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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
conveys valuable information about the internal complex-
ity of the build layer. Abrupt changes hint at build layer
re-engineering, whereas an increasing trend indicates grow-
ing complexity. Third, we analyse each DAG in detail in
order to assess its complexity and to look for interesting
subgraph patterns or idioms. Fourth, to assess the variabil-
ity and invasiveness of the configuration layer, we measure
the number of configurable source code features and con-
straints between them as well as the number of places in the
source code which depend on the (de)selection of a feature.

5. Developer Communication – To learn about particu-
lar restructuring decisions or about hot maintenance topics,
we consult archived mailing lists, web sites, design docu-
ments or the developers themselves.

6. Documenting Patterns – The above information
is sufficient to discover and document patterns of co-
evolution, i.e. fundamental interactions between the source
code and the build system.

3.2 Linux Case Study

This section gives more details on how we applied the
methodology of the previous section to Linux.
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1. Snapshot Selection – Our analysis focuses on most
of the pre-1.0 and all subsequent major releases (Table 1),
which spans fifteen years of development. We chose a large
number of early releases because dramatic changes to the
build system and the source code were easier to make then.
We skipped odd releases like 1.1.x because these are devel-
opment series, and, from version 1.0 on, we analyse only
the first version of each stable series. However, as the idea
of an unstable series has been abandoned in the meantime,
we analysed two releases from the 2.6.x series.

2. Exploring Directory Structure – The de facto build
tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
remained more or less stable.

3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
the SLOC of source code, build scripts (build), configura-
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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
conveys valuable information about the internal complex-
ity of the build layer. Abrupt changes hint at build layer
re-engineering, whereas an increasing trend indicates grow-
ing complexity. Third, we analyse each DAG in detail in
order to assess its complexity and to look for interesting
subgraph patterns or idioms. Fourth, to assess the variabil-
ity and invasiveness of the configuration layer, we measure
the number of configurable source code features and con-
straints between them as well as the number of places in the
source code which depend on the (de)selection of a feature.

5. Developer Communication – To learn about particu-
lar restructuring decisions or about hot maintenance topics,
we consult archived mailing lists, web sites, design docu-
ments or the developers themselves.

6. Documenting Patterns – The above information
is sufficient to discover and document patterns of co-
evolution, i.e. fundamental interactions between the source
code and the build system.

3.2 Linux Case Study

This section gives more details on how we applied the
methodology of the previous section to Linux.
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tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
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3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
the SLOC of source code, build scripts (build), configura-
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a non-recursive “make”. In the 2.6 build layer, “Rules.make” has been made much
more sophisticated (and renamed) and all “make” subprocesses are now invoked
with the top directory as working directory. Nevertheless, build speed is lower
than in the (blocked) Kbuild 2.5 system. Hence, the original build system has been
largely rewritten (in small increments) instead of moving to a completely new in-
frastructure.

The following two sections will look in depth at the changes introduced by
Keith Owens’ Kbuild 2.5 and at the eventual 2.6 build system written by Kai Ger-
maschewski.

4.5.3.1 Kbuild 2.5 Eliminates Recursive Make

This section discusses the design of the proposed Kbuild 2.5 build layer, as this
exposes the fundamental problems of the 2.4 kernel build system and technically
advanced solutions for them. This knowledge helps in understanding the changes
which eventually were made to obtain the 2.6 kernel build system.

Keith Owens’ design of Kbuild 2.5 is based on a number of observations made
from the 2.4 kernel and feedback solicited from other build developers [155]:

• Build execution flow is very hard to follow because of the hundreds of build
scripts.

• The “recursive make” symptoms mentioned in Section 2.2.4.2 surface, in-
cluding the scattered, unenforced specification of recursion logic.

• Build scripts in subdirectories of a “recursive make” system do not function
in isolation, because they need various environment variables to be set by
higher makefiles in the directory structure.
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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
conveys valuable information about the internal complex-
ity of the build layer. Abrupt changes hint at build layer
re-engineering, whereas an increasing trend indicates grow-
ing complexity. Third, we analyse each DAG in detail in
order to assess its complexity and to look for interesting
subgraph patterns or idioms. Fourth, to assess the variabil-
ity and invasiveness of the configuration layer, we measure
the number of configurable source code features and con-
straints between them as well as the number of places in the
source code which depend on the (de)selection of a feature.

5. Developer Communication – To learn about particu-
lar restructuring decisions or about hot maintenance topics,
we consult archived mailing lists, web sites, design docu-
ments or the developers themselves.

6. Documenting Patterns – The above information
is sufficient to discover and document patterns of co-
evolution, i.e. fundamental interactions between the source
code and the build system.

3.2 Linux Case Study

This section gives more details on how we applied the
methodology of the previous section to Linux.
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1. Snapshot Selection – Our analysis focuses on most
of the pre-1.0 and all subsequent major releases (Table 1),
which spans fifteen years of development. We chose a large
number of early releases because dramatic changes to the
build system and the source code were easier to make then.
We skipped odd releases like 1.1.x because these are devel-
opment series, and, from version 1.0 on, we analyse only
the first version of each stable series. However, as the idea
of an unstable series has been abandoned in the meantime,
we analysed two releases from the 2.6.x series.

2. Exploring Directory Structure – The de facto build
tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
remained more or less stable.

3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
the SLOC of source code, build scripts (build), configura-
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Figure 4.2: Evolution of the number of source code files, build and configuration scripts in
the Linux kernel build system.

makefiles (build), (3) the configuration files which drive the selection process of
what should get built (config), and (4) other tools and scripts which assist the
actual build process6 (rest). Figure 4.2 also shows a fifth group of measurements,
i.e. the number of directories7 within the source code distribution. This has been
added as a means to better assess the modularity of the build and configuration
scripts.

A first thing to note is the sheer order of magnitude exhibited by the build
system (Figure 4.1 and Figure 4.2). Our measurements confirm the claim made
in [98] about the source code’s super-linear evolution in SLOC and in file count,
but suggest similar findings for the build system (on a lower scale). The build layer
has grown from 293 SLOC in 5 build scripts to 15351 SLOC in 990 files (2.6.21.5).
As for the configuration layer and build support, this is even more impressive as
it has evolved from nothing into 58801 SLOC in 415 files and 10215 SLOC in 74
files respectively. By way of reference, the source code has exploded from 8102
SLOC in 83 files to 5274927 SLOC in 18337 files. These figures suggest a very
high complexity, not only in the build system and source code themselves, but also
on the scale of induced changes.

Figure 4.1 and Figure 4.2 support RC1 (modular reasoning vs. build units) and
6These are build-time scripts and programs to extract symbol tables, install kernel components, etc. As many of

them have to be compiled at the beginning of the build, the Linux build system conforms to a simple version of the
“Code Robot” architectural style [228].

7For this, we excluded the “Documentation” directory introduced in the 2.x series, as it merely contains docu-
mentation about the kernel and its build system.
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Figure 4.5: Evolution of the number of explicit dependencies during the compilation of the
Linux kernel.

and implicit
10

build dependencies respectively, for each of the three build phases.

The turbulent course of Figure 4.5 culminates in a huge growth up to September

2000 (kernel 2.4.0), followed by a serious dip. We also notice that eventually the

number of dependencies rises again, albeit at a slower pace. Typically, the num-

ber of dependencies grows when more build targets appear in a build, redundant

checks are made, artificial dependencies have been added, etc. However, there

are also periods when the number of dependencies decreases. If we combine this

with the observation that the number of targets does only grow (partly because the

compiled configuration is extended), this means that the build system complexity

fluctuates a lot. Because every new target adds at least one extra edge to the build

dependency graph, the reduction in complexity can only be the product of human

intervention, i.e. maintenance operations in the build system. Deeper investiga-

tion is needed to verify the true nature of these changes. This is done in the next

section.

Figure 4.6 shows that there is also a steady growth in the number of implicit

dependencies. This means that the number of relationships the build system knows

nothing about is on the rise. This is not only problematic when trying to understand

the build system, it also constitutes a potential source of build errors, and (at best)

may lead to suboptimal builds. Luckily, most of the implicit dependencies origi-

nate from temporary files created during the dep phase, i.e. files which contain

the dependency makefile snippets extracted from the source code’s #include-

relations. Extraction of dependencies only seems to do a depth-first iteration of

10
As seen in 2.2.1.1, implicit dependencies are relationships which are not explicitly declared as makefile rule

dependencies, but rather are buried inside a rule’s command list.
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Figure 4.11: Zooming in on the vmlinux build phase of the Linux 2.6.0 build process.

could interpret a phony target as having a time stamp far ahead in the future. If it is
used as a rule dependee, the rule’s target always has to be remade as it is older than
any phony target. Hence, phony targets can force execution of a rule’s command
list. Newer implementations like GNU Make have explicit support for phony tar-
gets by means of the declarative “.PHONY”, whereas the traditional “FORCE”
idiom lists the phony target as the target of a rule without any dependencies or
command list20.

Even when building incrementally, the command list of a build rule with a
phony dependee will be executed, hence there is no visual difference with a full
build graph21. At first sight, this seems counter-intuitive. One of “make”’s strengths
is to only rebuild what is required, i.e. only execute the command list if needed.
Here, the kernel build developers explicitly bypass this by using phony targets as
dependees.

To understand what is happening, the relevant build logic is shown on Fig-
ure 4.12. Lines 22–24 represent the build rule for compiling .c files into ob-
ject files. The “FORCE” target is indeed a prerequisite of each object file. The
“FORCE” target is declared as phony in two ways here (lines 26 and 28) for back-
ward compatibility. Explicit usage of the “.PHONY” declarative is said to be more
efficient than the emulation [218]. The heart of the Linux kernel’s FORCE id-
iom is the call to the GNU Make function if_changed_rule on line 23. The
definition of this function (lines 1–4) contains a complicated if-test with the con-
dition spread over lines 1–3 and the conditional action on line 4. In the case of

20If that rule has a command list, this will be executed anywhere the phony target is listed as a dependency. This
is the equivalent of a function call during dependency processing [167].

21Except for the addition of header file dependencies starting from the second (re)build.
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(“socket.c”) and two subdirectories (“802” and “ethernet”), each of which con-

tains its own source code. We further assume that the contents of “802” have to

be built into the kernel, while “ethernet” should go into a module. By way of con-

vention, all composite objects in the Linux kernel are called “built-in.o”. During

the vmlinux build (i.e. construction of the kernel image), each of the selected

subdirectories (only “802” in this case) generates such a “built-in.o” file, which

links the compiled .c files of a directory. The same goes for the “net” directory

itself, which eventually contains “socket.o” and “built-in.o”. The latter will be
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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
conveys valuable information about the internal complex-
ity of the build layer. Abrupt changes hint at build layer
re-engineering, whereas an increasing trend indicates grow-
ing complexity. Third, we analyse each DAG in detail in
order to assess its complexity and to look for interesting
subgraph patterns or idioms. Fourth, to assess the variabil-
ity and invasiveness of the configuration layer, we measure
the number of configurable source code features and con-
straints between them as well as the number of places in the
source code which depend on the (de)selection of a feature.

5. Developer Communication – To learn about particu-
lar restructuring decisions or about hot maintenance topics,
we consult archived mailing lists, web sites, design docu-
ments or the developers themselves.

6. Documenting Patterns – The above information
is sufficient to discover and document patterns of co-
evolution, i.e. fundamental interactions between the source
code and the build system.

3.2 Linux Case Study

This section gives more details on how we applied the
methodology of the previous section to Linux.
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1. Snapshot Selection – Our analysis focuses on most
of the pre-1.0 and all subsequent major releases (Table 1),
which spans fifteen years of development. We chose a large
number of early releases because dramatic changes to the
build system and the source code were easier to make then.
We skipped odd releases like 1.1.x because these are devel-
opment series, and, from version 1.0 on, we analyse only
the first version of each stable series. However, as the idea
of an unstable series has been abandoned in the meantime,
we analysed two releases from the 2.6.x series.

2. Exploring Directory Structure – The de facto build
tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
remained more or less stable.

3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
the SLOC of source code, build scripts (build), configura-
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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
conveys valuable information about the internal complex-
ity of the build layer. Abrupt changes hint at build layer
re-engineering, whereas an increasing trend indicates grow-
ing complexity. Third, we analyse each DAG in detail in
order to assess its complexity and to look for interesting
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of the pre-1.0 and all subsequent major releases (Table 1),
which spans fifteen years of development. We chose a large
number of early releases because dramatic changes to the
build system and the source code were easier to make then.
We skipped odd releases like 1.1.x because these are devel-
opment series, and, from version 1.0 on, we analyse only
the first version of each stable series. However, as the idea
of an unstable series has been abandoned in the meantime,
we analysed two releases from the 2.6.x series.

2. Exploring Directory Structure – The de facto build
tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
remained more or less stable.

3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
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a non-recursive “make”. In the 2.6 build layer, “Rules.make” has been made much
more sophisticated (and renamed) and all “make” subprocesses are now invoked
with the top directory as working directory. Nevertheless, build speed is lower
than in the (blocked) Kbuild 2.5 system. Hence, the original build system has been
largely rewritten (in small increments) instead of moving to a completely new in-
frastructure.

The following two sections will look in depth at the changes introduced by
Keith Owens’ Kbuild 2.5 and at the eventual 2.6 build system written by Kai Ger-
maschewski.

4.5.3.1 Kbuild 2.5 Eliminates Recursive Make

This section discusses the design of the proposed Kbuild 2.5 build layer, as this
exposes the fundamental problems of the 2.4 kernel build system and technically
advanced solutions for them. This knowledge helps in understanding the changes
which eventually were made to obtain the 2.6 kernel build system.

Keith Owens’ design of Kbuild 2.5 is based on a number of observations made
from the 2.4 kernel and feedback solicited from other build developers [155]:

• Build execution flow is very hard to follow because of the hundreds of build
scripts.

• The “recursive make” symptoms mentioned in Section 2.2.4.2 surface, in-
cluding the scattered, unenforced specification of recursion logic.

• Build scripts in subdirectories of a “recursive make” system do not function
in isolation, because they need various environment variables to be set by
higher makefiles in the directory structure.
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things about the build system architecture. We can expose
coarse-grained restructurings in the source code and build
system by comparing these findings across all snapshots.

3. Reading Documentation – The build and configu-
ration script documentation can be consulted to clarify any
puzzling build system constructs and idioms.

4. Metrics – As a measure for the size and modular-
ity of the source code and the build system, we first calcu-
late for each file the number of non-comment, non-white
space lines (SLOC) and for each file type the number of
files. Second, the number of build targets and dependencies
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ity of the build layer. Abrupt changes hint at build layer
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5. Developer Communication – To learn about particu-
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ments or the developers themselves.

6. Documenting Patterns – The above information
is sufficient to discover and document patterns of co-
evolution, i.e. fundamental interactions between the source
code and the build system.
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This section gives more details on how we applied the
methodology of the previous section to Linux.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

sep-91 sep-93 sep-95 sep-97 sep-99 sep-01 sep-03 sep-05 Date

A
v
e
ra
g
e

build/dir

config/dir

rest/dir

Figure 3. Evolution of the average number of

build and configuration scripts per directory.

0

1

2

3

4

5

6

7

sep-91 sep-93 sep-95 sep-97 sep-99 sep-01 sep-03 sep-05 Date

R
a
t
io

checks/options

checks/files

Figure 4. Evolution of the average number of

conditional compilation checks for configu-

ration purposes per configuration option and

per source file.

1. Snapshot Selection – Our analysis focuses on most
of the pre-1.0 and all subsequent major releases (Table 1),
which spans fifteen years of development. We chose a large
number of early releases because dramatic changes to the
build system and the source code were easier to make then.
We skipped odd releases like 1.1.x because these are devel-
opment series, and, from version 1.0 on, we analyse only
the first version of each stable series. However, as the idea
of an unstable series has been abandoned in the meantime,
we analysed two releases from the 2.6.x series.

2. Exploring Directory Structure – The de facto build
tool is GNU Make, but both build system layers have un-
dergone major re-engineering. The directory structure has
remained more or less stable.

3. Reading Documentation – Extensive build system
documentation is available from the 2.4.x series on.

4. Metrics – Figure 2 used SLOCCount [37] to calculate
the SLOC of source code, build scripts (build), configura-
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Questions?

1. Modular source code needs a modular build 
system

2. The Build System is an Executable Specification 
of the Architecture

3. Correctness Trumps Efficiency

4. Configuration Layer Controls the Static 
Variability of Source Code

Conceptual Reasons 
of Co-evolution
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