
http://www.printed-editions.com/upload /standard/Harold_Edgert on_Pige on_Rele ase_69.jp g http://imgs.steps.dragoart.com/how-to-draw-a-flying-dragon-dragon-in-fli ght-step-8_1_000000102347_5.gif

Lessons Learned from the

International
Workshop
on

Release
Engineering

Bram Adams, MCIS
Stephany Bellomo, SEI
Foutse Khomh, SWAT

http://releng.polymtl.ca

PART I: RELENG?!

Back in 2009 …

On average we
deploy new code
fifty times a day.

Continuous Delivery, the Early Days

http://goo.gl/qPT6

VCS

continuous
integration

9 min.

15k tests

6 min.

test

staging/production

5

Nowadays …

regular, time-based releases

feature-based releases
(i.e., when it's done)

twice/day
(web)

dozens of
times/day

2 weeks (mobile)6 weeks 6 months

vs.

ht
tp

://
ha

ck
s.

m
oz

ill
a.

or
g/

w
p-

co
nt

en
t/

up
lo

ad
s/

20
12

/0
5/

ra
pi

d-
re

le
as

e.
jp

g

Cycle Time !=
Development Time

But why all
this trouble?

http://www.informit.com/articles/article.aspx?p=1833567

if it hurts, do it
more frequently,
and bring the pain

forward

key goal of continuous
deployment is to

reduce the risk
of releasing software

Jez Humble

James Whittaker

Build a little and then
test it. Build some more

and test some more.

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf

... aim to ship high quality
products without

regressing key quality
metrics

Chuck
Rossi

OK, what do I
need for this?

Release Engineering Pipeline (1)

developer

artifact
repo

binaries
continuous
integration
(building &
short tests)

CI
reports

review

commit

feature
branch

master
branch

merge

release
branch

version control
repositories

source
code
files

build
system

files

1

3

2

4

Nexus

4

infra-
structure

repo

deployment in
production
environment

more stages of tests,
acceptance tests, performance

tests, UI tests, manual tests, etc.

test
environment

test
reports

release to
users

artifact
repo

7

Release Engineering Pipeline (2)

6

8
5

…

4

infra-
structure

repo

deployment in
production
environment

more stages of tests,
acceptance tests, performance

tests, UI tests, manual tests, etc.

test
environment

test
reports

release to
users

artifact
repo

7

Release Engineering Pipeline (2)

6

8
5

…

Install PostgreSQL server and client
include_recipe "postgresql::server"
include_recipe "postgresql::client"

Make postgresql_database resource available
include_recipe "database::postgresql"

Create database for Rails app
db = node["practicingruby"]["database"]
postgresql_database db["name"] do

connection(
:host => db["host"],
:port => node["postgresql"]["config"]["port"],
:username => db["username"],
:password => db["password"],

)
end

Infrastructure-as-Code

https://xebialabs.com/periodic-table-of-devops-tools/ & https://xebialabs.com/the-ultimate-devops-tool-chest/

19

Example Pipeline

http://oduinn.com/images/2013/blog_2013_RelEngAsForceMultiplier.pdf

https://www.usenix.org/sites/default/files/conference/protected-files/ures14_slides_zapata.pdf 20

Another Example Pipeline

Sounds easy,
right?

http://arstechnica.com/information-technology/2014/11/latest-windows-10-update-shows-how-rapid-releases-work-in-practice/

With the three announced stable release
cadences (a fast consumer-oriented one, a

medium business-oriented one, and a slow critical
system-oriented one), and two-speed insider
program, this will leave Windows users on up

to five different versions of Windows 10.

Continuous delivery for
web apps is a solved

problem ...

Chuck
Rossi

http://infiniteundo.com/post/71540519157/continuous-delivery-is-mainstream

Noah
Sussman

For every successful organization engaging in continuous delivery,

there are many, many others that are struggling. Difficulties include
buy-­in from management or other teams who do not understand
the value, inability to work across silos and lack of tooling (lack of
support). These are standard problems in the area of leading change.

https://www.ibm.com/developerworks/community/blogs/c914709e-8097-4537-92ef-8982fc416138/entry/continuous_delivery_is_mainstream_so_what_s_the_problem?lang=en

..., yet continuous
delivery for mobile apps

is a serious challenge

Chuck
Rossi

i18n

generate
incremental

updates for each
supported old

version

Heterogeneous Hardware, Oses, …

http://www.securityinnovationeurope.com/blog/how-poor-software-release-management-creates-security-nightmares

With aggressive software release
schedules, developers may find
themselves pressured into taking
development shortcuts, simply to
meet a looming deadline.

As a result, aggressive software releases can
have a serious and unintended side-effect: a
build-up of technical debt. With every software
and update release, there’s the potential for new
bugs and technical vulnerabilities to be uncovered.

Are These Concerns
Justified?

© http://www.flickr.com/photos/fernando/36759033/

RELENG

practitioners researchers

RELENG 2013

1st International Workshop on Release Engineering

http://releng.polymtl.ca/RELENG2013/html/index.html

May 20, 2013, San Francisco, USA

2nd International Workshop on Release Engineering

http://releng.polymtl.ca/RELENG2014/html/index.html

April 11, 2014, Mountain View,
USA

3rd International Workshop on Release Engineering

http://releng.polymtl.ca/RELENG2015/html/index.html

May 19, 2015, Florence, Italy

PART 2: Insights from
the Workshop

pipeline security educationdependency hell

success & other stories business value

http://www.slideshare.net/InfoQ/adopting-continuous-delivery-adjusting-your-architecture

Causing unpredictable
release schedules …

a multi-branching development
approach trunk-only development

- code owners responsible for their own subsystem:
* only backward-compatible changes are integrated
* control features using feature flags

- no fixing of bugs after merging, instead roll back

To Branch or not to Branch
a multi-branching development

approach
trunk-only development

- branches provide physical isolation
- different channels/streams of code changes and releases

possible
- hard to roll-back, needs disciplined changes and merging

• no shared libraries, everything rebuilt from code
• maintaining a full dependency graph of things to

build
• metrics on every action for audit and analysis:

* ratio passing tests
* #changes per release
* time between releases
* #cherry-picks per release
* time from commit to release

• features can be guarded by feature flags

Consolidating All
Dependencies

• releng team develops tools to automate the
release process …

• … then developers use them to roll their
own releases!

• the tools are also used to channel/promote
best practices

Roll Your Own Release
(self-service!)

Is our
Pipeline
Secure?

Security of a Release Engineering
Pipeline

http://releng.polymtl.ca/RELENG2015/html/presentations/primba_Securing_Deployment_Pipeline_print.pdf

Is the Image Deployed into Operation a Valid
Image? How can we secure a release pipeline?

- Analyse a model of the pipeline to detect
vulnerabilities (from design perspective)

- Restructure and remodel pipeline to remove
vulnerabilities

- In practice, it’s hard to remove all vulnerabilities

Can you Learn to be a Release
Engineer? If, so How?

The 10 Commandments
of Release Engineering

1- Thou shalt use a source code control system
2- Thou shalt use the right tool(s) for the job
3- Thou shalt write portable and low maintenance

build files
…
10- Thou shalt apply these commandments to thyself

Since 2013, Courses on Release
Engineering are Being Given at:

Polytechnique Montreal
Carnegie Mellon University
NC State University
TU Delft
RWTH Aachen University
…

Sharing Successes and Failures is Important!

Dozens of Success Stories, Failures,
Lessons Learned, …

- Focus on solving company-threatening problems instead
of on technology

- Talk with, and listen to, all your customers

- Show progress (measure what customers care about)

- Take baby steps, relentless baby steps
(keep it simple)

- Make updates as easy as possible

Release Engineering versus and Business

Release engineering
should maximize the rate
at which the company can

achieve its goals!

Chuck
Rossi

… can depend on:
• degree of automation
• build/test performance: $/hour (cloud bill,

bonuses, equity, salary, ...)
• context switches
• (in general) time spent by test, release,

software, … engineers waiting for build,
test, certification, … agility!

• …

Costs/Benefits of Release Engineering …

PART 3: Insights from
the Special Issue

RELENG workshops maintain a community with
lots of insights…, why not share it via an IEEE

Special Issue on Release Engineering?

Mar/Apr 2015

• Guest Editors Introduction Roundtable
• Continuous Delivery: Huge Benefits,

but Challenges Too
• Why and How Should Open Source

Projects Adopt Time-Based Releases?
• The Highways and Country Roads to

Continuous Deployment

Table of Contents

IEEE Special Issue on Release Engineering-1

• Achieving Reliable High-Frequency
Releases in Cloud Environments

• Release Stabilization on Linux and
Chrome

• Rapid Releases and Patch Backouts: A
Software Analytics Approach

• Vroom: Faster Build Processes for Java

Table of Contents Cont.

IEEE Special Issue on Release Engineering-2

Question topics:
• What metrics are most valuable to release engineers?
• How do you maintain quality and stability?
• Are there limitations for continuous delivery?
• How can we educate others about the value of release

engineering?

Participants:
• Mozilla (Kim Moir)
• Google (Boris Debic)
• Facebook (Chuck Rossi)

My Favorite Roundtable Quotes

“On a given day we might let 5% of the browser population
get a new release. We have automatic crash reporting in

the browser.”
Moir, Mozilla

“Mobile deployments are more challenging than Web
deployments because we don’t own the ecosystem.”

Rossi, Facebook

“I tell people that release engineering is the difference
between manufacturing software in a startup compared to

a repeatable and predictable approach.” Debic, Google

International Workshop on Continuous Software
Evolution and Delivery (CSED)
Important Dates
•Abstract: January 15, 2016 AoE (mandatory)
•Submission: January 22, 2016 AoE
•Notification: February 19, 2016
•Camera Ready: February 26, 2016
•Workshop: May 14-15, 2016

The 38th

International
Conference on
Software
Engineering, Austin,
TX, May 14-22, 2016

Stay tuned for
RELENG 2016!

http://releng.polymtl.ca/

