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ABSTRACT
History-based pointcut languages are a very expressive and power-
ful means to obtain robust pointcuts. To implement them in an effi-
cient way, people have proposed various optimisations and program
history retention strategies, especially for Java-based aspect lan-
guages. In this paper, we focus on history-based pointcut languages
for C, which has no provisions for weak references or automatic
garbage collection. Because C programmers want explicit con-
trol over pointcut behaviour and memory footprint, we claim that a
limited set of fine-grained temporal pointcut primitives with well-
known memory behaviour strikes a good balance between flexibil-
ity and memory consumption. A working prototype (cHALO) has
been designed and implemented, based on the HALO pointcut lan-
guage for Lisp.

1. INTRODUCTION
To decouple aspects from the base code, robust pointcuts are in-

dispensable. This desire has fostered development of expressive
aspect languages. Early on [11], time has been identified as an im-
portant foundation for powerful pointcut languages. More specif-
ically, pointcuts can be written as patterns over the program exe-
cution history. This program trace corresponds to a sequence of
AspectJ-like join points. In general, the various pointcut designa-
tors making up a complete temporal pointcut1 are composed via
temporal operators or some other means (e.g. regular expressions)
to detect certain patterns of events. Another interpretation is that
the particular join points a pointcut is interested in may change de-
pending on earlier events in the base code (stateful aspects [8]).
This lends itself naturally for modeling protocol-like concerns [1,
9, 14] or complex behavioural patterns [3].

Despite its promises, adoption of history-based pointcuts has
been slow to catch up [4], primarily because of efficiency issues.
There are roughly two areas of concern: memory space and exe-
cution time. Intuitively, the idea of matching join points based on
program trace elements requires that these traces and available con-
text are stored somewhere before they can contribute to a pointcut

1We call them “sub-pointcuts” from now on.
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match2. Worse, some state may need to be retained indefinitely, as
the right future event leading to a pointcut match never seems to
occur. In the meantime, context values associated with past events
may have gone out of scope, rendering them invalid for future (par-
tial) matches. As for execution time overhead, the process of de-
ciding whether an event satisfies a given pointcut based on past
program events is in general not statically decidable. A run-time
component is needed to make the final residual checks for a match,
introducing overhead.

For both problem areas, solutions and workarounds have been
introduced. In this paper, we focus especially on program his-
tory retention strategies, i.e. policies which limit the number of
needed trace data elements in memory and/or the period during
which they are stored. Our claim is that current solutions hide too
much complexity from the programmer, without the possibility to
get in charge if desired. This clashes with the spirit of C, similar to
the way C programmers despise garbage collection for taking away
too much power/freedom from them. Additionally, existing pro-
gram history retention techniques almost all exploit garbage col-
lection facilities of the underlying base language. Systems or in-
frastructure software, traditionally implemented in C or C++, can-
not benefit from garbage collection. Hence, history-based pointcuts
may cause serious memory issues in these systems. Lack of mem-
ory control and of explicit retention strategies in the absence of
garbage collection, severely limit adoption of history-based point-
cut languages in C/C++ applications.

Although we do not focus directly on execution time overhead
(many analyses [6, 7] and optimisations [4, 5] have been proposed
for this), the latter is indirectly influenced by memory behaviour.
Just as for memory usage, C programmers want to avoid redundant
behaviour too. History-based aspect languages with too coarse-
grained temporal operators and sub-pointcut constructs do not sat-
isfy these needs, as they do not allow sufficiently fine-grained join
point selection. Typically, more program history is stored for fu-
ture matches, but undocumented links between operators and their
memory consumption make this opaque for the developer. Hence,
history-based pointcut languages in C need fine-grained temporal
operators with clear guarantees on memory behaviour.

To deal with history retention and fine-grained operators, we
propose to apply ideas introduced by HALO [14], an expressive
history-based pointcut language for Lisp. It features a limited set
of logic-based pointcut primitives with well-known memory space
and cleanup characteristics, and a run-time weaver implemented in
terms of a slightly customised Rete-engine [12]. HALO’s temporal
operators and their history retention strategies are clearly mapped
onto join nodes of the Rete-network, hence improving the (mem-
ory) behaviour of operators or adding new ones is straightforward.

2This kind of incomplete matches are called “partial matches”.



1 void f(char* s,int d);
2 void g(char* s);
3 BOOL shorter(char* s,int d);

Figure 1: Interface of running example used in this paper.

1 seq(call(void f(char*,int)) && args(s,d)
2 && if(shorter(s,d));
3 call(void g(char*)) && args(s2)
4 && if(s==s2) then ...)

Figure 2: Arachne pointcut with dots instead of concrete around-
advice.

We have translated these ideas to Aspicere [2], an aspect language
for C with a static weaver. The resulting system, named “cHALO”,
will be discussed. Benchmarking cHALO’s effective memory be-
haviour is considered future work.

Our position statement is that:

• History-based pointcut languages for C/C++ need to pro-
vide the programmer with explicit control over behaviour
and memory footprint of temporal pointcuts.

• The clear mapping between temporal operators and join nodes
of the Rete-network, makes HALO an ideal choice for pro-
viding the aspect developer with more control.

Section 2 discusses the two most related history-based pointcut
languages, Arachne [9] and tracematches [3]. Then, the required
HALO features for our explanation is presented in Section 3. We
use these to rephrase the basic temporal operators of Arachne and
tracematches in terms of HALO’s primitive predicates (Section 4).
Section 5 then converts HALO’s key ideas in the context of a stat-
ically woven aspect language for C, and the shortcomings of the
resulting system are discussed in Section 6. Finally, Section 7 sum-
marises this paper’s contributions.

2. RELATED WORK
There are dozens of history-based pointcut languages. Because

of space restrictions and to keep our discussion focused, we only
consider three of them in this paper: Arachne, tracematches and
HALO. This section focuses on the first two, while HALO is dis-
cussed in the next section. To illustrate the claims of the introduc-
tion, we use the simple example shown in Figure 1. It consists
of two functions, f and g, and a boolean function which checks
whether the length of a string (s) is shorter than a given integer (d).
We model a history-based pointcut which looks for (possibly non-
consecutive) invocations of f and g. These invocations should have
the same string as their first argument. Furthermore, we are only
interested in invocations of f for which shorter returns TRUE.

2.1 Event-based AOP and Arachne
Event-based AOP (EAOP) [11, 10] is based on the concept of ex-

ecution monitors. Join points are reified as events in the execution
of a program and pointcuts describe patterns of events. Douence
et al. [11] have proposed a formally defined, domain-specific as-
pect language with operators for modeling event sequences, par-
allel processing, filtering, etc. A Java prototype has been devel-
oped in which the monitor is synchronously called by the base pro-
gram. The specific instrumentation points where the monitor is in-
voked are automatically generated from the pointcut. The distinc-
tion between a run-time component (monitor) and event broadcast-
ing from within the base code (instrumentation) is still widely used.

1 tracematch(String s,int d){
2 sym f around: call(void f(..)) && args(s,d)
3 && if(shorter(s,d));
4 sym g around: call(void g(..)) && args(s);
5

6 f g{
7 ...
8 }
9 }

Figure 3: Tracematch equivalent to the Arachne pointcut in Fig-
ure 2.

Another implementation of EAOP has been proposed by Åberg et
al. [1]. They use rewriting rules, expressed in temporal logic, to
statically select join point shadows. This static transformation ex-
ploits the intra-procedural control flow graph of a program to avoid
run-time overhead.

The most advanced incarnation of EAOP is Arachne [9], an ex-
pressive aspect language for C sporting a Prolog-influenced point-
cut language and a run-time weaver. Only the sequencing construct
of EAOP has been retained, but it forms the backbone of Arachne.
Figure 2 shows a pointcut that matches a sequence of calls to f
(lines 1–2) and g (lines 3–4) which fulfil two conditions: their
first argument should be equal and they should pass the shorter
boolean check. Arachne allows to associate advice to both sub-
pointcuts of the sequence, not only to the sequence as a whole.
Hence, the advice represented by “...” is actually around-advice
on the call to g. This clearly gives aspect developers more control,
but it can be misleading in the sense that advice is executed for any
partial match, regardless whether or not it will eventually yield a
complete match.

For memory management, Arachne associates a linked list with
each sub-pointcut of a sequence (except the last one). Each list
node stores the contents of a partial match, with values for all con-
text variables which occur in the whole pointcut. At any moment,
there can be multiple partial matches associated with a given sub-
pointcut. Conceptually, when a new trace element matches a sub-
pointcut, every partial match of the previous sub-pointcut is exam-
ined to check whether bound variables match. If they do, the node’s
state can be updated and moved to the current sub-pointcut’s list.
The associated advice is executed. The partial match’s node is freed
(returned to a pool) if the last sub-pointcut has matched. If some
partial match never yields a complete match, the accompanying set
of bindings remains indefinitely in a linked list. This is actually
inevitable, but we come back to this in our discussion.

2.2 Tracematches
Tracematches [3] consist of a set of events (symbols) which are

considered interesting, a regular event expression in terms of those
symbols and an advice body which is activated once the pattern
is satisfied. Symbols correspond to a combination of an AspectJ
advice kind and a primitive pointcut. A tracematch model of the
Arachne pointcut of Figure 2 is shown in Figure 33. Two symbols
are declared (f and g). Prolog-like unification of (and backtracking
over) the string arguments is enforced by reusing the same free vari-
able name (args(s)). This forms the biggest difference between
tracematches and prior history-based pointcut languages, and has
had a big impact on memory behaviour (more on this later). Line 6
contains a simple regular expression in terms of the two symbols. It
expresses the same sequence as the Arachne implementation does.

3Tracematches are expressed in Java, whereas Arachne and Aspicere are based on C.
For this example, only the temporal pattern matters.



1 2

mr

<lotte>5

gf-call

<lotte>2

?user'checkoutT1

<dvd>4 <lotte>

<kris> <book>3

gf-call ?article

<cd><lotte>1

?user'buyT2

<lotte>5 <dvd>

?user

<lotte> <cd>2

?articleT3

...

((gf-call 'checkout (?user))

 (most-recent (gf-call 'buy (?user ?article))))

1

(gf-call 'checkout <lotte>)

2

5

3

4 (gf-call 'buy <lotte> <dvd>)

(gf-call 'buy <kris> <book>)

(gf-call 'checkout <lotte>)

(gf-call 'buy <lotte> <cd>)

Figure 4: Example time-extended Rete network from HALO.

Contrary to Arachne, tracematch advice applies only to the last join
point matched by the pattern, not on the whole join point sequence.

As introduced by EAOP, the tracematch weaver conceptually
distinguishes between base code instrumentation and run-time sup-
port for deciding whether or not there is a match. Tracematches are
translated into multiple AspectJ advices. First, some of these ad-
vise the appropriate instrumentation join points with event signal-
ing logic. A second kind of advice contains specialised code to set
up and run the run-time component. The third kind of advice con-
tains the actual tracematch advice code. Many optimisation tech-
niques have been proposed to optimise either the instrumentation
or run-time side of the woven system [4, 5, 6, 7].

Tracematches use a specialised, deterministic finite automaton to
keep track of the matching process. The automaton is automatically
generated from and specialised to the tracematch. As automata are
not designed to hold memory (for partial matches), some advanced
concepts have been added. Every state is labeled by a number of
disjunctive constraints to record all partial matches for a given state
in the automaton. Upon arrival of new events, the constraints are
incrementally updated. Conceptually, partial matches are moved to
the next state until they disappear from the automaton. It is not clear
whether this automaton-based approach easily allows extending it
with new temporal operators or history retention strategies.

The biggest problem in the tracematch implementation is the
need to avoid memory leaks [3, 5] in the presence of free vari-
ables. Apart from HALO [14], tracematches is one of the only
approaches worried about this. The problem is that bindings inside
a partial match suddenly could refer to garbage-collected data. To
resolve this, tracematches sometimes use weak references to hold
context variables. If a weak reference is garbage collected, the par-
tial matches referring to it are also cleaned up. Still, getting this
memory behaviour correct proved to be very hard [3, 5]. As is the
case with Arachne, leaks are inevitable if non-garbage collected
partial matches do never contribute to a complete match.

3. HALO
HALO [14] is a history-based pointcut language for Lisp. It pro-

vides a limited number of temporal operators, all of which relate an
outer sub-pointcut to an inner sub-pointcut (two in case of since):

a most-recent b A new match for outer sub-pointcut a only
matches with the most recent partial match of inner sub-
pointcut b with which it can unify bound context variables.

a cflow b Similar to most-recent, but the join point sat-
isfying a should lie inside the control flow of a join point
which satisfies b (i.e. AspectJ’s cflow).

a since b c A new partial match for outer sub-pointcut amatches

with the partial matches of inner sub-pointcut c with which
bound context variables can be unified and which have oc-
curred later in time than the most recent partial match satis-
fying inner sub-pointcut b.

a all-past b A new partial match for outer sub-pointcut a
matches with all partial matches of inner sub-pointcut b with
which bound context variables can be unified.

We have listed these operators based on their memory footprint,
from low to high. These memory requirements are transparently
linked to the implementation of the HALO weaver [14]. This is
a dynamic weaver based on a Rete engine [12] which has been
extended with time stamps and extra logic corresponding to the
temporal operators. The Rete algorithm is a forward chaining tech-
nique specialised in checking whether a sequence of asserted logic
facts satisfies a logic formula (in the case of HALO: a logic pointcut
matches a join point).

The Rete algorithm is based on a network of nodes, node con-
nections and memory tables attached to the nodes, as shown on
Figure 4. Round nodes are “filter nodes”, as they filter newly as-
serted facts based on specified values for logic variables4. The fil-
ter nodes correspond to the conditions from the logic formula. In
HALO, they correspond to sub-pointcuts. The rectangular node is
a “join node”, which tries to unify a new partial match which has
entered via the node’s left or right input node with the other input’s
partial matches. If there is a match, the node memorises it and
sends the new match to its output. Partial matches are stored within
memory tables attached to filter and join nodes.

By default, join nodes perform a logical “and” on the partial
matches in their input nodes’ memory tables. In HALO, each tem-
poral operator is associated to a custom join node (multiple in the
case of since). The one on Figure 4 e.g. represents the most-recent
operator in the HALO pointcut at the bottom. Instead of just per-
forming a logical “and”, the time stamps which have been added
by HALO to memory tables (gray columns) are taken into account.
Upon a new partial match in its left input node, the mr join node
combines this entry with the most recent matching entry in the
memory table of the right input node. This means that both en-
tries need to have the same values for common variables (like a
normal “and” requires) and that the time stamp of the right partial
match should be lower than the time stamp of the left entry. For
this reason, if the mr gets a new partial match from its right input
without a match coming from the left input, there will be no match.

To illustrate HALO’s weaver implementation, Figure 4 shows
how the network has processed the program trace on the lower
right. The asserted fact of time stamp 1 is only inserted and mem-
orised by the right filter node, because it is a call to buy with two
arguments. The join node does nothing, because it cannot match
with the empty memory table of its left input. The fact at time 2,
however, does trigger a full match, as it matches the left filter node
and can be unified with an older fact memorised by the right filter
node. The resulting match is stored inside the join node’s memory
table and is also sent to the output of the network to signal a full
match to the weaver. By the time the fifth fact has been asserted,
a pure Rete join node would match it with the partial matches of
time stamps 1 and 4. However, the mr node is only interested in
the most recent partial match on the right which matches with its
left input, and hence only one full match is made and stored.

Until now, we have only focused on the direct mapping between
temporal pointcuts and Rete network. Contrary to approaches like
Alpha [15], the naive memory requirements of Figure 4 can be dras-
tically optimised [14]. There are various history retention strategies
4Variable names start with a ’?’.



1 (gf-call ’f <aa> <1>)
2 (gf-call ’f <aa> <3>)
3 (gf-call ’f <aa> <4>)

4 (gf-call ’g <bb>)
5 (gf-call ’g <aa>)
6 (gf-call ’g <aa>)

Figure 5: Sample program trace for the system in Figure 1.

1 ((gf-call ’g ?s)
2 (since (most-recent (gf-call ’g ?s))
3 (all-past (gf-call ’f ?s ?d)
4 (if ’shorter ?s ?d))))

Figure 6: HALO pointcut which corresponds to the Arachne point-
cut in Figure 2 and the tracematch in Figure 3.

possible, based on time stamps and on the known behaviour of the
temporal operators. Because the mr node is not connected with
any other join node and just sends its partial matches to the out-
put of the network, it does not need to store its partial matches,
and hence does not need a memory table. A similar remark holds
for the left filter node, as a newly asserted fact is not used any-
more once it has been sent to the join node. Finally, the seman-
tics of the most-recent operator suggests that duplicate partial
matches stored within the filter node’s right input can be removed,
as only the most recent one is interesting. The interpretation of
“duplicate” is more general than usual, as in the context of the
most-recent operator it boils down to “having identical values
for variables which are common between the inner and outer sub-
pointcut”. Other variables are not used during matching of the left
and right partial matches. Hence, in the example, fact 1 becomes
obsolete once fact 4 is stored in the right memory table, even though
they have different values for the ?article variable. This means
that at time 5, the network in Figure 4 only requires memory space
for two facts in the right input’s memory table, nothing more.

With these concepts in mind, we now revisit Arachne and trace-
matches to express their behaviour and memory requirements in
terms of HALO’s temporal operators. This enables better under-
standing of the problems with the memory footprint.

4. RELATED WORK REVISITED
To better understand the semantics and memory requirements of

Arachne and tracematches, we try to rephrase the example Arachne
and tracematch implementations of Figures 2 and 3 in terms of
HALO. As a side-effect, this exercise gives an indication on the
fine-grainedness of these three pointcut languages with reference to
each other, and on the link between temporal operators and mem-
ory management. We use the sample program trace in Figure 5 for
the running example of Figure 1. Despite its simplicity, it suffices
to convey our main message.

For the running example, the Arachne and tracematch imple-
mentations conceptually yield the same program output and partial
match memory consumption. More precisely, the first event is ig-
nored, as the integer (1) is smaller than the length of <aa> (2). The
next two invocations do match the first sub-pointcut of the sequence
and tracematch. Both approaches record the bindings (?s ->
<aa> ?d -> <3>) and (?s -> <aa> ?d -> <4>). The
next three events try to extend the partial matches into a com-
plete match. The fact on line 4 does not succeed, since <aa>
differs from bb. The next one triggers two complete matches,
one per partial match. Hence, the advice is executed twice, i.e.
for (?s -> <aa> ?d -> <3>) and for (?s -> <aa> ?d
-> <4>). Arachne now removes the two partial matches from the
linked list associated with the sequence’s first sub-pointcut. Trace-
matches do the same by manipulating the constraints associated

with the automaton’s first state. This is important, as it means that
the last event in the trace (line 6) does not trigger any advice. There
are simply no partial matches left anymore.

So far, we have considered the program output and we have also
observed that the operator behaviour affects the retention of partial
matches. Arachne and tracematches by default retain every match-
ing event as a partial match for a given sub-pointcut until it gives
rise to a longer partial match. This partial match moves on to the
next linked list or state, or it disappears on a complete match. Note
that tracematches can also remove partial matches. Negative sym-
bols (left out from a pattern) cause constraints to disappear from an
automaton state. Analyses and optimisations also indirectly influ-
ence the bindings. They are especially focused on shifting as much
decision logic as possible to compile-time, or to accelerate access
to partial matches [4, 5, 6, 7]. Handling retention of program his-
tory is merely a side-effect, not their primary goal. As these analy-
ses are not enforced but optional, programmers do not have control
over the retention policy. This means that, in our example, all cor-
responding invocations of f need to be retained between two con-
secutive full matches for a given string argument. Assuming that
these invocations are more frequent than calls to g, a lot of space
can be required.

We can express the execution and memory behaviour of Arachne
and tracematches using HALO concepts. Figure 6 shows the corre-
sponding pointcut. The previous full match for a given string ?s is
given by most-recent (gf-call ’g ?s), while the point-
cut expression on lines 3–4 selects all past calls to f which satisfies
the shorter test. Taken together, lines 2–4 collect all calls to f
for a given string ?s since the previous full match of the whole
pointcut. This is the set of partial matches with which each new
call to g can be combined to form a complete match. This corre-
sponds to the behaviour and memory requirements of the Arachne
and tracematch pointcuts. The memory footprint consists of one
entry for recording the context of the last call to g for any given
string ?s, as well as facts for keeping the context of all calls to f
since the last corresponding g invocation.

From this, we can make a couple of observations. First, the basic
history-based pointcut primitives in approaches like Arachne and
tracematches are actually coarser-grained w.r.t. the temporal prim-
itives HALO provides. The reason is that both want to make sure
that any event which gives rise to an initial partial match eventually
will get a chance to form a complete match. No partial match is
considered redundant or a duplicate, except when there are negated
sub-pointcuts, a new sub-pointcut is matched or when a binding
is garbage-collected. This behaviour is sometimes desired, but in
many use cases it suffices to act just once on a series of more or less
identical events. If a USB device is connected, it may broadcast
several “I am new” events, but the operating system’s I/O compo-
nent just needs to know there was at least one such an event. Net-
work protocols, timer alarms, scheduling requests, etc. could be
implemented using the simpler, more fine-grained temporal opera-
tors of e.g. HALO to reduce unnecessary execution and memory
overhead. The coarse-grained pointcuts can still be composed from
these fine-grained operators, but at the cost of additional execution
time and memory consumption.

A second observation is a consequence of the above coarse-grained
language semantics. As illustrated by the extensive coverage of
memory leaks by the tracematch team [3, 5], the memory require-
ments of history-based pointcut implementations are rather opaque
and implicit. This conflicts with the spirit of C and C++, as explicit,
intuitive control over memory is one of the hallmarks of these lan-
guages. It is not immediately clear how to map the memory reten-
tion policy of a temporal operator to one specific concept of the run-



1 ((gf-call ’g ?s)
2 (most-recent (gf-call ’f ?s ?d)
3 (if ’shorter ?s ?d)))

Figure 7: Finer-grained sequence pointcut in HALO.

1 void fg_sequence(char* S,int D)
2 around [around F,around G]:
3 invocation(F,"f") && args(F,[S,D])
4 && if(shorter,S,D) =>
5 invocation(G,"g") && args(G,[S]){
6 ...
7 }

Figure 8: Aspicere pointcut corresponding to the HALO pointcut
of Figure 7.

time components. In HALO, by design an operator corresponds to
one specific join node (or two) of the Rete network with guaran-
tees on memory retention of the associated partial matches. This
means that adding a new operator boils down to introducing a new
node type. As a result, the aspect developer has more control. This
gives systems software developers the possibility to tailor tempo-
ral pointcuts to the application at hand, and to make well-founded
assessments of memory requirements and execution speed.

To validate these observations, we have translated some of HALO’s
key features to an existing aspect language for C, Aspicere [2], and
have modified Aspicere’s weaver for it. We present the resulting
system, named “cHALO”, in the following section.

5. CHALO
Figure 7 shows a variant of the Arachne and tracematch point-

cuts from Section 2) similar to Figure 4. A call to g can trigger at
most one complete pointcut match, because there can only be one
f fact in memory with the same values for common bindings (see
Section 3). The other facts have been identified as duplicates (based
on ?s) and subsequently have been removed. In many cases, this
pointcut’s behaviour suffices instead of the coarser-grained seman-
tics of Figures 2 and 3. Furthermore, for the example of Figure 7,
at most one fact is stored for the calls to f in the trace of Figure 5,
while none of the calls to g warrants storage. Note that the most
recent partial match satisfying the inner pointcut is not removed
upon a complete match [14], contrary to Arachne [9] and trace-
matches [3]. We come back to this later.

Figure 8 shows the corresponding pointcut (and advice) in cHALO,
i.e. the history-based extension of the Aspicere aspect language [2].
Aspicere has a Prolog-based pointcut language, and advice cor-
responds to regular C code in which type parameters and typed
context can be used. Lines 1–2 tell us that fg_sequence is
around-advice which matches on a sequence of two symbols, F
and G. It provides two context variables to the advice, i.e. the
string (char*) and the integer arguments. Lines 3–5 show that
F and G correspond to invocations (calls) to the f and g proce-
dures mentioned in Figure 1. Their arguments are captured and
the F symbols are filtered by the shorter boolean function. The
=> arrow identifies the semantics of the sequence, in this case a
most-recent operator.

HALO has a dynamic weaver which is centered around a slightly
customised Rete [12] engine, whereas Aspicere sports a link-time
weaver based on a Prolog engine. These two approaches are not
at odds with each other. As we have seen in Section 2.1, most
temporal aspect languages [11, 4] conceptually are implemented
via a combination of base code instrumentation and run-time de-

cision logic. The former makes sure that only interesting events
are signaled, while the latter decides at run-time whether or not the
recorded join points match a pointcut. As identified by Avgusti-
nov et al. [4], both components can be optimised independently to
reduce memory footprint and execution time. Using static analy-
sis, one can filter out join point shadows which can never lead to a
match, specialise the run-time logic to the pointcuts in use or even
eliminate run-time checks altogether.

Hence, for cHALO we have decided to apply Aspicere’s Prolog-
based link-time weaver to pinpoint suitable instrumentation join
points, while a run-time Rete-engine is linked with the woven ap-
plication to perform the run-time checks. Instrumentation then
amounts to asserting facts to the engine, and checking whether a
rule has been triggered, in which case advice should be executed.
Static analysis can be used to limit the number of join point shad-
ows where facts need to be asserted. Run-time optimisation can
be achieved by automatic garbage collection of facts based on the
temporal operators’ semantics.

With this infrastructure in place, we are also able to experiment
with new, finer-grained temporal operators. More precisely, op-
erators can be conceived whose semantics follows directly from
the desired memory footprint. In practice, this amounts to adding
new kinds of Rete join nodes, with specific matching and mem-
ory cleanup behaviour. As an example, we have added and imple-
mented a very-most-recent operator as an extension to the
most-recent operator which discards the partial match of the
inner sub-pointcut on a match with a new event. This avoids fu-
ture matches with such a partial match. In the advice shown on
Figure 8, one just needs to replace => by∼> for this. This opera-
tor gives the aspect developer more explicit control over semantics
and memory footprint in case this is needed. Other operators like
all-past and since have not been added yet to cHALO, but in
principle the same approach can be followed.

6. DISCUSSION
Explicit program history retention strategies can only stabilise

the memory footprint of history-based pointcuts if the latter are
thought out well. Suppose that in the example trace of Figure 5,
invocations to f with identical string arguments are very rare. This
would mean that the garbage collection optimisation does not kick
in, and almost all calls to f are memorised. This could get worse
when calls to g would also be infrequent, or not contain matching
string arguments. In that case, even the very-most-recent
operator would not be able to reduce the memory footprint. The
same problems exist in Arachne and, to a lesser extent (because of
weak references), in tracematches.

In addition to memory starvation, there is another danger. If a
very old partial match suddenly leads to a complete pointcut match,
chances are high that its context variables are not valid anymore.
They could refer to local variables which have long gone out of
scope, or to pointers which have become dangling by now. Trace-
matches can easily deal with this via weak Java references, but in C
or C++ no such mechanism exists, simply because there is no (au-
tomatic) garbage collection. This is the biggest obstacle history-
based pointcuts are facing in the context of C and C++ systems.
Providing more explicit control on memory requirements of tempo-
ral pointcuts, as proposed in this paper, is one initial step towards a
solution. A more complete approach could e.g. advise any function
with instrumented shadows to invalidate all partial matches which
bind local variables, or use some kind of smart pointer to refer to
bound context. In any case, more research is required to solve these
problems.

In our examples, we have used a boolean function to check a



condition on captured context. This is more tricky than it appears
on first sight, as it is closely related to HALO’s concept of “future
variables” [13, 14]. Approaches like Alpha [15] check for matches
using a backward chaining logic language. As such, the current
values of context variables are used to match past facts. HALO’s
forward chaining weaver semantics works the other way around.
Facts have been asserted in the past with the then current value
of context bindings. This value may differ from the one in use
when the complete pointcut eventually matches. This especially
is relevant in the case of pointers, where the value pointed at may
have changed in the meantime.

Conceptually, a partial match’s context variables should retain
their original value for as long as they are stored in memory, al-
though several gradations of this behaviour could be devised [13].
In all cases, a flavour of deep copying is required to make future
variables work in C or C++. This is not easy, as making a deep
copy of a generic void pointer is not possible. Ideally, the weaver
should generate specialised deep copy algorithms for each declared
context type, but this is not straightforward. Currently, cHALO
takes shallow copies of context variables, i.e. only the address
pointed at by pointers is copied, not the values they refer to.

Finally, we have no concrete figures yet on execution time and
memory usage in real systems. We need to find a suitable case study
on which we can compare e.g. Arachne and cHALO. Optimisations
in cHALO’s execution speed may be required, but this falls outside
the scope of this paper.

7. CONCLUSION
This paper has claimed that current history-based pointcut lan-

guages do not blend well with systems software, because they do
not provide the programmer with sufficient control over memory
usage. Existing program history retention strategies are designed
explicitly for languages with garbage collection. In addition, the
connection between a temporal operator’s behaviour and its mem-
ory footprint is mostly unknown, and is considered an implementa-
tion detail of the aspect weaver. This clashes with the philosophy of
C/C++ programmers. We have illustrated these ideas via a running
example implemented in Arachne, tracematches and HALO.

To remedy these issues, we have proposed to apply some key
ideas from the HALO pointcut language. HALO contains a lim-
ited set of temporal operators, each with a well-known behaviour
and memory footprint. A clear connection between operators and
the weaver’s underlying Rete-engine enables developers to estimate
the run-time costs of their pointcuts. We have translated these con-
cepts to an aspect language for C, Aspicere, and have illustrated the
resulting cHALO system’s extensibility by adding a new temporal
operator. Currently, we are planning to apply cHALO on a repre-
sentative case study in the realms of systems software, to measure
the real-time memory footprint.
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