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Abstract—To detect integration errors as quickly as possible, 

organizations use automated build systems. Such systems ensure 

that (1) the developers are able to integrate their parts into an 

executable whole; (2) the testers are able to test the built system; 

(3) and the release engineers are able to leverage the generated 

build to produce the upcoming release. The flipside of automated 

builds is that any incorrect change can break the build, and hence 

testing and releasing, and (even worse) block other developers 

from continuing their work, delaying the project even further. To 

measure the impact of such build breakage, this empirical study 

analyzes 3,214 builds produced in a large software company over 

a period of 6 months. We found a high ratio of build breakage 

(17.9%), and also quantified the cost of such build breakage 

ranging from 904.64 to 2034.92 man-hours. Interviews with 28 

software engineers from the company helped to understand the 

circumstances under which builds are broken and the effects of 

build breakages on the collaboration and coordination of teams. 

We quantitatively investigated the main factors impacting build 

breakage and found that build failures correlate with the number 

of simultaneous contributors on branches, the type of work items 

performed on a branch, and the roles played by the stakeholders 

of the builds (for example developers vs. integrators). 

Keywords—Empirical Software Engineering; Automated 

Builds; Data Mining; Software Quality. 

I.  INTRODUCTION 

Nowadays, many software organizations are adopting 
Continuous Integration (CI) practices aiming to integrate the 
source code faster [1]. A typical CI system continuously 
monitors the version control system for new commits, after 
which the resulting configuration of the system is checked out, 
compiled, tested and analyzed for common code quality 
measures. As such, CI practices depend on build automation [2] 
for compiling, bundling, linking required dependencies, 
packaging into an executable form, and running automated tests. 
Automated builds provide early feedback on the integration 
process [1, 2] and are the cornerstone used by (1) testers to cross 
all quality gates and (2) the release team to fully automate the 
software release process, with the aim of speeding up the release 
cycle in a safe way. 

The essential goal of CI is to reduce the number of broken builds 
("build breakage"). For example, over the past 2 years, we have 
observed a high rate of broken builds in a typical large, 
commercial web-based system. This is a problem, since broken 
builds mean no (testable) product and hence delay the project 
while the problem is being analyzed and resolved [3]. Tests are 
frozen and lucky are the developers who did not pull the latest 

code, otherwise they would be blocked as well and unable to 
continue working on the project. In this organization, the release 
engineers would spend at least 1 hour per day to fix broken 
builds, which could take anywhere between minutes and 
multiple days. Project timelines slipped for 1 hour per day 
because of team members’ disruptions, and the organization 
losing a lot of man-hours. The developer who broke the build 
looks bad and the team spirit drops. On top of that, distributed 
teams (who use CI more intensively) suffer even more from a 
build breakage than collocated teams because of the additional 
overhead of communication [4]. 

Despite the growing interest for continuous integration practices 
[5], software integration [4] and build systems [6], build 
breakage is a relatively unexplored area. As such, there are no 
general guidelines on how to handle breakage, let alone 
heuristics or indicators to handle them. Hassan et al. [7] built a 
prediction model to predict build breakage, yet this ignored 
factors related to multiple concurrent branches and merge errors. 
Furthermore, no qualitative analysis or interviews were 
performed, nor was the impact of a broken build quantified. 

In order to understand build breakage and identify heuristics to 
predict them, we report on the analysis of 3,214 builds produced 
in the context of the parallel development of a large commercial 
web application over a period of 6 months. We have conducted 
both quantitative analysis and interviews. The quantitative 
analysis was used to investigate issues such as the frequency of 
build breakages and how much time one spends on fixing them. 
To understand under which circumstances build breakage 
happens and how it impacts the productivity of the overall team, 
we interviewed 28 software engineers (2 Architects, 2 Team 
Leads (T-Lead), 1 Integrator, 4 Front-End Developers (F-Dev), 
and 16 Back-End Developers (B-Dev), 3 Testers). We build on 
this qualitative study to characterize the main factors impacting 
build breakage. The contribution of the study is threefold: 

 it quantitatively estimates build breakage costs; 

 it reports on qualitative data analysis from interviews 
with practitioners about their automated build system; 

 it quantitatively analyzes characteristics of broken builds 
according to technical and organizational dimensions. 

The remainder of the paper is organized as follows: Section 2 
provides related work and motivation. Section 3 describes the 
research methodology. Section 4 presents and discusses our 
findings related to (1) the cost of build breakage; (2) qualitative 
analysis of 28 interviews; (3) and the quantitative analysis of the 



 

factors impacting build breakage. Section 5 outlines the threats 
to validity and Section 6 concludes the paper. 

II. RELATED WORK AND MOTIVATION 

Continuous Integration (CI) is a software development 
practice aiming at frequent integration of team members’ 
changes [1]. Coming from the context of agile development, the 
integration of small changes, several times a day, helps not only 
to detect issues as soon as they happen (i.e., immediate 
feedback), but also to minimize the duration and effort compared 
to a delayed big-bang integration. CI relies on an automated 
build system that is responsible for compiling and packaging the 
system using dedicated servers, triggering automated unit, 
regression and acceptance tests. Moreover, the resulting builds 
constitute a starting point for the release team to continue 
speeding up the release cycle with more automation, and hence 
less opportunities for human error. 

Builds can be grouped into two categories based on whether they 
result from development or integration activities: Continuous 
Builds (CB) and Integration Builds (IB) [8]. CB are triggered 
when a developer commits her code changes to a given branch. 
For instance, build breakage might happen due to a developer 
mistakenly omitting some files when committing. IB happen 
when developers incorporate changes from other branches, 
which were developed in parallel by other developers or teams. 

There has been little research on the cost of build breakage. 
Recent work discussed the organizational impact of the build 
process, but none has discussed the costs. McIntosh et al. [9] 
examined the version histories of nine open source projects in 
order to assess the effort required to maintain their build system. 
They found that the build maintenance increases the overhead of 
the development and test activities respectively by 27% and 
44%. Phillips et al. [10] conducted an interview study to get 
more insights into how Release Managers (RMs) make 
integration decisions. The authors found 10 factors that help 
RMs make informed integration decisions, organized into 4 
categories: (1) Branch Evolution, (2) Branch Health, (3) Project 
Awareness, and (4) Project Traffic Control. We have been 
inspired by those factors in our quantitative exploration. To the 
best of our knowledge, we are the first to investigate the cost of 
build breakages on a real industrial case. 

A number of studies have discussed software integration 
failures. Hassan and Zhang [7] introduced a model to predict the 
outcome of the build process according to indicators organized 
along four dimensions: (1) Social; (2) Technical; (3) 
Coordination; and (4) Prior-results of the previous builds. 
Cataldo and Herbsleb [4] examined the factors leading to 
integration failures in the context of geographically distributed 
teams. They found that architectural dependency information 
was a major predictor of integration failures. 

The closest research relating to ours is the build success 
prediction based on socio-technical aspects proposed by Kwan 
et al. [8]. The researchers examined the effect of socio-technical 
congruence on build success probability in an empirical case 
study conducted in a large industrial system. Their logistic 

regression models explore variables such as weighted 
congruence, number of files per build, number of authors 
contributing to the build, number of files in the build, number of 
work items, the build type and date of the build. Our work 
complements these studies by examining the following three 
research questions: 

RQ1. What is the relative impact of build breakage on a 
software project? 

RQ2. What are the typical circumstances under which a build 
breaks? 

RQ3. What are the factors impacting build breakage? 

The first question (RQ1) explores the impact of failed builds on 
software projects in terms of their frequency, costs, and 
consequences. To understand the circumstances and context 
under which the build is broken, we interviewed team members 
involved in build breakage (RQ2). Finally, RQ3 builds an 
explanatory model based on the relevant indicators pointed out 
for RQ2. The paper iterates between qualitative and quantitative 
approaches to refine our analysis. 

III. METHODOLOGY 

A. Research Setting 

The study takes place in a large software development 
organization with 200 employees dedicated to the development 
of a web based financial system. The software system that we 
studied is a mature product developed and maintained since 
2004. The system is composed of over 1.5 million lines of .Net 
code organized in 8,524 source code files that feed six 
interdependent projects (2 Front End Applications, Back Office, 
Mobile, APIs, and Sandbox). The development team is 
distributed across two sites located in Canada and India. 

The organization uses an agile development approach, where all 
development activities (new features and bug fixes) are carried 
out within separate branches. When development completes, 
QA engineers test the code on that branch, before giving the 
green light to integrate this code into the main branch (Trunk). 
Afterwards, to support Continuous Integration practices, the 
organization relies on one central build server acting as build 
controller and four build Agents dedicated to the processor-
intensive work of the build process. Figure 1-a shows how 
automated builds are triggered by the version control system. 

Before committing changes, developers must describe the work 
carried out by the check-in in a work item description such as a 
feature, bug, or change request. This piece of information is 
relevant to figure out the nature and the context of the work. 
Since a developer’s changes are always localized in a Version 
Control System (VCS) branch, the scope of build breakage is 
limited within the branching structure provided by the VCS (i.e., 
only one branch is down). It is worth noting that all automated 
builds are associated with one VCS branch. Thus, for each 
source code branch, we have a history of builds. The result of an 
automated build will either be success or fail. A partial success 
means that the system did not pass the automated tests, yet in 
this paper we consider this case also as a failed build. 



 

 
Fig. 1.  Data collection, time periods, and branching structure. 

 

Since previous studies indicated the importance of the size 
of changes [11] and the proximity to the release date as 
underlying causes of quality issues, we consider the following 
major time periods related to build breakage (Fig.1 (b)): 

P1 [T0, T1] Beginning of the project/iteration 

P2 [T1, T2] Progress of the work including forward merges (sync) 

from Trunk to that branch 

P3 [T2, T3] Pre-release period for polishing bugs and changes inside 

the branch (code Stabilization) 

P4 [T3, T4] After the backward merge from branch to Trunk, which 
is when build breakages can occur in Trunk. If not fixed, 

those breakages can impact other branches via later 

forward merges. 

From experience, we found that in parallel development (see 
Fig.1-b) the timing of build breakage in a branch is a relevant 
predictor for the ease of future integration of this branch into the 
main streamline (Trunk) of the code, and as such transitively into 
future branches. For instance, a large amount of failed builds in 
the P1 period might indicate a challenging code refactoring in the 
branch itself (Fig.1,P1), while a large amount of build breakage 
at P3 predicts a considerable workload for code stabilization in 
the Trunk. This assumption will be verified quantitatively in 
RQ3. 

B. Research Method 

Instead of analyzing multiple systems at a rather high level, 
we study one large web system in depth using a mixed method 
of qualitative and quantitative approaches [12]. We aimed to 
triangulate data sources covering multiple dimensions, to ensure 
that the results are valid and representative of an industrial 
environment. Figure 2 shows an overview of the methodological 
approach used for this study. 

We start by examining the impact of build breakage on the 
software project by assessing the extent of the build breakage on 
the cost of software projects (RQ1). This is followed by an 
analysis of interviews with 28 team members to figure out the 
circumstances (RQ2) of build breakage and to gather indicators 
for a deeper quantitative analysis. 

Then, we explore quantitatively a number of relevant 
characteristics of build breakage and use a statistical approach 
to analyze which characteristics explain best the likelihood of 
having a build breakage (RQ3). We explain the specific method 
for each research question within the result sections. 

 

Fig. 2.  Triangulation approach applied in this study. 

IV. RESULTS 

A. RQ1. What is the Relative Impact of Build Breakage on a 

Software Project? 

1) Motivation  
Although one can argue about the impact of build breakage, 

intuitively, software development managers and researchers 
alike want a concrete estimation of the costs associated with it. 
In this research question we are interested in calculating the 
direct cost of a build breakage. Direct cost pertains to the cost of 
the team causing or relying directly on the now broken code. The 
longer the time during which development and tests are frozen 
(downtime), the higher are the direct costs. Although developers 
in theory can continue working on other branches (as long as 
they do not merge the broken code into their branch), at some 
point they as well will be blocked until the broken code is fixed 
and can be merged for further development. Furthermore, QA 
team members will wait for a consistent build to avoid any re-
work. Note that we do not study the indirect cost of a broken 
branch on other branches. 

2) Approach  
Knowing, for a given branch, the time interval between each 

broken build and the next successful one, as well as the 
stakeholders involved in each branch, we are able to provide an 
estimated value of the cost related to broken builds. This metric 
gives us an estimate about the downtime of development and test 
activities related to that branch. Knowing the number of people 
working on the branch, we can then estimate the number of man-
hours lost by the organization, which relates directly to a 
monetary cost. Assuming that the direct cost is a linear function, 
we use a fairly straightforward formula for its calculation: 
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Here, n is the number of build breakages within Branch i, P 
is the number of people (assuming constant for simplification) 
involved in the branch (Devs, Testers or Integrators), and m is 
the total number of branches that support parallel development 
of the software product. The global cost is the sum of the 
branches’ costs expressed in number of man-hours. It is worth 
noting that, by virtue of parallel development, the downtime of 
a given branch affects only people working on that branch. 

3) Results 
At its peak, there are 19 broken builds per day (mean of 1.78 
per day, with skew of 3.03). Figure 3 shows the distribution of 
unsuccessful builds over the period of our study. We can see 
how build breakage seems to have a report with the growing 
development activity. For instance, one can observe a high 
number of builds in November and early December 2013 with a 
relative augmentation of the build breakage rate. The results of 
those builds constitute the cornerstone for the release process. 

Development and tests freeze on average 56.03 minutes (± 
8.51) per branch (median of branches’ median). Figure 4 
displays the distribution of downtime for all 25 active branches1. 
The average downtime ranges between 35.7 and 85.3 minutes. 
Table I summarizes our findings for the 25 branches, which 
cover the five types of branches: Architecture, Projects, 
QuickFix, PreRelease, and Trunk. For example, the branch 
called Trunk, which represents the mainline development 
stream, has a median downtime equal to 46 minutes. It is worth 
noticing that the downtime of a build depends on the importance 
of the branch (see RQ3). For instance, as depicted in Figure 4, 
the downtime is very short in the branch dedicated to the releases 
(counted in minutes) compared to a branch dedicated to re-
architecting (counted in hours or even days). 

The global direct cost of the 25 branches ranges from 904.64 
to 2034.92 Man-Hours over roughly 6 months. In order to 
estimate an average direct cost of downtime (in man-hours) by 
branch, we multiplied the median value of downtime by the 
number of members working on that branch. For example, 27 

broken builds occurred in Trunk, which might slow down the 
work of 10 to 20 persons. Hence, the total direct cost for the 
Trunk branch ranges from 270 to 540 man-hours. It is worth 
noting that the Trunk branch is not used for development, but 
mainly for the integration of source code coming from other 
branches and stabilization. Based on the data presented in Table 
I, we computed the total amount of downtime across all 
branches. 

TABLE I.  SUMMARY OF COSTS FOR 25 BRANCHES BROKEN DOWN 

ACROSS 5 TYPES OF BRANCHES. 

Branch Median 

Downtime 

∑ Broken 

Build 

∑ 

Members 

Cost M/H 

Architecture 150 57 [1-3] [142.5-487.35] 

Quick Fix 20 3 [2-6] [2-12] 

PreRelease 16 23 [2-17] [12.26-104.26] 

Trunk 46 27 [10-20] [207-414] 

Branch-2 30 1 [3-4] [1.5-2] 

Branch-3 28 5 [2-3] [4.66-7] 

Branch-4 44 10 [2-3] [14.66-22] 

Branch-5 25 2 [2-3] [1.66-2.5] 

Branch-6 28 17 [2-4] [16.33-31.73] 

Branch-7 44 7 [2-4] [10.26-20.53] 

Branch-8 360 11 [2-4] [132-264] 

Branch-9 52 28 [6-10] [145.6-242.66] 

Branch-10 33 3 [2-4] [3.3-6.6] 

Branch-11 30 5 [2-5] [5-12.5] 

Branch-12 65 2 [1-1] [2.16-2.16] 

Branch-13 182 10 [2-3] [60.66-91] 

Branch-14 66 5 [2-4] [11-22] 

Branch-15 62 3 [2-3] [6.2-9.3] 

Branch-16 30 37 [4-10] [74-185] 

Branch-18 40 1 [2-6] [1.33-4] 

Branch-20 130 3 [4-7] [26-45.5] 

Branch-21 150 1 [1-2] [2.5-5] 

Branch-23 58 6 [1-2] [5.8-11.6] 

Branch-24 70 5 [2-4] [11.66-23.33] 

Branch-25 46 3 [2-3] [4.6-6.9] 

Total    [904.64-2034.92] 

 

In overall, a minimum of 904.64 man-hours were lost. 
Development and Tests Freeze on average 56.03 minutes 
(± 8.51) per branch. 

Developers and management should consider taking steps to 
reduce this amount of man-hours lost to build breakage. In the 
following research questions, we investigate the circumstances 
and the factors affecting build breakage in more details, in order 
to support managers in making informed decisions about how to 
reduce build breakages and their related costs. 

 
Fig. 3.  Distribution of the build results by day. 

                                                           
1 Obfuscated for business confidentiality. 
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Fig. 4.  Distribution of downtime by branch for the studied period. 

B. RQ2. What are the Typical Circumstances under which a 

Build Breaks? 

1) Motivation 
Since build breakage has a major impact in terms of number 

of man-hours lost (see RQ1), it is important to understand why 
developers keep on breaking builds. Ideally, they should not 
commit their changes to version control (and hence the 
automated CI system) before making sure that all tests pass on 
their machine. Yet, build breakage keeps on happening and 
impacting their teammates and even other teams. To gain insight 
into the circumstances of build breakage and the emergent 
effects on the collaboration and coordination with other team 
members, we interviewed 28 team members (spread across 
different teams and roles) within the company. 

2) Approach 

We used semi-structured interviews for our investigation. 
First, we limited the group of interviewed employees to the 
contributors responsible for either the most broken or the most 
successful builds (above the 20th percentile). Inside this group, 
candidate interviewees were carefully selected according to 
three criteria: years of experience in the company, software 
development role played, and how frequently they trigger the 

builds. All persons interviewed had more than 3 years of work 
experience at the company (median= 4.5, average = 4.6, SD 
=1.34). We made sure that participants covered all roles in order 
to address different points of view: 2 Architects, 2 Technical 
Leads, 1 Integrator, 4 FrontEnd-Devs, and 16 BackEnd-Devs. 
After the first 3 interviews with the above participants (all 
related to source code development), we figured out that QA 
members should be interviewed as well because they too are 
concerned with the build results. Hence, we made an informed 
decision to add 3 testers to the list of persons to be interviewed. 

The participants were solicited by personalized emails. The 
interviews themselves were done in person, and typically lasted 
50 minutes. After introducing the goals of the interview, we 
notified the participant that the answers would be anonymized 
and that we were not assessing the quality of their work, but 
trying to learn more about the usage of the automatic build 
system, and therefore continuous integration practices. The 
interviews were private to avoid targeting persons and to 
encourage more sincere responses [13]. 

Table II presents our series of questions, organized by themes. 
The first part of the interviews focused on the awareness of the 
interviewees about build breakages. In the second part of the 
interviews, we were more interested in exploring (a) the main 
factors impacting build breakages according to the point of view 
of each interviewee’s role in the software development process, 
and (b) the best practices that they followed to avoid build 
breakages. The latter two themes resulted in open-ended 
questions (Q5, Q6, Q7, and Q8) to allow participants to provide 
their insights. Emergent observations were classified using the 
card sort approach [14], and later served as input for a focused 
quantitative analysis in RQ3. Card sort is a technique widely 
used to classify textual concepts according to their intrinsic 
relationships. We use the technique in our case to discover, 
organize, and share common themes in the answers to the 
interview questions as well as the relationships between 
different themes. 

 

TABLE II.  QUESTIONS ASKED TO PARTICIPANTS. 

Theme Question The purpose of this question 
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Q1. Do you pay attention to the automated build notifications or are you 

rather informed by a co-developer? 

To explore build breakage awareness and its implicit effects on team 

collaboration. 

Q2. How long does it take you to be aware that your build failed? To find out the importance of CI builds for a stakeholder. 

Q3. Does fixing broken builds consume a lot of time? How much time 
does a fix take on average? 

To assess the impact on the project schedule and how to eliminate wasted 
time. 

Q4. What collaboration issues have you encountered when breaking the 

build? 

To figure out the negative consequences on collaboration and 

coordination. 
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Q5. Based on your experience, what were the most important factors 
responsible for build breakage? 

To investigate common root causes of build breakage and how to manage 
and fix broken builds. 

Q6. How many workspaces do you have in your development 

environment and how easy is it to switch from one to another? 

A workspace corresponds to a developer's files and changes related to a 

particular branch (for example a checked out version of a Subversion 
repository), hence the more workspaces, the more branches in which the 

developer is active at a given time. This could be a reason for developers 

to not care about one branch being blocked (since the developer could 
continue working on another branch in the meantime), or to be under 

more pressure and hence more likely to cause a build breakage. 
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 Q7. What are the steps followed before committing changes related to 

merges or regular development activities? 
To analyze actions carried out before committing changes. 

Q8. Are you aware of any best practices that could help to decrease the 

amount or risk of broken builds? 

To highlight best practices before committing pending changes.  
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3) Results 

This section presents the results of our card sort analysis, 
then describes the situations under which software engineers 
broke the build. 

Awareness 

We were interested in the degree to which source code 
contributors were aware of their own build breakage as well as 
those at the team level. Awareness about changes occurring in 
parallel is a precondition for successful and timely integration 
and propagation of code changes [3], especially regarding 
components (and hence branches) of the system on which we 
have interdependencies. Hence, when developers are not aware 
of previously committed refactoring changes, they might break 
the build. For instance, a developer might modify code that calls 
a function, while its signature has been modified by a teammate 
within another branch. 

Q1. To our surprise, only 28% of the contributors are aware 
of build breakage. Only 7 out of 28 individuals stated that they 
track the build results after committing their changes. The other 
interviewees explained that they only learn about broken builds 
later on (i.e., after the automatic CI build and tests) from the 
testers, since those require a successful build before being able 
to test the new version of the system. In particular, we observed 
that the Integrator and Testers are more aware of broken builds 
than other roles, likely because this role is responsible for the 
aggregation of separate parts of source code coming from 
different branches. 

For example, one developer said: “I switched off the Build 
notifications to avoid any distraction. I check the results of my 
builds only in predefined time windows within the day.”, which 
was elaborated upon by another developer: “Usually, I am 
noticed for a broken build by QA because they are the persons 
who upload builds to the test environments. When other team 
members broke the build related to the branch that I am working 
on, I warn them to watch out.” 

On the other hand, the perspective and needs of an Integrator & 
Release Manager were completely different: “Mainly, I am 
interested by integration builds triggered after code merges or 
integrations. However, I’m always aware about the build 
notification, especially the red ones. When a build notification 
for a branch shows up, I examine not only that build, but also 
the history of build failure on that branch. This is a good 
predictor of the integration effort that I will spend to merge back 
this branch into Trunk. On my side, major issues are coming 
from the integration of different parts of the code, especially 
when refactored.” 

Q2. On average, it requires 3 hours (171 minutes) to become 
aware of a broken build. On the one hand, this seemingly lax 
attitude towards build breakage can be explained as a 
consequence of code isolation in branches, since branches by 
definition are meant to shield other teams from experimentation 
or invasive changes to the code. On the other hand, as pointed 
out by other researchers [3], this protection can become an issue 
when the branch's changes are merged back into the other 
branches, since this is the moment when all changes (especially 
invasive ones) are revealed at once. 

Nevertheless, two of the interviewed developers claimed to use 
an IDE plugin that warns them about build breakages when 
checking their pending changes, for example by signaling that 
the latest build is broken. It also provides an indication of who 
is responsible for the breakage. Another tester used a more 
implicit approach: “As part of our manual tests related to a given 
branch, we have to upload the result of automated builds to the 
test server. With our upload tool, we can see only successful 
builds. When we see in the work items system tracker that the 
developer is done and we do not see the build result, then we 
have to communicate with the concerned developer to verify 
where the latest code to test is.” 

These findings suggest that Brun et al.'s [15] Crystal approach 
would be useful to identify breakages long before the branch's 
changes are merged back, i.e., during regular development. 

Q3. On average, a build breakage takes 57 min to fix. This 
confirms our findings in RQ1. The time (effort) required to fix a 
broken build depends on the role, the characteristics of the 
branch and the nature of the build (triggered after merges or 
source code submission). Indeed, we have observed that it takes 
less time for the Integrator role to fix a broken build than for the 
developer. We can explain this observation by the fact that the 
different roles do not have the same perspective of the source 
code. For instance, while developers focus on a feature or bug, 
the integrators focus on an overall consistent system. Second, 
the integrator resolves the source code conflicts in an impartial 
way, i.e., with the project's global quality in mind rather than 
personal preferences. 

Q4. Roughly all participants (96%) agreed that working 
with a small, or at least tightly knit, team within a branch 
reduces build breakage. They admitted that with an automatic 
build, collaboration becomes more transparent. For instance, it 
is easy to know who introduced the defects. However, since Q1 
showed that most of the people ignore the automatic 
notifications, it seems like there are still some hurdles that keep 
people from realizing the full potential of automatic awareness 
support. One tester mentioned that “when someone breaks the 
build and other team members continue to check-in their code, 
the build fix becomes a challenging task. Build server should 
warn people before committing changes.” 

Circumstances 

Q5. We identified three main factors impacting build 
breakage. 

All participants mentioned that missing files are the most 
probable underlying cause of build breakage. When checking 
in pending changes, developers might miss some files or 
libraries that are referenced in their local workspace. Although 
the system builds correctly in their local workspace, it does not 
on the build server. This incorrect behavior is due to the common 
human error of missing to inform the version control system of 
new files or dependencies. 

The Integrator and Front-End Developer roles shed light on two 
more complex explanations for this factor. First, Integrators 
have to precompile the source code to improve the system 
performance before going to the staging environment (i.e., the 
environment right before production). In contrast to a normal 
build that compiles only packages referenced in the application, 



 

a precompilation process builds all the contents of a folder, for 
example the .aspx files even not referenced in any project. As 
such, the precompilation can expose more errors than a normal 
build carried out by developers. Second, Front-End Developers 
experience many issues related to generated files. For instance, 
.css files are generated from .less files (through a mixture of 
translation and aggregation). This requires an adjustment of the 
automatic build process to generate the .css files before building 
the actual solution. One solution adopted by developers is the 
use of package management tools like NuGet2 to incorporate 
such dependencies. 

Mistakenly checking in work-in-progress is a second 
important factor. All Developers answered that they are using 
several workspaces (one for each branch that they use). As such, 
many of them acknowledged that, for example by forgetting to 
switch to the correct workspace (branch), they accidentally 
checked in files or file revisions that should not have been 
checked in, or files related to a different branch. Since this can 
be a rather subtle error (same file name, wrong revision), it can 
take a while to detect and fix those errors, especially if the person 
checking in the wrong file is not aware of the build breakage (Q1 
and Q2). 

Transitive dependencies between libraries are not specified 
in the build files and hence cause unforeseen inconsistencies. 
The interviewees have observed a difference in behavior when 
building using the automatic CI system compared to building 
manually within the IDE: “It’s always building on my machine 
before I checked-in. However, the server build does not behave 
the same way as Local build. The major problems that I have 
relates to library dependencies.” For instance, assume three 
libraries A, B and C, with A referencing B, which in turn 
references C. Since A just needs B (directly), the developer will 
specify this dependency in her IDE, which will cause the build 
of A to succeed. However, since the transitive dependency 
between B and C did not need to be specified in the IDE, the 
automatic build system is not aware of this and might end up 
with a different version of C during the build than the one used 
by the developer on her local machine. This in turn will fail the 
build. 

Since many IDEs do not offer support for detecting and/or 
specifying transitive dependencies (between B and C), this 
forces Architects to add the missing explicit reference from A to 
C in the source code to fix this build issue. Although this 
technically resolves the build issue, this of course has other 
negative consequences for the maintainability and 
comprehension of the source code, which only aggravates the 
likelihood of future build breakage. 

It is worth noting that the organization currently uses the 
MSBuild build tool. A tool such as Maven (for Java systems) 
would be able to manage such transitive dependencies more 
efficiently. For instance, the front-end development team uses 
NuGet to support bundling the referenced files. 

Q6. All participants answered that they are working on 
multiple (~ 4 to 15) branches in parallel. In general, working 
on different branches by itself is not the main issue, due to the 

                                                           
2 http://docs.nuget.org/. NuGet is an IDE extension that makes 

it easy to add and update libraries and tools within projects. 

virtues and protection offered by parallel development. In 
contrast, the main issue are the differences in organization of 
workspaces. Some developers map all the branches on which 
they are working to a single workspace, while others map each 
branch to a separate workspace. This can cause confusion, since 
it is very easy to forget in which branch the developer currently 
was working, especially under pressure to fix an urgent security 
issue or build breakage: “I am a nomad moving from a branch 
to another. I map one workspace by branch to avoid check-in 
work in progress related to other branch.” 

Curiously, we have observed during the interviews that 
developers that have different folders on their machine for 
different branches are more likely to break the build, compared 
to developers that have only one shared physical structure for all 
branches. This is because multiple folders leads to a higher 
chance of having inconsistent copies of the same file across 
different locations. 

Furthermore, apart from having multiple inconsistent copies of 
files across folders, the need to switch context (for example, the 
work item being worked on or the state of the system) when 
moving from one branch to the other is time and effort 
consuming. For instance, a team member engaged in feature 
development might need to suspend her current work to fix a 
bug happening in production or blocking other colleagues. The 
interviewees unanimously agreed that such ad-hoc switches are 
error-prone: “when I joined this team, I was assigned bugs on a 
specific project within the overall solution. I unload all other 
projects from the solution to focus only on one project. The code 
builds fine on my machine, but not on the server because of 
missing dependencies.” 

Best Practices 

Q7. Nearly all (92%) contributors replied that they do not 
perform any additional formal instructive steps before 
checking in their pending changes. However, some developers 
are more diligent when checking modified files: “Before I check-
in, I always compare diligently my pending changes with the 
latest version from the server. In this way I am not wasting team 
members’ time with broken builds.” 

Q8. 12% of participants claimed to have their own routine 
for submitting their changes, driven by their previous 
experience and common sense. In the majority of cases, this 
personal routine (not formal instructions) aims to check the files 

going into a check-in in order to ensure that the right files are 

submitted to the right branches. 

Another suggestion from the interviewees was that new 
developers joining a development project should be required to 
learn the basic practices of code committing, as part of the 
process known as onboarding [16]. In this case, the newcomers 
should be supported at the process level when trying to submit 
their edits. 

Only 28% of the team members are aware of build 
breakage, taking on average 3 hours to be detected. 
Breakages typically take an hour to be fixed and mostly 



 

are caused by missing files, accidental commits or 
missing transitive dependencies. These root causes of 
build breakage might be related to the frequent context 
switches of developers (between branches). 

C. RQ3. What are the factors impacting build breakage? 

1) Motivation 
In RQ1, we observed that build breakages have a large 

impact on the cost of software projects. From interviews, in 
RQ2, we have learned that only 28% of contributors are aware 
of build breakages, with the circumstances surrounding 
breakage depending on the point of view of each role. In this 
research question, we investigate the factors impacting build 
breakages using statistical models. Such quantitative analysis of 
potential impact factors will help stakeholders to identify 
specific factors that affect the occurrence of build breakages, 
giving them the possibility to reduce build breakages by 
monitoring and controlling these factors. 

2) Approach 
Using data collected over a period of 6 months from the large 

commercial web application, and based on the answers to the 
interview questions of RQ2, we hypothesize that: 

 H1. Certain roles are more likely to break the builds than 
others. Our independent variable is ‘Role’: the role that 
performed the build (i.e., Integrator, T-Lead, F-Dev, B-
Dev, or Architect); 

 H2. A larger number of changed lines (churn) or files is 
linked with lower build success probability; 

 H3. Integration Builds break more often than Continuous 
Builds; 

 H4. The number of individuals involved in the 
development of a piece of software (i.e., contributors 
within a branch) correlates with build results; 

 H5. The changes related to feature-related work items are 
more likely to break the build than those related to bug 
fixes, mainly because of the amount of code modified. Our 
independent variable is the type of work item associated 
with the build (i.e., Feature, Bug, or Integration). 

 H6. Broken builds are more likely to happen in certain 
periods of the development process. Our independent 
variable is the date on which the build occurred, discretized 
by the release periods (P1 to P4), see Figure 1-b. 

 H7. Build breakage is more common on certain working 
days and working hours. We broke down builds by the day 
of the week and hour when they were triggered; 

 H8. The geographical distance of team members might be 
related to build breakages (i.e., local vs distant team). 

For each categorical independent variable (H1, H3, H5, H6 and 
H8), we use a Pearson’s chi-square test with Yates' continuity 
correction [17] with as dependent variable “breakage/no 
breakage” to check whether or not there is a statistically 
significant difference between the proportions of build failures 
in the different categories. For continuous independent variables 
(H2, H4 and H7), we apply Mann-Whitney test [17] to assess the 
difference between the mean values of the variable for broken 
and successful builds. We apply each test following the 
commonly used confidence level of 95% (p-value < 0.05) [17]. 
We choose these non-parametric statistical methods because 

they make no assumption about the distributions of the assessed 
variables. 

To compute the importance of each independent variable, we 
then build a Random Forest (RF) [18] model using all the 
independent variables. RF is a non-parametric recursive 
regression method, which combines multiple regression trees (in 
our case 1,000) built using bootstrap samples of the data set, as 
training set, to quantify the importance of each variable in 
explaining build breakage [18]. We use this technique because 
RF is one of the most accurate learning algorithms available 
[19], and RFs run efficiently on large sets of variables and data 
without linear relationships. We measure the importance of 
variables in the random forest models using the normalized 
comparison of the increased mean square error (%IncMSE) of 
model predictions with predictions generated using randomly 
permuted predictor values. If a variable is important in the 
model, then randomly assigning other values for that variable 
should have a negative influence on the accuracy of the 
prediction. In other words, large changes in %IncMSE indicate 
important variables. 

3) Results 
This section presents the results of our statistical analysis. 

H1. Build breakage depends on the role. The interviews (see 
RQ2) revealed that team members with different role viewed the 
concerns of build breakage differently. For example, 
participants invoke different circumstances that cause the build 
breakage (Q5). This observation led us to examine quantitatively 
the rate of build breakage by role. Figure 5 shows the 
distribution of build breakage across different roles. The 
integrators have the highest median score (9 breakages per 
month compared to 8 for B-Dev, 3.5 for F-Dev and Architect, 
and 1.0 for T-Lead). The chi-square test revealed a statistically 
significant difference in build breakage rates across different 
role groups, with χ2 = 87.53, p-value <0.001. A medium effect 
size is observed, with Cramer’s V = .20. For the overall period 
studied, χ2 shows that 59.2% of the Architects’ builds were 
broken, while 15.3%, 12.4%, 12.1%, and 9.8% of B-Devs, T-
Leads, Integrators, and F-Devs builds were broken respectively. 

 
Fig. 5.  Monthly distribution of build breakage according to roles (medians). 

H2. Build breakage depends on churn. The Mann-Whitney 
Test revealed a significant difference in the build breakage 
regarding the size of changes measured by the number of 
changed files (U=207148, z= -7.11, p<.001 with a medium 
effect size (σ= -0.15). The average number of churned files for 
successful builds is 77.53, while it is 176.95 for failed builds. 
Similar test with code churn also reveal a significant difference 
(U=206329, z= -7.07, p<.001, σ= -0.15). Hence, the likelihood 
of build breakage increases as the number of files (or code 
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churn) involved in a build increases. We attribute this finding to 
the fact that large streams of code can make it difficult for 
developers to track all dependencies that should be updated. 
Figure 6 shows the amount of files impacted by source code 
merges along with the churn metric. On average, 958 (SD ± 
1912) files are merged from the main streamline to the branches. 

 

Fig. 6.  Distribution of number changed files (left) and lines (right; churn). 

H3. Integration Builds (IB) have more build breakage. The 
chi-square test revealed a significant difference in the build 
breakage probability regarding the Integration builds and 
Continuous builds; χ2 (1, df = 2098) = 12.94, p-value < 0.001. 
21.8% of IBs ended up failing, compared to 13.5% of CBs 
failing. A likely cause of this variance might be explained by 
two facts. First, when merging the source code from different 
branches, conflicts are the norm rather than the exception [14]. 
Second, integration builds typically contain more changes, and 
hence end up more likely with integration failures. The 
likelihood of build breakage increases for integration builds. The 
effect size Phi coefficient is -0.08, which is considered a very 
small effect using Cohen’s [20] criteria (0.10 small, 0.30 
medium, 0.50 large effect). 

H4. Larger teams have more breakage. The Mann-Whitney 
Test revealed a significant difference in the build breakage 
regarding the number of coworkers in a branch (U=235834, z= 
-4.10, p<.001, σ= -.080). Successful builds are characterized by 
a mean of 7.6 contributors within a branch. The likelihood of 
build breakage increases by 10% when the number of branch's 
coworkers exceed 15. This finding is coherent with churn 
metrics, since more coworkers means larger churn metrics. 

H5. Integration work items have more breakage. The chi-
square test indicates a significant association between the type 
of work items and build results; χ2 = 43.87, p-value <0.001. The 
effect size is medium, Cramer’s V = 0.145. A proportion of 
19.7% of integration work items breaks the build, followed by 
Features, and Bugs respectively at 17.4% and 8.3%. We can 
explain this result by the fact that the amount of files modified 
during integration work items is much larger than those 
modified when fixing bugs (i.e., Bug) or implementing a new 
feature (i.e., Feature). 

H6. P1 sees more build breakage. The chi-square test reveals 
a statistically significant difference in the build breakage rate 
across different periods (χ2= 9.77, p-value = 0.021). This 
observation corroborates results from previous work [21] that 
highlights the impact of time pressure on software quality. Nan 
et al. [22] propose to measure time pressure as the relationship 
between the planned delivery date and client requested delivery 
date. Figure 7 illustrates the distribution of build breakage across 
the four periods of development. A high rate of breakage occurs 
at the beginning of development period (P1). The most likely 

cause of this is source code refactoring at the beginning of each 
project. Two of the developers advocated that: “Refactoring at 
the beginning of the project is one of the best practices. It is not 
only useful for refurbishing the internal structure of the system, 
but it's easy to justify such an effort to managers at the project's 
beginning”. 

 

Fig. 7.  Amount of build breakage according to the time periods. 

H7. No link between working hour and build breakage. The 
analysis of the time of the day when a build is performed reveals 
that there is no significant difference in failure rates for different 
working hours (χ2 = 20.84, df = 22, p-value = 0.531 >0.05). 
Commits submitted after normal working hours (referred to as 
late-night commits) are not significantly different in terms of 
build breakage than those carried out during normal hours. 
However, we observed a large downtime for branches affected 
by broken builds related to late-night commits. 

H8. Local teams see more build breakage. We investigate 
whether teams delocalization might be a cause for build 
breakage. The chi-square test reveals a significant association 
between the geographical distance of team members and the 
build results; χ2 = 11.06, p-value = 0.001 with a very small effect 
size (Phi coefficient = -0.05). The analysis shows that local 
teams break builds more often (15.1%) than delocalized teams 
(4.9%). 

Which of the aforementioned independent variables are 
most related to build breakage? 

 

Fig. 8.  Random Forest importance of independent variables. 

Figure 8 shows that the role variable has the highest importance 
score (%IncMSE=58.74) among all independent variables, 
suggesting that the association between roles and build breakage 
is the strongest one, followed respectively by the number of 
contributors in a branch, the type of work item and build, and 
the development period (%IncMSE values of 53.71, 45.82, 
39.56, and 38.59). Work time and geographical distance are of 
less importance (12.63 and 10.15, respectively). 
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Stakeholder role, the number of contributors in a 
branch, the type of work item and build, and the 
development timeline are the most important factors 
related to build breakage. 

V. THREATS TO VALIDITY 

We cannot assume that the results of any empirical study 
generalize beyond the specific environment in which they were 
conducted. Since we studied one industrial system in depth, 
generalizing conclusions from our study is difficult because of a 
large number of contextual variables. However, with this 
longitudinal study across more than 6 months, we believe that 
our results contribute to increasing the existing body of 
knowledge [23], providing (for the first time) concrete cost 
estimations for build breakages, and raising a number of new 
questions regarding efficient parallel development. Note that we 
limited ourselves to the direct cost of build breakage on 
everyone involved directly with the offending branch. The real 
cost is higher, since teams working on dependent branches 
eventually will be impacted and hence lose time. However, such 
dependencies are hard to model accurately, hence we leave this 
as future work. 

At the time of our study, there was only one person in the 
company who acted as software Integrator and release Manager. 
We observed that this role dealt mainly with the integration 
builds triggered after merging and integrating the source code 
from different branches (22.6 % of his builds break). The 
interview reveals that this role requires a thorough insight on all 
ongoing builds within branches to detect potential errors earlier. 
That is, the vision of parallel development seems to be in 
contrast with continuous integration principles. Future works 
should investigate this aspect. 

VI. CONCLUSION 

The work reported in this paper has three important 
contributions to the literature on Continuous Integration. First, 
our results provide one of the very first estimation of the build 
breakage cost. Indeed, 17.9 % of broken CI builds is a 
surprisingly high percentage that has to be investigated in more 
detail. Second, our qualitative investigation showed that the 
typical circumstances under which a build breaks are missing 
referenced files, mistakenly checking in work-in-progress, and 
transitive dependencies. Third, our quantitative analysis 
explored factors impacting the rate of build failures and the 
results revealed that the type of role, the number of simultaneous 
contributors in the branch, the nature of the work (Feature, Bug 
fix, etc.), the build type (IB vs. CB), and the period of the project 
are the most important factors related to build breakage. 

Finally, the ultimate managerial purpose of this type of analysis 
is to reduce the amount of broken builds, and thus, decrease the 
wasted time. Our results aim at reduction on three levels: the 
costs, the circumstances, and the factors of build breakages. 
Based on our findings, the number of contributors in a branch 
and the period during which a change is made are actionable 
factors that can be manipulated to reduce build breakage. The 
findings reported in this paper can help steer further work on 
upstream development practices, CI practices for researchers, 
practitioners, and tool makers. 
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