

Why do Automated Builds Break?

An Empirical Study

Noureddine Kerzazi

Dept. Research & Development,

Payza.com

Montreal, Canada

noureddine@payza.com

Foutse Khomh

SWAT, École Polytechnique de

Montréal

Montreal, Canada

foutse.khomh@polymtl.ca

Bram Adams

MCIS, École Polytechnique de

Montréal

Montreal, Canada

bram.adams@polymtl.ca

Abstract—To detect integration errors as quickly as possible,

organizations use automated build systems. Such systems ensure

that (1) the developers are able to integrate their parts into an

executable whole; (2) the testers are able to test the built system;

(3) and the release engineers are able to leverage the generated

build to produce the upcoming release. The flipside of automated

builds is that any incorrect change can break the build, and hence

testing and releasing, and (even worse) block other developers

from continuing their work, delaying the project even further. To

measure the impact of such build breakage, this empirical study

analyzes 3,214 builds produced in a large software company over

a period of 6 months. We found a high ratio of build breakage

(17.9%), and also quantified the cost of such build breakage

ranging from 904.64 to 2034.92 man-hours. Interviews with 28

software engineers from the company helped to understand the

circumstances under which builds are broken and the effects of

build breakages on the collaboration and coordination of teams.

We quantitatively investigated the main factors impacting build

breakage and found that build failures correlate with the number

of simultaneous contributors on branches, the type of work items

performed on a branch, and the roles played by the stakeholders

of the builds (for example developers vs. integrators).

Keywords—Empirical Software Engineering; Automated

Builds; Data Mining; Software Quality.

I. INTRODUCTION

Nowadays, many software organizations are adopting
Continuous Integration (CI) practices aiming to integrate the
source code faster [1]. A typical CI system continuously
monitors the version control system for new commits, after
which the resulting configuration of the system is checked out,
compiled, tested and analyzed for common code quality
measures. As such, CI practices depend on build automation [2]
for compiling, bundling, linking required dependencies,
packaging into an executable form, and running automated tests.
Automated builds provide early feedback on the integration
process [1, 2] and are the cornerstone used by (1) testers to cross
all quality gates and (2) the release team to fully automate the
software release process, with the aim of speeding up the release
cycle in a safe way.

The essential goal of CI is to reduce the number of broken builds
("build breakage"). For example, over the past 2 years, we have
observed a high rate of broken builds in a typical large,
commercial web-based system. This is a problem, since broken
builds mean no (testable) product and hence delay the project
while the problem is being analyzed and resolved [3]. Tests are
frozen and lucky are the developers who did not pull the latest

code, otherwise they would be blocked as well and unable to
continue working on the project. In this organization, the release
engineers would spend at least 1 hour per day to fix broken
builds, which could take anywhere between minutes and
multiple days. Project timelines slipped for 1 hour per day
because of team members’ disruptions, and the organization
losing a lot of man-hours. The developer who broke the build
looks bad and the team spirit drops. On top of that, distributed
teams (who use CI more intensively) suffer even more from a
build breakage than collocated teams because of the additional
overhead of communication [4].

Despite the growing interest for continuous integration practices
[5], software integration [4] and build systems [6], build
breakage is a relatively unexplored area. As such, there are no
general guidelines on how to handle breakage, let alone
heuristics or indicators to handle them. Hassan et al. [7] built a
prediction model to predict build breakage, yet this ignored
factors related to multiple concurrent branches and merge errors.
Furthermore, no qualitative analysis or interviews were
performed, nor was the impact of a broken build quantified.

In order to understand build breakage and identify heuristics to
predict them, we report on the analysis of 3,214 builds produced
in the context of the parallel development of a large commercial
web application over a period of 6 months. We have conducted
both quantitative analysis and interviews. The quantitative
analysis was used to investigate issues such as the frequency of
build breakages and how much time one spends on fixing them.
To understand under which circumstances build breakage
happens and how it impacts the productivity of the overall team,
we interviewed 28 software engineers (2 Architects, 2 Team
Leads (T-Lead), 1 Integrator, 4 Front-End Developers (F-Dev),
and 16 Back-End Developers (B-Dev), 3 Testers). We build on
this qualitative study to characterize the main factors impacting
build breakage. The contribution of the study is threefold:

 it quantitatively estimates build breakage costs;

 it reports on qualitative data analysis from interviews
with practitioners about their automated build system;

 it quantitatively analyzes characteristics of broken builds
according to technical and organizational dimensions.

The remainder of the paper is organized as follows: Section 2
provides related work and motivation. Section 3 describes the
research methodology. Section 4 presents and discusses our
findings related to (1) the cost of build breakage; (2) qualitative
analysis of 28 interviews; (3) and the quantitative analysis of the

factors impacting build breakage. Section 5 outlines the threats
to validity and Section 6 concludes the paper.

II. RELATED WORK AND MOTIVATION

Continuous Integration (CI) is a software development
practice aiming at frequent integration of team members’
changes [1]. Coming from the context of agile development, the
integration of small changes, several times a day, helps not only
to detect issues as soon as they happen (i.e., immediate
feedback), but also to minimize the duration and effort compared
to a delayed big-bang integration. CI relies on an automated
build system that is responsible for compiling and packaging the
system using dedicated servers, triggering automated unit,
regression and acceptance tests. Moreover, the resulting builds
constitute a starting point for the release team to continue
speeding up the release cycle with more automation, and hence
less opportunities for human error.

Builds can be grouped into two categories based on whether they
result from development or integration activities: Continuous
Builds (CB) and Integration Builds (IB) [8]. CB are triggered
when a developer commits her code changes to a given branch.
For instance, build breakage might happen due to a developer
mistakenly omitting some files when committing. IB happen
when developers incorporate changes from other branches,
which were developed in parallel by other developers or teams.

There has been little research on the cost of build breakage.
Recent work discussed the organizational impact of the build
process, but none has discussed the costs. McIntosh et al. [9]
examined the version histories of nine open source projects in
order to assess the effort required to maintain their build system.
They found that the build maintenance increases the overhead of
the development and test activities respectively by 27% and
44%. Phillips et al. [10] conducted an interview study to get
more insights into how Release Managers (RMs) make
integration decisions. The authors found 10 factors that help
RMs make informed integration decisions, organized into 4
categories: (1) Branch Evolution, (2) Branch Health, (3) Project
Awareness, and (4) Project Traffic Control. We have been
inspired by those factors in our quantitative exploration. To the
best of our knowledge, we are the first to investigate the cost of
build breakages on a real industrial case.

A number of studies have discussed software integration
failures. Hassan and Zhang [7] introduced a model to predict the
outcome of the build process according to indicators organized
along four dimensions: (1) Social; (2) Technical; (3)
Coordination; and (4) Prior-results of the previous builds.
Cataldo and Herbsleb [4] examined the factors leading to
integration failures in the context of geographically distributed
teams. They found that architectural dependency information
was a major predictor of integration failures.

The closest research relating to ours is the build success
prediction based on socio-technical aspects proposed by Kwan
et al. [8]. The researchers examined the effect of socio-technical
congruence on build success probability in an empirical case
study conducted in a large industrial system. Their logistic

regression models explore variables such as weighted
congruence, number of files per build, number of authors
contributing to the build, number of files in the build, number of
work items, the build type and date of the build. Our work
complements these studies by examining the following three
research questions:

RQ1. What is the relative impact of build breakage on a
software project?

RQ2. What are the typical circumstances under which a build
breaks?

RQ3. What are the factors impacting build breakage?

The first question (RQ1) explores the impact of failed builds on
software projects in terms of their frequency, costs, and
consequences. To understand the circumstances and context
under which the build is broken, we interviewed team members
involved in build breakage (RQ2). Finally, RQ3 builds an
explanatory model based on the relevant indicators pointed out
for RQ2. The paper iterates between qualitative and quantitative
approaches to refine our analysis.

III. METHODOLOGY

A. Research Setting

The study takes place in a large software development
organization with 200 employees dedicated to the development
of a web based financial system. The software system that we
studied is a mature product developed and maintained since
2004. The system is composed of over 1.5 million lines of .Net
code organized in 8,524 source code files that feed six
interdependent projects (2 Front End Applications, Back Office,
Mobile, APIs, and Sandbox). The development team is
distributed across two sites located in Canada and India.

The organization uses an agile development approach, where all
development activities (new features and bug fixes) are carried
out within separate branches. When development completes,
QA engineers test the code on that branch, before giving the
green light to integrate this code into the main branch (Trunk).
Afterwards, to support Continuous Integration practices, the
organization relies on one central build server acting as build
controller and four build Agents dedicated to the processor-
intensive work of the build process. Figure 1-a shows how
automated builds are triggered by the version control system.

Before committing changes, developers must describe the work
carried out by the check-in in a work item description such as a
feature, bug, or change request. This piece of information is
relevant to figure out the nature and the context of the work.
Since a developer’s changes are always localized in a Version
Control System (VCS) branch, the scope of build breakage is
limited within the branching structure provided by the VCS (i.e.,
only one branch is down). It is worth noting that all automated
builds are associated with one VCS branch. Thus, for each
source code branch, we have a history of builds. The result of an
automated build will either be success or fail. A partial success
means that the system did not pass the automated tests, yet in
this paper we consider this case also as a failed build.

Fig. 1. Data collection, time periods, and branching structure.

Since previous studies indicated the importance of the size
of changes [11] and the proximity to the release date as
underlying causes of quality issues, we consider the following
major time periods related to build breakage (Fig.1 (b)):

P1 [T0, T1] Beginning of the project/iteration

P2 [T1, T2] Progress of the work including forward merges (sync)

from Trunk to that branch

P3 [T2, T3] Pre-release period for polishing bugs and changes inside

the branch (code Stabilization)

P4 [T3, T4] After the backward merge from branch to Trunk, which
is when build breakages can occur in Trunk. If not fixed,

those breakages can impact other branches via later

forward merges.

From experience, we found that in parallel development (see
Fig.1-b) the timing of build breakage in a branch is a relevant
predictor for the ease of future integration of this branch into the
main streamline (Trunk) of the code, and as such transitively into
future branches. For instance, a large amount of failed builds in
the P1 period might indicate a challenging code refactoring in the
branch itself (Fig.1,P1), while a large amount of build breakage
at P3 predicts a considerable workload for code stabilization in
the Trunk. This assumption will be verified quantitatively in
RQ3.

B. Research Method

Instead of analyzing multiple systems at a rather high level,
we study one large web system in depth using a mixed method
of qualitative and quantitative approaches [12]. We aimed to
triangulate data sources covering multiple dimensions, to ensure
that the results are valid and representative of an industrial
environment. Figure 2 shows an overview of the methodological
approach used for this study.

We start by examining the impact of build breakage on the
software project by assessing the extent of the build breakage on
the cost of software projects (RQ1). This is followed by an
analysis of interviews with 28 team members to figure out the
circumstances (RQ2) of build breakage and to gather indicators
for a deeper quantitative analysis.

Then, we explore quantitatively a number of relevant
characteristics of build breakage and use a statistical approach
to analyze which characteristics explain best the likelihood of
having a build breakage (RQ3). We explain the specific method
for each research question within the result sections.

Fig. 2. Triangulation approach applied in this study.

IV. RESULTS

A. RQ1. What is the Relative Impact of Build Breakage on a

Software Project?

1) Motivation
Although one can argue about the impact of build breakage,

intuitively, software development managers and researchers
alike want a concrete estimation of the costs associated with it.
In this research question we are interested in calculating the
direct cost of a build breakage. Direct cost pertains to the cost of
the team causing or relying directly on the now broken code. The
longer the time during which development and tests are frozen
(downtime), the higher are the direct costs. Although developers
in theory can continue working on other branches (as long as
they do not merge the broken code into their branch), at some
point they as well will be blocked until the broken code is fixed
and can be merged for further development. Furthermore, QA
team members will wait for a consistent build to avoid any re-
work. Note that we do not study the indirect cost of a broken
branch on other branches.

2) Approach
Knowing, for a given branch, the time interval between each

broken build and the next successful one, as well as the
stakeholders involved in each branch, we are able to provide an
estimated value of the cost related to broken builds. This metric
gives us an estimate about the downtime of development and test
activities related to that branch. Knowing the number of people
working on the branch, we can then estimate the number of man-
hours lost by the organization, which relates directly to a
monetary cost. Assuming that the direct cost is a linear function,
we use a fairly straightforward formula for its calculation:

Source Code
Branch

Check-inCheck-in

Automated Build

Trigger

Succeeded Failed Partially Succeeded

T0 T1 T2 T3 FixBB

(b) The branching structure and abstract timeline(a) Automated build process and related events

P1 P2 P3 P4

QuickFix

PreRelease

Features

Components

Mobile

Staging

Redesign

Experimental Projects

Trunk

Production

Para
lle

l B
ra

nch
es

Work item Description
(Feature, Bug, etc.)

T4

Related to

Localized in

Impact

QuantitativeQualitative

Exa
m

in
e - Costs

- Consequences

Explore

Anal
yz

e Investigate

Refine

Exam
ine

- Importance of
each Factor

- Circumstances

- Factors
Impacting BB

- Awareness

- Frequencies

RQ1

RQ2 RQ3

- Best/Bad practices

𝐶𝑜𝑠𝑡𝐵𝑟𝑎𝑛𝑐ℎ = 𝑃 × ∑(𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒(𝐵𝑟𝑎𝑛𝑐ℎ)𝑖

𝑛

𝑖=0

) (1)

𝐶𝑜𝑠𝑡𝐺𝑙𝑜𝑏𝑎𝑙 = ∑(𝐶𝑜𝑠𝑡𝑏)

𝑚

𝑏=1

 (2)

Here, n is the number of build breakages within Branch i, P
is the number of people (assuming constant for simplification)
involved in the branch (Devs, Testers or Integrators), and m is
the total number of branches that support parallel development
of the software product. The global cost is the sum of the
branches’ costs expressed in number of man-hours. It is worth
noting that, by virtue of parallel development, the downtime of
a given branch affects only people working on that branch.

3) Results
At its peak, there are 19 broken builds per day (mean of 1.78
per day, with skew of 3.03). Figure 3 shows the distribution of
unsuccessful builds over the period of our study. We can see
how build breakage seems to have a report with the growing
development activity. For instance, one can observe a high
number of builds in November and early December 2013 with a
relative augmentation of the build breakage rate. The results of
those builds constitute the cornerstone for the release process.

Development and tests freeze on average 56.03 minutes (±
8.51) per branch (median of branches’ median). Figure 4
displays the distribution of downtime for all 25 active branches1.
The average downtime ranges between 35.7 and 85.3 minutes.
Table I summarizes our findings for the 25 branches, which
cover the five types of branches: Architecture, Projects,
QuickFix, PreRelease, and Trunk. For example, the branch
called Trunk, which represents the mainline development
stream, has a median downtime equal to 46 minutes. It is worth
noticing that the downtime of a build depends on the importance
of the branch (see RQ3). For instance, as depicted in Figure 4,
the downtime is very short in the branch dedicated to the releases
(counted in minutes) compared to a branch dedicated to re-
architecting (counted in hours or even days).

The global direct cost of the 25 branches ranges from 904.64
to 2034.92 Man-Hours over roughly 6 months. In order to
estimate an average direct cost of downtime (in man-hours) by
branch, we multiplied the median value of downtime by the
number of members working on that branch. For example, 27

broken builds occurred in Trunk, which might slow down the
work of 10 to 20 persons. Hence, the total direct cost for the
Trunk branch ranges from 270 to 540 man-hours. It is worth
noting that the Trunk branch is not used for development, but
mainly for the integration of source code coming from other
branches and stabilization. Based on the data presented in Table
I, we computed the total amount of downtime across all
branches.

TABLE I. SUMMARY OF COSTS FOR 25 BRANCHES BROKEN DOWN

ACROSS 5 TYPES OF BRANCHES.

Branch Median

Downtime

∑ Broken

Build

∑

Members

Cost M/H

Architecture 150 57 [1-3] [142.5-487.35]

Quick Fix 20 3 [2-6] [2-12]

PreRelease 16 23 [2-17] [12.26-104.26]

Trunk 46 27 [10-20] [207-414]

Branch-2 30 1 [3-4] [1.5-2]

Branch-3 28 5 [2-3] [4.66-7]

Branch-4 44 10 [2-3] [14.66-22]

Branch-5 25 2 [2-3] [1.66-2.5]

Branch-6 28 17 [2-4] [16.33-31.73]

Branch-7 44 7 [2-4] [10.26-20.53]

Branch-8 360 11 [2-4] [132-264]

Branch-9 52 28 [6-10] [145.6-242.66]

Branch-10 33 3 [2-4] [3.3-6.6]

Branch-11 30 5 [2-5] [5-12.5]

Branch-12 65 2 [1-1] [2.16-2.16]

Branch-13 182 10 [2-3] [60.66-91]

Branch-14 66 5 [2-4] [11-22]

Branch-15 62 3 [2-3] [6.2-9.3]

Branch-16 30 37 [4-10] [74-185]

Branch-18 40 1 [2-6] [1.33-4]

Branch-20 130 3 [4-7] [26-45.5]

Branch-21 150 1 [1-2] [2.5-5]

Branch-23 58 6 [1-2] [5.8-11.6]

Branch-24 70 5 [2-4] [11.66-23.33]

Branch-25 46 3 [2-3] [4.6-6.9]

Total [904.64-2034.92]

In overall, a minimum of 904.64 man-hours were lost.
Development and Tests Freeze on average 56.03 minutes
(± 8.51) per branch.

Developers and management should consider taking steps to
reduce this amount of man-hours lost to build breakage. In the
following research questions, we investigate the circumstances
and the factors affecting build breakage in more details, in order
to support managers in making informed decisions about how to
reduce build breakages and their related costs.

Fig. 3. Distribution of the build results by day.

1 Obfuscated for business confidentiality.

8
22523114 11113 2 11 1 13 1 1 21

6
21 11 11 3 112 124

85
12
19

44
8
31 2542213121

7
1

14

232 21 1 1 2 1 11
6
2 21 111 232 1 433

0

10

20

30

40

50

1
8

-0
7

-2
0

1
3

2
4

-0
7

-2
0

1
3

3
1

-0
7

-2
0

1
3

0
7

-0
8

-2
0

1
3

1
3

-0
8

-2
0

1
3

1
9

-0
8

-2
0

1
3

2
3

-0
8

-2
0

1
3

3
0

-0
8

-2
0

1
3

0
9

-0
9

-2
0

1
3

1
7

-0
9

-2
0

1
3

2
5

-0
9

-2
0

1
3

0
1

-1
0

-2
0

1
3

0
7

-1
0

-2
0

1
3

1
1

-1
0

-2
0

1
3

1
7

-1
0

-2
0

1
3

2
3

-1
0

-2
0

1
3

2
9

-1
0

-2
0

1
3

0
4

-1
1

-2
0

1
3

0
8

-1
1

-2
0

1
3

1
3

-1
1

-2
0

1
3

1
9

-1
1

-2
0

1
3

2
4

-1
1

-2
0

1
3

2
8

-1
1

-2
0

1
3

0
4

-1
2

-2
0

1
3

0
8

-1
2

-2
0

1
3

1
2

-1
2

-2
0

1
3

1
7

-1
2

-2
0

1
3

2
1

-1
2

-2
0

1
3

2
7

-1
2

-2
0

1
3

0
1

-0
1

-2
0

1
4

0
6

-0
1

-2
0

1
4

1
0

-0
1

-2
0

1
4

1
6

-0
1

-2
0

1
4

2
2

-0
1

-2
0

1
4

2
8

-0
1

-2
0

1
4

Failed
Partially Succeeded
Succeeded

Fig. 4. Distribution of downtime by branch for the studied period.

B. RQ2. What are the Typical Circumstances under which a

Build Breaks?

1) Motivation
Since build breakage has a major impact in terms of number

of man-hours lost (see RQ1), it is important to understand why
developers keep on breaking builds. Ideally, they should not
commit their changes to version control (and hence the
automated CI system) before making sure that all tests pass on
their machine. Yet, build breakage keeps on happening and
impacting their teammates and even other teams. To gain insight
into the circumstances of build breakage and the emergent
effects on the collaboration and coordination with other team
members, we interviewed 28 team members (spread across
different teams and roles) within the company.

2) Approach

We used semi-structured interviews for our investigation.
First, we limited the group of interviewed employees to the
contributors responsible for either the most broken or the most
successful builds (above the 20th percentile). Inside this group,
candidate interviewees were carefully selected according to
three criteria: years of experience in the company, software
development role played, and how frequently they trigger the

builds. All persons interviewed had more than 3 years of work
experience at the company (median= 4.5, average = 4.6, SD
=1.34). We made sure that participants covered all roles in order
to address different points of view: 2 Architects, 2 Technical
Leads, 1 Integrator, 4 FrontEnd-Devs, and 16 BackEnd-Devs.
After the first 3 interviews with the above participants (all
related to source code development), we figured out that QA
members should be interviewed as well because they too are
concerned with the build results. Hence, we made an informed
decision to add 3 testers to the list of persons to be interviewed.

The participants were solicited by personalized emails. The
interviews themselves were done in person, and typically lasted
50 minutes. After introducing the goals of the interview, we
notified the participant that the answers would be anonymized
and that we were not assessing the quality of their work, but
trying to learn more about the usage of the automatic build
system, and therefore continuous integration practices. The
interviews were private to avoid targeting persons and to
encourage more sincere responses [13].

Table II presents our series of questions, organized by themes.
The first part of the interviews focused on the awareness of the
interviewees about build breakages. In the second part of the
interviews, we were more interested in exploring (a) the main
factors impacting build breakages according to the point of view
of each interviewee’s role in the software development process,
and (b) the best practices that they followed to avoid build
breakages. The latter two themes resulted in open-ended
questions (Q5, Q6, Q7, and Q8) to allow participants to provide
their insights. Emergent observations were classified using the
card sort approach [14], and later served as input for a focused
quantitative analysis in RQ3. Card sort is a technique widely
used to classify textual concepts according to their intrinsic
relationships. We use the technique in our case to discover,
organize, and share common themes in the answers to the
interview questions as well as the relationships between
different themes.

TABLE II. QUESTIONS ASKED TO PARTICIPANTS.

Theme Question The purpose of this question

A
w

ar
en

es
s

Q1. Do you pay attention to the automated build notifications or are you

rather informed by a co-developer?

To explore build breakage awareness and its implicit effects on team

collaboration.

Q2. How long does it take you to be aware that your build failed? To find out the importance of CI builds for a stakeholder.

Q3. Does fixing broken builds consume a lot of time? How much time
does a fix take on average?

To assess the impact on the project schedule and how to eliminate wasted
time.

Q4. What collaboration issues have you encountered when breaking the

build?

To figure out the negative consequences on collaboration and

coordination.

Im
p

ac
ti

n
g

 F
ac

to
rs

Q5. Based on your experience, what were the most important factors
responsible for build breakage?

To investigate common root causes of build breakage and how to manage
and fix broken builds.

Q6. How many workspaces do you have in your development

environment and how easy is it to switch from one to another?

A workspace corresponds to a developer's files and changes related to a

particular branch (for example a checked out version of a Subversion
repository), hence the more workspaces, the more branches in which the

developer is active at a given time. This could be a reason for developers

to not care about one branch being blocked (since the developer could
continue working on another branch in the meantime), or to be under

more pressure and hence more likely to cause a build breakage.

B
es

t

P
ra

ct
ic

es
 Q7. What are the steps followed before committing changes related to

merges or regular development activities?
To analyze actions carried out before committing changes.

Q8. Are you aware of any best practices that could help to decrease the

amount or risk of broken builds?

To highlight best practices before committing pending changes.

0

100

200

300

D
o

w
n

ti
m

e
 b

y
b

ra
n

ch
 (

m
in

)

3) Results

This section presents the results of our card sort analysis,
then describes the situations under which software engineers
broke the build.

Awareness

We were interested in the degree to which source code
contributors were aware of their own build breakage as well as
those at the team level. Awareness about changes occurring in
parallel is a precondition for successful and timely integration
and propagation of code changes [3], especially regarding
components (and hence branches) of the system on which we
have interdependencies. Hence, when developers are not aware
of previously committed refactoring changes, they might break
the build. For instance, a developer might modify code that calls
a function, while its signature has been modified by a teammate
within another branch.

Q1. To our surprise, only 28% of the contributors are aware
of build breakage. Only 7 out of 28 individuals stated that they
track the build results after committing their changes. The other
interviewees explained that they only learn about broken builds
later on (i.e., after the automatic CI build and tests) from the
testers, since those require a successful build before being able
to test the new version of the system. In particular, we observed
that the Integrator and Testers are more aware of broken builds
than other roles, likely because this role is responsible for the
aggregation of separate parts of source code coming from
different branches.

For example, one developer said: “I switched off the Build
notifications to avoid any distraction. I check the results of my
builds only in predefined time windows within the day.”, which
was elaborated upon by another developer: “Usually, I am
noticed for a broken build by QA because they are the persons
who upload builds to the test environments. When other team
members broke the build related to the branch that I am working
on, I warn them to watch out.”

On the other hand, the perspective and needs of an Integrator &
Release Manager were completely different: “Mainly, I am
interested by integration builds triggered after code merges or
integrations. However, I’m always aware about the build
notification, especially the red ones. When a build notification
for a branch shows up, I examine not only that build, but also
the history of build failure on that branch. This is a good
predictor of the integration effort that I will spend to merge back
this branch into Trunk. On my side, major issues are coming
from the integration of different parts of the code, especially
when refactored.”

Q2. On average, it requires 3 hours (171 minutes) to become
aware of a broken build. On the one hand, this seemingly lax
attitude towards build breakage can be explained as a
consequence of code isolation in branches, since branches by
definition are meant to shield other teams from experimentation
or invasive changes to the code. On the other hand, as pointed
out by other researchers [3], this protection can become an issue
when the branch's changes are merged back into the other
branches, since this is the moment when all changes (especially
invasive ones) are revealed at once.

Nevertheless, two of the interviewed developers claimed to use
an IDE plugin that warns them about build breakages when
checking their pending changes, for example by signaling that
the latest build is broken. It also provides an indication of who
is responsible for the breakage. Another tester used a more
implicit approach: “As part of our manual tests related to a given
branch, we have to upload the result of automated builds to the
test server. With our upload tool, we can see only successful
builds. When we see in the work items system tracker that the
developer is done and we do not see the build result, then we
have to communicate with the concerned developer to verify
where the latest code to test is.”

These findings suggest that Brun et al.'s [15] Crystal approach
would be useful to identify breakages long before the branch's
changes are merged back, i.e., during regular development.

Q3. On average, a build breakage takes 57 min to fix. This
confirms our findings in RQ1. The time (effort) required to fix a
broken build depends on the role, the characteristics of the
branch and the nature of the build (triggered after merges or
source code submission). Indeed, we have observed that it takes
less time for the Integrator role to fix a broken build than for the
developer. We can explain this observation by the fact that the
different roles do not have the same perspective of the source
code. For instance, while developers focus on a feature or bug,
the integrators focus on an overall consistent system. Second,
the integrator resolves the source code conflicts in an impartial
way, i.e., with the project's global quality in mind rather than
personal preferences.

Q4. Roughly all participants (96%) agreed that working
with a small, or at least tightly knit, team within a branch
reduces build breakage. They admitted that with an automatic
build, collaboration becomes more transparent. For instance, it
is easy to know who introduced the defects. However, since Q1
showed that most of the people ignore the automatic
notifications, it seems like there are still some hurdles that keep
people from realizing the full potential of automatic awareness
support. One tester mentioned that “when someone breaks the
build and other team members continue to check-in their code,
the build fix becomes a challenging task. Build server should
warn people before committing changes.”

Circumstances

Q5. We identified three main factors impacting build
breakage.

All participants mentioned that missing files are the most
probable underlying cause of build breakage. When checking
in pending changes, developers might miss some files or
libraries that are referenced in their local workspace. Although
the system builds correctly in their local workspace, it does not
on the build server. This incorrect behavior is due to the common
human error of missing to inform the version control system of
new files or dependencies.

The Integrator and Front-End Developer roles shed light on two
more complex explanations for this factor. First, Integrators
have to precompile the source code to improve the system
performance before going to the staging environment (i.e., the
environment right before production). In contrast to a normal
build that compiles only packages referenced in the application,

a precompilation process builds all the contents of a folder, for
example the .aspx files even not referenced in any project. As
such, the precompilation can expose more errors than a normal
build carried out by developers. Second, Front-End Developers
experience many issues related to generated files. For instance,
.css files are generated from .less files (through a mixture of
translation and aggregation). This requires an adjustment of the
automatic build process to generate the .css files before building
the actual solution. One solution adopted by developers is the
use of package management tools like NuGet2 to incorporate
such dependencies.

Mistakenly checking in work-in-progress is a second
important factor. All Developers answered that they are using
several workspaces (one for each branch that they use). As such,
many of them acknowledged that, for example by forgetting to
switch to the correct workspace (branch), they accidentally
checked in files or file revisions that should not have been
checked in, or files related to a different branch. Since this can
be a rather subtle error (same file name, wrong revision), it can
take a while to detect and fix those errors, especially if the person
checking in the wrong file is not aware of the build breakage (Q1
and Q2).

Transitive dependencies between libraries are not specified
in the build files and hence cause unforeseen inconsistencies.
The interviewees have observed a difference in behavior when
building using the automatic CI system compared to building
manually within the IDE: “It’s always building on my machine
before I checked-in. However, the server build does not behave
the same way as Local build. The major problems that I have
relates to library dependencies.” For instance, assume three
libraries A, B and C, with A referencing B, which in turn
references C. Since A just needs B (directly), the developer will
specify this dependency in her IDE, which will cause the build
of A to succeed. However, since the transitive dependency
between B and C did not need to be specified in the IDE, the
automatic build system is not aware of this and might end up
with a different version of C during the build than the one used
by the developer on her local machine. This in turn will fail the
build.

Since many IDEs do not offer support for detecting and/or
specifying transitive dependencies (between B and C), this
forces Architects to add the missing explicit reference from A to
C in the source code to fix this build issue. Although this
technically resolves the build issue, this of course has other
negative consequences for the maintainability and
comprehension of the source code, which only aggravates the
likelihood of future build breakage.

It is worth noting that the organization currently uses the
MSBuild build tool. A tool such as Maven (for Java systems)
would be able to manage such transitive dependencies more
efficiently. For instance, the front-end development team uses
NuGet to support bundling the referenced files.

Q6. All participants answered that they are working on
multiple (~ 4 to 15) branches in parallel. In general, working
on different branches by itself is not the main issue, due to the

2 http://docs.nuget.org/. NuGet is an IDE extension that makes

it easy to add and update libraries and tools within projects.

virtues and protection offered by parallel development. In
contrast, the main issue are the differences in organization of
workspaces. Some developers map all the branches on which
they are working to a single workspace, while others map each
branch to a separate workspace. This can cause confusion, since
it is very easy to forget in which branch the developer currently
was working, especially under pressure to fix an urgent security
issue or build breakage: “I am a nomad moving from a branch
to another. I map one workspace by branch to avoid check-in
work in progress related to other branch.”

Curiously, we have observed during the interviews that
developers that have different folders on their machine for
different branches are more likely to break the build, compared
to developers that have only one shared physical structure for all
branches. This is because multiple folders leads to a higher
chance of having inconsistent copies of the same file across
different locations.

Furthermore, apart from having multiple inconsistent copies of
files across folders, the need to switch context (for example, the
work item being worked on or the state of the system) when
moving from one branch to the other is time and effort
consuming. For instance, a team member engaged in feature
development might need to suspend her current work to fix a
bug happening in production or blocking other colleagues. The
interviewees unanimously agreed that such ad-hoc switches are
error-prone: “when I joined this team, I was assigned bugs on a
specific project within the overall solution. I unload all other
projects from the solution to focus only on one project. The code
builds fine on my machine, but not on the server because of
missing dependencies.”

Best Practices

Q7. Nearly all (92%) contributors replied that they do not
perform any additional formal instructive steps before
checking in their pending changes. However, some developers
are more diligent when checking modified files: “Before I check-
in, I always compare diligently my pending changes with the
latest version from the server. In this way I am not wasting team
members’ time with broken builds.”

Q8. 12% of participants claimed to have their own routine
for submitting their changes, driven by their previous
experience and common sense. In the majority of cases, this
personal routine (not formal instructions) aims to check the files

going into a check-in in order to ensure that the right files are

submitted to the right branches.

Another suggestion from the interviewees was that new
developers joining a development project should be required to
learn the basic practices of code committing, as part of the
process known as onboarding [16]. In this case, the newcomers
should be supported at the process level when trying to submit
their edits.

Only 28% of the team members are aware of build
breakage, taking on average 3 hours to be detected.
Breakages typically take an hour to be fixed and mostly

are caused by missing files, accidental commits or
missing transitive dependencies. These root causes of
build breakage might be related to the frequent context
switches of developers (between branches).

C. RQ3. What are the factors impacting build breakage?

1) Motivation
In RQ1, we observed that build breakages have a large

impact on the cost of software projects. From interviews, in
RQ2, we have learned that only 28% of contributors are aware
of build breakages, with the circumstances surrounding
breakage depending on the point of view of each role. In this
research question, we investigate the factors impacting build
breakages using statistical models. Such quantitative analysis of
potential impact factors will help stakeholders to identify
specific factors that affect the occurrence of build breakages,
giving them the possibility to reduce build breakages by
monitoring and controlling these factors.

2) Approach
Using data collected over a period of 6 months from the large

commercial web application, and based on the answers to the
interview questions of RQ2, we hypothesize that:

 H1. Certain roles are more likely to break the builds than
others. Our independent variable is ‘Role’: the role that
performed the build (i.e., Integrator, T-Lead, F-Dev, B-
Dev, or Architect);

 H2. A larger number of changed lines (churn) or files is
linked with lower build success probability;

 H3. Integration Builds break more often than Continuous
Builds;

 H4. The number of individuals involved in the
development of a piece of software (i.e., contributors
within a branch) correlates with build results;

 H5. The changes related to feature-related work items are
more likely to break the build than those related to bug
fixes, mainly because of the amount of code modified. Our
independent variable is the type of work item associated
with the build (i.e., Feature, Bug, or Integration).

 H6. Broken builds are more likely to happen in certain
periods of the development process. Our independent
variable is the date on which the build occurred, discretized
by the release periods (P1 to P4), see Figure 1-b.

 H7. Build breakage is more common on certain working
days and working hours. We broke down builds by the day
of the week and hour when they were triggered;

 H8. The geographical distance of team members might be
related to build breakages (i.e., local vs distant team).

For each categorical independent variable (H1, H3, H5, H6 and
H8), we use a Pearson’s chi-square test with Yates' continuity
correction [17] with as dependent variable “breakage/no
breakage” to check whether or not there is a statistically
significant difference between the proportions of build failures
in the different categories. For continuous independent variables
(H2, H4 and H7), we apply Mann-Whitney test [17] to assess the
difference between the mean values of the variable for broken
and successful builds. We apply each test following the
commonly used confidence level of 95% (p-value < 0.05) [17].
We choose these non-parametric statistical methods because

they make no assumption about the distributions of the assessed
variables.

To compute the importance of each independent variable, we
then build a Random Forest (RF) [18] model using all the
independent variables. RF is a non-parametric recursive
regression method, which combines multiple regression trees (in
our case 1,000) built using bootstrap samples of the data set, as
training set, to quantify the importance of each variable in
explaining build breakage [18]. We use this technique because
RF is one of the most accurate learning algorithms available
[19], and RFs run efficiently on large sets of variables and data
without linear relationships. We measure the importance of
variables in the random forest models using the normalized
comparison of the increased mean square error (%IncMSE) of
model predictions with predictions generated using randomly
permuted predictor values. If a variable is important in the
model, then randomly assigning other values for that variable
should have a negative influence on the accuracy of the
prediction. In other words, large changes in %IncMSE indicate
important variables.

3) Results
This section presents the results of our statistical analysis.

H1. Build breakage depends on the role. The interviews (see
RQ2) revealed that team members with different role viewed the
concerns of build breakage differently. For example,
participants invoke different circumstances that cause the build
breakage (Q5). This observation led us to examine quantitatively
the rate of build breakage by role. Figure 5 shows the
distribution of build breakage across different roles. The
integrators have the highest median score (9 breakages per
month compared to 8 for B-Dev, 3.5 for F-Dev and Architect,
and 1.0 for T-Lead). The chi-square test revealed a statistically
significant difference in build breakage rates across different
role groups, with χ2 = 87.53, p-value <0.001. A medium effect
size is observed, with Cramer’s V = .20. For the overall period
studied, χ2 shows that 59.2% of the Architects’ builds were
broken, while 15.3%, 12.4%, 12.1%, and 9.8% of B-Devs, T-
Leads, Integrators, and F-Devs builds were broken respectively.

Fig. 5. Monthly distribution of build breakage according to roles (medians).

H2. Build breakage depends on churn. The Mann-Whitney
Test revealed a significant difference in the build breakage
regarding the size of changes measured by the number of
changed files (U=207148, z= -7.11, p<.001 with a medium
effect size (σ= -0.15). The average number of churned files for
successful builds is 77.53, while it is 176.95 for failed builds.
Similar test with code churn also reveal a significant difference
(U=206329, z= -7.07, p<.001, σ= -0.15). Hence, the likelihood
of build breakage increases as the number of files (or code

0

5

10

15

20

25

30

35

40

45

Architect B-Dev F-Dev Integrator T-Lead

o

f
B

u
ild

 B
re

ak
ag

e

churn) involved in a build increases. We attribute this finding to
the fact that large streams of code can make it difficult for
developers to track all dependencies that should be updated.
Figure 6 shows the amount of files impacted by source code
merges along with the churn metric. On average, 958 (SD ±
1912) files are merged from the main streamline to the branches.

Fig. 6. Distribution of number changed files (left) and lines (right; churn).

H3. Integration Builds (IB) have more build breakage. The
chi-square test revealed a significant difference in the build
breakage probability regarding the Integration builds and
Continuous builds; χ2 (1, df = 2098) = 12.94, p-value < 0.001.
21.8% of IBs ended up failing, compared to 13.5% of CBs
failing. A likely cause of this variance might be explained by
two facts. First, when merging the source code from different
branches, conflicts are the norm rather than the exception [14].
Second, integration builds typically contain more changes, and
hence end up more likely with integration failures. The
likelihood of build breakage increases for integration builds. The
effect size Phi coefficient is -0.08, which is considered a very
small effect using Cohen’s [20] criteria (0.10 small, 0.30
medium, 0.50 large effect).

H4. Larger teams have more breakage. The Mann-Whitney
Test revealed a significant difference in the build breakage
regarding the number of coworkers in a branch (U=235834, z=
-4.10, p<.001, σ= -.080). Successful builds are characterized by
a mean of 7.6 contributors within a branch. The likelihood of
build breakage increases by 10% when the number of branch's
coworkers exceed 15. This finding is coherent with churn
metrics, since more coworkers means larger churn metrics.

H5. Integration work items have more breakage. The chi-
square test indicates a significant association between the type
of work items and build results; χ2 = 43.87, p-value <0.001. The
effect size is medium, Cramer’s V = 0.145. A proportion of
19.7% of integration work items breaks the build, followed by
Features, and Bugs respectively at 17.4% and 8.3%. We can
explain this result by the fact that the amount of files modified
during integration work items is much larger than those
modified when fixing bugs (i.e., Bug) or implementing a new
feature (i.e., Feature).

H6. P1 sees more build breakage. The chi-square test reveals
a statistically significant difference in the build breakage rate
across different periods (χ2= 9.77, p-value = 0.021). This
observation corroborates results from previous work [21] that
highlights the impact of time pressure on software quality. Nan
et al. [22] propose to measure time pressure as the relationship
between the planned delivery date and client requested delivery
date. Figure 7 illustrates the distribution of build breakage across
the four periods of development. A high rate of breakage occurs
at the beginning of development period (P1). The most likely

cause of this is source code refactoring at the beginning of each
project. Two of the developers advocated that: “Refactoring at
the beginning of the project is one of the best practices. It is not
only useful for refurbishing the internal structure of the system,
but it's easy to justify such an effort to managers at the project's
beginning”.

Fig. 7. Amount of build breakage according to the time periods.

H7. No link between working hour and build breakage. The
analysis of the time of the day when a build is performed reveals
that there is no significant difference in failure rates for different
working hours (χ2 = 20.84, df = 22, p-value = 0.531 >0.05).
Commits submitted after normal working hours (referred to as
late-night commits) are not significantly different in terms of
build breakage than those carried out during normal hours.
However, we observed a large downtime for branches affected
by broken builds related to late-night commits.

H8. Local teams see more build breakage. We investigate
whether teams delocalization might be a cause for build
breakage. The chi-square test reveals a significant association
between the geographical distance of team members and the
build results; χ2 = 11.06, p-value = 0.001 with a very small effect
size (Phi coefficient = -0.05). The analysis shows that local
teams break builds more often (15.1%) than delocalized teams
(4.9%).

Which of the aforementioned independent variables are
most related to build breakage?

Fig. 8. Random Forest importance of independent variables.

Figure 8 shows that the role variable has the highest importance
score (%IncMSE=58.74) among all independent variables,
suggesting that the association between roles and build breakage
is the strongest one, followed respectively by the number of
contributors in a branch, the type of work item and build, and
the development period (%IncMSE values of 53.71, 45.82,
39.56, and 38.59). Work time and geographical distance are of
less importance (12.63 and 10.15, respectively).

0

5 000

10 000

15 000

20 000

C
h

u
rn

 F
ile

s

0

100 000

200 000

300 000

400 000

500 000

600 000

C
o

d
e

 C
h

u
rn

 (
/L

O
C

)

0

20

40

60

80

100

120

140

160

P1 P2 P3 P4

Stakeholder role, the number of contributors in a
branch, the type of work item and build, and the
development timeline are the most important factors
related to build breakage.

V. THREATS TO VALIDITY

We cannot assume that the results of any empirical study
generalize beyond the specific environment in which they were
conducted. Since we studied one industrial system in depth,
generalizing conclusions from our study is difficult because of a
large number of contextual variables. However, with this
longitudinal study across more than 6 months, we believe that
our results contribute to increasing the existing body of
knowledge [23], providing (for the first time) concrete cost
estimations for build breakages, and raising a number of new
questions regarding efficient parallel development. Note that we
limited ourselves to the direct cost of build breakage on
everyone involved directly with the offending branch. The real
cost is higher, since teams working on dependent branches
eventually will be impacted and hence lose time. However, such
dependencies are hard to model accurately, hence we leave this
as future work.

At the time of our study, there was only one person in the
company who acted as software Integrator and release Manager.
We observed that this role dealt mainly with the integration
builds triggered after merging and integrating the source code
from different branches (22.6 % of his builds break). The
interview reveals that this role requires a thorough insight on all
ongoing builds within branches to detect potential errors earlier.
That is, the vision of parallel development seems to be in
contrast with continuous integration principles. Future works
should investigate this aspect.

VI. CONCLUSION

The work reported in this paper has three important
contributions to the literature on Continuous Integration. First,
our results provide one of the very first estimation of the build
breakage cost. Indeed, 17.9 % of broken CI builds is a
surprisingly high percentage that has to be investigated in more
detail. Second, our qualitative investigation showed that the
typical circumstances under which a build breaks are missing
referenced files, mistakenly checking in work-in-progress, and
transitive dependencies. Third, our quantitative analysis
explored factors impacting the rate of build failures and the
results revealed that the type of role, the number of simultaneous
contributors in the branch, the nature of the work (Feature, Bug
fix, etc.), the build type (IB vs. CB), and the period of the project
are the most important factors related to build breakage.

Finally, the ultimate managerial purpose of this type of analysis
is to reduce the amount of broken builds, and thus, decrease the
wasted time. Our results aim at reduction on three levels: the
costs, the circumstances, and the factors of build breakages.
Based on our findings, the number of contributors in a branch
and the period during which a change is made are actionable
factors that can be manipulated to reduce build breakage. The
findings reported in this paper can help steer further work on
upstream development practices, CI practices for researchers,
practitioners, and tool makers.

REFERENCES

[1] J. Humble and D. Farley Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[2] B. Adams,H. Tromp,K. De Schutter, et al., Design recovery and

maintenance of build systems. in Int Conf on Soft Maintenance, ICSM'07,
114-123, 2007.

[3] Y. Brun,R. Holmes,M.D. Ernst, et al. Early Detection of Collaboration

Conflicts and Risks. IEEE Trans on Soft Eng, 39 (10): 1358-1375, 2013.
[4] M. Cataldo and J.D. Herbsleb. Factors leading to integration failures in

global feature-oriented development: an empirical analysis. ACM ed.

33rd Int Conf on Soft Eng, Honolulu, HI, USA, 161-170, 2011.
[5] J. Holck and N. Jørgensen Continuous Integration and Quality Assurance:

A Case Study of Two Open Source Projects. Australasian Journal of

Information Systems, 11 (1): 40-53, 2004.
[6] S. Phillips,T. Zimmermann and C. Bird. Understanding and Improving

Software Build Teams The 36th International Conference on Software

Engineering, ICSE'14, India, 2014.
[7] A.E. Hassan and K. Zhang, Using Decision Trees to Predict the

Certification Result of a Build. in Automated Software Engineering, ASE

'06., 189-198, 2006.
[8] I. Kwan,A. Schroter and D. Damian Does Socio-Technical Congruence

Have an Effect on Software Build Success? A Study of Coordination in a

Software Project. IEEE Trans on Soft Eng, 37 (3): 307-324, 2011.
[9] S. McIntosh,B. Adams,T.H.D. Nguyen, et al., An empirical study of build

maintenance effort. in The 33th International Conference on Software

Engineering, ICSE'11, 141-150, 2011.
[10] S. Phillips,G. Ruhe and J. Sillito, Information needs for integration

decisions in the release process of large-scale parallel development. in

Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, (Washington, USA), 1371-1380, 2012.

[11] A. Mockus and D.M. Weiss. Understanding and predicting effort in

software projects Proc of the 25th Int Conf on Soft Eng, Portland, USA,
274-284, 2003.

[12] J.W. Creswell Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches, 3rd ed. Sage Publications, Inc., 2009.
[13] B. Kitchenham and S. Pfleeger. Personal Opinion Surveys. in Shull, F.,

Singer, J. and Sjøberg, D.K. eds. Guide to Advanced Empirical Software

Engineering, Springer, 2008, 63-92.
[14] Y. Brun,R. Holmes,M.D. Ernst, et al. Proactive detection of collaboration

conflicts Proc. of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, Szeged,
Hungary, 168-178, 2011.

[15] Y. Brun,R. Holmes,M.D. Ernst, et al. Proactive detection of collaboration

conflicts 13th European conf on Foundations of software engineering,
Szeged, Hungary, 168-178, 2011.

[16] T. Fritz,J. Ou,G.C. Murphy, et al. A degree-of-knowledge model to

capture source code familiarity 32nd Int Conf on Software Engineering,
Cape Town, South Africa, 385-394, 2010.

[17] A. Liaw and M. Wiener Classification and Regression by randomForest.

R News, 2 (3): 18-22, 2002.
[18] J. Romano,D.J. Kromrey,J. Coraggio, et al., Appropriate statistics for

ordinal level data: Should we really be using t-test and cohen’s d for
evaluating group differences on the nsse and other surveys? in Annual

Meeting of the Florida Association of Institutional Research, 1-33,

February 2006.

[19] G. Biau Analysis of a random forests model. Journal of Machine

Learning Research, 13 (1): 1532-4435, 2012.

[20] D.J. Sheskin Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed). Chapman & Hall/CRC, 2007.

[21] J. Eyolfson,L. Tan and P. Lam. Do time of day and developer experience

affect commit bugginess? 8th Conf on Mining Software Repositories,
ACM, Waikiki, HI, USA, 153-162, 2011.

[22] N. Ning and D.E. Harter Impact of Budget and Schedule Pressure on

Software Development Cycle Time and Effort. IEEE Trans on Software
Engineering, 35 (5): 624-637, 2009.

[23] V.R. Basili,F. Shull and F. Lanubile Building Knowledge Trough

Families of experiments IEEE Trans on Soft. Eng., 25 (4): 456-473, 1999.

