Lang. Syst., 12(1):1–25, 1990.

[48] Yvonne Coady, Celina Gibbs, Michael Haupt, Jan Vitek, and Hiroshi Ya-
mauchi. Towards a domain specific language for virtual machines. In Pro-
ceedings of the 1st Domain-Specific Aspect Languages Workshop (DSAL),
AOSD, Portland, OR, USA, October 2006.

[49] Yvonne Coady and Gregor Kiczales. Back to the future: a retroactive study
of aspect evolution in operating system code. In Proceedings of the 2nd In-
ternational Conference on Aspect-Oriented Software Development (AOSD),
pages 50–59, Boston, MA, USA, 2003.

[50] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using
AspectC to improve the modularity of path-specific customization in oper-
ating system code. SIGSOFT Softw. Eng. Notes, 26(5):88–98, 2001.

[51] Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware.
In Proceedings of the 3rd international conference on Aspect-oriented soft-
ware development (AOSD), pages 56–65, Lancaster, UK, 2004. ACM.

[52] Keith D. Cooper, Ken Kennedy, and Linda Lorczon. Interprocedural op-
timization: eliminating unnecessary recompilation. In Proceedings of the
1986 SIGPLAN symposium on Compiler construction (SC), pages 58–67,
Palo Alto, CA, USA, 1986. ACM.

[53] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Joinpoint infer-
ence from behavioral specification to implementation. In Proceedings of the
21th European Conference on Object-Oriented Programming (ECOOP),
pages 476–500, Berlin, Germany, 2007.

[54] Daniel S. Dantas and David Walker. Harmless advice. ACM SIGPLAN
Notices, 41(1):383–396, January 2006.

[55] Merijn de Jonge. The Linux kernel as flexible product-line architecture.
Technical Report SEN-R0205, CWI, 2002.

[56] Merijn de Jonge. To reuse or to be reused: Techniques for component com-
position and construction. PhD thesis, University of Amsterdam, January
2003.

[57] Merijn de Jonge. Build-level components. IEEE Trans. Softw. Eng.,
31(7):588–600, 2005.

[58] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.



REFERENCES 335

[59] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog: A light-
weight Prolog for Internet applications and infrastructures. Practical As-
pects of Declarative Languages, 1990:184–198, 2001.

[60] Frank DeRemer and Hans Kron. Programming-in-the large versus
programming-in-the-small. In Proceedings of the international conference
on Reliable software, pages 114–121, Los Angeles, CA, USA, 1975. ACM.

[61] Mikhail Dmitriev. Language-specific make technology for the Java pro-
gramming language. In Proceedings of the 17th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applica-
tions (OOPSLA), pages 373–385, Seattle, WA, USA, 2002. ACM.

[62] Eelco Dolstra. Integrating software construction and software deployment.
In Proceedings of the 11th International Workshop on Software Configura-
tion Management (SCM), volume 2649 of Lecture Notes in Computer Sci-
ence, pages 102–117, Portland, OR, USA, May 2003.

[63] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. Nix: A safe and policy-
free system for software deployment. In Proceedings of the 18th USENIX
conference on System administration (LISA), pages 79–92, Atlanta, GA,
USA, 2004. USENIX Association.

[64] Eelco Dolstra, Gert Florijn, Merijn de Jonge, and Eelco Visser. Capturing
timeline variability with transparent configuration environments. In Pro-
ceedings of the International Workshop on Software Variability Manage-
ment, Portland, OR, USA, May 2003.

[65] Eelco Dolstra and Armijn Hemel. Purely functional system configuration
management. In Proceedings of the 11th Workshop on Hot Topics in Oper-
ating Systems (HotOS), USENIX, Portland, OR, USA, May 2007.

[66] Eelco Dolstra, Eelco Visser, and Merijn de Jonge. Imposing a memory
management discipline on software deployment. In Proceedings of the 26th
International Conference on Software Engineering (ICSE), pages 583–592,
Edinburgh, UK, 2004. IEEE Computer Society.

[67] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the de-
tection and resolution of aspect interactions. In Proceedings of the 1st ACM
SIGPLAN/SIGSOFT conference on Generative Programming and Compo-
nent Engineering (GPCE), pages 173–188, Pittsburgh, PA, USAA, 2002.
Springer-Verlag.

[68] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc
Ségura-Devillechaise, and Mario Südholt. An expressive aspect language



336 REFERENCES

for system applications with Arachne. In Proceedings of the 4th Inter-
national Conference on Aspect-Oriented Software Development (AOSD),
pages 27–38, Chicago, Illinois, March 2005. ACM Press.

[69] Rémi Douence and Olivier Motelet. Sophisticated crosscuts for e-
commerce. In Proceedings of the workshop on Advanced Separation of
Concerns, Budapest, Hungary, 2001.

[70] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition
of crosscuts. In Proceedings of the Third International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns (REFLEC-
TION), pages 170–186, Kyoto, Japan, 2001. Springer-Verlag.

[71] Paul F. Dubois, Thomas Epperly, and Gary Kumfert. Why Johnny can’t
build. Computing in Science and Engg., 5(5):83–88, 2003.

[72] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside — a mul-
tiple control flow web application framework. In Proceedings of 12th In-
ternational Smalltalk Conference (ISC), pages 231–257, Prague, Czech Re-
public, September 2004.

[73] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh
Sittampalam, and Clark Verbrugge. Measuring the dynamic behaviour of
AspectJ programs. In Proceedings of the 19th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and appli-
cations (OOPSLA), pages 150–169, Vancouver, BC, Canada, 2004. ACM
Press.

[74] Pascal Dürr, Lodewijk Bergmans, and Mehmet Akşit. Ideals: evolvability of
software-intensive high-tech systems, chapter Detecting behavioral conflicts
among crosscutting concerns, pages 55–67. Embedded Systems Institute,
TU/e Campus, Eindhoven, The Netherlands, December 2007.

[75] Pascal Durr, Gurcan Gulesir, Lodewijk Bergmans, Mehmet Aksit, and
Remco van Engelen. Applying AOP in an industrial context. In Proceedings
of the Workshop on Best Practices in Applying Aspect-Oriented Software
Development (BPAOSD), AOSD, Bonn, Germany, March 2006.

[76] Robert Dyer and Hridesh Rajan. Nu: a dynamic aspect-oriented intermedi-
ate language model and virtual machine for flexible runtime adaptation. In
Proceedings of the 7th International Conference on Aspect-Oriented Soft-
ware Development (AOSD), Brussels, Belgium, April 2008. ACM Press. To
appear.



REFERENCES 337

[77] Yusuke Endoh, Hidehiko Masuhara, and Akinori Yonezawa. Continuation
join points. In Proceedings of the Workshop on the Foundations of Aspect-
Oriented Languages (FOAL), AOSD, pages 1–10, Bonn, Germany, March
2006.

[78] Michael Engel and Bernd Freisleben. Supporting autonomic computing
functionality via dynamic operating system kernel aspects. In Proceedings
of the 4th International Conference on Aspect-Oriented Software Develop-
ment (AOSD), pages 51–62, Chicago, IL, USA, 2005. ACM Press.

[79] Michael Engel and Bernd Freisleben. Using a LowLevel Virtual Machine
to improve dynamic aspect support in operating system kernels. In Pro-
ceedings of the 4th workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), AOSD, Chicago, IL, USA, 2005.

[80] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis
of C preprocessor use. IEEE Trans. Softw. Eng., 28(12):1146–1170, 2002.

[81] Jacky Estublier. Software configuration management: a roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering (ICSE),
pages 279–289, Limerick, Ireland, 2000. ACM.

[82] Homayoun D. Fard, Yijun Yu, John Mylopoulos, and Periklis Andritsos.
Improving the build architecture of legacy C/C++ software systems. In
Proceedings of Fundamental Approaches in Software Engineering (FASE),
pages 96–110, Edinburgh, Scotland, 2005.

[83] J.-M. Favre. Preprocessors from an abstract point of view. In Proceedings
of the 3rd Working Conference on Reverse Engineering (WCRE), page 287,
Monterey, CA, USA, 1996. IEEE Computer Society.

[84] J.-M. Favre. Understanding-in-the-large. Proceedings of the 5th Interna-
tional Workshop on Program Comprehension (IWPC), pages 29–38, March
1997.

[85] Jean-Marie Favre. Meta-model and model co-evolution within the 3D soft-
ware space. In Proceedings of the International Workshop on Evolution
of Large-scale Industrial Software Applications, ICSM, Amsterdam, The
Netherlands, September 2003.

[86] Jean-Marie Favre. Languages evolve too! changing the software time scale.
In Proceedings of the 8th International Workshop on Principles of Software
Evolution (IWPSE), pages 33–44, Lisbon, Portugal, 2005. IEEE Computer
Society.



338 REFERENCES

[87] P. Feiler, S. Dart, and G. Downey. Evaluation of the Rational environ-
ment. Technical Report CMU/SEI-88-TR-15, Software Engineering Insti-
tute, Carnegie-Mellon University, Pittsburgh, PE, USA, July 1988.

[88] Peter H. Feiler and Raul Medina-Mora. An incremental programming en-
vironment. In Proceedings of the 5th international conference on Software
engineering (ICSE), pages 44–53, San Diego, CA, USA, 1981. IEEE Press.

[89] Stuart I. Feldman. Make - a program for maintaining computer programs.
Software - Practice and Experience, 1979.

[90] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Marrill. Be-
yond continuations. Technical Report 216, Computer Science Department,
Indiana University, 1987.

[91] Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger, and Andrea
Capiluppi. Empirical studies of open source evolution. In Tom Mens and
Serge Demeyer, editors, Software evolution, chapter 11, pages 263–288.
Springer Verlag, 1st edition edition, February 2008.

[92] Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, Kostas Konto-
giannis, Hausi A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin
Stanley, and Kerny Wong. The software bookshelf. Advances in software
engineering, pages 295–339, 2002.

[93] Marc Fiuczynksi, Robert Grimm, Yvonne Coady, and David Walker. patch
(1) Considered Harmful. In Proceedings of the 10th Workshop on Hot Top-
ics in Operating Systems (HotOS), Santa Fe, NM, USA, 2005.

[94] Charles L. Forgy. Rete: a fast algorithm for the many pattern/many ob-
ject pattern match problem. Artificial Intelligence, 19(1):17–37, September
1982.

[95] G. Fowler. A case for make. Softw. Pract. Exper., 20(S1):35–46, 1990.

[96] Andreas Gal and Olaf Spinczyk. Build management for AspectC++. In
Proceedings of the Workshop on Tools for Aspect-Oriented Software Devel-
opment (TAOSD), OOPSLA, Seattle, WA, USA, November 2002.

[97] Alejandra Garrido. Program Refactoring in the Presence of Preproces-
sor Directives. PhD thesis, Univ. of Illinois at Urbana-Champaign, August
2005.

[98] Wasif Gilani and Olaf Spinczyk. Dynamic aspect weaver family for family-
based adaptable systems. In Robert Hirschfeld, Ryszard Kowalczyk, An-
dreas Polze, and Mathias Weske, editors, Proceedings of the 6th Annual



REFERENCES 339

International Conference on Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a NetworkedWorld (Net.ObjectDays),
volume 69 of LNI, pages 94–109, Erfurt, Germany, 2005. GI.

[99] Michael W. Godfrey and Qiang Tu. Evolution in open source software: A
case study. In Proceedings of the 16th International Conference on Soft-
ware Maintenance (ICSM), page 131, San Jose, CA, 2000. IEEE Computer
Society.

[100] Ryan Golbeck, Sam Davis, Immad Naseer, Igor Ostrovsky, and Gregor
Kiczales. Lightweight virtual machine support for AspectJ. In Proceedings
of the 7th International Conference on Aspect-Oriented Software Develop-
ment (AOSD), Brussels, Belgium, April 2008. ACM Press. To appear.

[101] Adele Goldberg. SMALLTALK-80: the interactive programming environ-
ment. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1984.

[102] Weigang Michael Gong and Hans-Arno Jacobsen. AspeCt-oriented C Spec-
ification. Middleware Systems Research Group, 0.8 edition, January 2008.

[103] Jeff Gray and Suman Roychoudhury. A technique for constructing aspect
weavers using a program transformation engine. In Proceedings of the
3rd International Conference on Aspect-Oriented Software Development
(AOSD), pages 36–45, Lancaster, UK, 2004. ACM Press.

[104] Robert Grimm. Systems need languages need systems! In Proceedings
of the 2nd Workshop on Programming Languages and Operating Systems
(PLOS), ECOOP, Glasgow, UK, 2005.

[105] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software design
with crosscutting interfaces. IEEE Software, 23(1):51–60, 2006.

[106] J. Gutknecht. Separate compilation in Modula-2: An approach to efficient
symbol files. Software, IEEE, 3(6):29–38, 1986.

[107] Jr Guy Lewis Steele. RABBIT: A Compiler for SCHEME. PhD thesis, AI
Lab MIT, May 1978.

[108] Kris Gybels and Johan Brichau. Arranging language features for more ro-
bust pattern-based crosscuts. In Proceedings of the 2nd International Con-
ference on Aspect-Oriented Software Development (AOSD), pages 60–69,
Boston, MA, USA, March 2003. ACM Press.



340 REFERENCES

[109] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scal-
able source code queries with Datalog. In Dave Thomas, editor, Proceed-
ings of the 20th European Conference on Object-Oriented Programming
(ECOOP), volume 4067 of Lecture Notes in Computer Science, pages 2–
27, Nantes, France, 2006. Springer.

[110] Maarit Harsu. Translation of conditional compilation. Nordic J. of Comput-
ing, 6(1):93–109, 1999.

[111] Ahmed E. Hassan, Zhen Ming Jiang, and Richard C. Holt. Source versus
object code extraction for recovering software architecture. In Proceedings
of the 12th Working Conference on Reverse Engineering (WCRE), pages
67–76, Pittsburgh, PA, USA, 2005. IEEE Computer Society.

[112] Michael Haupt, Celina Gibbs, and Yvonne Coady. Disentangling virtual
machine architecture. In Proceedings of the 4th Workshop on Coordination
and Adaptation Techniques for Software Entities (WCAT), Berlin, Germany,
July 2007.

[113] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. De-
tecting and resolving ambiguities caused by inter-dependent introductions.
In Proceedings of the 5th international conference on Aspect-oriented soft-
ware development (AOSD), pages 214–225, Bonn, Germany, 2006. ACM.

[114] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. A
graph-based approach to modeling and detecting composition conflicts re-
lated to introductions. In Proceedings of the 6th international conference
on Aspect-oriented software development (AOSD), pages 85–95, Vancou-
ver, BC, Canada, 2007. ACM.

[115] C. Herzeel, K. Gybels, P. Costanza, C. De Roover, and T. D’Hondt. For-
ward chaining in HALO: An implementation strategy for history-based
logic pointcuts. In Proceedings of the International Conference on Dynamic
Languages (ESUG), Lugano, Switzerland, August 2007. Springer LNCS.

[116] Charlotte Herzeel, Kris Gybels, and Pascal Costanza. Escaping with future
variables in HALO. Runtime Verification, pages 51–62, 2007.

[117] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta approach to soft-
ware configuration management. Technical Report 168, Compaq Systems
Research Center, 1999.

[118] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In Proceed-
ings of the 3rd international conference on Aspect-oriented software devel-
opment (AOSD), pages 26–35, Lancaster, UK, 2004. ACM.



REFERENCES 341

[119] Richard C. Holt, Michael W. Godfrey, and Andrew J. Malton. The build/-
comprehend pipelines. In Proceedings of the 2nd workshop on software
architecture (ASERC), Banff, AB, Canada, February 2003.

[120] Robert Hood, Ken Kennedy, and Hausi A Müller. Efficient recompilation of
module interfaces in a software development environment. In Proceedings
of the second ACM SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments (SDE), pages 180–189,
Palo Alto, CA, USA, 1987. ACM.

[121] Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lagüe. C/C++ con-
ditional compilation analysis using symbolic execution. In Proceedings of
the 16th International Conference on Software Maintenance (ICSM), page
196, Bad Gastein, Austria, 2000. IEEE Computer Society.

[122] Shan Huang, David Zook, and Yannis Smaragdakis. Morphing: Safely
shaping a class in the image of others. In Proceedings of the 21th European
Conference on Object-Oriented Programming (ECOOP), pages 399–424,
Berlin, Germany, 2007.

[123] Gregory F. Johnson. GI: a denotational testbed with continuations and par-
tial continuations. In Proceedings of the SIGPLAN ’87 Symposium on Inter-
preters and Interpretive Techniques, pages 165–176, Saint-Paul, MN, USA,
June 1987.

[124] R. Jones and R. Lins. Garbage Collection. Algorithms for Automatic Dy-
namic Memory Management. Wiley, 1996.

[125] Niels Jörgensen. Safeness of make-based incremental recompilation. In
Proceedings of the International Symposium of Formal Methods Europe on
Formal Methods - Getting IT Right (FME), pages 126–145, London, UK,
2002. Springer-Verlag.

[126] Michael Karasick. The architecture of montana: an open and extensible
programming environment with an incremental C++ compiler. In Proceed-
ings of the 6th ACM SIGSOFT international symposium on Foundations of
software engineering (FSE), pages 131–142, Lake Buena Vista, FL, USA,
1998. ACM.

[127] Rick Kazman and S. Jeromy Carrière. Playing detective: Reconstructing
software architecture from available evidence. Automated Software Engg.,
6(2):107–138, 1999.

[128] Andy Kellens. Maintaining causality between design regularities and
source code. PhD thesis, Vrije Univeristeit Brussel, Pleinlaan 2, Etterbeek,
2007.



342 REFERENCES

[129] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the
evolution of aspect-oriented software with model-based pointcuts. In Pro-
ceedings of the 20th European Conference on Object-Oriented Program-
ming (ECOOP), pages 501–525, Nantes, France, 2006.

[130] Andy Kellens, Kim Mens, and Paolo Tonella. A survey of automated code-
level aspect mining techniques. Transactions on Aspect-Oriented Software
Development, IV(LNCS 4640):143–162, 2007.

[131] Al Kelley and Ira Pohl. A book on C (Fourth Edition). Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1998.

[132] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall,
1978.

[133] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. LNCS, 2072:327–355,
2001.

[134] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP), volume 1241, pages 220–242,
Jyväskylä, Finland, 1997. Springer-Verlag.

[135] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and mod-
ular reasoning. In Proceedings of the 27th International Conference on
Software Engineering (ICSE), pages 49–58, St. Louis, MO, USA, 2005.
ACM.

[136] Oleg Kiselyov and Chung-chieh Shan. Delimited continuations in operating
systems. Modeling and Using Context, pages 291–302, 2007.

[137] Günter Kniesel. Detection and resolution of weaving interactions. Transac-
tions on Aspect-Oriented Software Development, Special issue on ’Depen-
dencies and Interactions with Aspects’, 2007. To appear.

[138] Maren Krone and Gregor Snelting. On the inference of configuration struc-
tures from source code. In Proceedings of the 16th international conference
on Software engineering (ICSE), pages 49–57, Sorrento, Italy, 1994. IEEE
Computer Society Press.

[139] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw.,
12(6):42–50, 1995.



REFERENCES 343

[140] Bernt Kullbach and Volker Riediger. Folding: An approach to enable pro-
gram understanding of preprocessed languages. In Proceedings of the 8th
Working Conference on Reverse Engineering (WCRE), page 3, Stuttgart,
Germany, 2001. IEEE Computer Society.

[141] David Alex Lamb. Relations in software manufacture. Technical Report
ISSN-0836-0227-90-292a, Department of Computing and Information Sci-
ence, Queen’s University, Kingston, ON K7L 3N6, March 1991.

[142] Ralf Lämmel and Kris De Schutter. What does Aspect Oriented Program-
ming mean to Cobol? In Proceedings of the 4th International Conference on
Aspect-Oriented Software Development (AOSD), pages 99–110, Chicago,
IL, USA, 2005. ACM Press.

[143] Butler W. Lampson and Eric E. Schmidt. Practical use of a polymorphic
applicative language. In Proceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (POPL), pages 237–
255, Austin, TX, USA, 1983. ACM.

[144] Mario Latendresse. Fast symbolic evaluation of C/C++ preprocessing using
conditional values. In Proceedings of the 7th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), page 170, Benevento, Italy,
2003. IEEE Computer Society.

[145] Mario Latendresse. Rewrite systems for symbolic evaluation of C-like
preprocessing. In Proceedings of the 8th Euromicro Working Conference
on Software Maintenance and Reengineering (CSMR), page 165, Tampere,
Finland, 2004. IEEE Computer Society.

[146] Hugh C. Lauer and Edwin H. Satterthwaite. The impact of Mesa on system
design. In Proceedings of the 4th international conference on Software
engineering (ICSE), pages 174–182, Munich, Germany, 1979. IEEE Press.

[147] David B. Leblang and Jr. Robert P. Chase. Computer-aided software en-
gineering in a distributed workstation environment. In Proceedings of the
1st ACM SIGSOFT/SIGPLAN software engineering symposium on Practi-
cal software development environments (SDE), pages 104–112, Pittsburgh,
PE, USA, 1984. ACM.

[148] M. M. Lehman and L. A. Belady, editors. Program evolution: processes of
software change. Academic Press Professional, Inc., San Diego, CA, USA,
1985.

[149] B. Lewis and D. J. Berg. Threads Primer. A Guide to Multithreaded Pro-
gramming. Prentice Hall, 1996.



344 REFERENCES

[150] C. H. Lindsey. A history of ALGOL 68. In Proceedings of the 2nd ACM
SIGPLAN conference on History of programming languages (HOPL), pages
97–132, Cambridge, MA, USA, 1993. ACM.

[151] C. H. Lindsey and H. J. Boom. A modules and separate compilation facility
for ALGOL 68. ALGOL Bull., (43):19–53, 1978.

[152] Linux kernel build documentation, linux 2.4.0 edition.

[153] Linux kernel build documentation, linux 2.6.0 edition.

[154] Linux kernel build documentation, linux 2.6.16.18 edition.

[155] Linux-kbuild mailing list. http://www.torque.net/kbuild/archive/.

[156] Kbuild 2.5 history. http://kbuild.sourceforge.net/.

[157] Martin Lippert and Cristina Videira Lopes. A study on exception detection
and handling using aspect-oriented programming. In Proceedings of the
22nd international conference on Software engineering (ICSE), pages 418–
427, Limerick, Ireland, 2000. ACM Press.

[158] D.T. Livadas, P.E.; Small. Understanding code containing preprocessor con-
structs. Program Comprehension, 1994. Proceedings., IEEE Third Work-
shop on, pages 89–97, 14-15 Nov 1994.

[159] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On
the combination of AOP with generative programming in AspectC++. In
Gabor Karsai and Eelco Visser, editors, Proceedings of the 3rd Interna-
tional Conference on Generative Programming and Component Engineer-
ing (GPCE), volume 3286 of svlncs, pages 55–74, Vancouver, BC, Canada,
October 2004. Springer.

[160] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat. Lean
and Efficient System Software Product Lines: Where Aspects Beat Objects,
volume II of Lecture Notes in Computer Science, pages 227–255. Springer
Verlag, 2006.

[161] Cristina Videira Lopes. D: A language framework for distributed program-
ming. PhD thesis, College of Computer Science, Northeastern University,
Boston, 1997.

[162] Cristina Videira Lopes and Sushil Krishna Bajracharya. An analysis of
modularity in aspect oriented design. In Proceedings of the 4th international
conference on Aspect-oriented software development (AOSD), pages 15–26,
Chicago, IL, USA, 2005. ACM.



REFERENCES 345

[163] Roberto Lopez-Herrejon, Don Batory, and Christian Lengauer. A disci-
plined approach to aspect composition. In Proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation (PEPM), pages 68–77, Charleston, SC, USA, 2006. ACM.

[164] Nicolas Loriant, Marc Ségura-Devillechaise, Thomas Fritz, and Jean-Marc
Menaud. A reflexive extension to Arachne’s aspect language. In Proceed-
ings of the workshop on Open and Dynamic Aspect Languages (ODAL’O6),
AOSD, Bonn, Germany, 2006.

[165] Axel Mahler and Andreas Lampen. An integrated toolset for engineering
software configurations. In Proceedings of the third ACM SIGSOFT/SIG-
PLAN software engineering symposium on Practical software development
environments (SDE), pages 191–200, Boston, MA, USA, 1988. ACM.

[166] Bill McCloskey and Eric Brewer. ASTEC: a new approach to refactoring
C. SIGSOFT Softw. Eng. Notes, 30(5):21–30, 2005.

[167] Robert Mecklenburg. Managing Projects with GNU Make. O’Reilly Media,
Inc., 3rd edition edition, 2004.

[168] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans.
Softw. Eng., 26(1):70–93, 2000.

[169] Christopher A. Mennie and Charles L.A. Clarke. Giving meaning to macros.
In Proceedings of the 12th IEEE International Workshop on Program Com-
prehension (IWPC), pages 79–85, Bari, Italy, 2004. IEEE Computer Soci-
ety.

[170] Kim Mens and Tom Tourwé. Evolution issues in aspect-oriented program-
ming. In Tom Mens and Serge Demeyer, editors, Software evolution, chap-
ter 9, pages 203–232. Springer Verlag, 1st edition edition, February 2008.

[171] Peter Miller. Recursive make considered harmful. AUUGN Journal of
AUUG, Inc., 19(1):14–25, 1998.

[172] Leon Moonen, Arie Deursen, Andy Zaidman, and Magiel Bruntink. On
the interplay between software testing and evolution and its effect on pro-
gram comprehension. In Tom Mens and Serge Demeyer, editors, Software
evolution, chapter 8, pages 173–202. Springer Verlag, 1st edition edition,
February 2008.

[173] H. A. Müller and K. Klashinsky. Rigi-a system for programming-in-the-
large. In Proceedings of the 10th international conference on Software en-
gineering (ICSE), pages 80–86, Singapore, 1988. IEEE Computer Society
Press.



346 REFERENCES

[174] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey,
Scott R. Tilley, and Kenny Wong. Reverse engineering: a roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering (ICSE),
pages 47–60, Limerick, Ireland, 2000. ACM Press.

[175] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding software
systems using reverse engineering technology perspectives from the Rigi
project. In Proceedings of the Conference of the Centre for Advanced Stud-
ies on Collaborative research (CASCON), pages 217–226, Toronto, ON,
Canada, 1993. IBM Press.

[176] Gail C. Murphy and David Notkin. Lightweight lexical source model ex-
traction. ACM Trans. Softw. Eng. Methodol., 5(3):262–292, 1996.

[177] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion
models: bridging the gap between source and high-level models. In Pro-
ceedings of the 3rd ACM SIGSOFT symposium on Foundations of soft-
ware engineering (FSE), pages 18–28, Washington, D.C., USA, 1995. ACM
Press.

[178] Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Composing aspects
at shared join points. In Andreas Polze Robert Hirschfeld, Ryszard Kowal-
czyk and Mathias Weske, editors, Proceedings of the 6th Annual Inter-
national Conference on Object-Oriented and Internet-Based Technologies,
Concepts, and Applications for a NetworkedWorld (Net.ObjectDays), vol-
ume P-69 of Lecture Notes in Informatics, Erfurt, Germany, Sep 2005.
Gesellschaft für Informatik (GI).

[179] Istvan Nágy, Remco van Engelen, and Durk van der Ploeg. Ideals: evolv-
ability of software-intensive high-tech systems, chapter An overview of Mir-
jam and WeaveC, pages 69–86. Embedded Systems Institute, TU/e Campus,
Eindhoven, The Netherlands, December 2007.

[180] Srinivas Neginhal and Suraj Kothari. Event views and graph reductions for
understanding system level C code. In Proceedings of the 22nd IEEE In-
ternational Conference on Software Maintenance (ICSM), pages 279–288,
Philadelphia, PE, USA, 2006. IEEE Computer Society.

[181] Glenn Niemeyer and Jeremy Poteet. Extreme Programming with Ant:
Building and Deploying Java Applications with JSP, EJB, XSLT, XDoclet,
and JUnit. Sams, first edition edition, May 2003. ISBN-0672325624.

[182] M.E. Nordberg III. Aspect-Oriented Dependency Inversion. In Proceedings
of the Workshop on Advanced Separation of Concerns in Object-Oriented
Systems, OOPSLA, Tampa Bay, FL, USA, 2001.



REFERENCES 347

[183] Esko Nuutila, Vesa Hirvisalo, Jari Arkko, Juha Kuusela, and Markku Tam-
minen. Smart recompilation in the XE compiler (extended abstract), 1986.
Unpublished.

[184] Kristen Nygaard and Ole-Johan Dahl. The development of the SIMULA
languages. SIGPLAN Not., pages 439–480, 1981.

[185] Klaus Ostermann, Mira Mezini, and Christophe Bockisch. Expressive
pointcuts for increased modularity. In Proceedings of the 19th European
Conference on Object-Oriented Programming (ECOOP), Glasgow, Scot-
land, 2005.

[186] Keith Owens. If you want Kbuild 2.5, tell Linus (email).
http://lwn.net/Articles/1500/, June 2002.

[187] D. L. Parnas. On the criteria to be used in decomposing systems into mod-
ules. Commun. ACM, 15(12):1053–1058, 1972.

[188] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo. A language-
independent software renovation framework. J. Syst. Softw., 77(3):225–240,
2005.

[189] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time aspects:
efficient dynamic weaving for Java. In Proceedings of the 2nd international
conference on Aspect-oriented software development (AOSD), pages 100–
109, Boston, MA, USA, 2003. ACM.

[190] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving
for aspect-oriented programming. In Proceedings of the 1st international
conference on Aspect-oriented software development (AOSD), pages 141–
147, Enschede, The Netherlands, 2002. ACM.

[191] Quake3. http://www.idsoftware.com/games/quake/quake3-arena/.

[192] Russell W. Quong and Mark A. Linton. Linking programs incrementally.
ACM Trans. Program. Lang. Syst., 13(1):1–20, 1991.

[193] George Radin. The early history and characteristics of PL/I. SIGPLAN Not.,
13(8):227–241, 1978.

[194] The Ideals research team. Ideals: evolvability of software-intensive high-
tech systems, chapter Industrial impact, lessons learned and conclusions,
pages 143–160. Embedded Systems Institute, TU/e Campus, Eindhoven,
The Netherlands, December 2007.



348 REFERENCES

[195] Gregorio Robles. Software Engineering Research on Libre Software: Data
Sources, Methodologies and Results. PhD thesis, Universidad Rey Juan
Carlos, February 2006.

[196] Marc J. Rochkind. The Source Code Control System. IEEE Transactions
on Software Engineering, SE-1(4):364–370, 1975.

[197] O. Rohlik, A. Pasetti, V. Cechticky, and I. Birrer. Implementing Adapt-
ability in Embedded Software through Aspect Oriented Programming. In
Proceedings of the IEEE Conference on Mechatronics & Robotics, pages
85–90, Aachen, Germany, September 2004.

[198] Ed Roman, Scott W. Ambler, and Tyler Jewell. Mastering Enterprise Jav-
abeans. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[199] Graham Ross. Integral-c -âĂŤ- a practical environment for C programming.
In Proceedings of the 2nd ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments (SDE), pages
42–48, Palo Alto, CA, USA, 1987. ACM.

[200] Daniel Sabbah. Aspects: from promise to reality. In Proceedings of the
3rd International Conference on Aspect-Oriented Software Development
(AOSD), pages 1–2, Lancaster, UK, 2004. ACM Press.

[201] Patrick Sansom. Smart Recompilation in Glasgow Haskell. In Phil Trinder,
editor, Proceedings of the Glasgow Functional Programming Workshop
(FP), Ceilidh Place, Ullapool, Scotland, july 1996.

[202] Kris De Schutter. Aspect oriented revitalisation of legacy software through
logic meta-programming. PhD thesis, Ghent University, Ghent, Belgium,
May 2006.

[203] Marc Ségura-Devillechaise, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. Web cache prefetching as an aspect: Towards a dynamic-weaving
based solution. In Proceedings of the 2nd International Conference on
Aspect-Oriented Software Development (AOSD), pages 110–119, Boston,
MA, USA, 2003. ACM.

[204] Nieraj Singh, Celina Gibbs, and Yvonne Coady. C-CLR: A tool for nav-
igating highly configurable system software. In Proceedings of the 6th
Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), AOSD, Vancouver, BC, Canada, 2007.

[205] P. Singleton and P. Brereton. A Case for Declarative Programming-in-the-
Large. In Proceedings of the 5th IEEE Conf. on Software Engineering and
Knowledge Engineering (SEKE), San Francisco, CA, USA, 1993.



REFERENCES 349

[206] Paul Singleton. Applications of Meta-Programming to the Construction of
Software Products from Generic Configurations. PhD thesis, Keele Univer-
sity, Keele, Newcastle, UK, 1992.

[207] Dag I. K. Sjøberg, Ray Welland, Malcolm P. Atkinson, Paul Philbrow, and
Cathy Waite. Exploiting persistence in build management. Softw. Pract.
Exper., 27(4):447–480, 1997.

[208] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Sys-
tems and Processes (The Morgan Kaufmann Series in Computer Architec-
ture and Design). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

[209] Gregor Snelting. Reengineering of configurations based on mathematical
concept analysis. ACM Trans. Softw. Eng. Methodol., 5(2):146–189, 1996.

[210] S. S. Somé and T. C. Lethbridge. Parsing minimization when extracting
information from code in the presence of conditional compilation. In Pro-
ceedings of the 6th International Workshop on Program Comprehension
(IWPC), page 118, Ischia, Italy, 1998. IEEE Computer Society.

[211] Henry Spencer and Geoff Collyer. #ifdef considered harmful or portabil-
ity experience with C News. In Rick Adams, editor, Proceedings of the
USENIX Conference, pages 185âĂŞ–198, Baltimore, MD, USA, June 1992.
USENIX Association.

[212] Dennis Spenkelink. Incremental compilation in Compose*. Master’s thesis,
University of Twente, 2006.

[213] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. As-
pectC++: An aspect-oriented extension to the C++ programming language.
In Proceedings of the 40th International Conference on Tools Pacific, pages
53–60, Sydney, Australia, 2002. Australian Computer Society, Inc.

[214] Olaf Spinczyk and Daniel Lohmann. The design and implementation of
AspectC++. Know.-Based Syst., 20(7):636–651, 2007.

[215] Diomidis Spinellis. Checking C declarations at link time. The Journal of C
language translation, 4(3):238–249, March 1993.

[216] Diomidis Spinellis. Global analysis and transformations in preprocessed
languages. IEEE Trans. Softw. Eng., 29(11):1019–1030, 2003.

[217] Amitabh Srivastava and Alan Eustace. ATOM — A system for building cus-
tomized program analysis tools. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI),
pages 196–205, Orlando, FL, USA, 1994.



350 REFERENCES

[218] Richard M. Stallman, Roland McGrath, and Paul D. Smith.
GNU Make manual. Free Software Foundation, April 2006.
http://www.gnu.org/software/make/manual/make.html.

[219] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Mac-
neil Shonle, Nishit Tewari, and Hridesh Rajan. Information hiding inter-
faces for aspect-oriented design. In Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering (ESEC/SIGSOFT
FSE), pages 166–175, Lisbon, Portugal, 2005. ACM.

[220] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. The
structure and value of modularity in software design. In Proceedings of the
8th European Software Engineering Conference, Held Jointly with the 9th
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/SIGSOFT FSE), pages 99–108, Vienna, Austria, 2001. ACM.

[221] Andrew Sutton and Jonathan Maletic. How we manage portability and con-
figuration with the C preprocessor. In Proceedings of the 23rd International
Conference on Software Maintenance (ICSM), Paris, France, October 2007.

[222] Swag Kit. http://www.swag.uwaterloo.ca/swagkit/instructions.html.

[223] SWI Prolog. http://www.swi-prolog.org/.

[224] Clemens Szyperski. Component software: beyond object-oriented program-
ming. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
1998.

[225] Peri Tarr, William Chung, William Harrison, Vincent Kruskal, Harold Os-
sher, Jr. Stanley M. Sutton, Andrew Clement, Matthew Chapman, He-
len Hawkins, and Sian January. The concern manipulation environment.
In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications (OOPSLA),
pages 29–30, Vancouver, BC, Canada, 2004. ACM Press.

[226] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N de-
grees of separation: multi-dimensional separation of concerns. In Proceed-
ings of the 21st international conference on Software engineering (ICSE),
pages 107–119, Los Angeles, CA, USA, 1999. IEEE Computer Society
Press.

[227] Walter F. Tichy. Software development control based on module intercon-
nection. In Proceedings of the 4th international conference on Software
engineering (ICSE), pages 29–41, Munich, Germany, 1979. IEEE Press.



REFERENCES 351

[228] Qiang Tu and Michael W. Godfrey. The build-time software architecture
view. In Proceedings of the 17th International Conference on Software
Maintenance (ICSM), pages 398–407, Florence, Italy, 2001.

[229] Tijs van der Storm. Variability and component composition. Software
Reuse: Methods, Techniques and Tools, pages 157–166, 2004.

[230] Tijs van der Storm. Continuous release and upgrade of component-based
software. In Proceedings of the 12th international workshop on Software
configuration management (SCM), pages 43–57, Lisbon, Portugal, 2005.
ACM.

[231] Tijs van der Storm. Lightweight incremental application upgrade. Technical
Report SEN-R0604, SEN, CWI, April 2006.

[232] Arie van Deursen and Merijn de Jonge. Product line evolution using source
packages. Unpublished?

[233] Arie van Deursen, Merijn de Jonge, and Tobias Kuipers. Feature-based
product line instantiation using source-level packages. In Proceedings of
the Second International Conference on Software Product Lines (SPLC),
pages 217–234, London, UK, 2002. Springer-Verlag.

[234] Gary V. Vaughan, , Ben Elliston, Tom Tromey, and Ian Lance Taylor. GNU
Autoconf, Automake and Libtool. New Riders Publishing, Thousand Oaks,
CA, USA, 2000.

[235] László Vidács, Árpád Beszédes, and Rudolf Ference. Columbus schema
for C/C++ preprocessing. In Proceedings of the 8th Euromicro Working
Conference on Software Maintenance and Reengineering (CSMR), page 75,
Tampere, Finland, 2004. IEEE Computer Society.

[236] Marian Vittek. Refactoring browser with preprocessor. In Proceedings of
the 7th European Conference on Software Maintenance and Reengineering
(CSMR), page 101, Benevento, Italy, 2003. IEEE Computer Society.

[237] Kris De Volder and Theo D’Hondt. Aspect-Oriented Logic Meta Pro-
gramming. In Proceedings of the 2nd International Conference on Meta-
Level Architectures and Reflection (REFLECTION), pages 250–272, Lon-
don, UK, 1999. Springer-Verlag.

[238] Philip Wadler. The essence of functional programming. In Proceed-
ings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL), pages 1–14, Albuquerque, NM, USA, 1992.
ACM.



352 REFERENCES

[239] Robert J. Walker and Kevin Viggers. Implementing protocols via declara-
tive event patterns. In Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering (FSE), pages
159–169, Newport Beach, CA, USA, 2004. ACM.

[240] Jean-Paul Van Waveren. Quake III Arena bot. Master’s thesis, TU Delft,
Delft, The Netherlands, June 2001.

[241] David A. Wheeler. sloccount. http://www.dwheeler.com/sloccount/.

[242] Niklaus Wirth. Modula-2 and Oberon. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages (HOPL), pages
3–1–3–10, San Diego, CA, USA, 2007. ACM.

[243] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, Vrije
Universiteit Brussel, Pleinlaan 2, Etterbeek, 2001.

[244] Yoshisato Yanagisawa, Kenichi Kourai, and Shigeru Chiba. A dynamic
aspect-oriented system for OS kernels. In Stan Jarzabek, Douglas C.
Schmidt, and Todd L. Veldhuizen, editors, Proceedings of the 5th Interna-
tional Conference on Generative Programming and Component Engineer-
ing (GPCE), pages 69–78, Portland, OR, USA, October 2006. ACM.

[245] Marco Yuen, Marc Fiuczynski, Robert Grimm, Yvonne Coady, and David
Walker. Making extensibility of system software practical with the C4
toolkit. In Proceedings of the 4th Software-Engineering Properties of Lan-
guages and Aspect Technologies Workshop (SPLAT), AOSD, Bonn, Ger-
many, March 2006.

[246] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Apply-
ing webmining techniques to execution traces to support the program com-
prehension process. In Proceedings of the 9th European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pages 134–142, Manch-
ester, UK, 2005. IEEE.

[247] Andy Zaidman and Serge Demeyer. Managing trace data volume through a
heuristical clustering process based on event execution frequency. In Pro-
ceedings of the 8th European Conference on Software Maintenance and
Reengineering (CSMR), pages 329–338, Tampere, Finland, 2004.

[248] Andy Zaidman, Serge Demeyer, Bram Adams, Kris De Schutter, Ghislain
Hoffman, and Bernard De Ruyck. Regaining lost knowledge through dy-
namic analysis and aspect orientation. In Proceedings of the 10th Confer-
ence on Software Maintenance and Reengineering (CSMR), pages 91–102,
Bari, Italy, March 2006. IEEE Computer Society.



REFERENCES 353

[249] Charles Zhang and Hans-Arno Jacobsen. TinyC2:towards building a dy-
namic weaving aspect language for C. In Proceedings of the Workshop on
Foundations Of Aspect-Oriented Languages (FOAL), Boston, MA, USA,
2003.




	Preface
	Nederlandse samenvatting
	English summary
	Introduction
	Context of the Dissertation
	Problem Statement
	Contributions
	Road Map

	Conceptual Evidence for Co-evolution of Source Code and the Build System
	The Build System and its Responsibilities
	History of Build Systems
	The General Build System Model
	The GNU Build System (GBS), an Archetypical Build System
	Configuration Layer: Autoconf
	Build Layer Generation: Automake
	Build Layer: GNU Make
	Additional GBS Components

	Roles Played by the Build System
	Continuous Integration
	Integrated Development Environments
	Software Configuration Management (SCM)
	Software Deployment
	Release Management
	Variability Management


	Understandability and Scalability Problems of Build Systems
	Problems with "make"
	Understandability
	Scalability

	Problems with GNU Make
	Understandability
	Scalability

	Problems with GBS
	Understandability
	Scalability

	Problems with Application of Build Systems in General
	Understandability
	Recursive versus Non-recursive ``make''


	The Roots of Co-evolution
	Co-evolution in Software Development
	A Taxonomy of Co-evolution in Software Development
	Early Evidence for Co-evolution between Source Code and the Build System
	KDE Migrates from GBS to CMake
	Source Code Reuse Restricted by the Build System

	Conceptual Relations between Source Code and the Build System
	RC1: Modular Reasoning vs. Unit of Compilation
	RC2: Programming-in-the-large vs. Build Dependencies
	RC3: Interface Consistency vs. Incremental Compilation
	RC4: Program Variability vs. Build Unit Configuration

	Summary

	The Relation between AOP and the Roots of Co-evolution
	AOP
	RC1: Modular Reasoning vs. Unit of Compilation
	RC2: Programming-in-the-large vs. Build Dependencies
	RC3: Interface Consistency vs. Incremental Compilation
	RC4: Program Variability vs. Build Unit Configuration

	Validation of Co-evolution of Source Code and the Build System

	MAKAO, a Re(verse)-engineering Tool for Build Systems
	Scope of Tool Support
	Goal T1: Tool Support for Solving Build Problems
	Goal T2: Tool Support to Understand and Manage Co-evolution of Source Code and the Build System
	Conclusion

	Deriving Tool Requirements from T1 and T2
	Functional Requirements
	Visualisation
	Querying
	Filtering
	Verification
	Re-engineering

	Design Trade-offs
	Lightweightness
	Static vs. Dynamic Model
	Detecting Implicit Dependencies


	Evaluation of Existing Tool Support and Techniques
	Formal Methods
	Understanding Build Systems
	Re-engineering Build Systems
	Enhanced Build Tools and Systems

	Design and Implementation of MAKAO based on the Requirements
	Architecture of MAKAO
	Build System Representation
	Build Dependency Graph Extraction
	Implementation on Top of GUESS and SWI Prolog
	Re-engineering of the Build System using Aspects
	Summary

	MAKAO at Work: Achieving Goal T1
	Visualisation
	Kava
	Linux 2.6.16.18
	Quake 3 Arena

	Querying
	Error Detection
	Tool Mining
	Name Clash Detection
	Where do Compiled Objects End up?

	Filtering
	Verification
	Re-engineering
	Selecting the Join Points and the Join Point Context
	Composing Advice
	Virtual and Physical Weaving

	Evaluation

	Conclusion

	Experimental Evidence for Co-evolution of Source Code and the Build System
	Rationale behind the Linux Kernel Case Study
	Setup of the Linux Kernel Case Study
	Measuring SLOC and Number of Files
	Calculating Metrics for the Internal Build Complexity
	Detailed Study of Crucial Evolution Steps

	Observation 1: the Build System Evolves with the Source Code
	Observation 2: Build System Complexity Fluctuates
	Observation 3: Co-evolution as Driver of Build Evolution
	Configuration Layer under Pressure
	Evolution until the Linux 2.4 Series
	Towards the Linux 2.6 Kernel
	Kbuild 2.5 Eliminates Recursive Make
	Kbuild 2.6 Converges to Kbuild 2.5 via Build Idioms
	Summary


	Validation #1: Roots of Co-evolution Experimentally Confirmed
	RC1: Modular Reasoning vs. Unit of Compilation
	RC2: Programming-in-the-large vs. Build Dependencies
	RC3: Interface Consistency vs. Incremental Compilation
	RC4: Program Variability vs. Build Unit Configuration

	Validation #2: MAKAO Achieves Goal T2
	Conclusion

	Aspicere, AOP for Legacy C Systems
	Requirements for an Aspect Language for Legacy systems
	Goal L1: Language Features to Deal with Legacy Systems
	Goal L2: Integration of the Build System with the Aspect Language

	Evaluation of Existing Aspect Languages for C
	Aspect Languages with a Compile-time Weaver
	Cobble
	AspectC
	AspectC++
	AspectX/XWeaver
	C4
	WeaveC
	ACC

	Aspect Languages with a Run-time Weaver
	Diner
	TinyC2
	Arachne
	TOSKANA (Toolkit for Operating System Kernel Aspects with Nice Applications)
	KLASY (Kernel Level Aspect-oriented SYstem)

	Aspect Language with a Virtual Machine Weaver
	Model Driven Weaving
	Evaluation

	Language Design of Aspicere
	How Aspicere Deals with Goals L1 and L2
	Aspicere's Join Point Model
	Supported Join Points
	Join Point Properties for ITD

	Aspicere's Advice Model
	Advice Structure
	Join Point Property Declaration

	Aspicere's Pointcut Language
	Aspicere at Work: Database Error Recovery
	Comparison with an Industrial Aspect Language for C: Mirjam

	Two Weaver Implementations for Aspicere
	Aspicere1, a Source-to-source Weaver
	Aspicere2, a Link-time Weaver

	Validation of Goals L1 and L2
	Conclusion

	Case Study 1: Reverse-engineering of the Kava System using Aspects
	Rationale behind the Case Study
	Application of AOP in the Source Code
	Trace and Pointer Guard Aspects
	Validation #1: Aspicere Meets Goal L1

	Impact on the Build System
	Integration of Aspicere1 with the Build Process
	Necessary Changes to the Makefiles
	Wrapping the Compiler does not Work
	Regular Expression-based Transformation lacks Context
	MAKAO is able to Help

	The Notion of ``whole-program''
	An Illustration: Partially Transformed Aspects
	Defining the Notion of ``whole program''
	Supporting the Notion of ``whole program''

	The Influence of C Language Features
	Build Time Increase
	Run-time Overhead

	Validation #2: Roots of Co-evolution Experimentally Confirmed
	Validation #3: MAKAO Achieves Goal T2
	Conclusion

	Case Study 2: Component-aware Reverse-engineering of Quake 3 using Aspects
	Rationale behind the Case Study
	Application of AOP in the Source Code
	Determining the Main System Components
	The Tracing Aspect
	Validation #1: Aspicere Meets Goal L1

	Impact on the Build System
	Integration of Aspicere2 with the Build Process
	Communication between Aspicere2 and the Build System
	The Influence of C Language Features
	Build Time Increase and Incremental Weaving
	Run-time Overhead

	Validation #2: Roots of Co-evolution Experimentally Confirmed
	Validation #3: MAKAO Achieves Goal T2
	Validation #4: Aspicere Meets Goal L2
	Conclusion

	Case Study 3: Extracting the Return-code Idiom into Aspects
	Rationale behind the Case Study
	Application of AOP in the Source Code
	The Return-code Idiom
	Specification of the Idiom
	Distinguishing between all Crosscutting Concerns

	Control Flow Transfer with Delimited Continuation Join Points
	The Core Problem of Control Flow Transfer
	Definition of Delimited Continuation Join Points in Aspicere
	Application to the Control Flow Transfer concern

	Logging and Overriding with Join Point Properties and Annotations
	Challenges for Logging and Overriding
	Implementation of Logging and Overriding

	Memory Cleanup with Join Point Properties and Type Parameters
	Validation #1: Aspicere Meets Goal L1
	Scalability of the Aspects
	Run-time Overhead
	Adoption of Delimited Continuation Join Points


	Impact on the Build System
	Integration of Aspicere2 with the Build Process
	Migration to the Re-engineered System
	Build Time Increase and Incremental Weaving

	Validation #2: Roots of Co-evolution Experimentally Confirmed
	Validation #3: MAKAO Achieves Goal T2
	Validation #4: Aspicere Meets Goal L2
	Conclusion

	Case Study 4: Temporal Pointcuts to Support the Re-engineering of the CSOM VM
	Rationale behind the Case Study
	Application of AOP
	Problems of History-based Pointcut Languages for C
	The Design and Implementation of Two Major History-based Pointcut Languages
	Event-based AOP and Arachne
	Tracematches

	HALO, a History-based Aspect Language for Lisp
	Modeling Arachne and Tracematches in Terms of HALO
	cHALO, a History-based Extension of Aspicere
	Language Design of cHALO
	Weaver Implementation of cHALO
	Application of cHALO to CSOM

	Open Problems of History-based Pointcut Languages for C
	Validation #1: Aspicere Meets Goal L1

	Impact on the Build System
	Integration of Aspicere2 with the Build Process
	Configuration of Aspects Presents a Challenge
	Migration to the Re-engineered System
	Increase of Build Time and Incremental Weaving

	Validation #2: Roots of Co-evolution Experimentally Confirmed
	Validation #3: MAKAO Achieves Goal T2
	Conclusion

	Case Study 5: Extracting Preprocessor Code into Aspects
	Rationale behind the Case Study
	Application of AOP in the Source Code
	Class 1: Conditional Definitions
	Class 2: Fine-grained Conditional Compilation
	The General Case
	Scattered Conditional Compilation
	Simple Conditional Compilation
	Simple Conditional Compilation with Dependencies
	Simple Conditional Compilation with Declarations

	Class 3: Coarse-grained Conditional Compilation
	Partitioned Conditional Compilation
	Semi-partitioned Conditional Compilation

	Validation #1: Aspicere Meets Goal L1

	Impact on the Build System
	Integration of Aspicere2 with the Build Process
	Migration to the Re-engineered System
	Build Time Increase and Incremental Weaving
	Communication between Aspicere2 and the Build System

	Validation #2: Roots of Co-evolution Experimentally Confirmed
	Validation #3: MAKAO Achieves Goal T2
	Validation #4: Aspicere Meets Goal L2
	Conclusion

	Conclusions and Future Work
	Problem Statement
	Contributions
	Conceptual Contributions
	What is Co-evolution of Source Code and the Build System?
	Tool Support to Understand and Manage Co-evolution Phenomena?
	Experimental Evidence of the Roots of Co-evolution in Legacy Systems?
	What is the Relation between the Introduction of AOSD and Co-evolution?
	AOSD Technology to Deal with Co-evolution?
	Validation of AOSD Technology to Deal with Co-evolution?

	Technical Contributions

	Future Work
	Minor Future Work
	Major Future Work

	Conclusion

	Example GBS system
	Rules for filtering Linux 2.6.x build
	Auxiliary predicates
	Eliminate meta-edges
	Initial cleanup
	FORCE idiom
	Shipped targets
	Source-level abstraction
	Composite object abstraction
	Circular dependency chain

	Bibliography

