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RÉSUMÉ

Selon les études scientifiques, l’une des meilleures façons d’améliorer la performance des
développeurs de logiciels peut être réalisée en se concentrant sur les individus. Par exemple,
Agile Manifesto a évalué les individus et leurs interactions sur les processus et les outils,
tout en mettant l’accent sur le fait de fournir un environnement favorable et souhaitable aux
employés. En outre, les recherches menées dans les autres domaines comme la psychologie, le
comportement économique et organisationnel révèlent que le bien-être émotionnel des gens
agit comme une force causale de leur productivité. Les affects d’individus, c’est-à-dire leurs
émotions, leurs sentiments et leur humeur influencent sur leur comportement et leurs inter-
actions et, par conséquent, le développement de logiciels en tant qu’activité collaborative
des développeurs peuvent également être influencé par ces affects. Surtout sachant que le
développement logiciel est un processus complexe, cognitif et intellectuel, ces affects peuvent
avoir un impact significatif sur son succès. Jusqu’à présent, très peu d’études ont été menées
dans un contexte de génie logiciel pour étudier comment les affects des développeurs pour-
raient influencer le processus de développement logiciel et quelles conséquences ils peuvent
apporter.

Cette thèse vise à étudier le lien entre les affects des développeurs et les aspects cruciaux
du processus d’ingénierie logicielle, il s’agit de la qualité du travail en résultat et le temps
nécessaire pour y parvenir. À cette fin, nous avons effectué plusieurs études empiriques sur
des projets "open source" populaires. Dans un premier temps, nous avons essayé d’analyser la
présence d’affects dans des artefacts de génie logiciel/ de l’ingénierie du logiciel, d’inspecter
leurs significations dans ce contexte et de vérifier la faisabilité du support automatique d’outil
pour la détection de l’affect dans le domaine du génie logiciel/ de l’ingénierie du logiciel grâce
à ces études empiriques. Ensuite, deux grandes études de cas empiriques ont été réalisées pour
analyser l’impact des systèmes métriques liés affectifs. Dans la première étude, nous avons
examiné l’impact de divers facteurs, y compris le sentiment de l’issue et les commentaires
sur la défectuosité-pronostic d’un correctif. Ensuite, les commentaires ont laissé dans le
repérage de la sortie et des dépôts utilisés comme proxy pour les discussions humaines. Les
modèles explicatifs ont montré une précision et un rappel significatif, en particulier en raison
de l’impact des facteurs humains de la discussion humaine, tandis que les paramètres liés
au sentiment y jouent également un rôle. Dans notre deuxième étude, nous nous sommes
concentrés sur la durée de l’examen du code et la résolution des problèmes, qui sont deux
activités principales dans le développement de logiciels. Bien que cette étude utilise les mêmes
données que l’étude précédente, les facteurs analysés l’ont plus largement été sélectionnés,
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par exemple, pour les facteurs liés à l’affect, les mesures, y compris le sentiment, l’émotion
et la politesse des commentaires ont été calculés. Les facteurs liés à l’affect sont apparus
parmi les 10 principaux éléments influents des modèles proposés. Tandis que, des modèles
explicatifs forts ont été obtenus avec une haute précision et un rappel élevé, c’est-à-dire plus
de 75% pour aussi bien la précision que pour le rappel.

Les découvertes de ces deux études ont révélé que des facteurs concernant l’affect ont un
impact sur de principales mesures du processus de développement de logiciels, incluant la
qualité et le temps pris pour mettre fin aux activités principales, il s’agit de l’examen de code
et la résolution des problèmes (publication). Cela est encore plus important pour les projets
"open source", car récemment, de nombreux projets "open source" populaires et même des
référentiels de code comme Github ont commencé à chercher une solution possible pour traiter
des conflits, sous forme de codes de conduite. De grands projets logiciels, comme des projets
"open source", sont construits et entretenus en collaboration par des équipes de développeurs
et de testeurs, qui sont typiquement et géographiquement dispersés. Cette dispersion crée
une distance entre des membres de l’équipe, cachant des sentiments de détresse ou (un)
bonheur de leur gestionnaire, ce qui les empêche d’utiliser des techniques de remédiation de
ces sentiments.

La mesure automatique de l’incidence des artefacts du génie logiciel peut aider des gestion-
naires à contrôler leurs environnements d’équipe en fonction de leurs besoins et à augmenter
leur conscience émotionnelle. Cela pourrait finalement conduire à une meilleure prise de
décision pour ces directeurs au moment désiré à stimuler l’ambiance de leur équipe et de
traiter des conflits ou des obstacles avant qu’ils deviennent perplexes et insolubles. Nous
avons conduit une étude empirique pour comprendre des codes de conduite et leur rôle dans
des projets "open source". Nous espérons que cette évaluation de codes de conduite et nos
résultats avec des mesures d’affect automatisées pourront permettre aux praticiens de non
seulement remarquer des problèmes, mais également d’évaluer des contre-mesures éventuelles
à prendre.
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ABSTRACT

According to scientific studies, one of the best ways to improve software developers’ per-
formance is by focusing on people. For instance, Agile manifesto valued individuals and
their interactions over processes and tools, while emphasizing a supportive and desirable en-
vironment for employees. Moreover, research in other fields like psychology, economic and
organizational behaviour reveals that emotional well-being of people acts as a causal force for
their productivity. Affects of individuals, i.e. their emotions, feelings, and mood influence
human behaviour and interactions, and therefore, software development as a collaborative
activity of developers can be influenced by affect too. Especially knowing that software de-
velopment is a complex, cognitive, and intellectual process, affect might have a significant
impact on its success. So far, very few studies have been conducted in a software engineering
context to investigate how developer affect may influence the software development process
and what consequences they can bring about.

This PhD dissertation aims to investigate the link between affect of developers and important
aspects of software engineering process, i.e., quality of the resulting work and the time taken
to achieve it. For this purpose, we conducted several empirical studies on popular open source
projects. First, we tried to analyze the presence of affects in software engineering artifacts,
inspect their meanings in this context and verify the feasibility of automatic tool support
for affect detection in the software engineering domain through empirical studies. Next, two
large empirical case studies were done to analyze the impact of affective-related metrics. In
the first study, comments left in the issue tracking and review repositories were considered as
proxy for human discussions. Then, we investigated the impact of various factors including
sentiment of issue and review comments on defect-proneness of a patch. Explanatory models
showed significant precision and recall, especially due to the impact of human discussion
factors while sentiment-related metrics play a role in them too.

In our third study, we focused on the duration of code reviewing and issue resolution, which
are two major activities in software development. While this study used the same data as
the previous study, the analyzed factors were selected more widely, for instance, for affect-
related factors, measurements including sentiment, emotion and politeness of comments were
computed. Affect-related factors appeared among the top 10 influential factors of proposed
models. While, strong explanatory models were obtained with high precision and recall, i.e.,
mostly higher than 75% for both precision and recall.

Findings of these last two studies revealed that affect-related factors impact major metrics in
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software development process including quality and time taken to finish main activities, i.e.,
code reviewing and issue resolution. This is even more important for open source projects,
since recently, many popular open source projects and even code repository like Github
started to look for a possible solution to deal with conflicts, in the form of codes of conduct.

Large software projects like open source projects, are constructed and maintained collabora-
tively by teams of developers and testers, who are typically geographically dispersed. This dis-
persion creates a distance between team members, hiding feelings of distress or (un)happiness
from their manager, which prevents him or her from using remediation techniques for those
feelings. Automatic affect measurement from software engineering artifacts can help man-
agers to monitor their team environments affect-wise and increase their emotional-awareness.
This finally may lead to better decision making for managers at the appropriate time to boost
the atmosphere of their team and to deal with conflicts or obstacles before they are getting
perplexing and insoluble. We conducted an empirical study to understand codes of conduct
and their role in open source projects. We hope that this evaluation of codes of conduct and
our results with automated affect measurements will be able to enable practitioners to not
only notice problems, but also evaluate possible countermeasures to take.
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CHAPTER 1 INTRODUCTION

Emotions and feelings play an important role in the life of most people including their pro-
fessional work, for instance happy people are more creative and also productive at work
(Robertson and Cooper, 2011; Rao, 2010; Barron and Barron, 2013). One of the firm and
famous theories proposed in 1996 (Weiss and Cropanzano, 1996), i.e., Affective Events The-
ory(AET), is a psychological model explaining the impact of feelings and mood on job sat-
isfaction and job performance. That can explain why some well-known high tech companies
like Google, Facebook, and Twitter offer perks to their employees at workplaces during the
working hours.

Particularly, software development is dominated by human factors as a collaborative, cog-
nitive, and intellectual activity (Mistrìk et al., 2010; Wagner et al., 2010), and studies
like (de Barros Sampaio et al., 2010; Wagner and Ruhe, 2008) revealed the human related
factors are among influential productivity factors in software development. Moreover, cogni-
tive activities are impacted by affects of individuals involving in it and software engineering
process cannot be considered exempt from such impact (Khan et al., 2011). Hence, it seems
that feelings of people involved in software development process play an important role in
the process, however, there is a lack of evidence and scientific studies on the role of affect in
software engineering domain.

Finding out the presence of people’s affect in software development process which is a con-
tentious activity, Murgia et al. in 2014 in their study (Murgia et al., 2014) referred to one
exemplary incident that happened in July 2013: one of the top developers (Sarah Sharp)
felt offended by the project leader (Linus Torvalds) during their discussions in the Linux
kernel mailing list (Brodkin, 2013). This example clarified that during software construction
and maintenance, there might be situations where people get emotional and freely express
their feelings. Therefore, it seems software engineering research needs to incorporate affect
measurements to advance human factors study and consequently improve management styles.

More in-depth research revealed software artifacts like issue reports can carry emotions, in
other words developers may express their emotions during the work through their communi-
cations (Murgia et al., 2014). Moreover, processes like issue-fixing and code review activities
recently equipped with tools that people can discuss using them and their discussions being
recorded. These electronic communications in addition to emails, chat rooms and, video con-
ferencing are popular means of communications in many organizations and software projects
that are dispersed geographically. By using them people are not just conveying their mes-
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sage, but their feelings too (Bacchelli et al., 2010; Rigby et al., 2008). People are getting so
accustomed to these communication means more and more every day, therefore it is more
expected to see their actual feelings through electronic communications.

In this thesis, we planned not only to inspect but also measure the impact of affects of soft-
ware stakeholders including developers on software development process considering several
output values. To this purpose, we selected different software repositories including mailing
lists, issue comments of issue repository and investigated whether there are symptoms of
members’ affects in them. After finding the feasibility of automatic affect extraction from
those artifacts, various metrics related to affects of people were defined using various tools
discussed later. Next, we conducted several empirical studies to study the impact of afore-
mentioned affective metrics on the quality of resulting work and on the time spent for the
work. Finally, one recent solution, adopting in open source software projects to prepare more
safe and positive atmosphere for participants, has been studied.

In this chapter, we will first present definitions and differences of emotion, sentiment, affect
and their quantitative measurements followed by our research hypothesis and the technologies
we used. Finally, we discuss how our studies address the hypothesis.

1.1 On Affect, Emotion, Mood, Feeling, Sentiment, and Politeness

Many different terms are being used when talking about affect, some of them synonyms, while
others have a different meaning. We base our definitions on those given by Matsumoto (Mat-
sumoto, 2009) defining affect, emotion, mood, and sentiment.

Affect: 1. "The subjective feeling or evaluative component of human experience or thought".
2. "A transient neurophysiological response to a stimulus that excites a coordinated system of
bodily and mental responses including facial expressions that inform us about our relationship
to the stimulus and prepare us to deal with it in some way. The basic affects are anger,
fear, surprise, happiness, disgust, and contempt". These formal definitions refer to people’s
opinion, attitude, appraisal or feelings toward entities, events and their attributes.

Emotion: Emotion is a synonym for affect, except that emotion shows more detail of human
feeling like sadness, happiness, shame, and anger. Both of them are used automatically
whenever people communicate, since it helps people convey their message or understand
other people’s reactions.

Mood: An affective state that persists from several minutes to several weeks which directs
and colors perception, thought, and behaviour.

Sentiment: "Thoughts concerning feelings or emotions that are attached to objects or people.
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Thinking about a dog, for example which one feels attached to and positive about may be a
sentiment." (In particular, for each affect related to an object or person, one can feel range
of sentiments from very negative to very positive.)

Politeness: "Central force in communication, arguably as basic as the pressure to be truthful,
informative, relevant, and clear" (Grice, 1975). In simple words, "the ability to make all the
parties relaxed and comfortable with one another."1

1.2 The Quantitative Measurement of Affect

This section discusses current approaches to quantitatively measure affect based on findings
of Leiman’s work (Leiman, 2013). Most of these approaches were developed in the area of
marketing, since in the competitive world of marketing where there are many reviews left
by customers towards product or services, measuring the affect of customers, has found its
application. For example, it has been used in decision making systems and also in predicting
some trends in future.

The basis of most of current measurement approaches is two-dimensional model of emotion
comprising the dimensions of arousal and valence. Arousal represents the level/amount of
physical response and can range from calm to excited and valence represents the emotional
direction and spread from negative to positive. For instance, anger would be tagged by
high arousal but with negative valence, while happiness is marked by high arousal and very
positive valence.

However, this model has several shortcomings, like inability to target a broad range of emo-
tional detail and nuance, and the fact that it relies on some form of self-report like through
the use of rating scales to be generated.

Measuring emotions, it is generally acknowledged that there are both inner and outer signs
of emotion. The outer signs are related to expressive reactions and behavioral responses,
while the inner signs include both subjective feelings and physiological reactions. So, based
on these manifestations, there are several ways of quantitative measuring:

• Expressive Reaction: facial, vocal and postural responses (‘body language’)

• Physiological Response – Autonomic Responses: blood pressure, heart rate, pupillary
response, and electrodermal activity (EDA)

1http://en.wikipedia.org/wiki/Politeness

http://en.wikipedia.org/wiki/Politeness
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• Brain Imaging: using various forms of brain imaging like functional magnetic resonance
imaging (fMRI) to study a human’s emotional response to questions

• Measuring Emotion Through Opinion Mining and Sentiment Analysis: Recent develop-
ments and studies suggest that text analytics focused on opinion mining and sentiment
analysis of unstructured textual data help to measure emotions.

While physiological measures appear attractive, as they directly measure physical symptoms
of emotions, they are difficult and expensive to use. Therefore, economically and organiza-
tionally speaking it is impossible to study larger samples of developers in this way. Further-
more, since some of the techniques require placing consumers in rather constrained, controlled
environments, one might also argue whether the obtained results are really representative of
one’s true emotions. For these reasons, the sentiment analysis approach has become the most
lightweight, practical approach to measure emotions, even though it does not directly mea-
sure someone’s emotions (just the communication records about the emotions). Note that
recent development and research in the text analysis domain has enabled sentiment analysis
to not simply tag text for positive or negative sentiment, but also to identify the expression
of a variety of emotional states, such as curiosity, confusion, embarrassment, excitement, be-
musement, shock, irritation, etc. The next section discusses how modern sentiment analysis
techniques work.

1.3 Sentiment Analysis

Sentiment or affect occur automatically when people communicate, since it helps people
convey their message or understand other people’s reactions. This implicit behaviour is not
just limited to communications in real world, but even when people interact through computer
aided communications, like comments or feedback that people make on community fora or
chat rooms, or in more conventional electronic media like emails (Thelwall). These sentiments
are universal, in that they occur as much in politics as in business contexts (Pang and
Lee, 2008). Even in software engineering (Murgia et al., 2014), identification of sentiments
and emotions in software artifacts has the potential to provide indications about someone’s
opinions towards certain project decisions or other people.

Sentiment analysis and opinion mining is the field of study that analyzes people’s opinions,
sentiments, evaluations, attitudes, and emotions from written language (Liu, 2012). These
emotions or attitudes are aimed towards entities such as products, services, individuals,
issues, events, topics and their attributes. The automatic measurement of such attitudes from
recorded (typically textual) transcripts of communication is based on a number of measures
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of subjectivity and opinion in text. Those measures usually measure the polarity (positive
or negative) and "strength" (also "degree") of a document. Strength shows to which degree a
word, phrase, sentence or document is positive or negative towards a subject topic, person,
or idea (Osgood et al., 1957). For example, a positive opinion with strength 1 is much more
positive than a positive opinion with strength 0.1. Some examples of approaches to extract
the above measures are sentiment analysis (Pang and Lee, 2008), opinion mining (Pang and
Lee, 2008), and affect mining (Batson et al., 1992).

In general, sentiment analysis can be computed in three levels:

• Document level: Analysis at this level scores a positive or negative sentiment for a
whole document.

• Sentence level: Analysis at this level studies individual sentences to classify whether a
sentence expresses positive or negative sentiment.

• Aspect/Feature level: The definitions of document and sentence level above did not
consider the specific subject that people like or dislike. However, aspect level analysis
has a finer granularity, since it is not only based on sentiment expressed in a sentence
(positive or negative), but also a target of the sentiment.

Sentiment analysis algorithms mainly use two approaches: machine learning or a lexical
approach. With machine learning, typically a training set of text documents are taken as
input to train a classifier, which then can be used on other documents to score the sentiments
expressed in them (Socher et al., 2013). Lexical approaches use language information in the
form of a list of known sentiment-related words, their polarities and the grammatical structure
of the language, then uses those to score the sentiment of the text. Word lists or dictionaries
for lexical approaches can be created manually, or could be expanded by using seed words
(sentiment words) (Taboada et al., 2011).

1.3.1 Lexical Sentiment Analysis

The lexical approach is based on the assumption that the contextual sentiment analysis is
the sum of sentiment orientation of each word. Positive sentiment words are used to express
desired states like nice, interesting and negative sentiment words express undesired states like
ugly, unpleasant (Liu, 2012). Apart from words there are also phrases that express positive
or negative states. These words and phrases together are called sentiment lexicon, and such a
lexicon can be compiled using a manual approach, dictionary-based approach, or corpus-based
approach.
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The manual approach is labor intensive and time consuming, and hence usually combined
with automatic approaches. Dictionary-based approach uses dictionaries like WordNet to find
sentiment-related words and all their synonyms and antonyms. In this approach, generally,
a small set of sentiment words (seeds) is first collected. Then, based on the synonym and
antonym structure of a dictionary the set is extended. In corpus-based approach , based on a
given seed list of known sentiment words, other sentiment words and their orientations from
a domain corpus are discovered. Turney et al. (Turney, 2002) introduced a technique that
performs classification based on some fixed syntactic patterns used to express opinions.

1.3.2 Machine Learning-based Sentiment Analysis

Sentiment classification interpreted as a kind of text classification usually has three outcome
classifications: positive, negative and neutral. Since sentiment classification is a kind of text
classification, any existing supervised learning method can be applied, such as naïve Bayes
classification or support vector machines (SVM). In this approach, engineering of a set of
effective features is an effective key for sentiment classification. Features include opinion
rules2, sentiment shifters3 and syntactic dependency, sentiment word an phrases, part of
speech, sentiment shifters, and sentiment dependency.

1.3.3 Hypothesis of Thesis

Research on various domains including organizational behaviour and psychology showed the
impact of employees’ feelings on their performance and consequently on their organizations
outcome (Robertson and Cooper, 2011; Rao, 2010; Barron and Barron, 2013). Since software
engineering is a collaborative, human activity, one would expect that these results hold as
well for software developers, architects or any other stakeholder of the software development
process. However, how much do these factors impact software development? Given the
abundance of open source development data and recent advances in automated sentiment
analysis, this thesis sets out to quantify the impact of affect on the software development
process. In particular, our research hypothesis is:

2The sentiment of a compound expression is a function of the meaning or sentiment of its constituents
and the syntactic rule they are combined with

3Expressions that change the sentiment orientation like negation words.
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First, there is a link between the affect of
participants involved in open source soft-
ware development and (1) the quality of
and (2) time taken by their work. Second,
(3) affects of participants in open source
projects can be improved through concrete
measures.

Measuring the affect of software engineering stakeholders and understanding its impact on
software quality enables managers to gain an understanding of a team’s status and prospects
in further stages of the software development process, and could help them to establish
baselines for comparison between different teams’ projects or releases. In this way, they can
evaluate and predict major issues related to quality and time as well as identify roadblocks
and opportunities.

To explore this hypothesis, this thesis performs case studies on various software engineering
data sources. We studied open source software projects as they are free and they publicly ex-
pose large amounts of data sources and repositories that do not only include source code, but
also cover the different communication, planning and documentation media, such as mailing
lists and issue repositories, utilized by open source community. We especially investigated
large, well-known projects like the Apache, OpenStack, and Eclipse projects that have been
studied before in many research studies.

To be more specific this thesis dealt with following sections to inspect the above hypothe-
sis, we performed a preliminary study of the feasibility of measuring affective metrics from
software artifacts automatically, 1) studied the influence of affective metrics on the quality
of the commits, 2) analyzed their impact on the time taken to do code reviewing and issue
resolution and, finally, 3) explored one general solution taken by open source communities to
provide participants with a more comfortable and friendly environment.

1.3.4 Thesis Contributions

Studying the feasibility of affect detection from software engineering artifacts

We aim at detecting affects automatically from software engineering artifacts by mining issue
repository and open source mailing lists. Instead of self-assessment of emotional states done
by developers, we tried to extract their affect states from the texts they left on various software
artifacts like mailing list and issue comments. Such self-assessment based approaches suffer
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from problems, e.g. participants might not be comfortable enough to disclose their different
feelings and also those approaches can not be scaled easily. However, our approach detecting
affects from software artifacts, first of all increases affect-awareness in open source projects
environments dispersed geographically while equipped with different tool, like mailing lists
and issue tracking systems like Jira and Bugzilla. In addition, these results can be used to
analyze the impacts of affects in software engineering process.

To this end, we run two empirical studies, one on issue comments (792 developer comments)
extracted from issue repository of Apache Software Foundation(AFS), and one on mailing
lists of AFS (635,906 emails from Tomcat and Ant projects). We investigated the feasibility
of extracting affects from those texts written by developers and software stakeholders during
their discussions. In our first study, manual evaluation of AFS issue comments showed that
issue reports carry emotions, in the second study we applied the SentiStrength tool(Thelwall),
to score the sentiment of emails followed by manual evaluations of the emails. Again our
results showed the presence of both positive and negative sentiments in email communications
of developers and users. In addition, we found that the expressed sentiments evolve across
the time, which can be adopted by project management to be informed about extremely
positive and negative sentiment in projects. However, we also observed that, while the
overall sentiment trend seems to be meaningful, the individual sentiment measures are quite
noisy.

Using MSR to understand the relation between human affectiveness and the
quality of product

In order to understand the impact of affective metrics on the quality of the projects, we per-
formed a large empirical case study on 10 OpenStack and 5 Eclipse open source projects. As
a measure of quality, we built a model of defect-prone commits adopting “Just In Time”(JIT)
models (Kamei et al., 2013b). JIT models have several advantages in comparison with other
proposed models, since their granularity, i.e. individual commits, provides more actionable
and efficient context for bug-fixing. Previously, JIT models have been applied using measures
related to source code, however here we integrated measures related to human aspects who
are developing the product. To this purpose, we focused on issue and review discussions as
the major discussions, during software development, occurred through them. We needed to
link issues and reviews to commits which was done heuristically in our work. To the best
of our knowledge no work has done that before, to link both reviews, issues and commits
together.

Our results showed that sentiment-related metrics also play a role in more than half of the
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generated explanatory models.

Using MSR to understand the link between human affectiveness and the time
taken by code reviewing and issue resolution

Since time-to-market is one of the most important success measures, software organizations
have been trying to accelerate their activities continuously (Wohlin and Ahlgren, 1995a).
Since issue resolution and code reviewing are two major activities in recent software develop-
ment, the time spent on them can impact the whole development process time. For example,
another study performed by Ortu et al. considered issue fixing time as one potential measure
of the productivity in a project.

Therefore, we conducted a detailed empirical study on 10 OpenStack projects, for which we
were able to link issue report data with patch and review data (see chapter 6), to analyze
important factors influencing their time. To this end, first we investigated the actual interac-
tion between issue resolution and review process, found their timing proportions and scales.
To our knowledge, there have been no studies done on the interaction patterns and scaling
of issue resolution time and code reviewing time. Next, we studied the impact of different
factors with different dimensions, including metrics related to the human affects dimension.
We found that affective-related metrics are among top influential metrics after experience
and churn metrics while positive affects have negative or decreasing impact on the time (in
contrast to politeness), i.e., more positive affects are related to shorter time.

Understanding Code of Conduct as a solution to improve affect

While thus far we have identified the presence of and potential impact of affect on the quality
and undertaken time to code reviewing and issue resolution, here we examine one possible
solution open source projects are taking to improve the affect in their community, i.e., codes
of conduct. A code of conduct is a set of rules or standards articulating behaviours of
participants to protect the community from offensive and unacceptable behaviours retaining
a safe and friendly environment.

However, still some communities are against codes of conduct, as they think applying it leads
to being censored and to a suffocating environment.

We conducted an empirical study to understand the role of code of conduct in open source
projects using both quantitative and qualitative study. We presented an estimation of the
proportion of the open source projects adopting codes of conduct while we tried to identify
the major codes of conduct in use. Further studies including structured and semi-structured
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interviews with experts were performed to understand the nature of a code of conduct, i.e.,
its attributes and scope, limitations, and also to identify the process and thought behind it,
the reason they have been emerged in open source communities.
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CHAPTER 2 CRITICAL LITERATURE REVIEW

In this chapter, we will introduce two state-of-the-art sentiment analysis tools, then go
through the related work, briefly in the domains other than software engineering, followed
by work in the software engineering domain. We discuss how these works are different from
our work.

2.1 Tools

2.1.1 SentiStrength tool

SentiStrength is a lexicon-based automatic sentiment analysis tool designed by Thelwall (Thel-
wall) for sentiment strength detection across the social web. It primarily uses direct indi-
cations of sentiment, i.e., words or phrases of the text for calculating sentiment score, and
by default returns a pair of integers, one from -5 (signifies strong negative sentiment) to -1
(signifies no sentiment), and one from 1 (signifies no sentiment) to 5 (signifies strong positive
sentiment). A given text can express both positive and negative sentiments at the same
time, and a text is considered sentimentally neutral when the emotional scores for the text
appear to be -1 and +1. SentiStrength has other configurations for returning sentiment score
discussed in subsection 8.2.1. In the following there is an example showing how SentiStrength
scores given text regarding its default configuration i.e. dual 1:

The text: “I love you but hate the current political climate.”

Sentiment Score: positive strength 3, negative strength -4

SentiStrength has several key features like spell correction algorithm, or using a booster word
list to strengthen or weaken the sentiment strength of the words coming following the booster
words.

2.1.2 Stanford tool

The Stanford sentiment extraction tool, based on machine-learning, developed by Richard
Socher et al. (Socher et al., 2013) for positive/negative sentence classification. To capture
the meaning of longer phrases instead of just single words, Socher et al. introduced the
Stanford Sentiment Treebank and a powerful Recursive Neural Tensor Network. The corpus
consists of 11,855 single sentences extracted from movie reviews. This is the first corpus with

1http://sentistrength.wlv.ac.uk
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fully labeled parse tree that enable complete analysis of compositional effects of semantic in
language. New deep learning model, Recursive Neural Tensor Network (RNTN) obtained
the highest performance in comparison with all previous methods with 80.7% accuracy for
predicting fine-gained sentiment labels. This model considers not only the words, but also
builds up a representation based on a structure of a sentence. According to Socher et al. it
is the only model that can accurately captures the sentiment change and negation scope also
the sentiment of phrases following the contrastive conjunctions like ’but’. RNTN predicts 5
sentiment classes from "very negative" to "very positive" (very negative, negative, neutral,
positive, very positive) for each sentence or at every node of a parse tree.

Jongeling et al. focused on application of sentiment analysis tools in software engineering
context (Jongeling et al., 2015) and examined 4 different tools including SentiStrength, Stan-
ford and, NLTK (Bird et al., 2009a). (For each given text, NLTK returns different values
separately that show the probability of being positive, negative, and neutral of the text.)
Based on their results, SentiStrength and NLTK show the highest degrees of correspondence
(correspondence between the scores provided by the tool and manual labeling) and also have
the higher agreements with each other. While, Jongeling et al. concluded more precise
sentiment analysis for software engineering context is needed.

2.2 Related Work

Previous studies mostly used sentiment analysis in the areas of marketing and financial
markets, but not the area of software engineering.

2.2.1 Sentiment Analysis for Reviews of Consumer Products and Services

Many online markets like mobile app stores or Amazon provide facilities for customers to
assess their products and give their opinion. In such cases, sentiment analysis can be applied
on the reviews of a customer for products and services. Twitter and Facebook are popular
websites being used for sentiment analysis purposes too, like monitoring the reputation of a
specific brand (Feldman, 2013). Pak et al. (Pak and Paroubek, 2010) focused on Twitter,
which is the most popular microblogging platform, to do sentiment analysis. They collected
a corpus of 300,000 tweets that are evenly distributed across positive emotions, negative
emotions and absence of emotions. By performing statistical linguistics analysis on the
corpus, they build a sentiment classifier that uses the corpus as training data. Finally, they
conducted an experimental evaluations on a set of microblogging posts.

A large and rapidly growing number of businesses and merchants sell their products and



13

services on the Web and consequently ask their customers to review their products and give
their ideas about those products. For example, according to Hu et al. (Hu and Liu, 2004) for
a popular product, the number of reviews can be in hundreds or thousands. With this huge
amount of reviews and comments, keeping track of the customer reviews and managing them
(essential for decision making) have become one of the difficulties for relevant manufactures
or other fellows require this information. Hu et al. provided feature-based summaries of
customer reviews based on data mining and language processing methods. They mined
product features commented by customers, opinion sentences from customer reviews and
semantic orientations (positive vs. negative) of the opinion words, using WordNet. Their
experimental evaluations showed their proposed techniques are very promising.

Bing Liu et. al proposed a novel framework, Opinion Observer, for analysing and comparing
customers’ opinions of competing products (Liu et al., 2005). With their proposed system,
the user can see with a single and simple look the strengths and weaknesses of each prod-
uct. A manufacturer can easily gather marketing intelligence and product benchmarking
information.

Cataldi et al. (Cataldi et al., 2013) presented an approach for feature-level sentiment detec-
tion. Their proposed approach extracts users’ opinions, from user generated reviews, about
specific features of products and services. For this, they used both natural language pro-
cessing and statistical techniques. First, they extracted domain features so that each review
was modelled as a lexical dependency graph, then the polarity linked to each feature was
estimated. To achieve this, each sentence is modelled as a set of terms in a dependency graph
connected through syntactic and semantic dependency relations. Through a user study their
results compared against 39 human subjects for hotel reviews and obtained high precision
and recall on the features, with the computed polarity degree slightly below the average hu-
man performance. The proposed approach can be used to extract sentiment patterns from
any social networks as well.

2.2.2 Sentiment Analysis in Financial Markets

Similar to consumer reviews, analysis of financial markets uses sentiment analysis on news
items, articles, blogs and tweets about companies to drive automated trading systems like
StockSonar (Feldman, 2013). Sehgal et al. introduced an approach for stock prediction
based on sentiments of online messages, from which correlations between stock values and
sentiments are learnt to enable prediction (Sehgal and Song, 2007). Das et al. (Das and
Chen, 2007) designed an algorithm to train a small investor sentiment classifier from stock
message boards, which can be used to assess the impact of small investor behaviour on stock
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market activity.

2.2.3 E-learning and affective framework

Agnieszka proposed a framework applicable in Intelligent Tutoring Systems (ITS) (Landowska,
2013). He defined affect-aware system as a software program that identifies emotional state
of a user (in their context, a learner), then uses its control mechanism and application log
process information on affect which might lead to some interventions (in their context: sup-
port or disturb learning process) done by the system. Therefore their proposed framework
or design model consists of 3 major parts: user affect elicitation, user affect analysis, and
affect-aware reaction intervention. He also conducted a case study using one conversational
ITS, Gerda. Their emotional state recognition was based on lexical analysis by using user
inputs. Their keywords lexicons were ANEW extension (Bradley et al., 1999) with WordNet
and ANEW extension with ConceptNet. Finally, they evaluated the framework based on the
various uncertainties assumed for ITS emotion recognition and control mechanism parts of
the framework. The author believed that although the proposed framework is for ITS, it can
be applied in multiple disciplines.

2.2.4 Affects in Software Engineering

In this section we discussed about the software engineering studies that applied affects in
their researches from different perspectives. We clarified how our work differentiates from
them.

Inclusion of Affects in Software Design

Colomo-Palacios et al. conducted a study to bring the stakeholder’s emotions into require-
ment engineering, and treat them such as one criteria like stability in this process (Colomo-
Palacios et al., 2010). They discussed about the importance of human dimension even in
comparison to technical dimensions in software engineering. Their goal was to build an
instrument that is able to predict requirement evolution using expressed emotions of stake-
holders. To this end, first they showed the importance of understanding stakeholder’s view-
point from their emotion expression, then presented a method that include these emotion in
requirements. In their method, for each requirement, all related stakeholders express their
emotion about that requirement through the Affect Grid (Russell et al., 1989) by determining
pleasure and arousal. The proposed method implemented in two different projects. Finally,
they looked into 1,175 emotional ratings finding out any patterns and they concluded that
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high arousal and low pleasure levels are predictors of high versioning requirements in their
studied projects.

Miller et al. stated that a user’s acceptance of products not only can be understood by their
cognition but also by emotion, while emotion shows deeper level of appealing (Miller et al.,
2015). They explained that in traditional system design, software engineers gathered func-
tional and non-functional requirements, while not including the desires of the end-users and
stakeholders. Based on their opinion, it is a prevalent misconception to postpone address-
ing these issues by designing appropriate user-interface. They believed that emotional goals
are drivers to elicit new requirements, either functional or non-functional. Therefore, they
proposed a flexible modeling notation, called people-oriented software engineering (POSE)
model, by adding emotional goals (which represent the desired feelings of stakeholders) to the
notations and methods in different disciplines and specifying their relations to other parts
of the system. Finally they evaluated their models, using a case study and a user study,
while observing improvements in user satisfaction and found that inclusion of emotions is a
positive step in software engineering.

These studies shed light on the usage of affects during software design. They highlighted
the importance of stakeholders’ and users’ affects towards software design as one influential
dimension that can improve quality of the design. In contrast to our work, they did not deal
with the affects of developers during development process and their influence on the final
work.

Investigating the Importance of Understanding Developers’ Affects

De Choudhury et al. explored various emotional expressions of employees of 500 large soft-
ware corporation. For this purpose, they inspected the posts on an internal Twitter-like
microblogging tool, called OfficeTalk, to characterize emotional expression of employees at
the workplace and in a fine-grained, continuing manner (De Choudhury and Counts, 2013).
Empirical analysis showed that affective expression in the enterprise can be the result of
various workplace factors grounded by theoretical foundations in organizational behaviour
research. These factors can be exogenous and endogenous workplace factors, geography of
organization or the organizational hierarchy. Toward this end, they extracted a score for pos-
itive affect(PA) and negative affect(NA), from the microblog posts of employees over time,
by measuring the textual content of the microblog posts using Linguistic Inquiry and Word
Count (LIWC). PA and NA are computed as the ratio of the number of positive or negative
words to the total number of words in a post. They concluded that affective expression in
the workplace can provide an efficient tool for assessing key factors and performance relevant
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outcomes.

Rigby et al. also used LIWC, a pyschometrically-based linguistic analysis tool, to study the
Apache httpd developer mailing list (Rigby and Hassan, 2007). They tried to assess the
personality of four top developers, and also two top developers that have left the project.
They also examined the word usage on the mailing lists near the releases to find the general
attitude of developers in these times. They found some promises in understanding why
developers join and leave a project.

Bazelli et al. (Bazelli et al., 2013) chose StackOverFlow.com, which is one of the most popular
Question and Answer websites used by all kinds of programmers including professionals or
amateurs to interact. They explored the personality traits of the authors of the site, by
analysing answers and questions of the community. Like Rigby et al. (Rigby and Hassan,
2007), they applied LIWC for their analysis, then categorized the extracted personalities
based on their reputations (also determined from the site). They found that top reputed
authors are more extroverted and have less negative emotions. They stated that their work
is a partial replication of Rigby and Hassan’s work.

These studies show that monitoring the developers’ affects can provide companies or man-
agers with facilities to assess critical factors such as understanding the behaviours of devel-
opers toward the community. Measuring affect, they applied LIWC on the recorded com-
munications of developers (including authors of StackOverFlow). However, in our study, we
specifically investigated the impact of developers’ affects on quality of the work and the time
they spent doing their work. To this purpose, we considered affect from different dimen-
sions i.e. sentiment, emotion, and politeness of developers. Applying appropriate tools on
developers’ discussions, the obtained affects and their impacts were investigated in our work.

Impact of Developers’ Affects on Their Performance

Khan et al. (Khan et al., 2011) argued that people’s mood can affect their activities, a
programmer’s mood also affect their work specially their debugging’s performance. They
tested the effect of mood on debugging in two experiments. In the first one, 72 programmers
saw short movie clips to provoke specific moods. In the second experiment, 19 participants
were asked to perform some physical exercises before running of algorithms. In their first
experiment, there is no significant effect that valence (positive or negative affect like sadness
and happiness) has an impact on performance. In the second experiment, they could not
separate the effect of valence and arousal. They concluded that possible future research is
needed to measure the impact of emotions on the debuggers’ performance. However, they
did not use any measurement to extract and quantify the developers’ affects while assumed
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that watching movie clips induce positive or negative emotions in developers. In our study,
instead of relying on the movie clips to change affects of developers for a while, we tried to
measure developers’ affects during the whole development process applying different tools on
various software collaborative textual artifacts. In addition, we focused on the affects of the
entire team not individual members.

Impact of Developers’ Affects on Their Problem Solving

Graziotin et al. (Graziotin et al., 2014) believe that the software development process, as
a primarily intellectual process, is substantially more complex than other industrial pro-
cesses. They introduced psychological measurement for affect, analytical problem solving,
and creativity in empirical software engineering. Then, they conducted a study with 42 stu-
dent participants and investigated the correlation between affect vs creativity and between
affects vs analytical problem solving performance of software developers. There was no sig-
nificant difference in the number of generated creative ideas based on the affects, however,
their results showed that happier software developers are more productive in problem solving
performance. They also found that there is more need for studying the human factors in
software engineering while applying a multidisciplinary viewpoints. They also conducted a
study how affects(including dominance, valence, arousal dimensions) can impact self-assess
productivity of developers (Graziotin et al., 2015). This time, they selected 8 participants
(4 students, 4 professional developers), with questionnaires for measuring the affects (using
psychological measurements) of participants and their productivity. Participants work for 90
min on software development tasks while the researcher observed their behaviors too, each
10 min (this interval was the result of a pilot test), the participants complete a questionnaire,
in this way their affects and productivity are measured nine times per participants. In addi-
tion, after task completion participants were interviewed about the factors impacting their
performance and self-assessed productivity. Final results denoted that the affect dimensions
(high happiness) are correlated with self-assessed productivity positively. They mentioned
the experiment designed in their study is not applicable for continuous application in the
industry. However, instead of using psychological measurement or questionnaire, we applied
appropriate tools and software artifacts, to automatically measure developers’ affects which
is applicable in many OSS projects and can be extended for further studies too.

Automatic Detection of Developers’ Emotions

Murgia et al. analyzed whether development artifacts like issue reports carry any emotional
information about software development (Murgia et al., 2014). That was a first step towards
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verifying the feasibility of an automatic tool for emotion mining in software development
artifacts. They applied emotion mining, which tries to identify the presence of human emo-
tions like joy or fear from text, voice and video artifacts produced by humans. (It is different
from sentiment analysis, which instead evaluates a given emotion as being positive or neg-
ative.) They mined 800 issue comments from the issue repository of the Apache software
foundation2, and with four raters identified the emotions associated to each extracted com-
ment. As a ground truth, they consider agreement on a particular comment’s emotions as a
“correct” classification for their research questions and to measure the degree of inter-rater
agreement on identified emotions, they calculate either Cohen’s κ value (Cohen, 1960) or
Fleiss’ κ value (Fleiss, 1971).

Their study confirms that issue reports do express emotions towards design choices, mainte-
nance activity or colleagues and some emotions like love, joy and sadness are easier to agree
on. Their findings suggest that for love, joy and sadness it makes sense and eventually might
be feasible to automate emotion mining although challenges need to be studied more closely
while more systems and data sources are needed to be taken into account too.

Sentiment Analysis of Software Collaborative Artifacts

Guzman et al.(Guzman and Bruegge, 2013) proposed an approach to help finding emotional
awareness in software development teams. For this purpose, they used the latent Dirichlet
allocation to identify the topics discussed in the collaboration artifacts like texts from mailing
lists and web discussions. By applying lexical sentimental analysis, they then obtained an
average emotion score for each of the topics. They evaluated their approach on student
projects by interviewing the project leaders, it seems their work needs more details in the
generated summaries. Their designed experiment also run on university students.

Later, Jurado et al. (Jurado and Rodriguez, 2015) emphasized on the Global Software Engi-
neering 3 and exposed the necessity of new techniques for monitoring software development
process, similar to social network analysis field. They also pointed to the role of emotions
in professional work and its impacts on productivity and task quality, and job satisfaction.
Therefore, they conducted an exploratory case study and analyzed the sentiment expressed
by developers in issues of nine well-known and large projects. Their results also showed
that the developers express sentiments in issues and tickets, which could be used in order to
analyze various factors in the development process.

2https://issues.apache.org/jira/secure/Dashboard.jspa
3A variety of terms exist: Distributed Software Development, (DSD), Global Software Development

(GSD), or Global Software Engineering (GSE).
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These studies first discussed the importance of understanding developers’ affects at work, then
applied sentiment analysis to analyze the presence of sentiments in collaborative artifacts. In
contrast to our study, they just focused on sentiments extracted from software artifacts, while
we considered emotion and politeness too. In addition, they have not studied the impact of
obtained sentiments, however, we continued our study by investigating the impact of affects
regarding different factors.

Md Rakibul et al. (Md Rakibul and Minhaz, 2016) conducted a quantitative empirical study
to investigate emotional variations of developers regarding type of development tasks and
development time. To this purpose, they extracted commit messages of 50 open source
projects, while these commit messages were associated to other information like their times-
tamp, revisions, type of underlying task including 1)bug fixing, 2)new feature, 3)refactoring,
4)energy-aware development task. For each commit message, they themselves computed sen-
timent score (they called it emotional score) using SentiStrength tool which we also adopted
in our studies. The majority (65%) of the commit messages had neutral sentiments, positive
sentiments were found in smallest portion (13%) of the commit comments, and negative senti-
ments in 22% of the commits. Their results showed that positive sentiments for energy-aware
development are much higher than sentiments of other types, and oppositely more negative
sentiments appeared in commit messages related to new feature implementation tasks. Then,
they run another experiment to see whether sentiments are varied based on developers con-
sidering one particular activity, i.e. bug fixing. Their results revealed that some developers
are happier(with more positive sentiment) than others during bug fixing. However, another
part of their study showed that developers’ sentiments have no significant difference based
on different time and days of a week. They also found that when developers are emotionally
active, either positive or negative, write longer comments in their commits. In this study,
they have applied commit messages as sources to extract developers’ sentiment, however
we used issue reports and mailing lists of developers as two major communication media
in software development (Bacchelli et al., 2010, 2012) to extract developers’ affects. They
considered factors like energy-aware development and also focused on individual developer’s
sentiment too in their study while we have not considered these concerns. We investigated
the correlation between overall affect related metrics achieved from collaborative artifacts
and software quality and development time.

Investigating Developers’ Affects using Biometric Data

Based on the fact that software developers experience a broad range of emotions during their
work, Müller et al. (Müller and Fritz, 2015) conducted a study to first investigate whether
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biometric data can classify developers’ emotions, then to analyze the correlations between
developers’ emotions and their progress on the assigned tasks. To this purpose, they ran
an experiment with 17 developers working on two change tasks. The change tasks assigned
to participants were representative of general change tasks that could not be solved easily,
thus they stressed both positive or negative emotions of participants. While participants
work on the two change tasks wearing biometric sensors like Empatica E3 wrist band or Eye
Tribe eye tracker. Therefore, biometric measurements that are linked to emotions such as
skin temperature, heart rate, blood volume pulse and, pupil size could be measured during
their work. In addition, before each change task, participants relaxed and watched a calming
video, so that their biometric features are leveled to the baseline.

To measure emotions, participants were periodically asked to assess their emotions using
Russell’s 2-dimensional Circumplex model (Russell, 1980) in two axes, valence and arousal.
For measuring the progress, participants were asked to rate it. Their analysis on the collected
data shows that a classifier trained on biometric data is able to predict positive and negative
emotions significantly, 71.36% of all cases. The accuracy of predicting the achieved progress
based on the emotions was also high, 67.70%. Their further analysis based on machine
learning techniques also revealed that emotions and perceived progress are highly correlated.
However, their approach is tedious to be applied in other studies.

Affects of Developers and Software Quality

Canfora et al. (Canfora et al., 2014) examined whether the personality factors of team mem-
bers and also team climate factors are related to the quality of the developed software by
the team. They designed two quasi-experiment studies with a laboratory environment, run
on university students who had to develop a software system. Most of the values of the
experiment variables, independent and dependent variables, were taken directly from ques-
tionnaires. For example, to measure software quality, Canfora et al. referred to the selected
software quality criteria taken from SWEBOK 2004, such as testability and functionality,
and to quantify the personality factors, the NEO-FEI test was used, which is composed of 60
questions covering five personality factors. The results show that software quality has a sig-
nificant correlation with personality factors of team members like extroversion and some team
climate factors such as participative factor as well. Finally, they proposed some guidelines
for software project managers with respect to team formation.

Biometric measurements explained in section 2.2.4 are logistically expensive. Both biometric
measurements and self-assessment (section 2.2.4) approaches also may disrupt people while
are difficult to be applied at workplaces especially considering geographically distributed
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teams like open source projects. In our study, affects extracted from textual software arti-
facts such as issue reports or review comments, since developers’ discussions during software
development process recorded in these artifacts.

In this thesis, we have investigated the correlation between affect related metrics of developers
and quality of the software system they produced. Therefore, we briefly explained about
software quality metrics and measurements in the following.

2.2.5 Software Product Quality

Quality is one of the essential measures of success and improvement of a software product,
but because of this role it is a multidimensional subject with many levels of abstraction
and different viewpoints. From a customer’s perspective, quality is the value that he/she
obtains from the product or service based on different variables like price, performance and
reliability (Guaspari, 2004). Considering the practical definition of quality, it is defined
as "conformance to requirements" (Juran and Godfrey, 1999) and "fitness for use" (Crosby,
1980). "Conformance to requirements" denotes that first requirements should be identified
completely and correctly, secondly it implies that during development and the production
process measurements should be taken to guarantee that those requirements have been met.
With this definition, nonconformances are concerned as defects. The "fitness for use" defini-
tion regards customers’ needs whether the proposed products or services are right for their
uses. According to Juran et al. (Juran and Godfrey, 1999), since each customer might have
different use of a product, product must cover multiple elements of fitness for use, each of
these elements is a quality characteristic or a parameter for fitness for use.

Product Quality Metrics

Generally we can conclude that software quality contains two aspects, intrinsic product qual-
ity and customer satisfaction. Based on Kan, the following metrics cover both of them(Kan,
2003):

• Mean time to failure

• Defect density

• Customer problems

• Customer satisfaction
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Intrinsic product quality usually measured by the number of functional defects (bugs) and
by how long the system can run before a crash happens. These key properties indicate two
metrics respectively: defect density (rate) and mean time to failure (MTTF). The first metric
measures the time between failures while the second one measures the defects with respect
to the software size like lines of code, function points.

However, customer’s viewpoint can play a role in measuring software quality. Generally, a
good defect rate leads to reduction in the number of defects in each upcoming release.

Customer satisfaction could be obtained based on overall quality and various dimensions like:
capability, functionality, usability, reliability, installability, documentation/information, etc.

According to Kim et al. (Kim and Whitehead, 2006), the number of bugs or fixes as common
factors are used to measure the quality of software. When a software system has cumulative
bugs in its history seems more unstable in comparison with the time there is no bugs in its
history. Kim et al. also discussed that the bug-fix time can be used to measure software
quality. We believe that it is an indicator of MTTF, likely long bug fixing time is a reason
of unstable situation in the software system which may need more attention. Fixing bugs
is one major part of software maintenance activities and huge amount of cost is dedicated
to it, perpetually for example it was estimated to cost 70 billion US dollars per year in the
United States (Lerner, 1994). For recent large and long-lived software, with more complexity
and evolution, the importance of bug fixing time increases significantly. They receive larger
number of bug reports, short bug fixing time beside decreasing number of bug reports can
help to less cost and achieving a product with more quality.

Code review as one of the most effective QA practices improves software quality by identifying
defects in code changes before they are integrated into the code base and released to the
customer (Fagan, 1999). To ensure quality of long-lived and large projects, code review
process should be applied during software development process (Kononenko et al., 2016).
However, code review process is relatively expensive in terms of time and effort (Fagan,
1999). Investigating how factors related to human affects can influence the code review time,
beside factors from other domains, as one major issues has been studied in this research.
Kononenko et al. (Kononenko et al., 2016) studied the relationship between reviewers’ code
inspection quality and several parameters ranged from technical aspects to the personal and
social aspects of reviewers. Their study suggested that developer participation in discussions
around bug fixing and review loads can impact code review quality. While we focused on
code review time instead of its quality, and various kinds of factors specifically human affect
related ones, which extended reviewers’ personal factors, were studied in understanding how
they can influence code review time.
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Müller et al. (Müller and Fritz, 2016) used biometric sensing to identify code quality issues
online i.e. while a developer is working on the code. Using ten professional developers as
participants, some of the specific biometric data of developers were monitored and extracted
in 14 days. Then, in companion with other metrics explained in the following, Müller et al.
investigated how they can impact software quality concerns. Their metrics are:

• Biometrics: by using chest strap and wristband, they collected various measurements
related to heart, skin and breathing. It was also needed that they applied several data
extraction, data cleaning, and feature extraction on the biometric sensor data.

• Code metrics: A small, self-written interaction monitor plugin installed into the par-
ticipants’ IDE to calculate some famous code metrics that have link with program
comprehension and code quality based on their previous research like McCabe’s com-
plexity (e.g. (Nagappan et al., 2006; McCabe, 1976)), and fanout (e.g. (Zimmermann
et al., 2007; Henry and Kafura, 1981)).

• Change metrics: They extracted the number of files added or removed for each code
element using commits to the repository.

• Interaction metrics: The number and ratio of edit and select events were collected for
each code element. Since, based on previous studies (Lee et al., 2011), these interaction
metrics are effective on defect prediction.

As one output metric, one to three reviewers looked for actual bugs and violations of coding
styles or documentation as code quality concern factors in commits. Their results suggest that
it is possible to use biometrics to predict quality concerns while they outperform traditional
metrics. Their biometric classifier was able to predict half of all bugs reported in code review.
They repeated a second study with five developers from different country and company within
1 week to asses the generalizability of the obtained results, and it shows that findings related
to software quality prediction can be replicated.

In contrast to their research, instead of biometrics we focused on metrics derived from in-
dividual’s affect that can be seen in their text communications. Based on Jurado et al.’s
study (Jurado and Rodriguez, 2015), the biometric measurements are linked to positive and
negative emotions which are core of our affective parameters in this study, and so they may
impact software quality too.
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2.2.6 Mining Software Repositories

Recently, many software development activities and stages being performed using various
tools. For instance, in writing source code, mostly version control systems like Git are
applied, for code review and testing, code review tools like Gerrit and issue tracking systems
like Bugzilla are adopted, mailing systems or IRCs in various work environment are used
for people communications too. Hassan et al. (Hassan and Xie, 2010) categorized three
groups for the examples of the tools’ related repositories in MSR: Historical (such as source
control or bug repositories), Runtime (such as deployment logs), and Code (such as Google
code ) repositories. These tools provide us with ample valuable data source help better
understanding of software projects such as development-related behaviour, defect prediction
and, code change recommendation. Thanks to open source software projects, they give
the researchers this possibility to access to the various software repositories specially large
software systems that so far were the center of attention for many researches in this domain
like (Zimmermann, 2007; Moura et al., 2015; Tian et al., 2012). Then, MSR researchers try to
analyze these rich data sources to achieve practical and applicable facts and information from
software systems and projects and thereby support software projects with recommendations
and guidelines based on these information. In this thesis, we applied MSR techniques on
historical repositories (like issue reports and mailing lists) in open source projects to extract
affects from the recorded discussions and communications of developers.

However, one of the major challenges in MSR research, and in our study as well, is finding
the linkages between different kinds of repositories. Because there is not necessarily any
standard or enforced practices to push developers to link them precisely, for instance to link
a bug issue and a commit in source control. In our study, finding the link between issue
reports and reviews of patches was one of our challenges too. We tried to solve using proper
data sets from open source ecosystems like OpenStack and Eclipse, as these ecosystems are
among the leaders of pushing developers to clearly link code changes to issues and reviews.
In addition, recently almost every known tools are integrated with GitHub, therefore, this
type of problem should be mitigated. However, this is part of a critical problem that MSR
researches may suffer from, called “systematic bias” and impacts both build prediction models
and generalizability of hypotheses (Bird et al., 2009b). Systematic bias happens when the
distribution of data is not fully random and balanced, i.e., the data is not representative of
the population. For example, Bird et al. (Bird et al., 2009b) showed for bug-fix data sets used
normally in bug prediction analysis in MSR, it is probable that just some developers submit
bug reports like developers of a fragile component, thus the data set is not representative of
the whole components.
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Recently, Bird et al. (Bird et al., 2015) illustrate best practices in MSR using leading data
scientists’ experiences. They discuss different sorts of data sources such as code reviews, app
stores and log files. Hassan et al. (Hassan and Xie, 2010) see the future of MSR as Software
Intelligence (SI), like business intelligence but will support software practitioners including
owners and developers in decision making process by using fact based support systems.
Decisions such as when to release a software system or which parts of the system should
be tested and so on can be done based on recent and pertinent information offered by SI.
Therefore, this process, which is based on a well-studied science, likely prevents wasting large
resources and co expensive costs. They believe that recent advances in MSR is promising for
SI realization in the near future.

Based on our literature review, we discussed the current researches that have focused on the
impact of human affects in software engineering by applying different techniques including
biometric approaches. Our research will aim to understand the importance of human affects
related metrics obtained from various repositories related to recorded communications among
developers during software engineering process. To study their importance, we considered an
important criteria “software quality” based on the defects rate and time to fix the defects.

Moreover, knowing the emotional state of the development team helps the manager to create
an environment capable of combating the effects of "bad" emotions. Thus, training the
development team on stress management, communication and assertiveness will improves
the coping ability of the RE.
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CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE
THESIS

This chapter presents the methodology of the research process and the structure of this whole
dissertation. This thesis will focus on the three parts mentioned in the research hypothesis,
as well as one preliminary part: 0) affect measurements in software engineering context, 1)
analyzing the link between affect-related factors and quality of work, 2) analyzing the link
between affect-related factors and time taken by work, 3) investigating one possible solution
to deal with conflicts in open source projects.

Our work tries to show the importance of affects of developers in software development process
and help practitioners to measure affect-related factors from software artifacts. Chapter
4 analyzes the presence and evolution of sentiments in developer and user mailing lists,
moreover evaluates the application of one tool in software engineering process. Chapters 5
and 6 investigate the link between affect-related factors and the quality of the resulting work,
and the time of code reviewing and issue resolution, respectively. Finally, chapter 7 analyzes
the characteristics of one possible solution adopted in open source projects to deal negative
affects rooted in diversity that may cause debates, conflicts, and battles among participants.

3.1 Investigating the Presence and Evolution of Sentiment in Mailing Lists (Tourani
et al., 2014)

Before studying the link between affect and quality/time in later chapters, we first need
to analyze whether affect exists in software engineering communication. In particular, we
wanted to explore the use of sentiment mining tools to identify such affects. For this study,
we chose mailing lists of two mature and successful open source projects, Tomcat and Ant, to
extract the sentiment of developers or users during their communications as mailing lists are
one of the most popular media for discussion in open source software projects. This study
was in following with our previous study Murgia et al. (2014), which confirmed the existence
of emotions in issue reports and also the feasibility of automated emotion mining from issue
reports.

Using the state-of-the-art tool, SentiStrength, we set out to identify extremely positive or
negative feelings in emails, then manually evaluated these emails to understand their topics.
Although, we showed the presence and evolution of the sentiment in studied open source
mailing lists, we also observed how noise in the sentiment measures appeared (because of
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special way of sampling). To further explore this noise, section 8.2 evaluates and compares
SentiStrength to one other cutting-edge sentiment mining tool.

3.2 Investigating the Link Between Affect-Related Factors with Quality and
Time

After finding the presence of affects in software engineering artifacts, we analyzed their re-
lation with two important measures i.e., quality, and time spent of code reviewing and issue
resolution, since these measures are two of the major concerns in software maintenance and
quality assurance. Software practitioners are interested in identifying and understanding fac-
tors influencing quality and time of the work so that they can produce high quality products
in shorter time.

In our preliminary studies, including the one explained in chapter 4, we examined the pres-
ence of affects in software artifacts. Particularly, two major communication media in open
source projects, i.e., issue repository and mailing lists were studied. In chapters 5 and 6, we
study extracting affect-related factors from issue and review repositories of OpenStack and
Eclipse projects. These projects adopted dedicated code reviewing tool, Gerrit, and there is
a reasonable amount of links between their commits, issue reports and reviews. For linking
accepted reviews and commits, we applied following techniques:

• commit identifiers mentioned in the code reviews.

• additional reviews added after rebasing (Kalliamvakou et al., 2014).

• identifiers of the reviews in the commit messages.

For linking issue report to commits, we used:

• issue identifiers mentioned in commits

• Git commit identifiers mentioned in issue reports

• issue identifiers mentioned in review comments of a corresponding commit

3.2.1 Studying the Link Between Affect-related Metrics with Just-In-Time Qual-
ity (Tourani and Adams, 2016)

In our first study, explained in chapter 5, we investigated the impact of various factors,
including affect-related ones, on quality using Just-In-Time(JIT) prediction models. JIT
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models have several advantages, since they consider patches or commits as granularity for
their work, these models properly fit to our study. Each patch has dedicated review and issue
comments for which we can measure affect. A JIT model hence allows to study potential
relations between these affects and the quality of the corresponding patch.

Sentiments of issue comments or review comments (as proxies for human discussions) were
computed, as well as variety of other factors defined in our study. Using the proposed factors
as input variables, we built explanatory models regarding quality (in terms of defect-prone
commits) as output variable for each project separately. Analysis of the top influential factors
in the model helped determine whether affect has a strong relation with quality of a patch
and, if so, in what way.

3.2.2 Studying the Link Between Affect-related Metrics and Time Duration of
Code Reviewing and Issue Resolution (Tourani and Adams, 2017)

We also studied the relation between affect-related factors and the time taken for code re-
viewing and issue resolution. At first, we investigated whether these two variables, time of
code reviewing and time of issue resolution, are independent or measure the same thing.
Since, detailed comparison between them showed important differences (which we manually
validated), we decided to build separate models for both. For these, we defined a wider
range of metrics in comparison to the metrics defined in chapter 5. For example, for affect-
related factors, we not only computed sentiment scores of comments (both issue and review
comments), but also obtained the emotion and politeness of the comments.

Explanatory models were built for code reviewing time and issue resolution time of each
project separately. Then, evaluated using 10-fold cross validation. To find out the importance
of metrics in generated models, top powerful metrics were computed and discussed.

3.3 Understanding One Popular Solution for Dealing with Conflicts (Tourani
et al., 2017)

Recently, many open source projects started adopting codes of conduct as possible solution
to deal with the potential debate and battles that are likely to happen in environments like
open source communities with such a huge diversity. We tried to understand this solution as
it is one of the first explicit countermeasures for negative affect in large open source projects,
aiming to provide a healthier and more comfortable atmosphere for participants.

As explained in chapter 7, we conducted our study applying principals of a systematic liter-
ature review to find out the role of codes of conduct in open source projects. Two electronic
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databases were searched, i.e., Github and Google, to obtain the major codes of conduct
identified. We manually studied these major codes of conduct to understand their contents,
guidelines and key characteristics.

We also performed a qualitative study by interviewing leaders and creators of codes of conduct
to understand the process behind codes of conduct in open source, and their impact and
constraints. To this end, we prepared a list of specific questions and interviews done in semi-
structured and structured form. Finally, the interviews were analyzed using open coding
technique. This allowed us to understand the reason and process behind emerging codes of
conduct in open source communities, and to identify their impact and limitations in open
source projects.
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CHAPTER 4 ARTICLE 1: MONITORING SENTIMENT IN OPEN
SOURCE MAILING LISTS – EXPLORATORY STUDY ON THE APACHE

ECOSYSTEM

Abstract

Large software projects, both open and closed source, are constructed and maintained col-
laboratively by numerous teams of practitioners including developers and testers, who are
typically geographically dispersed. Although often schooled in management techniques to
act on motivational or emotional problems in their team, not being able to work face-to-face
with their team members causes team leads to lack a crucial piece of information in order
to apply these techniques: awareness of problems. This paper evaluates the usage of auto-
matic sentiment analysis to identify distress or happiness in a development team and project
community. Since mailing lists are one of the most popular media for discussion in software
projects, we extracted sentiment values of the user and developer mailing lists of two of the
most successful and mature projects of the Apache software foundation. The results show
that (1) user and developer mailing lists carry both positive and negative sentiment and have
a slightly different focus, while (2) work is needed to customize automatic sentiment analy-
sis techniques to the domain of software engineering, since they lack precision when facing
technical terms.

4.1 Introduction

Research in psychology, economic and organizational behaviour shows the importance of hap-
piness and job satisfaction at work. Various books and papers (Robertson and Cooper, 2011;
Rao, 2010; Barron and Barron, 2013) emphasize that happy people are more creative, learn
more and achieve greater success at their work. Work in administrative science (Amabile
et al., 2005) highlights the direct linear relationship between positive affect (i.e., feelings like
happiness, joy, excitement or, contentment) and creativity in organizations. Researchers also
have found evidence of the economic impact of happiness and attitude of employees. For
example, a recent study (Oswald et al., 2009), saw 10-12% greater productivity for happier
individuals, concluding that social scientists may need to pay more attention to emotional
well-being as a causal force for productivity at work. Finally, organizational behaviour re-
search (909, 1975), showed that affective factors are closely tied to the feelings of employees
about their work and company.
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Since software development and maintenance are a collaborative activity as well (Mistrìk
et al., 2010), it seems intuitive that the affect of software project members also plays a
pivotal role in the success or failure of a software product, however software managers have
a hard time keeping track of their people’s feelings. Of course, the best way to know how
people feel is by talking and working with them in person. Surprisingly, this becomes more
and more difficult, not just in open source development (where by definition most people do
not even work for the same employer), but also in traditional companies. For example, larger
companies are distributed across a different campus or even country. Recently, companies like
Mozilla even started promoting remote work. For example, in 2012 the release engineering
team (12 people), which is the backbone responsible for bringing new features to customers
through official releases, was spread across 4 different (non-contiguous) time zones to offer
around-the-clock service and improve quality of life. Their manager noted "out-of-sight, out-
of-mind is a real concern". It is even harder to know how the user community feels about a
project, since this group is several orders of magnitude larger and spread all across the globe.

As such, in many cases electronic communication in the form of email (1-to-1 or mailing
lists), chat rooms, video conferencing or phone calls have become the de facto means of com-
munication. While one could expect people to be more reserved or careful when using those
media since almost all of them record conversations (in contrast to face-to-face discussions),
Bacchelli et al. (Bacchelli et al., 2012) noted that people have become so accustomed to
these communication channels that most of them freely express their actual feelings in their
communications. In other words, for many organizations, emails and chat messages are one
of the primary means of conveying and picking up signals and indications of good or bad
feelings of colleagues and employees (Rigby et al., 2008), (Bacchelli et al., 2010), (Bacchelli
et al., 2012).

To help organizations and open source projects in picking up signals of good or bad affect
easier and more accurately, this paper explores, as the first step, whether automatic sentiment
analysis tools are able to identify periods of extremely positive or negative feelings in the
developer and user community of two major Apache projects. Automatic sentiment analysis
is an emerging area that blends natural language analysis and psychology to obtain cues
about an individual’s opinion or feelings towards a product. Our work, if successful, opens
the door towards a new research area of customizing sentiment analysis and other techniques
for software development and software maintenance. In particular, we address the following
research questions:

RQ1) How accurate is existing sentiment analysis on software engineering data sources like
mailing lists?
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Since sentiment analysis (and the corresponding tools) primarily have been used in the
context of psychology, finance or organizational behaviour, we first evaluate how well
they perform on software engineering data sources, which typically contain technical
terms. We find that the precision of SentiStrength for positive periods is 29.56%, and
for negative periods 13.18%. These low values are due to ambiguities in technical terms
as well as the difficulty of SentiStrength to distinguish extremely positive/negative
documents from neutral ones. For Ant, some correlations between the number of closed
bugs and appearance of sentiments in the user mailing list have been observed.

RQ2) What types of sentiment can be observed in software engineering mailing lists?

To understand the role of affect in software projects, we manually studied a repre-
sentative sample of developer and user emails. 19.77% of the emails contain positive
sentiment, compared to 11.27% for negative sentiment. We could distinguish 6 cate-
gories of positive sentiment, and 4 categories of negative sentiment.

RQ3) Do developers and users show different sentiment?

Finally, we studied whether users and developers of a software project show differ-
ent affect in mailing list communication. The user mailing list and developer mailing
list of each project show only little similarity in their sentiment trends. For emails
with positive sentiment, user mailing lists contain substantially more “Curiosity”, but
less “Announcement” and “Socializing”, while for emails with negative sentiment, user
mailing lists contain more “Sadness” and less “Aggression” than developer mailing lists.

In the remainder of this paper, we first describe the background notions for sentiment analysis
(section 7.2). Next, we describe the experimental setup (section 6.3). We then address the
three research questions (section 6.4) and discuss our findings. After threats to validity
(section 7.4) and related work (subsection 7.2.3), we finish with conclusions (section 7.5).

4.2 Background

This section provides background about sentiment, sentiment analysis, and the SentiStrength
tool used in this paper.
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4.2.1 Sentiment Analysis

The term "sentiment" (also "affect") refers to people’s opinion, attitude, appraisal or emotions
toward entities, events and their attributes (Mishra and Jha, 2012). Sentiment differs from
"emotion", which is a state of feeling and shows more detail of human feeling like sadness, hap-
piness, shame, and anger. Sentiment and emotion are used automatically whenever people
communicate, since it helps people convey their message or understand other people’s reac-
tions. This implicit behaviour is not just limited to communications in real world, but even
when people interact through computer aided communications (Thelwall), like comments
or feedback that people make on community fora or chat rooms, or in more conventional
electronic media like emails. These sentiments are universal, in that they occur as much in
politics as in business contexts (Pang and Lee, 2008). Even in software engineering (Murgia
et al., 2014), identification of sentiments and emotions in software artifacts can provide an
indication of someone’s opinions towards certain project decisions or other people.

In order to automatically measure sentiment from recorded (typically textual) transcripts
of communication, semantic measures have been proposed as a measure of subjectivity and
opinion in text. Those measures usually measure the polarity (positive or negative) and
"strength" (also "degree") of a document. Strength shows to which degree a word, phrase,
sentence or document is positive or negative towards a subject topic, person, or idea (Osgood
et al., 1957). For example, a positive opinion with strength 1 is much more positive than
a positive opinion with strength 0.1. Some examples of approaches to extract the above
measures are sentiment analysis, opinion mining, and affect mining (Batson et al., 1992;
Pang and Lee, 2008). This paper focuses on sentiment analysis.

Sentiment analysis algorithms mainly use two approaches: machine learning or a lexical ap-
proach. With machine learning a, typically text documents are taken as input and a classifier
is produced as output (Socher et al., 2013). According to (Aue and Gamon, 2005) classifiers
perform very well when they are applied in the domain on which they were trained, other-
wise their performance decreases significantly. Lexical approaches use language information
in the form of a list of known sentiment-related words, their polarities and the grammatical
structure of the language, and based on them scores the sentiment of the text. Word lists or
dictionaries for lexical approaches can be created manually, or could be expanded by using
seed words (Taboada et al., 2011).
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4.2.2 Sentistrength

SentiStength uses a lexical approach (Thelwall et al., 2010) to extract sentiment strength
from informal English text, which means that it calculates sentiment of a document from the
sentiment of words or phrases in the document (Taboada et al., 2011). SentiStrength also
divides the given text into sections, then based on the words or phrases within each section,
assigns both a positive and negative value to the section since according to psychological
research a human can experience negative and positive feelings together (Thelwall). These
values for positive values range from 1 to 5, and for negative from -5 to -1. To calculate the
sentiment of each word or phrase, SentiStrength looks up the word or phrase in its lexicon and
(if found) uses the associated sentiment strength. Modifier words like "very" and "extremely"
act as boosters can alter the score, while symbols, punctuations like "!" and smilies can do
this as well. SentiStrength also consider the structure of a sentence, such as negations and
questions.

We decided to use a lexicon-based sentiment analysis tool rather than a machine learning-
based one as such algorithms are simpler and it has been used successfully in several research
projects like (Thelwall et al., 2010; Taboada et al., 2011; Kucuktunc et al., 2012). In addition,
compared to many existing commercially-oriented opinion mining tools, SentiStrength con-
siders sentiments related to expressing friendship or showing social support (Thelwall et al.,
2010).

4.3 Experimental Setup

This section explains the methodology used to address the research questions of the intro-
duction.

4.3.1 Selection of Subject Systems

Mailing lists are the core means of project communication in open source communities like
Apache, where developer and user mailing lists are used during software development and
maintenance to discuss technical issues, propose changes, report bugs, or ask how-to questions
about configuration or any other parts of the product.

For this reason, this study investigates the mailing lists of two major projects of the Apache
Software Foundation, i.e., Tomcat and Ant. Tomcat is an open source web server and servlet
container first released in 19991, while Ant is a software tool for automating software build

1http://tomcat.apache.org/
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processes2. Both of them are mature and widely deployed, successful projects.

Of both projects, we obtained the developer and user mailing list data in the textual mbox
format from the official Apache archive pages3.

4.3.2 Pre-processing of Data

Before being able to analyze the email data, we first had to filter out emails that did not
contain actual human content. A major category of emails to filter out were automatic
confirmation emails. Such emails are sent automatically by various servers like Bugzilla
issue tracking systems or version control systems. Obviously, these emails do not contain
any sentiment, since they only contain source code patches or reports originally submitted
elsewhere (not on the mailing list). To filter out automated emails for each project, we
manually identified the different patterns that they might have. Some of these patterns have
special subjects, while others have a specific sender of email. Using regular expressions, we
reduced the email data down to a total of 595,673 emails. Table 4.1 shows how this number
is distributed across the four studied mailing lists. To avoid duplication of contents of emails,
we also removed the quoted parts of email threads as they have considered in their original
emails.

Table 4.1 Number of emails per mailing list

Ant Developer Ant User Tomcat Developer Tomcat User Total
20,292 169,329 360,733 45,319 595,673

After recovering all non-automated emails, the next step is to filter out any non-natural
language text inside these emails. The unstructured and noisy nature of the emails related
to the development of a software system causes many emails to contain technical information
about design, implementation (e.g., source code or excerpts related to reported bugs) and
defect-related information like stack traces. Bacchelli et al. (Bacchelli et al., 2012) founded
that the content of development emails can be classified into five categories: natural language,
source code, patch, stack trace and junk (i.e., textual information like the signatures or spam
status of authors).

To find sentiment values of emails, only the natural language category of email content
should be taken into attention. For this, Bacchelli et al. (Bacchelli et al., 2010) found that
lightweight methods based on regular expressions were the most effective. For this reason,

2http://ant.apache.org/
3http://mail-archives.apache.org/mod_mbox/
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we used a combination of regular expressions and searching for lines with special characters
and keywords to filter out uninteresting email content like source code or stack traces.

4.3.3 Sentiment Score Computation

In order to automatically detect the sentiment expressed in emails, we applied the Sen-
tiStrength tool and ran it over the pre-processed emails of developers and users. SentiStrength
scores each line of email with a value from -5 to +5, however we need one sentiment score for
each email as a whole. To find the best way to aggregate the scores of all lines of an email
into one value, we ran an experiment on a random sample of 100 emails from the Tomcat
project. Given the large number of emails, we sampled enough emails to have a confidence
level of 95% and confidence interval of 5%. Two of the authors manually scored the sentiment
of each email. Then, we compared the manual score to the following aggregation methods
across SentiStrength’s line-level scores: minimum, 1st-quartile, average, median, 3rd-quartile
and maximum. Note that the "maximum" method corresponds to finding the most extreme
value, be it negative or positive.

Table 4.2 shows that the Mean, Median and Max Value methods are the most accurate
aggregation methods. However, Mean and Median only worked well for neutral sentiment,
whereas the Max method also had an accuracy of 36% for positive sentiment and 21% for
negative sentiment. For this reason, we chose the Max Value for our purposes. This seems
reasonable, since an email usually consists of a small number of sentences and the sentence
with the maximum value of sentiment likely dominates the overall sentiment of an email.

Table 4.2 Accuracy of different aggregation methods for SentiStrength.

Min 1st Qu. Median Mean 3rd Qu. Max
Positive 0% 0% 0% 0% 100% 36%
Negative 100% 100% 0% 0% 0% 21%
Total 14% 14% 64% 64% 19% 39%

4.3.4 Analysis of the Sentiment Values

The specific analysis used for each research question is presented in the next section with the
corresponding findings. When studying the evolution of sentiment, we abstract up from the
sentiment of individual emails to the average Max sentiment of all emails sent in one month.
A period of one month in open source development strikes a nice balance between being too
short (nothing significant happening) and being too long (multiple releases happening).
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4.4 Experimental Results

RQ1. How accurate is existing sentiment analysis on software engineering
data sources like mailing lists?

Motivation. Detecting sentiment of software team members is essential in modern software
development and maintenance, where members are mostly geographically distributed and
therefore physical face-to-face meetings are impossible or scarce. In such environments,
automatic monitoring of sentiment, either of individuals or of a whole community, can play
an important role in managing software projects and identifying potential risks that might
threaten the sustainability of a project.

Our first research question explores how precise a modern sentiment analysis tool is in detect-
ing the sentiments of software-related mailing lists. In particular, we use a popular sentiment
analysis tool to identify positive and negative peaks of sentiment across time, with the aim
of enabling managers or team leads to identify good or bad trends in the sentiment of project
stakeholders. Depending on the outcome of the analysis, existing techniques could (a) be
used as is to monitor sentiment in a software engineering context, (b) might need customiza-
tion, or (c) might need to be reconsidered for the purpose of identifying the sentiment in a
software project.

Approach. To address this research question, we picked for each project and mailing list
the 4 months with the most positive and most negative sentiment. To avoid being stuck
with 4 consecutive top months (limiting our evaluation to a too narrow period), we choose at
most one positive (or negative) peak per year (starting from the year with the highest/lowest
peaks). We ended up with 4 months for the Apache Ant developer mailing list, and 4 for
its user mailing list. Similarly, we have 4 months for Apache Tomcat’s developer and user
mailing lists. Given the large number of emails, we sampled enough emails to obtain a
confidence level of 95% and confidence interval of 5%, i.e., 400 in the positive months and
400 in the negative months out of a total of 595,673 existing emails. The 25 sampled emails
of the positive months consist of the 25 emails with the highest SentiStrength score, while
the emails of the negative months correspond to the most negative scores. In cases where
there were more than 25 candidates with the same top positive or negative value, sample
emails were selected randomly out of the candidate set.

After sampling, two separate raters read the emails and manually scored them with a positive,
negative or neutral value. They ignored the amplitude of the SentiStrength scores, just
focusing on the sign (positive/negative/neutral), since by definition these emails correspond
to the most extreme (positive/negative) emails and our goal was to validate whether this was



38

correct. We then used the manual validation to calculate a precision value for SentiStrength.
Since the two raters obtained an agreement of 76.62%, our precision values are relative to
the emails for which both raters agreed.

Findings. Sentiment evolves over time, with a lot of variation in the form of up-
ward and downward trends. Figure 4.1 shows the evolution of the average SentiStrength
score per month for the 4 mailing lists. We can see how average sentiment is bounded between
-0.15 and 0.2 for the Tomcat mailing lists, with a peak up to 0.3 for the Tomcat developer
mailing list. The Ant mailing lists go from -0.2 to 0.2, with peaks over -0.4 and 0.4 for the
user mailing list, and even 0.6 for the developer mailing list.

Given the jagged nature of the plots, a lot of noise is present. For practical applications, one
should either filter the noise (i.e., putting average values below a certain threshold to zero)
or focus only on the most extreme peaks, since those are indicators of major problems or
opportunities in the project that could be worth investigating. As an example of the first
kind of filtering, we added loess local regression lines (Kabacoff, 2013), which are smoothed
regression lines based on a running average. They are ideal to identify the predominant trend
in a noisy curve. We can see how the Ant user and Tomcat developer mailing lists have a
more or less constant trend, while the Tomcat user mailing list sees a clearly downward trend
and the Ant developer mailing list an upward trend. It is important to note that the average
values of the trend line remain slightly positive, even for the downward trends. This indicates
that, overall, both projects have a healthy, i.e., positive, community.

The second kind of filtering, i.e., only focusing on the most extreme peaks, yields for each
mailing list a small number of very large values. For Ant, the peaks get more extreme
towards the right, as can be seen in Figure 4.1. This seems to be linked to a decreasing
number of emails being sent to the mailing lists (the volume dropped from an average of 1758
emails in 2000-2007 to an average of 365 in 2008-2014). Tomcat sees many more extreme
values over time, often in bursts. This is why our manual analysis considered maximum
one positive/negative peak per year, since otherwise our analysis would only consider a very
narrow period of time.

The precision of SentiStrength for positive months is 29.56%, while for negative
months it is 13.18%. Table 4.4 shows the evaluation results of SentiStrength by the two
raters, while Table 4.3 shows the confusion matrix of each group. We see how for positive
emails, SentiStrength obtained a precision of 29.56%, while for negative emails a precision
of 13.18%. For reference, the SentiStrength documentation mentions a 60.7% precision for
positive texts and 64.3% for negative texts on documents on the social web, which is much
higher than the numbers that we obtained for the emails.
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(a) Tomcat User (b) Tomcat Developer

(c) Ant User (d) Ant Developer

Figure 4.1 Average monthly sentiment value across time for the four mailing lists.

One possible explanation for the relatively low precision is that most of the emails in the
top positive and negative months turned out to be neutral. This is confirmed by calculating
the empirical recall, i.e., recall where we use the set of all emails identified as positive (resp.
negative) in our sample of 800 as oracle (basically ignoring the neutral emails). Table 4.4
shows that positive empirical recall is higher than 72.46%, which indicates that positive
sentiments primarily are found in the set of 400 positive emails, not the negative emails.
In other words, precision is low because the sets of 400 emails contained too many neutral
emails rather than emails of the opposite sentiment (e.g., negative emails in positive sample).
Only for the user mailing lists we see a relatively low empirical recall, which means that only
half of the negative emails showed up in the negative data set.

Investigating the result of the SentiStrength, another possible explanation can be found in
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Table 4.3 Confusion matrices of SentiStrength

Computed by SentiStrength
Actual
by raters
for
developer

-1 1
-1 26 10
0 113 89
1 19 50
Computed by SentiStrength

Actual
by raters
for
user

-1 1
-1 15 18
0 125 95
1 13 50
Computed by SentiStrength

Actual
by raters
for
both

-1 1
-1 41 28
0 238 184
1 32 39

Table 4.4 Precision and empirical recall of SentiStrength.

Positive Negative Total Positive Negative Total
Precision Precision Precision Recall Recall Recall

Developer 33.55% 16.45% 24.75% 72.46% 72.22% 72.38%
User 25.65% 9.80% 17.70% 75.00% 45.45% 63.52%
Total 29.56% 13.18% 21.24% 73.55% 59.42% 68.42%

the nature of software development and maintenance emails, where people mostly write about
problems or solutions in a very technical manner. Many technical keywords are used that are
(a) unknown to SentiStrength’s pre-compiled list of phrases or (b) sometimes already known
to have a positive or negative sentiment when used in a non-technical context. For example,
"Safe", "Security", "Value", "Support" and "Dynamic" are existing English terms with a known
positive sentiment, while "Kill", "Defect", "Error", "Disabled", "Failure" and "Default" are
known to be negative, while neither of these are interpreted as positive/negative in software
development or maintenance area: they are just technical terms used in a different (technical)
meaning. Table 4.5 shows examples of sentences identified to be incorrect due to technical
jargon.

Positive months have a larger variation in precision than negative months. Ta-
ble 4.6 shows the distribution of precision per month. Especially for negative months, pre-
cision is concentrated in a narrow band [0.09,0.19], while for positive months we see more
variation [0.18,0.41]. In other words, although the negative peaks have a low precision, this
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Table 4.5 Examples of Sentences with Incorrect SentiStrength Score.

Incorrect Positive Samples Incorrect Negative Samples
that dynamically add JARs to lookup classes
(I share Connor’s concerns about this)

And I can only (try to) fix
errors which occur ...

trunk with support for types and tasks only.,
At least for starters.

can even enforce dependencies of
the code compiled by the different

It seems eclipse has a security manager enabled.
That means tasks that have

We thought this was an error on
WinRARs side, so an user
contacted the

security checks will perform them and
if they are loaded by ant class 1)

It might be good to have
EXIT_ON_INIT_FAILURE=3D
by default in TC8.

on the objects currently declared on that
role and their respective XML

duplicate. While the original problem
was indeed related to using
EL in

was to provide something like ProcessHelper
class that can be stored as a ref

Currently Tomcat HTTP 1.1 Connector
disables the use of chunked
encoding if
The problem is with those locales
for which
CharsetMapper.getCharset(locale)
returns null.,There is an error in
ResponseBase.setLocale() that
it will set
land, so that we could e.g. log an error
if we encounter invalid data t

low precision seems evenly distributed across each month and hence the general trend of
negative sentiment (as in, for example, Figure 4.1) remains correct. For positive months,
this is less the case, yet those months tend to have a higher precision. Hence, although
the low precision values on the one hand mean bad news, the sentiment results can still be
interpreted.

�

�

�

�

Automated lexical sentiment analysis ob-
tains a precision of around 30% and 13%
for positive and negative months, respec-
tively, especially because of neutral emails
and ambiguous terms being misinterpreted.
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Table 4.6 Distribution of precision per month.

Min 1st Qu. Median Mean 3rd Qu. Max
Positive 0.04167 0.17800 0.27530 0.31050 0.40530 0.68750
Negative 0.00000 0.09348 0.15790 0.14050 0.18900 0.25000

RQ2. What types of sentiment can be observed in software engineering mailing
lists?

Motivation. As mentioned earlier, mailing lists play an important role in communication
among team members involved in software development of open source software. Different
individuals including developers and users talk about numerous issues in various stages of the
project via emails: developers discuss about the problems that they encountered in design
or implementation, announce some essential news about the project like a product release or
some critical changes that they have made, acknowledge other people’s help, while users ask
questions about using the product, suggest solutions to improve the product and so on (Guzzi
et al., 2013). During these discussions, both developers and users also convey their opinions
or sentiment. Our second research question seeks to understand the different kinds of such
sentiment in OSS mailing lists.

Approach. We investigated the same emails sampled in RQ1 to address this research ques-
tion. The same two raters categorized the emails based on the emails’ sentiment value.
Even if an email was classified incorrectly by the algorithms, we still analyzed its true senti-
ment(positive/negative), such that each of the 800 emails was tagged with a category. Our
categorization is orthogonal to that of Bacchelli et al. (Guzzi et al., 2013), since they focused
on the content of the emails while we focus on whether or not the person writing the email
feels positively or negatively. We started the categorization on one mailing list, then applied
(and enhanced) it on the other mailing lists. As a third step, any discrepancies between the
two raters’ categories were discussed and resolved.

Findings. Table 4.8 gives an overview of the categories of the sentiments identified as well
as their relative proportions, while Table 4.7 shows representative examples of each category.
34.21% of sample emails expresses sentiments in the developer mailing lists, compared to
27.87% for the user mailing lists. The percentages for individual categories should be inter-
preted like this: 34.71% of the 19.77% developer emails with positive sentiment correspond
to "Satisfactory Opinion". In the following, we define each category and discuss the results
across all analyzed emails ("Total" in Table 4.8), while RQ3 compares categories between
user and developer mailing lists.



43

Positive Sentiment.

• Satisfactory Opinion: In its simplest form, satisfactory opinions are feelings of sympa-
thy or positive impressions that people have towards a software system, new release,
new feature or code change. Depending on the specific mailing list (developer or user),
these subjects vary from users talking about a special feature or a product as a whole
to developers dealing with new changes or parts of the code. According to Table 4.8,
this group of emails is the most popular among emails with positive sentiment.

• Friendly Interaction: Since software development is a collaborative activity, construc-
tive communication amongst the people involved might lead to higher productivity (Mur-
gia et al., 2014). Well-mannered interactions with a positive undertone are a good start
towards this. In response, if these emails are answered and guided with respect and a
positive attitude, the interaction continues in a friendly and constructive manner. This
group of email usually contains expressions of appreciation and support, such as "Hope
this helps", "Thanks and really appreciate it". Since the goal of development mailing
lists is to ask and answer questions of practitioners and users during software develop-
ment and maintenance, being able to measure the amount of Friendly Interaction can
help us to identify the heartbeat and soul of a community. Together with Satisfactory
Opinion, Friendly Interaction is the most popular positive sentiment in the analysed
mailing lists.

• Explicit Signals: Independent of the content type, authors often directly write indi-
cations about their good mood, for example in the form of emoticons (e.g., smilies),
which reinforce the positive sentiment.

• Announcement: Many emails are written by someone to announce good news from
the author’s perspective, such as a new release that mitigates severe problems, or
advertisement for a person during a vote for new members to join the developer or
committer team. This group of emails expresses valuable interactions and milestones
in a project.

• Socializing: Emails are used to socialize between community members by sending and
discussing invitations to visit each other or attend community events or meetings. Such
emails obviously contribute to a positive sentiment since they might strengthen good
relationships among people.

• Curiosity: In the large amount of emails containing questions and answers, we found
that there are other indicators for positive sentiments too. One important one is when
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an email shows signals of curiosity when asking a question, or encourages and reveals
signs of hope while answering a question. Such emails have positive sentiments since
they provide a hint of participative and aspiring behaviour of a community. Hence,
despite their relatively small market share in Table 4.8, this group of emails is highly
valuable for a community.

Negative Sentiment.

• Unsatisfied Opinion: In contrast to Satisfactory Opinion, emails with negative senti-
ment might contain unpleasant or even offensive opinions towards various issues that
people complain about. Similar to the positive counterpart, these issues can cover
topics ranging from the software system as a whole to individual contributions or char-
acteristics of a project like a code change, or even a new feature proposed by a person.
Unsatisfied Opinion is one of the most important kinds of emails with negative senti-
ment.

• Aggression: This category covers emails with signs of poor and destructive communi-
cations, like flamewars, or people attacking or insulting each other. A second group of
emails in this category consists of less extreme emails that ask their question or report
a problem while complaining or while answering to an email in an angry way. As shown
in Table 4.8, Aggression is one of the most frequently occurring negative sentiments,
together with Unsatisfied Opinion.

• Uncomfortable Situation: Some emails have indicators that reveal the author of the
email to be in an uncomfortable situation, such as suffering from a problem for ages,
or being confused about unexplainable behaviour of the software system, or worrying
about risks and fears. Some emails even reveal their authors to be under severe pressure
like time constraints that might overwhelm them. This category is as common as
the Aggression category. Independent of their specific rationale, these emails refer to
negative symptoms reflecting poor quality of the software or parts of it (in the eyes of
the unhappy author of the email), or simply to disagreement with management of the
project.

• Sadness: Finally, there are also emails in which authors explicitly apologize or express
feelings of sadness towards a problem. Although not aggressive, such emails also are
carriers of unpleasant news or events, which is why we grouped them under negative
sentiment. Fortunately, in many cases other people follow up comforting the sad author,
giving rise to Friendly Interaction.
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Neutral Sentiment. Emails with neutral sentiment refer to emails that show no sentiment,
for example the author just describes a solution or a problem in a (possibly detailed) technical
way, without showing specific emotions or other subjective signs. Another example of this
group are the typical howto emails seen a lot in developing mailing lists in which guidelines
or steps for doing a task are explained.

Based on Table 4.8, emails in which authors give their opinion towards an issue or towards the
answer that they have got, can have a significant impact on the sentiment of emails. Similarly,
emails in which the authors express situations such as the constraints or limitations that they
have encountered, play an important role in negative sentiment emails. Finally, the quality of
interactions among a community during the development of the project polarizes sentiment
in emails substantially. By quality of interaction, we refer to how grateful, or supportive
and helpful stakeholders are when interacting with each other or, conversely, in contrast how
offensive they are. Apart from these factors, there are some minor factors that also can
affect the sentiment of emails, like the amount of desire that people have towards a task, or
friendship among people, as shown in the socializing category.

�

�

�



19.77% of the sampled emails were posi-
tive, 11.27% negative. We identified 6 pos-
itive sentiment categories, and 4 negative
ones.

RQ3. Do developers and users show different sentiment?

Motivation. Now that we have categorized emails with different sentiment (positive, neg-
ative or neutral), we can analyze potential differences between developer and user mailing
lists in terms of stakeholder sentiments. Intuitively, these two mailing lists have different
purposes and different individuals subscribed to them. Typically, a developer mailing list
is used for discussions about the actual development of the project, such as changes to the
source code and related issues including bug fixes. On the other hand, configuration, how-to
and support questions about the product are sent to the user mailing list. Despite these
different purposes, one could expect sentiment in the developer list to be coupled to the user
list, for example when complaints about a major bug trigger stressful discussions between
developers to fixing this bug. Our third research question analyzes whether such coupling of
sentiment does occur.

Approach. To answer this question, we compare the average monthly sentiment plots of
Figure 4.1 between the developer and user mailing lists of both projects. We also use time
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series analysis to compute the cross-correlation between both pairs of user/developer mailing
list to quantitatively measure a (possibly lagged) correlation between both lists (Kabacoff,
2013). Finally, we compare the popularity of sentiment categories in Table 4.8 between both
types of lists.

Findings. The user mailing list and developer mailing list of each project do
not necessarily follow a similar trend. First of all, comparing the plots of users and
developers shows that Tomcat and Ant follow different trends. While the Tomcat mailing
lists both feature a downward trend from sentiment values around 0.1 to 0.05, the Ant
mailing lists see an opposite trend, with the developer mailing list suddenly seeing a surge
in average monthly sentiment towards 0.15 and higher instead of a downward trend towards
0.05. However, even for Tomcat the trends are not that highly correlated: the highest cross-
correlation between developer and user mailing list occurs for a lag of 4 months, but only
reaches a correlation of 0.19. Ant has a slightly higher (but still low) correlation of 0.22 for
a lag of 1 month. Interestingly, in both cases the lag is positive, which suggests that the
sentiment of the developer mailing list tends to follow (in time) that of the user mailing list.
A potential hypothesis is that bugs and new features typically are proposed by users, then
trickle down to developers.

The developer plots show substantially more fluctuation in sentiment value than the user
plots, with a very large variation between the lowest and highest sentiment values. For
example, the Tomcat developer list has positive peaks reaching 0.3, and the Ant developer
list even reaching 0.6. The user mailing lists, even though varying as well, seem more compact,
except for the last couple of months. The latter is likely due to the lower mailing list volume
in that period, as discussed earlier.

User mailing lists contain substantially more "Curiosity", but less "Announce-
ment" and "Socializing". Considering positive sentiment emails, developer and user mail-
ing lists are quite similar since both have the highest proportions for Satisfactory Opinion
and Friendly Interaction, which in total comprise around two-thirds of all positive emails.
For users, these proportions are even a little higher. Furthermore, users express more their
Curiosity about different issues, which means that users also convey more desire in compar-
ison with developers. This seems normal, as most of the time, there are more newcomers
among the users that are in the process of becoming more familiar with the system. Hence,
those users show more desire to learn and obtain answers such that they become able to use
the system properly. On the other hand, we can see a higher percentage of developers in
the socializing category, which means that among developers there is a more friendly and
decontracted atmosphere. Considering that developers need to collaborate more closely, this
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observation indeed makes sense. The announcement category also takes up a bigger part
in the developer mailing list. The reason for this is that among developers there are often
announcements for a candidate during a vote in addition to regular announcements related
to a new software release, while there are hardly any such announcements for users.

User mailing lists contain substantially more "Sadness", while developer mailing
lists contain a lot more "Aggression". Indeed, comparing emails with negative sentiment,
we can detect two differences between developers and users. Users adopt apologies and direct
expressions for revealing their Sadness about two times more frequently than developers. This
might be due to the fact that users are more likely to inadvertently make certain mistakes,
after which they apologize or demonstrate similar expressions.

Finally, we have found that "Aggression" emails are a lot less common in the user mailing
list, i.e., interactions among users rarely involves bad manners (6% vs. 19%). This means
that developers more often state their negative opinions about bugs or new features. This
might show that developers are very passionate about their work and the project as a whole,
while (most of the) users are less negative than one would expect up front when complaining
about their problems. The latter is a bit surprising, since in half of the negative user emails
the user is unhappy because she is in a "Uncomfortable Situation" and definitely needs help.

Generally, we can say that developers and users show different proportions of sentiment
categories during the construction and maintenance of the software project. This seems
to confirm the different roles and perspectives of both groups of stakeholders towards a
software system, and hence their attitude towards each other can be different. The developer
mailing list comprises communication among colleagues, while the other list basically contains
customer support communication. The main constant factor in both is the software product
that is being discussed.

�

�

�

�

Sentiment on developer mailing lists
chronologically seems to follow that on user
mailing lists. User lists feature more "Cu-
riosity" and "Sadness", but less "Aggres-
sion", "Announcement" and "Socializing".

4.5 Discussion and Threats to Validity

Although we have identified different categories of sentiment in developer and user mailing
lists, and motivated our work based on the link between affect and productivity in other
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domains, thus far we have not analyzed the possible link between affect and productivity
in software development teams. Although this is outside the scope of the exploratory study
performed in this paper, we did perform a small, initial study checking possible correlation
between sentiment and productivity in the form of bug fixing activity.

For this reason, we have extracted the number of closed bugs for each month in the Tomcat
and Ant bug repositories as an indicator of the effectiveness of the developers in fixing bugs.
Similar to RQ3, we then calculate the cross-correlation between the monthly number of closed
bug reports and lagged versions of the average Max SentiStrength emotion score. We then
check large correlation values (positive or negative), as well as the corresponding lag. Only
for the two Ant mailing lists, we found significant correlations of -0.43 for the user mailing
list and 0.65 for the developer list. In both cases, we obtained this correlation for a lag of 5
months, in the sense that 5 months after a month with a particular average Max sentiment
score, a higher number of closed bugs is observed. For the Ant developer list, we also observed
a negative correlation of -0.62 for negative lag of 7 months. For the Tomcat project, no such
high correlations could be observed.

As an start for an explanation, we studied the Ant release history. We found that the mean
time between successive releases is around 6.5 months and the median time is around 4.2
months. The correlations for a lag of 5 months might be related to this release cycle time.
Even if this would be correct (more analysis is needed for this), it is still not clear why the
user and developer mailing lists show opposite correlation signs, nor why the Ant developer
list shows a second negative correlation. We plan on exploring this in future work.

Regarding the threats, internal validity threats concern factors that might mistify the ob-
tained results. We assume a causal relationship between a developer’s sentiments and what he
or she writes in emails, based on empirical evidence conducted in different domains (Shadish
et al., 2001). In addition, the emails used in this study were collected over an extended
period from developers or users not aware of being monitored, hence we are confident that
the sentiments that we found are genuine. Another internal threat to validity is whether one
can deduce the correct sentiment based on emails in isolation, without considering earlier
emails in the thread. In most of the analyzed emails, the individual emails were indeed clear.
In a minority of cases, when suspecting irony or observing specific cases of jargon, the raters
looked up the earlier emails in the thread.

Threats to construct validity focus on how accurately the observations describe the phenom-
ena of interest. Different stages in preprocessing of data such as filtering out automatic emails
or extracting the natural text from emails might introduce some inaccuracies. However, after
each stage enough testing has been done to assure the correctness of the data. To determine
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the correct sentiment of each email, we relied on human raters. In earlier work (Murgia et al.,
2014), we performed a user study with a large group of raters in the context of emotion min-
ing. This showed that human raters agree sufficiently on "joy" and "sadness", which roughly
coincide with positive and negative sentiment. For this reason, we used only two raters for
this study.

Threats to external validity correspond to the generalizability of our experimental results (Shadish
et al., 2001). In this paper, we study emails from two popular open source projects. We chose
the two successful mature projects as a representative sample of the universe of open source
software projects, with different development teams and from different domains. We have no
evidence to support the assertions that these results are generalizable even to other projects
that have most similarities with the studied projects. Replication studies should confirm
whether other similar open source projects confirm our study results or not.

4.6 Related Work

Substantial work (Ambler, 2002; Brodkin, 2013; Fredrickson, 2001) has shown the influence
of emotions on work results as well as on personnel effectivity in different workplace types.
For example, De Choudhury et al. describe how assessment of employees’ feelings enables
an organization to detect causes of joy, sadness and frustration among the employees, based
on which plans can be made to improve general emotions, workgroup dynamics, employee
collaboration and hence work effectiveness (De Choudhury and Counts, 2013). Positive
feelings inside a community can be an indicator of the quality and value of the interactions
between people, which is why it is vital to support managers to discover the emotions of their
teams (Murgia et al., 2014).

Previous studies mostly used sentiment analysis in the areas of marketing and financial
markets but not in software engineering. For example, many online markets like mobile
app stores or Amazon provide facilities for customers to assess their products and give their
opinion. In such cases, sentiment analysis can be applied on the reviews of customers for
products and services. Twitter and Facebook are also popular websites for sentiment analysis
applications like monitoring the reputation of a specific brand (Feldman, 2013).

Similarly, analysis of financial markets uses sentiment analysis on news items, articles, blogs
and tweets about companies to drive automated trading systems like StockSonar (Feldman,
2013). Vivek Sehgal et al. (Sehgal and Song, 2007) introduced a new approach for stock
prediction based on sentiments of online messages, from which correlations between stock
values and sentiments are learnt to enable prediction. Sanjiv R. Das et al. (Sehgal and Song,
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2007) designed an algorithm to train small investor sentiment classifier from stock message
boards, which can be used to assess the impact of small investor behaviour on stock market
activity.

Despite extensive work on sentiment analysis for product reviews, marketing and financial
markets, few research has studied the role of sentiment or emotion analysis in software
engineering. Recently, Marta N. Gómez et al. (Canfora et al., 2014) examined whether the
personality factors of team members and team climate factors are related to the quality of the
developed software by the team. Analysis of student projects showed that software quality has
a significant correlation with personality traits of team members like extroversion and team
climate factors such as participation. Finally, they derived guidelines for software project
managers with respect to team formation. Peter C. Rigby et al. (Rigby and Hassan, 2007)
also used LIWC, a psychometrically-based linguistic analysis tool, to study the Apache httpd
developer mailing list. In their study, they assessed the personality of four top developers,
and two top developers that have left the project. They also examined the word usage on the
mailing lists near releases to find the general attitude of developers in these periods. Blerina
Bazelli et. al. (Bazelli et al., 2013) studied the personality traits of authors of questions on
StackOverFlow.com, which is one of the most popular Question and Answers website used
by all kinds of programmers. As a replication of Rigby et al.’s work, they applied LIWC
(this time on SO questions), then categorized the extracted personalities based on the online
reputations of the analyzed authors. They found that top reputed authors are more extrovert
and issue less negative emotions. Against these studies, which are about intrinsic personality
of developers, our paper looks at instantaneous sentiments to obtain the general trend of
community sentiment.

Munmun et al. explored various emotional expressions of employees at 500 large software
corporation by characterizing the emotional expression of the employees in a fine-grained
continuous manner via posts on an internal Twitter-like microblogging tool (De Choudhury
and Counts, 2013). They empirically show that affective expression in the enterprise can
be the result of various workplace factors. These factors can be exogenous and endogenous
workplace factors, geography of organization or the organizational hierarchy. This analy-
sis extracted sentiment of employees over time, by analysing textual content of microblog
posts using LIWC. They concluded that affective expression in the workplace can provide an
efficient tool for assessing key factors and performance relevant outcomes.

Guzman et al. (Guzzi et al., 2013) used latent Dirichlet allocation to find the topics discussed
in collaboration artefacts like messages from mailing lists and web discussions in university
projects. They then used lexical sentimental analysis on the topics to obtain an average
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emotion score for each of the topics. They evaluated their approach by interviewing the
project leaders, which revealed the need for more details in the generated topic summaries.

Regarding the use of development mailing lists as source of valuable information related
to software development, comprehension, and maintenance, Bacchelli et al. classified email
content at the line level (Bacchelli et al., 2012). By combining parsing techniques and machine
learning, they partitioned the content of development emails in five categories, i.e., natural
language, source code, patch, stack trace, and junk. Later, Bacchelli et al. (Guzzi et al., 2013)
also conducted research to better understand mailing list communication. They analysed OSS
mailing lists both quantitatively and qualitatively, showing the wide range of topics discussed
in email threads apart from source code, such as project status and social interactions. Our
paper analyzes sentiment in the natural language category of email content.

4.7 Conclusion

Instead of algorithms or techniques to improve technical software development or mainte-
nance issues, this paper focused on the human aspects involved with these activities. In
particular, we studied the presence and evolution of positive and negative sentiment in the
email communication of users and developers of two large open source projects.

On the one hand, we found that a state-of-the-art automatic sentiment analysis tool obtains
only a modest precision due to the presence of ambiguous technical terms and the difficulty
of distinguishing neutral (technical) emails from positive or negative ones. Hence, substantial
work is needed to customize off-the-shelf sentiment analysis tools to the domain of software
engineering. Still, the relatively uniform precision across each month already allowed to
observe certain trends in the data.

On the other hand, we observed that developer and user mailing lists do contain sentiment
(resp. 19.77% and 11.27% of the emails). We identified 6 categories of positive sentiment in
emails, and 4 categories of negative sentiment. Furthermore, the two types of mailing lists
have their own focus, with user mailing lists having more curiosity and sadness, and developer
mailing lists more aggression, announcements and socializing. Furthermore, we found weak
correlations that suggest sentiment in the developer mailing list to chronologically follow that
of the user mailing list.

This paper only scratched the surface of sentiment analysis in mailing lists, hence a lot more
work is needed on other systems and other tools. Ultimately, the goal of this field is to
warn managers and other leading stakeholders of extremely positive or negative sentiment
in a project, such that they can choose which of the widely known team building or other
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activities are necessary to improve the stakeholders’ affect, morale and productivity.
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Table 4.7 Examples of categorization of email sentiments.

Category Example

Satisfactory Opinion

Thank you very much Gianluca!,Great work so far.,And
I know it will...
We (UF, I cannot claim to represent the tomcat devs)
are happy with a,simple round robin distribution
for new requests.

Friendly Interaction

Thanks and really appreciate your assistance.
butwith a good community effort we should be able
to be done within a reasonable timeframe and enjoy
a successful 2.0 version!

Explicit Signals Fixing leaks is good :)
Oh wait, there’sWindow$, so I guess there are takers ;)

Announcement

I am pleased to announce that I have a version of IvyDE
ready to be released.
With 8 +1 votes and no 0 or -1 votes, the vote is
successful and Charles Duffy is now a committer.

Socializing

If anyone is interested in getting together for some drinks
or exploring the city (I’ve never been to Vancouver)
on Thursday, email me privately [. . . ]
Beer is always acceptable, though sometimes tough to ship.

Curiosity

I am keen on having two web applications be able
to share sessions.
I can’t reproduce the scenario that causes the deletion
but the "autoDeploy" attribute has piqued
my curiosity.

Unsatisfied Opinion
Isn’t this a bit premature, junit 4 isn’t even "out" yet.
And no, Tomcat is not reliable at all, it’s more kinda toy
for bored developers such as me.

Aggression
Anyone volunteering to buy me a second pair of glasses?
Or does gump drink too much ?
who are the stupid people who manages this group.

Uncomfortable Situation

I’m absolutely furious that Tomcat did not say
(almost) anything in its logs.
I have not been into ivy(ide) (yet) and currently
heavily constrained ontime (new job)

Sadness
Oh geez... really?,We’re going to have a top-post vs
bottom-post flame-war??
I was very sloppy and changed the wrong one.



54

Table 4.8 Categorization of email sentiment.
Total Developer User

Positive Sentiment

Satisfactory Opinion

19.77%

34.71%

22.48%

33.33%

17.05%

36.54%
Friendly Interaction 33.88% 33.33% 34.62%
Explicit Signals 13.47% 14.49% 12.12%
Announcement 6.61% 8.70% 3.85%
Socializing 5.79% 7.25% 3.85%
Curiosity 6.61% 2.90% 11.54%

Negative Sentiment

Unsatisfied Opinion

11.27%

18.84%

11.73%

19.44%

10.82%

18.18%
Aggression 11.59% 16.66% 6.06%
Uncomfortable Situation 52.17% 52.78% 51.51%
Sadness 17.39 % 11.11% 24.24%

Neutral Sentiment 68.95% 65.80% 72.13%
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CHAPTER 5 ARTICLE 2: THE IMPACT OF HUMAN DISCUSSIONS ON
JUST-IN-TIME QUALITY ASSURANCE

Abstract

In order to spot defect-introducing code changes during review before they are integrated into
a project’s version control system, a variety of defect prediction models have been designed.
Most of these models focus exclusively on source code properties, like the number of added
or deleted lines, or developer-related measures like experience. However, a code change is
only the outcome of a much longer process, involving discussions on an issue report and
review discussions on (different versions of) a patch. Similar to how body language implicitly
can reveal a person’s real feelings, the length, intensity or positivity of these discussions can
provide important additional clues about how risky a particular patch is or how confident
developers and reviewers are about the patch. In this paper, we build logistic regression
models to study the impact of the characteristics of issue and review discussions on the
defect-proneness of a patch. Comparison of these models to conventional source code-based
models shows that issue and review metrics combined improve precision and recall of the
explanatory models up to 10%. Review time and issue discussion lag are amongst the most
important metrics, having a positive (i.e., increasing) relation with defect-proneness.

5.1 Introduction

The later defects are identified and fixed, the more expensive they become (Boehm and
Papaccio, 1988). This is why companies try to limit the number of major defects discovered
by end users to a minimum, as such defects may degrade a company’s reputation and lead
to irreversible financial loss. In addition to a well thought-out quality assurance strategy
comprising tests, reviews and other activities (Galin, 2003), prediction models of defect-prone
files and defect-introducing patches have gained importance.

Initial work on defect prediction considered files or modules as granularity for predictions (Gy-
imothy et al., 2005; Hassan, 2009; Munson and Khoshgoftaar, 1992), where models would
predict which files have the highest probability of containing defects and hence should be
tested more thoroughly. Later studies (Fukushima et al., 2014; Kamei et al., 2013a; Kim
et al., 2008; Mockus and Weiss, 2000; Shihab et al., 2012) suggested Just-In-Time (JIT)
defect prediction models that focus on software patches instead of on files or modules. Such
models are more actionable and provide large effort savings (Kamei et al., 2013a), since they
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locate specific patches as defect-prone, instead of large files or modules. In addition, predic-
tions can be applied at the exact time when a patch is being reviewed and consequently, the
responsible developer can intervene quickly.

State-of-the-art approaches for JIT prediction mainly use measures related to the actual
code that is being changed, such as the size of the code change (churn) or the developer’s
track record in the project, but ignore the actual feelings and insights of the stakeholders
involved in reviewing a patch or (earlier on) commenting on the bug or feature request that
the patch is implementing. For example, when an issue report provokes many comments by
different people in a relatively short time frame, this could (amongst others) indicate that the
corresponding bug or feature is complicated and hence has a higher risk of introducing bugs
than an issue report with only one or two comments. Similarly, a patch requiring multiple
revisions before being accepted or yielding many code comments during review could indicate
an increased risk, even though the reviewers in the end accepted the patch.

To understand the relation between issue/review discussions and the defect-proneness of a
patch, this paper performs a large empirical case study on 10 OpenStack and 5 Eclipse
open source projects. We chose these projects, as they are large projects that have adopted
code reviews on a large scale and have a reasonable traceability between commits, reviews
and issue reports. Using comments in the issue tracking and review repositories as proxy for
human discussions, we compare explanatory models containing issue and/or review metrics to
a baseline model containing only change-related metrics. Using this comparison, we address
the following research questions:

RQ1) How well can issue discussion metrics explain defect-introducing changes?

For five of the project, explanatory JIT models with issue discussion-related metrics
show improvements of 3% to 10% in precision or recall.

RQ2) How well can review discussion metrics explain defect-introducing changes?

Models with review discussion-related metrics show similar improvements as RQ1 in
precision or recall for 9 projects . Some review discussion metrics figure amongst the
most impactful metrics.

RQ3) How well can issue and review discussion metrics explain defect-introducing changes?

For half of the projects, models augmented with both review and issue discussion metrics
improve precision and recall by 3% up to 17% (in one case). Review time and issue
discussion lag are amongst the most important metrics in the combined models.
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In the remainder of this paper, we first describe the necessary background notions for our
work (section 7.2). Next, we describe the case study setup (section 6.3), then present the
results of the three research questions (section 6.4). After discussion and threats to validity
(section 6.6 and section 7.4), we discuss related work (subsection 7.2.3) and we finish with
conclusions (section 7.5).

5.2 Background

This section provides background information about JIT models and issue/review environ-
ments.

5.2.1 Source Code-based JIT Models

Various researchers have built JIT models (Fukushima et al., 2014; Kamei et al., 2013a; Kim
et al., 2008; Mockus and Weiss, 2000; Shihab et al., 2012). Here, we focus on the more
recent work of Kamei et al. (Kamei et al., 2013a). They considered 14 software change
metrics, grouped into 5 dimensions, to explain whether a code change introduces a defect.
These metrics, which are derived from the source code repository data of a project, would be
measured for a new code change and plugged into a prediction model trained on earlier code
changes (for which one knew in the meantime whether they introduced a defect) to obtain a
risk probability. Based on a threshold, this probability would then suggest whether or not
this new code change is expected to be defect-prone. Developers could then immediately
review, test and revise the code change and resubmit.

Table 5.1 shows the 14 metrics and 5 dimensions, as well as their rationale. All of them can
be calculated using only the project’s version control system, such as Subversion or Git. The
resulting models performed well on a large set of open and closed source systems. Hence,
we use these change metrics to build a baseline model to which we compare our new models
that add issue and/or review discussion metrics.

5.2.2 Issue and Review Repositories

An issue tracking system (e.g., Bugzilla, Launchpad or Jira) is a repository used by a software
organization to enable users and developers to report defects and feature requests. It allows
such a reported issue to be triaged and (if deemed important) assigned to team members,
to discuss the issue with any interested team member and to track the history of all work
on the issue. During these issue discussions, team members can ask questions, share their
opinions and help other team members. Some projects also use an issue tracking system to
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Table 5.1 Overview of change metrics of Kamei et al. (Kamei et al., 2013a).
Dimension Name Definition Expected Rationale

NS #modified subsystems Modifying more subsystems increases the defect-proneness.
ND #modified directories Modifying more directories increases the scattering of change and the probability of defects.

Diffusion NF #modified files Modifying more files increases the probability of defects.
ENT distribution of changes across all files Changes affecting multiple files equally likely are more risky.

Size

LA #lines of code added Larger changes increase the probability of defects.
LD #lines of code deleted Defect-proneness increases when more code is removed, since incorrect code could be deleted accidentally.
LT #lines of code in a file before the change Larger code might be more complex to understand, hence, modifying it is more likely to be defect-prone

Purpose FIX is the change a defect fix? Fixing a defect touches a buggy area of the code, hence the probability of introducing a new defect is higher.

History
NDEV avg. #developers that changed the files before Different developers modifying the same file may lead to misunderstanding.
AGE average time (#days) since the last change Recently changed files are more defect-prone than stable code.
NUC #unique changes to modified files The more files have been changed, the more opportunities for defects.

Experience

EXP #prior commits by the developer More experienced developers are less likely to introduce defects, unless they make more ambitious changes.
REXP #prior commits by the developer weighted by their age Developers that recently modified a file have more fresh knowledge about the code base.
SEXP #prior commits by the developer on a subsystem Developers that are dominant in a particular subsystem are less likely to introduce a defect there.

review patches and bug fixes (instead of using a dedicated reviewing environment like Gerrit),
however we do not consider such projects in this paper.

According to Rigby et al (Rigby and Bird, 2013), modern software organizations have em-
braced lightweight processes for reviewing code changes, i.e., to decide whether a developer’s
change is safe to integrate into the official version control system. During such lightweight
code review, assigned reviewers make comments on a code change or ask questions that can
lead to a discussion of the change and/or different revisions of the code change, before a
final decision is made about the code change. If accepted, the most recent revision of the
code change can enter the version control system, otherwise the change is abandoned and the
developer will move on to something else. Modern web apps like Gerrit are used to support
this review process.

In this paper, we are interested in understanding whether the characteristics of collaborative
group discussions of issue reports and code reviews, such as the discussion volume, intensity
or positivity, can provide hints about the defect-proneness of the resulting accepted code
change. For example, the behaviour of the discussion participants could show them being
uncomfortable with a code change, even though it would pass through review. For this
reason, we build explanatory models with issue and/or review metrics to understand why
code changes that successfully passed reviewing turn out to be defect-introducing.

5.3 Case Study Setup

This section explains the methodology used to address our three research questions. We
discuss the selection of case study systems, identification of defect-prone code changes, ex-
traction of issue and review metrics, model building and model validation.
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5.3.1 Selection of Case Study Systems

Our aim is to study whether human discussions of issue reports and code review can provide
some indication that a code change that successfully passed review introduces a defect. This
model would be used right after code review finished, as a final check before the code change
would be integrated into the version control system. The only requirement is that the code
change is linked to an issue report and code review, which is readily done by modern soft-
ware organizations. Therefore, to conduct our empirical study, we required projects with a
substantial number of commits linked to issues and reviews.

Openstack1 and Eclipse2 are two popular open source ecosystems featuring a large number of
sizeable projects that have adopted code reviewing in the last couple of years (issue reports
have been adopted by open source projects for a long time). They have adopted modern
technology for version control systems (git), issue repositories (Bugzilla and Launchpad) and
code review repositories (Gerrit). Furthermore, they are among the pioneers of pushing
developers to explicitly link code changes to issues and reviews.

To obtain the version control, issue report and code review data of these ecosystems, we used
the data set graciously provided by Gonzalez-Barahona et al. (Gonzalez-Barahona et al.,
2015). They developed the MetricsGrimoire tool suite to mine the repositories of OpenStack
and Eclipse, then store the corresponding data into a relational database. We used their
version control, issue report and code review data sets3 to perform our study.

5.3.2 Linking Commits to Bug Reports and Reviews

As mentioned in the previous section, by using Barahona et al.’s exposed databases we got
access to the git version control, issue report and Gerrit review data of OpenStack and
Eclipse. Then, we used heuristics to identify links between commits and reviews, and also
between commits and issue reports.

In particular, links from an accepted review to its corresponding git commit can be identified
by searching the Gerrit reviews for the commit identifier of the accepted revision of a patch.
These commit identifiers had not been stored in Barahona’s exposed databases, hence we
modified MetricsGrimoire to download this additional information from the review repository,
then updated Barahona’s database with the extracted commit identifiers.

However, only for 60% of the accepted reviews, the commit identifier mentioned in the code
1http://openstack.org
2http://eclipse.org
3http://gsyc.es/~jgb/repro/2015-msr-grimoire-data

http://eclipse.org
http://gsyc.es/~jgb/repro/2015-msr-grimoire-data
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Table 5.2 Statistics of the Studied OpenStack and Eclipse Projects.
Project Total #commits Start Date Total #reviews #commits linked Total #issues #commits linked #commits linked

(%defective) (%linked) (%total) (%linked) (%total) to both (%total)

O
pe

ns
ta
ck

cinder 5013 (30%) 2012-05-03 4209 (65%) 2721 (54%) 2057 (78%) 1654 (33%) 1654 (33%)
devstack 5515 (13%) 2011-09-11 3271 (77%) 2507 (45%) 1088 (70%) 827 (15%) 827 (15%)
glance 4125 (28%) 2010-08-11 2385 (77%) 1844 (44%) 1521 (75%) 1073 (26%) 1155 (28%)
heat 7341 (23%) 2012-03-13 5324 (72%) 3859 (52%) 1781 (83%) 1835 (25%) 1982 (27%)
keystone 6654 (20%) 2011-04-14 4214 (73%) 3084 (46%) 1964 (73%) 1530 (23%) 1996 (30%)
neutron 8512 (28%) 2010-12-31 6806 (64%) 4384 (51%) 3960 (70%) 2979 (35%) 2979 (35%)
nova 32998 (25%) 2010-05-30 14699 (79%) 11583 (35%) 8210 (68%) 5940 (18%) 6600 (20%)
. . . -manuals 8483 (26%) 2011-09-20 7356 (67%) 4951 (58%) 2867 (79%) 2121 (25%) 2290 (27%)
swift 4333 (17%) 2010-07-12 2203 (72%) 1580 (36%) 1106 (46%) 953 (22%) 1043 (24%)
tempest 5813 (18%) 2011-08-26 3875 (80%) 3105 (53%) 1619 (70%) 1337 (23%) 1453 (25%)

Ec
lip

se

cdt 24025 (40%) 2002-06-26 1006 (92%) 721 (3%) 13576 (54%) 480 (2%) 9610 (40%)
egit 4513 (48%) 2009-09-29 4270 (86%) 3655 (81%) 2200 (77%) 1624 (36%) 1850 (41%)
jgit 3984 (36%) 2009-09-29 3736 (84%) 3187 (80%) 513 (41%) 598 (15%) 756 (19%)
linuxtools 9712 (41%) 2007-02-02 3925 (86%) 3302 (34%) 1938 (56%) 485 (5%) 1456 (15%)
scout.rt 3299 (39%) 2010-11-25 1668 (59%) 989 (30%) 1350 (80%) 825 (25%) 2045 (62%)

review corresponds to the actual commit in the official git repository of a project. The reason
is that while a code change is being reviewed, other developers’ code changes that are being
reviewed in parallel, get accepted and entered in the version control system. Hence, by the
time the former code change is accepted, it first needs to be integrated with these newly
accepted commits (“rebasing” (Bird et al., 2009c)). As a result, a new git commit with new
identifier is created that replaces the accepted code change. Since older versions of Gerrit
did not update afterwards the code review with the new identifier, those reviews could not
be directly linked with the version control system.

Fortunately, for more than 50% of the missing cases, we either found an additional review
comment that has been added after rebasing mentioning the correct Git commit identifier,
or we found the identifier of the review in the commit message of a git commit. Hence, using
these 3 different techniques, we were able to retrieve the links in most of the Eclipse and
OpenStack projects for at least 70% of the reviews.

In order to link commits to issue reports, we noticed after manual inspection of commit
messages that Eclipse developers almost consistently mention the issue identifier in their
commit message, following these regular expressions (for Openstack, we changed this format
a bit, as issue numbers for Openstack just have 6 or 7 digits):

(bug|issue)[:#\s_]*[0-9]+

(b=|#)[0-9]+

[0-9]+\b

\b[0-9]+

However, after checking whether the identified numbers correspond to actual issue identifiers,
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just 2% of related issues were found in this way. Instead, 35% of the links were found
through issue report comments that mentioned a Git commit identifier, and the remaining
links between issues and commits were identified through review info (since we had found
sufficient links between reviews and commits). To detect the links between issues and reviews,
we referred either to issue identifiers mentioned by review comments or the name of the branch
on which a code change had been made, since some of them follow the naming convention
“bug/1491511” with “1491511” an issue identifier. On average, more than 76% of the links
(72% for Openstack and 81% for Eclipse) with issues to their commits were identified. To
evaluate whether the identified links were correct, we manually examined a random number
of them.

After linking commits to reviews and issues, and limiting the analyzed time period to those
commits made starting from the time when Gerrit was introduced in a project, we eventu-
ally retained those projects with more than 3,000 commits, a reasonable amount of linkage
(more than 500 linkages) and defect-prone commits (more than 10%). Out of 337 Openstack
projects, 11 projects with good linkage and sufficient defect-prone commits were selected.
For Eclipse, 10 projects out of 612 had more than 3000 commits and more than 1000 reviews,
however most of them did not have enough issues. For example, platform.ui has more than
17,000 fixed issues, but most of them were reported before the project started using Gerrit
(April 2013), and only 500 issues were reported afterwards. Therefore, we eventually selected
only 5 Eclipse projects. Table 6.1 shows the statistics of our data set.

5.3.3 Identifying Defect-introducing Commits

Identifying which commits introduce a defect is not straightforward. Various algorithms and
heuristics exist, with the SZZ algorithm (Śliwerski et al., 2005) still one of the most popular
approaches. It automatically locates defect-introducing patches by linking information from
a version control system like Git to a bug repository like Launchpad or Bugzilla. It consists
of three steps: 1) finding all bug fix commits by identifying for each issue report linked to
a commit whether it is a bug, in which case the commit likely is a bug fix; 2) identifying,
using a standard command like “git blame” the most recent commits that changed the lines
changed by the bug fix; and 3) tagging those commits as potentially defect-introducing.

As such, SZZ assumes that a bug fix only changes the source code lines that had a defect
and that the most recent commit(s) that changed those lines were the defect-introducing
commit(s). Typically, all commits pointed out by “git blame” are considered to be defect-
introducing commits, although heuristics exist to filter out commits that appeared after the
bug report was filed. We used the SZZ implementation of Kamei et al. (Kamei et al., 2013a)
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to identify the defect-introducing commits in our case study systems. We customized this
implementation to use the mapping from commits to issues obtained in Section 5.3.2 instead
of a keyword-only approach.

5.3.4 Discussion Metrics

Table 5.3 Summary of issue and review discussion measures.
Dimension Domain Name Rationale

both commenter experience The more experienced in leaving comments (for both reviews and issues),
the more participative and helpful discussions could be, reducing the risk of defects slipping through.

issue reporter experience The more experienced in issue reporting, the more accurate their reports could be, the more precise the issue
could be solved.

Focus
review

reviewer experience The more experienced in reviewing, the more accurate they are expected to be, hence the higher the chance
that any serious risk has been identified and remedied.

#patch revisions The more revisions a patch required, the more issues were detected and hence could still linger in the final
patch revision.

#inline comments The number of comments reviewers made on specific lines of a patch instead of general reviews, as an
indicator of the degree of detail of reviewing. The more detail, the lower the risk of remaining defects.

both #comments The more comments are posted in a discussion, the more risk might be involved.

Length comment length The number of lines of comments on an issue or review, as a measure of the amount of discussion, may
indicate that the discussed commit has a high likelihood of introducing a defect.

Time
review review time The total time spent on reviewing, might be related to the risk and defect-proneness of the issue.
issue fix time The total time allocated to fix an issue might be related to the risk and defect-proneness of the issue.

both average discussion lag The average time in between comments could be related to the risk of an issue or review, with risky ones
seeing faster replies to comments.

Sentiment both Comment Sentiment
(max/min/avg/extreme)

Negative sentiment of the participants during issue or review discussions may reveal doubt.
Four variations of the sentiment metrics are provided.

In this section, we describe the issue and review discussion metrics that we use in our sta-
tistical models, complementing the change-level metrics of Table 5.1. The issue discussion
metrics are mined from issue repository comments, hence we calculate them on a per-issue
report (and hence per-commit) basis4. The review discussion metrics are mined from the
Gerrit reviews and comments, and hence are calculated on a per-review basis. We grouped
all discussion metrics into four categories, as Table 5.3 shows.

Focus. During review, reviewers can ask a developer to incorporate certain changes. If the
developer agrees, these changes will result in a new revision of the patch that will undergo
another round of reviewing by the same reviewers. When reviewers eventually are happy
with a revision, that revision will be accepted for integration into the version control system
(possibly with rebasing). The more revisions a patch had to go through before acceptance,
the riskier, as it could indicate issues with a developer’s mastery of or familiarity with the
problem at hand, or could mean that the bug fix or feature being implemented is complicated.
On the other hand, it could also indicate that the reviewers are serious about their work, as
they are pointing out many problems.

Furthermore, Bacchelli et al. (Bacchelli and Bird, 2013) and McIntosh et al. (McIntosh et al.,
2014) found that modern reviewing techniques, such as those supported by environments like

4For commits linked to multiple issue reports, we randomly select one of the issue reports.
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Gerrit, do not imply high quality reviews. Indeed, one can “review” a patch by just pointing
out typos or without checking how the changed lines integrate with existing code. More
experienced reviewers or issue commenters might be more aware of these pitfalls and hence
perform more focused reviews, reducing the risk of defects. This is also why we measure
#inline comments, which corresponds to comments annotating specific code lines in a patch.
For example, if line 12 of a patch should be improved, a reviewer could put a comment on
that specific line, instead of posting a global review comment. More such comments again
means more focused reviewing.

Length. Complex issues and patches can be more controversial and hence require more
discussion than simple ones. We adopt this idea in our models by measuring the #comments
and comment length. Initially, we also used #authors, but we found that this was too highly
correlated with #comments, which is an easier metric to measure. Note that one cannot
blindly count all comments, since some review or issue comments are automatically generated
messages that do not constitute human discussion, and hence should be filtered.

Time. Through issue and review comments, people discuss, share their ideas and help each
other regarding the issue or patch under consideration. Hence, the absence of communication
for a prolonged time may indicate miscommunication or even indifference, which is a sign
of risk. Hence, we capture these ideas by measuring the fix time and average discussion lag
for issue reports and reviews. The former spans from creation date until the final comment,
while the average discussion lag is the average of the time period between each subsequent
pair of comments.

Sentiment. Until now, all selected metrics focused on quantitative aspects of the discussion,
in the sense that they count a volume or measure time. However, issue report and review
comments especially contain natural language content capturing the direct opinion of devel-
opers or other stakeholders on an issue or patch. Whenever people communicate, their words
automatically incorporate certain feelings or sentiment (attitude of towards a subject (Mishra
and Jha, 2012)) to convey their message or understand other people’s reaction. For example,
one developer or user might say “We are happy with a simple round robin distribution for
new request”, or “I am absolutely furious that the application did not say almost anything
in its logs”. Sentiments are not limited to verbal communication, but are also expressed
when using computer-aided communication (Thelwall). Hence, the usage of friendly, positive
words is a good indicator that a person is happy with a certain issue or patch, while angry
expressions could indicate difficult interactions and stress that might reflect in the quality of
the resulting work.

To capture such qualitative opinions, we extract and quantify the sentiments expressed by



64

issue and review comments. In sentiment analysis (Pang and Lee, 2008), the “polarity”, i.e.,
positive or negative attitude, and “degree” of a document are measured quantitatively. A
larger degree of sentiment represents more positive (or negative) sentiments and attitudes
towards a subject, topic, idea or even a person. Most sentiment mining tools generate polarity
and degree per sentence or paragraph. Since we need one sentiment score per issue report
or review (not per sentence/paragraph), we are interested in the Max, Min and Average of
the individual sentiment scores to obtain one sentiment value. In addition, we also include
the Most extreme sentiment value, which is the sentiment value with the largest absolute
value across all sentences/paragraphs of an issue report or review.

In practice, we first filter out any extra data other than human natural language, as comments
often contain different kinds of information like source code snippets and stack traces. In our
case, a lightweight method based on regular expressions turned out to be the most effective
filtering approach (Bacchelli et al., 2010). We then applied the SentiStrength tool on the pre-
processed comments to obtain sentiment scores from -5 to 5 for each paragraph. SentiStrength
is one of the state-of-the-art lexical sentiment mining tool (Thelwall et al., 2010), which is
easy to use and has been used successfully by several research projects (Thelwall et al.,
2010). Alternatively, one could use machine learning-based sentiment mining (Socher et al.,
2013) or, instead of sentiment, one could also measure other types of affect like emotions or
polarity (Ortu et al., 2015b), however those tools are still in an early stage.

5.3.5 Building Explanatory Models

Similar to previous work (Basili et al., 1996; Cataldo et al., 2009; Kamei et al., 2013a), a
logistic regression model is used to build an explanatory model of defect-prone code changes.
For each commit, such a classification model returns a probability between 0 and 1 of defect-
proneness. Based on a threshold value, one can then classify a commit as defect-prone
(probability higher than threshold) or safe (probability lower than threshold). This paper uses
the model building scripts of Kamei et al. (Kamei et al., 2013a), with a standard threshold
of 0.5.

We use logistic regression to build explanatory models, i.e., models that explain defect-
proneness of the data set on which they are trained rather than predict defect-proneness of
a different data set (like on commits of a subsequent year). The evaluation of such models
typically is conducted using 10-fold cross validation (Efron and Tibshirani, 1995). According
to this technique, the dataset is randomly divided into 10 folds based on stratified partitioning
such that each fold has the same proportion of defect-prone commits as the full data set.
Then, one fold is picked as test data for model validation, while the rest of the data is used
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as training data to build a model. This process is repeated for each of the 10 folds as test
data, yielding a confusion matrix, based on which performance measures can be calculated.

Before training a model, we first perform three filtering steps. After collecting the required
metrics, we first removed highly correlated factors. For this, we computed the variance
inflation factors (VIF) for each metric and removed those metrics with variance inflation
factor greater than 5. Then, we also applied Mallow’s Cp criterion (Mallows, 1973) using
a stepwise variable selection technique to remove the rest of the collinear metrics and those
that do not affect the model. Step by step, this technique removes the worst metrics, i.e.,
metrics without any effect, until the deletion of the remaining metrics starts degrading the
model.

Second, as Table 6.1 shows, our dataset is not balanced: the number of defect-introducing
commits is much lower than the number of safe commits. According to Matsumoto et
al. (Kamei et al., 2007), this degrades the performance of statistical prediction models. To
avoid this problem, we resample the training set data, similar to previous work (Kamei et al.,
2013a). With this approach, non-defect-introducing commits randomly are removed from the
training set until we have the same number of defect-introducing and safe commits. Note
that we cannot resample the test set, as this would bias the evaluation results (since real-life
data is imbalanced, and hence we should evaluate our models as such).

Third, similar to Kamei et al. (Kamei et al., 2013a), we applied a standard log transformation
to each metric with positive skew (i.e., having a long tail of values towards higher values), to
even out the skewing effects on the model.

5.3.6 Validation of Model Performance

We validate both the models themselves as well as the importance (impact) of the metrics
for the models.

Evaluating the Models.

To evaluate the defect-prone classifiers, we use the common precision, recall, F1-measure and
AUC measures. The first three metrics are derived from a model’s confusion matrix. Such a
matrix summarizes the four different cases of a classification: a model can correctly classify a
commit to be defect-prone (TP , true positive) or safe (TN , true negative), incorrectly classify
a defect-prone commit to be safe (FN , false negative) or a safe commit to be defect-prone
(FP , false positive).

Using these concepts, precision then is the percentage of commits classified as defect-prone
by a model that is actually defect-prone, i.e., T P

T P +F P
. This gives an indication of how often a
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model’s recommendation is correct (lack of false alarms). On the other hand, recall measures
what percentage of the actual defect-prone commits in the data that can be found by the
model, i.e., T P

T P +F N
. Since there is a tradeoff between precision and recall, the F1-measure

usually is computed, which is a weighted average of precision and recall: (2×Recall×P recision)
(Recall+P recision) .

Since the output of a logistic regression model is a probability value between 0 and 1, a
threshold needs to be chosen to map the model value to 0 or 1. This means that a model’s
performance depends on the choice of this threshold. The AUC (Area Under the Curve) of
the ROC (Receiver Operating Characteristics) curve is a measure that represents the overall
performance of a logistic regression model across all thresholds (Lessmann et al., 2008). The
larger the AUC, the better the classification performance. In particular, the larger the AUC
is compared to 0.5, the better the model performs than a random classification model.

*.Evaluating the Metrics

To evaluate which metrics have the largest impact in the models, we compare our models
to the code change-based baseline models incorporating the metrics of Table 5.1. For this
comparison, we use a hierarchical analysis starting with the baseline model that uses software
change measures only. Then, step by step, each dimension of issue or review discussion
metrics is added to the model to study its importance in the model. To determine if a
dimension provides new knowledge about defect-prone commits, we use an ANOVA test to
compare a regression model with the previous one. Given an α value of 0.05, a p − value
lower than 0.05 rejects the null hypothesis that there is no significant difference in fit between
both models, or in other words a p − value < 0.05 means that the new model performed
significantly better than the old one. In contrast to the classifier performance using precision
and other metrics, for model comparison we use the entire dataset to build one logistic
regression model in each step.

After determining the issue or review discussion dimension with the highest impact, one can
then analyze which individual metrics have the highest impact in the model using the effect
size of Shihab et al. (Shihab et al., 2013). This approach first takes the full logistic regression
model with the median value of each metric as input (the mode value for categorical variables
like Change_Type). The model’s output value for these inputs is recorded as the “base value”.
Then, in order to find the impact of each variable on the model, we replace for one metric at
a time the median value by the median plus one standard deviation (for categorical values,
the second most common value will be used to replace the mode), the rest of the variables
stay on their median value. The effect size of this metric on defect-proneness can then be
calculated as newvalue−basevalue

basevalue
. We repeated this method for all significant variables to find

their relative impact.
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Since the median values represent “common” values for each metric, and adding a standard
deviation is a “common” change in metric value, the effect sizes of different metrics can
be compared directly to each other in order to find the metrics with the largest impact on
defect-proneness. In particular, the effect sizes are independent of the unit of the metrics, in
contrast to for example odds ratios (Bland and Altman, 1996). A positive effect size indicates
an increase in defect-proneness for an increase in independent variable, while a negative effect
size indicates a decrease in defect-proneness.

5.4 Case Study Results

RQ1. How well can issue discussion metrics explain defect-introducing changes?

Table 5.4 Performance of explanatory models with issue metrics. b means “base model”,
increases of ≥ 3% in bold, and decreases of ≤ −3% underlined.

project precb rec.b fb aucb prec rec. f auc
cinder 0.82 0.49 0.62 0.53 0.83 0.59 0.69 0.56
devstack 0.41 0.64 0.50 0.63 0.39 0.66 0.49 0.62
glance 0.64 0.60 0.62 0.57 0.67 0.61 0.64 0.60
heat 0.73 0.54 0.62 0.58 0.75 0.61 0.67 0.61
keystone 0.61 0.68 0.65 0.70 0.59 0.68 0.64 0.69
neutron 0.65 0.73 0.69 0.71 0.64 0.74 0.69 0.70
nova 0.75 0.64 0.69 0.59 0.77 0.61 0.68 0.61
. . . -manuals 0.81 0.55 0.66 0.57 0.82 0.57 0.67 0.59
swift 0.46 0.67 0.54 0.64 0.45 0.66 0.54 0.63
tempest 0.58 0.56 0.57 0.53 0.67 0.58 0.62 0.61
cdt 0.73 0.70 0.72 0.72 0.73 0.70 0.72 0.71
egit 0.86 0.67 0.75 0.71 0.85 0.66 0.74 0.71
jgit 0.70 0.65 0.67 0.67 0.72 0.68 0.70 0.69
linuxtools 0.83 0.61 0.70 0.69 0.84 0.61 0.70 0.70
scout.rt 0.67 0.70 0.68 0.70 0.67 0.71 0.69 0.70

Approach. To understand how much information issue report discussions contain about the
risk of their corresponding code change, we build explanatory models for the risk of a code
change using the issue discussion metrics of Table 5.3, combined with the software change
metrics of Table 5.1. Table 5.4 compares for all analyzed projects the performance metrics
of the baseline model (only code change metrics) and the issue metrics model.

To identify the most important metrics in the models of each project, we calculated for all
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Table 5.5 Performance of explanatory models with review metrics. b means “base model”,
increases of ≥ 3% in bold, and decreases of ≤ −3% underlined.

project precb rec.b fb aucb prec rec. f auc
cinder 0.66 0.61 0.63 0.60 0.67 0.59 0.63 0.61
devstack 0.40 0.64 0.49 0.67 0.37 0.69 0.48 0.66
glance 0.56 0.61 0.58 0.58 0.57 0.59 0.58 0.59
heat 0.48 0.55 0.51 0.58 0.47 0.60 0.53 0.58
keystone 0.49 0.61 0.55 0.61 0.46 0.64 0.54 0.60
neutron 0.68 0.63 0.68 0.68 0.72 0.71 0.71 0.71
nova 0.61 0.65 0.63 0.64 0.61 0.65 0.63 0.64
. . . -manuals 0.51 0.51 0.51 0.56 0.56 0.59 0.57 0.61
swift 0.41 0.60 0.48 0.63 0.42 0.59 0.49 0.63
tempest 0.42 0.59 0.49 0.59 0.40 0.64 0.49 0.58
cdt 0.55 0.70 0.62 0.72 0.54 0.73 0.62 0.72
egit 0.76 0.65 0.70 0.68 0.79 0.72 0.75 0.72
jgit 0.63 0.66 0.64 0.66 0.66 0.73 0.69 0.70
linuxtools 0.76 0.67 0.71 0.69 0.76 0.64 0.70 0.69
scout.rt 0.54 0.63 0.58 0.65 0.55 0.65 0.59 0.66

metrics the effect size, as explained in subsection 6.3.5. Then, for each metric, we calcu-
lated the median effect size across all Openstack projects (and, separately, across all Eclipse
projects) in order to globally rank the metrics from most extreme effect size (either positive
or negative) to closest to zero. If a variable did not appear in a project’s model, we gave it
an effect size of zero for that model. Finally, Table 5.7 and Table 5.8 only show those metrics
with median effect size different from zero, i.e., that appeared in the models of at least 50%
of the projects.

Findings.

Five of the projects see an improvement in precision and/or recall of 3% up
to 10%. ANOVA analysis showed that models augmented with metrics related to issue
discussions significantly improves upon the baseline models (even though for some projects a
decrease can be observed). The tempest project sees the largest improvements, with precision
increasing by 9% and the AUC by 8% compared to the baseline model. Similarly, cinder and
heat improve their recall by 10% and 7%, respectively. glance increases its precision by 3%,
while jgit improves its recall by the same amount. On the other hand, we notice that nova
loses 3% of precision and recall, respectively.

The most important metrics are FIX, LA, NDEV and Issue Commenter Experi-
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Table 5.6 Performance of explanatory models with issue and review metrics. b means “base
model”, increases of ≥ 3% in bold, and decreases of ≤ −3% underlined.

project precb rec.b fb aucb prec rec. f auc
cinder 0.83 0.49 0.62 0.54 0.86 0.57 0.69 0.60
devstack 0.41 0.59 0.48 0.64 0.39 0.56 0.46 0.63
glance 0.64 0.58 0.61 0.57 0.76 0.71 0.74 0.71
heat 0.72 0.51 0.60 0.56 0.76 0.58 0.66 0.61
keystone 0.72 0.61 0.66 0.63 0.73 0.60 0.66 0.64
neutron 0.64 0.74 0.69 0.71 0.71 0.80 0.75 0.77
nova 0.75 0.61 0.67 0.58 0.78 0.60 0.68 0.62
. . . -manuals 0.81 0.58 0.68 0.55 0.85 0.62 0.72 0.62
swift 0.46 0.67 0.55 0.64 0.49 0.62 0.55 0.65
tempest 0.60 0.44 0.50 0.53 0.70 0.61 0.65 0.63
cdt 0.59 0.68 0.63 0.70 0.58 0.66 0.62 0.69
egit 0.85 0.70 0.77 0.71 0.89 0.75 0.82 0.77
jgit 0.75 0.65 0.70 0.69 0.74 0.71 0.73 0.70
linuxtools 0.80 0.68 0.73 0.69 0.80 0.67 0.73 0.69
scout.rt 0.59 0.65 0.62 0.66 0.62 0.70 0.66 0.69

ence. The type of a change has a huge impact on the models of both Eclipse and OpenStack,
twice with an effect size of -0.9. This negative value means that when the type of a commit
changes from bug fix to no bug fix, the probability of defect-proneness increases, which might
indicate that when developers fix bugs in those projects they pay more attention. The third
most important metrics (Issue Commenter Experience and NDEV) also have a negative effect
size, which means that the more experience the issue reporter has in commenting on issues
(OpenStack) or the more developers have changed the modified files before (Eclipse), the
lower the risk that the discussed code change will be defect-introducing. This seems intuitive
for OpenStack, whereas for Eclipse the finding seems contradictory. The only metric in the
top three with a positive effect size, is LA. Hence, the larger a code change is in terms of
added lines of code, the higher the probability that it will be defect-introducing.

�

�

�



Models augmented with issue discussion
metrics improve upon code-change baseline
models. For 5 out of 15 projects, precision
and/or recall improve 3% up to 10%.
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Table 5.7 Metrics with most extreme effect size (Openstack). Issue metrics are underlined,
review metrics in bold.

RQ1 Models RQ2 Models RQ3 Models
Metric (Dimension) Effect Metric (Dimension) Effect Metric (Dimension) Effect
FIX (Purpose) -0.9 LA (Size) 0.21 FIX (Purpose) -0.73
LA (Size) 0.16 Reviewer Experience (Focus) -0.20 Review Time (Time) 0.11
Commenter Experience (Focus) -0.15 LD (Size) -0.13 Discussion Lag (Time) 0.08
Comment Length (Length) -0.10 FIX (Purpose) -0.12 Sentiment_Avg (Sentiment) -0.05
Reporter Experience (Focus) 0.08 Sentiment_Extreme (Sentiment) 0.08 Sentiment_Extreme (Sentiment) 0.04
Discussion Lag (Time) 0.08 Discussion Lag (Time) -0.05 Discussion Lag (Time) -0.04
SEXP (Experience) -0.08 NS (Diffusion) 0.05 Commenter Experience (Focus) -0.02
Number of Comments (Length) -0.07 Review Time (Time) 0.03 AGE (History) 0.01
LD (Size) -0.05 ENT (Diffusion) 0.03
ENT (Diffusion) 0.03
Fix Time (Time) 0.03
NFC (Diffusion) 0.03
AGE (History) 0.02

Table 5.8 Metrics with most extreme effect size (Eclipse). Issue metrics are underlined, review
metrics in bold.

RQ1 Models RQ2 Models RQ3 Models
Metric (Dimension) Effect Metric (Dimension) Effect Metric (Dimension) Effect
FIX (Purpose) -0.9 LA (Size) 0.27 LA (Size) 0.37
LA (Size) 0.39 AGE (History) 0.13 Review Time (Time) 0.14
NDEV (History) -0.31 ReviewTime (Time) 0.12 AGE (History) -0.11
AGE (History) -0.11 ENT (Diffusion) 0.11 ENT (Diffusion) 0.08
Sentiment_Min (Sentiment) 0.08 Reviewer Experience (Focus) -0.10 Reviewer Experience (Focus) -0.07
ENT (Diffusion) 0.03 LT (Size) 0.07 Discussion Lag (Time) -0.04

LD (size) 0.04

RQ2. How well can review discussion metrics explain defect-introducing changes?

Approach. We follow a similar approach as for RQ1, but this time use the review metrics of
Table 5.3 instead of the issue metrics. The model performance metrics are shown in Table 5.5,
while the most important metrics are shown in the second column of Table 5.7 and Table 5.8.

Findings.

9 projects improve their precision and/or recall by 3% to 8%. Except for heat,
tempest and jgit, 6 of these 9 projects did not see an improvement for the issue metric
models of RQ1, i.e., the improvements of review-based models seem complementary to those
of issue-based models. The largest improvements can be found in terms of recall, with jgit,
egit and openstack-manuals improving their recall by 6%, 7% and 8% respectively. horizon,
despite its increase in precision by 4%, saw a drop in recall by 8%. Three other projects
(devstack, keystone and linuxtools) saw a drop in precision or recall of 3%.

The most important variables are LA/LD, Reviewer Experience, AGE, FIX and
Review Time. While LA again scores high (with positive effect size), LD also was found
to be important (third place for OpenStack), but with a negative effect size. Hence, while
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code changes that add many lines of code are more risky, so are code changes that do not
remove too much code. Reviewer Experience, as expected, also has a negative impact (i.e.,
less risk with more experienced reviewers), similar to FIX (cf. RQ1). Eclipse has two other
top metrics with positive effect size, i.e., the more time since the last change of the modified
files or the longer reviewing takes, the higher the risk of a code change.

�

�

�



Review metrics also improve upon code
change-based models, with 9 projects im-
proving their precision and/or recall by 3%
to 8%.

Here, also we can see the models built based on the metrics related to both change metrics
and issue discussion metrics, has better performance considering recall metric 5.5. While, on
average there is around 2% improvement in recall has been observed, there is 6% increase
for heat project (without any improvement in precision), and tempest also just achieve 4%
increase for recall without any improvement for precision. Although an improvement with 6%
happened for devstack recall, its precision decreases 3%. There are also some projects with
rise in both precision and recall. openstack-manuals has 8% and 6% increase for recall and
precision metrics respectively. neutron also gained 4% improvement in both of its precision
and recall metrics in the enhanced model.

Other projects have almost the same performance for both baseline and enhanced models.

RQ3. How well can issue and review discussion metrics explain defect-introducing
changes?

In this research question, we combined both metrics extracted from issue discussions and
review discussions as representative metrics of human discussions attributes to see how they
can totally impact on the impact of software quality by considering Just-In-Time defect
prediction models.

Approach. To understand which of the issue and review models has the strongest link with
defect-proneness of commits, RQ3 first builds the models of RQ1, then hierarchically adds
the metrics of the review dimensions. The performance of the resulting models is shown in
Table 5.6, while the most important metrics are listed in the third column of Table 5.7 and
Table 5.8.

Findings. 8 of the projects improve both precision and recall by 3% up to 17%,
while 2 more projects improve either precision or recall. Compared to RQ1 and
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RQ2, we observe large improvements in precision of 12% (glance), 7% (neutron) and 10%
(tempest), while for recall we observe improvements of 8% (cinder), 13% (glance) and 17%
(tempest). Other improvements are from 3% to 5%. This results in increases in AUC of up
to 6%, 7% or even 10% (tempest). In other words, the combination of issue report and review
discussions metrics seems to have a major link with defect-proneness. That said, devstack
and swift see a drop in recall of 3% and 5%, respectively.

Generally here we can see significant improvements for all metrics for Openstack projects 5.6.
On average precision and recall increase 9% and 11% respectively, AUC and Accuracy with
13% enhancement reach 72%. tempest has highest increase for both precision and recall,
with 17% and 15% rise, then glance with 12% and 13%. Cinder has good improvement, 8%
increase in its recall (with 4% increase in precision), and for neutron also both precision and
recall improve more than 5%. Openstack-manuals and keystone have better performance in
a sense that their recall enhance with more than 2%. Nova has almost the same precision
and recall. For swift and devstack, we can see a decrease in recall, with less than 5% decline,
however swift has better performance precision-wise, with 3% growth.

The most important metrics overall are FIX, LA, Review Time, AGE and Issue
Discussion Lag. Similar to the issue metric-based models of RQ1, FIX again has a large,
negative effect size (but did not appear in the Eclipse models) and LA a large, positive effect.
Hence, both top metrics are code-level metrics. The second (both projects) and third (for
OpenStack) highest metrics, Review Time and Issue Discussion Lag, mostly have a positive
effect size, indicating that the longer reviews have taken or the longer it took people to reply
to each other’s issue comments, the higher the risk of a code change. Both seem intuitive.
In particular, a longer lag between issue discussions could be due to the complexity of the
problem, or unavailable project members (too busy). Finally, AGE is the final top metric,
this time surprisingly with a negative effect size, i.e., the longer since the last change to a
file, the lower the risk of defects. We suspect this difference with the RQ2 model for Eclipse
is either due to our calculation of median effect sizes or interaction with other metrics.

We note that the top 3 metrics in Table 5.7 and Table 5.8 contain 3 code change metrics,
1 issue metric and 1 review metric. This indicates that the performance of the final model
depends on all metrics together, with different metrics of the three studied domains having
an important link with defect-proneness of code changes. Given that the performance of the
explanatory models also improved substantially by adding both review and issue discussion
metrics, this suggests that one should consider adding their top metrics to any JIT defect
model.



73

�

�

�

�

Combined models substantially improve
precision and recall for half of the projects,
with the most important metrics related to
the type/size of a change, the time taken
to review a change, the time since the last
change and issue discussion lag.

5.5 Discussion

From the metrics related to the Focus dimension, especially the experience-based metrics
turned out to have a major link with defect-proneness, either in the review (Reviewer Ex-
perience) or the issue (Issue Commenter Experience) domain. Their negative effect sizes
indicate that the more experienced the person, the less risky the commit might be. These
findings seem consistent with the results of Kononenko et al. (Kononenko et al., 2015). They
also found reviewer experience to be a good indicator of review quality, with less experienced
reviewers more likely to overlook potential problems.

Sentiment-related metrics seem to play a smaller role than experience, but still feature in
more than half of the models of OpenStack and/or Eclipse. Minimum and extreme sentiment
metrics tend to have a maximum effect size of 0.08. Given that the minimum sentiment is
a negative metric, a positive effect size actually means that more negative sentiment has
an increasing effect on defect-proneness. Extreme sentiment is harder to interpret, since it
could be a very negative value or very positive value. Average sentiment (effect size of -0.05)
tends to be positive, which again implies that higher sentiment is linked with lower defect-
proneness. This seems intuitive, and somehow relates to the findings of Ortu et al. (Ortu
et al., 2015a) that more positive emotions are linked with shorter issue fixing time, however,
more research is needed to fully understand these observations.

We have not seen a significant impact between software quality and the number of comments
(Length dimension), except for RQ1 (Number of Comments and Comment Length had neg-
ative effect size). These results support the observations of Bavota et al. (Bavota and Russo,
2015), as they also were not able to find any link between the number of comments and the
chance of defects slipping through review.
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5.6 Threats to Validity

Threats to internal validity concern confounding factors that might influence the obtained
results. Although we studied both change measures and human discussion measures, there
are likely other unknown factors that impact defect-inducing probabilities that we have not
measured yet.

Due to the elaborate filtering that we performed in order to link three repositories (version
control, bug repository, and code review) , we finally selected 15 huge projects from Open-
Stack and Eclipse projects, while for example Eclipse has around 549 projects. While just
10 Eclipse projects have more than 1,000 merged reviews in Gerrit, there were not enough
links between issue reports and commits to use the projects for RQ1 and RQ3 (yielding 5
analyzed Eclipse projects in Table 6.1).

Construct validity considers the accuracy of observation measurements. First of all, the
heuristics used to find the links between the three repositories are not 100% accurate, however
we used the state-of-the-practice linking algorithms at our disposal. Recent features in Gerrit
show that clean traceability between version control and review repositories is now within
reach of each project, hence the available data for future studies will only grow in volume.

Furthermore, there are some inaccuracies and limitations related to the algorithms and tools
that we have used. For example, we used the SZZ algorithm to identify defect-inducing
changes. The SZZ algorithm has some limitations, since it looks for special keywords in
commit messages to link bug fixing commit and to bug-introducing commits. If a fixing
commit message does not contain the keywords used by the algorithm, that commit and its
bug-introducing commit will be ignored. Similarly, for sentiment analysis of comments, we
used SentiStrength, which is a lexical-based tool that has its own limitations and is not 100%
precise. For example, it uses indirect affective terms that can increase inaccuracies. Indirect
affective terms such as “feel” or “like” associate with sentiment, but do not directly express
it. Hence, their sentiment value depends on the context (Thelwall).

Another threat to construct validity is that we assumed that defects had the same weight.
This assumption is primarily because of unreliable assigned priorities and severities in issue
tracking systems (Mockus et al., 2002; Herraiz et al., 2008). However, in reality, some de-
fects are more severe and take more time to be resolved. Nonetheless, each defect that we
considered was at least severe enough to be fixed and integrated into the system.

Threats to external validity correspond to the generalizability of our experimental results.
We studied 15 large open source projects, but we have no evidence to claim that these results
are representative of all projects out there. Hence, replication studies should confirm whether
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our findings generalize to other similar open and closed source projects.

5.7 Related Work

There are many studies on defect prediction that use various metrics captured from version
control systems and bug databases. Nagappan et al. (Nagappan and Ball, 2005) presented
a set of related code churn measures like total lines of code, file churn, file count as highly
effective predictors of defect density. Hassan (Hassan, 2009) showed in a large case study that
change complexity metrics are better predictors in comparison to code complexity metrics.
We refer to D’Ambros et al. (D’Ambros et al., 2012) for a detailed survey and evaluation of
these models.

In contrast to prior work, for which the granularity were files or packages, Kamei et al. (Kamei
et al., 2013a) proposed Just-In-Time(JIT) defect prediction models that predict “defect-
prone” software changes using the 14 factors related to software changes described in sub-
section 5.2.1. Their study was conducted over six open source and five commercial projects
and the proposed change risk model has an accuracy of 68 percent while it also may reduce
the effort in resolving the most risky changes. Later, Fukushima et al. (Fukushima et al.,
2014), through a case study on 11 open source projects, evaluated the performance of the
JIT work in a cross-project context. They showed that strong within-project performance of
a JIT model does not imply it also will perform well in a cross-project context. These studies
build on earlier work by Kim et al. (Kim et al., 2008) and Mockus et al. (Mockus and Weiss,
2000).

In our study, we focused on the impact of human review and issue discussions on software
quality. There are several other studies that investigated the impact of human factors on
software quality. Here we briefly mention the most relevant ones for our work.

Wolf et al. (Wolf et al., 2009) conducted a study of the relation between communication,
coordination and software quality integration. They used the IBM Jazz repository to in-
vestigate the relationship between communication structures and instances of coordination
during code integration. By applying social network analysis metrics, measurable communi-
cation characteristics are computed. Results show that developer communication plays an
important role in the quality of software integrations.

Bettenburg et al. (Bettenburg and Hassan, 2013) investigated how social interaction mea-
sures affect software quality in the form of post-release defects. They discovered that a
consistent information flow in discussions decreases the probability of defects significantly
and consequently increases software quality. Sliwerski et. al (Śliwerski et al., 2005) presented
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the impact of work dependencies on software quality.

Graziotin et al. (Graziotin et al., 2014) conducted a study with 42 student participants and
investigated the correlation of affect with creativity and analytical problem solving perfor-
mance of software developers. Their results showed that happier software developers are
more productive in problem solving performance. Murgia et al. (Murgia et al., 2014) found
that software artifacts like issue repository comments can convey emotional information of
developers. In this research, we use the sentiment of repository comments as one possible
metric of emotions in issue or review discussions.

Tourani et al. (Tourani et al., 2014) studied the usage of automatic sentiment analysis on
open source mailing lists and showed that development mailing lists carry both positive and
negative sentiments. Guzman et al. also applied sentiment analysis in their work (Guzman
et al., 2014) to analyze sentiment in topics extracted from software collaboration artefacts.
In contrast to these studies, the work presented in this paper does not focus on sentiments
of emails or comments, but rather on investigating the link between sentiment and defect-
proneness. Lately, Ortu et al. (Ortu et al., 2015a) studied the impact of human emotions,
sentiment and politeness on issue fixing time and found that extremely positive or negative
issue comments are linked with lower issue fixing time. Hence, understanding the way in
which human activities taking place before a code change relate to the defect-proneness (and
hence quality) of that change, is important.

Bavota et al. (Bavota and Russo, 2015) empirically showed on three large systems that code
reviewing significantly decreases the chance of defect introduction, while it also substantially
increases the readability of the reviewed code. Similar to us, they first had to link commits to
reviews to determine which commits were reviewed and which ones not. They used this data
to compare defect-proneness of reviewed commits to non-reviewed commits. They also ana-
lyzed whether defect-proneness changes have lower review participation degree (i.e., number
of reviewers and review comments).

Kononenko et al. (Kononenko et al., 2015) performed an empirical study on four large systems
to quantitatively investigate factors that might affect code review quality. They analyzed
technical properties of contributions, personal characteristics of developers, and some at-
tributes of the team involved in review process. Finally, they found that some technical
factors and developer-related factors like review experience and review load can influence
code review quality. Note that the studied systems used the Bugzilla issue repository tech-
nology for reviewing, which means that some of the review metrics were impossible for us to
obtain from the Gerrit review technology used by OpenStack and Eclipse.

Instead of explicitly evaluating the quality of reviews, we focus only on commits that are
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linked to an issue report and/or review in order to build full-fledged models with 14 code
change, 12 review and 10 issue metrics to understand the link between human discussions and
defect-proneness of changes. Furthermore, we studied 15 large systems of 2 major ecosystems.

5.8 Conclusion

In this paper, we empirically studied the impact of human discussion metrics on “Just-In-
Time” defect prediction models through an extensive study on 15 large open source projects.
We categorized the identified human discussion metrics into four dimensions and measured
them on both the issue report and/or review linked to a code change. Explanatory models
built using these metrics show a strong connection between human discussion metrics and
defect-prone commits, complementing traditional change-based metrics. In particular, while
code change metrics related to the size, type (bug fix or not) and time since last change
are the most impactful metrics, review time and issue discussion lag have shown to have a
substantial positive (i.e., increasing) effect on defect-proneness. Some models also included
the experience of issue reports and reviewers as important metrics, which have a negative
(i.e., decreasing) effect on defect-proneness. We believe that our study opens up a variety
of research opportunities to continue investigating the impact of collaborative characteristics
on quality assurance.
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CHAPTER 6 ARTICLE 3: ON ISSUE RESOLUTION AND REVIEW
TIME – EMPIRICAL STUDY ON 10 OPENSTACK PROJECTS

Abstract

Researchers have started to explore the main factors impacting either the time taken for issue
resolution or for code review, including measures of human collaboration and affectiveness,
such as politeness, sentiment and emotions. This paper performs a large empirical study
on 10 OpenStack projects that contrasts the factors playing a major role in issue resolution
time to those playing a major role in review time to understand the differences between
both. By studying 52 code-, review- and issue-related metrics across 10 dimensions, we find
that different metrics impact issue resolution and review time, except for projects where the
review time is relatively long. Apart from traditional churn metrics, the use of CI builds
during review and positive interaction between reviewers impact review time, while the issue
assignment effectiveness (tossing), amount of status changes and experience of commenters
are the most influential on issue resolution time.

6.1 introduction

In today’s competitive software industry, time-to-market is considered to be one of the most
important attributes for a software organization to succeed (Wohlin and Ahlgren, 1995b). For
example, large software companies like Facebook, Google, Mozilla and Netflix have stream-
lined their release engineering process to accelerate the delivery of releases to the end user,
including new features and bug fixes (Adams and McIntosh, 2016). Of course, making only
the release time faster is not sufficient, the whole software organization needs to improve
its speed. In this context, two major responsibilities of developers, requiring them to be
productive, are the resolution of issues, such as reported bugs or new features, and the peer-
reviewing of other developers’ code changes. Issues are typically reported to an issue tracking
system like Bugzilla or Jira, after which a discussion amongst developers and reporter starts
to better understand the issue at hand as well as start sketching out a patch. Once a de-
veloper has developed an initial patch, it is sent to the reviewing environment (e.g., Gerrit
or Rietveld) for peer-review. Here, fellow developers analyze the quality of the patch, sug-
gesting improvements and potentially asking for updated versions of the patch. Once the
final version of the patch has been accepted, the issue is marked as resolved. If patch is not
accepted, either because the issue is not feasible or nobody is able to work on it, the issue
could be closed.
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Recently, the issue resolution and review processes have seen a surge in research inter-
est (Jiang et al., 2013; Kononenko et al., 2015; Bavota and Russo, 2015; Tourani and Adams,
2016), especially to understand the factors impacting them and to evaluate how well the
processes are being executed. For example, modern code review has thrived thanks to the
advent of lightweight reviewing environments (Rigby and Bird, 2013), and is not only used
for detecting defects, but also to improve code style, increase team awareness and transfer
knowledge within a team (Bacchelli and Bird, 2013). Other research instead focused on the
time taken by code review (Jiang et al., 2013) or issue resolution (Weiss et al., 2007; Ortu
et al., 2015a). By building models for code review and issue resolution time in terms of a
variety of metrics, such studies are essential to identify ways in which developers can be made
more productive.

So far, no study has contrasted the issue resolution and review processes within the same
software organization. As such, it is unclear what factors impact only review or issue res-
olution time, and which factors are common. Worse, the actual interaction between issue
resolution and review process is unknown. Recently Ortu et al. (Ortu et al., 2015a) have
shown how affective factors like emotion and politeness of the participants in issue discussions
have a non-negligible association with issue resolution time. This promising association has
not been evaluated on review time, although similar to issue resolution the reviewing process
is a collaborative activity. While, intuitively, reviewing should start at the end of the issue
resolution period, it is unclear whether this is indeed the case in practice as well as what
proportion of the issue resolution process is taken up by the review process.

In order to contrast the major factors impacting issues resolution and review time, including
affective factors, we perform an empirical case study on 10 OpenStack projects, for whom we
were able to link issue report data with patch and review data. Using a total of 52 metrics
spread across 10 dimensions, we built models to address the following research questions:

RQ1) What is the relation between the review and issue resolution periods?

We find that the issue resolution and code reviewing periods have different lengths
that are not correlated to each other, which suggests that different factors are likely
to influence both processes. The issue resolution process is not necessarily closed after
successful patch reviewing.

RQ2) How well can review discussion metrics explain reviewing time?

We obtained very good explanatory models based on review-related metrics, with CI
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builds, non-bug fixes and positive interaction between reviewers as most influential
review-related metrics (in addition to the traditional churn and age metrics).

RQ3) How well can issue discussion metrics explain issue resolution time?

Issue-related metrics dominate issue resolution time, except for projects with relatively
long review time. Experience is linked with lower issue resolution time, while tossing,
status changes, churn, CI builds and politeness/positive sentiment are linked with larger
issue resolution time.

In the remainder of this paper, we first discuss the necessary background notions for our
work (section 6.2). Next, we describe the case study setup (section 6.3), then present the
results of the three research questions (section 6.4). After discussion and threats to valid-
ity (section 7.4), we discuss related work (subsection 7.2.3) and we finish with conclusions
(section 7.5).

6.2 Background

6.2.1 Sentiment, Emotion, and Politeness

“Sentiment” refers to people’s opinion, attitude, appraisal or opinion towards entities, events
and their features (Mishra and Jha, 2012). We can measure sentiment within communication
between people, which is not just limited to real world conversations but also includes virtual
communication such as email, chat or twitter (Mishra and Jha, 2012). Comments left by de-
velopers during code reviews or issue resolution also apply, and hence may convey sentiments.
We used the state-of-the-art SentiStrength tool 1, which uses a lexical approach (Thelwall)
to estimate the sentiment score of informal English text and returns positive and negative
scores (“polarization”) from 1 to 5 or -5 to -1. The sign (“degree”) of the sentiment score
indicates a positive versus negative opinion or attitude.

On the other hand, an “emotion” is a psychological state of human feelings such as sadness,
happiness or anger. This categorization can be done based on several frameworks, however
Parrot’s emotional framework is one of the more common ones in recent research (Murgia
et al., 2014; Ortu et al., 2015a). Murgia et al.’s exploratory study showed that comments
in issue reports express emotions (especially joy, sadness, love, and anger) towards different
subjects, activities or even team members. Currently, the only tool able to automatically
mine comments for emotions are the emotion classifiers of Ortu et al. (Ortu et al., 2015a).

1http://sentistrength.wlv.ac.uk/

http://sentistrength.wlv.ac.uk/
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Finally, politeness is “the practical application of good manners or etiquette2. It is related
to the behaviour expected in a certain context, for example users who use rude language in
a bug report might not get the same kind of attention as a friendly bug reporter. Danescu
et al. in (Danescu-Niculescu-Mizil et al., 2013) built a classifier to automatically classify a
text as (im)politeness and calculate a politeness probability. Scores lower than 0.5 typically
are considered as neutral.

6.2.2 Issue Reports

An issue report is a report or description about a bug, new feature or an enhancement,
recorded into an Issue Tracking System (ITS). Each issue report has a unique identifier
and several attributes, including a subject briefly describing the issue report, an assignee
responsible to resolve the issue, and several comments that represent discussions occurring
during issue resolution. The status of an issue report indicates the state an issue report is
in, allowing to track the issue’s progress: new (when reported), triaged (when the issue has
enough comments and analysis to be fixed), in progress (it has an assignee and work is going
on for it), fix committed (the issue has had a patch accepted during the review process), and
fix released (the accepted patch has made it into a new release). The corresponding issue
life cycle is documented in the Openstack documentation3. In this paper, we consider the
period from the new status until fix committed as the issue resolution period. As discussed
elsewhere (da Costa et al., 2016; Jiang et al., 2013), the time between fix committed and fix
released depends on management decisions outside the control of individual developers.

Typically, ITSes not only collect and manage issue reports, but they especially provide a
shared environment for people to discuss the issues being resolved. Thus, as people discuss,
help other team members, ask questions or give their opinions, their communications and
interactions are tracked and hence can be studied . In our study, we mined the Launchpad
issue repository of Openstack4 to extract different metrics related to the issue resolution
process.

6.2.3 Code Review

Code review is a crucial part of the quality assurance streategy of large and mature software
projects. It aims at evaluating code changes, discovering and fixing defects and weaknesses
before a submitted patch is integrated into the codebase. Modern code review technology

2http://en.wikipedia.org/wiki/Politeness
3https://wiki.openstack.org/wiki/Bugs#Status
4https://launchpad.net/openstack

http://en.wikipedia.org/wiki/Politeness
https://wiki.openstack.org/wiki/Bugs#Status
https://launchpad.net/openstack
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has been widely adopted in both commercial and open source software projects, due to
its lightweight nature and strong tool support (Rigby and Bird, 2013). Gerrit5 is such a
modern code review tool, providing a traceable code review process for git-based software
projects (Bettenburg et al., 2015).

In a typical code review process recorded in Gerrit, there are reviewers and verifiers. Review-
ers are responsible for checking proposed changes by leaving their comments and feedback
for the author of the proposed patch or giving a score to indicate their agreement or disagree-
ment. Verifiers further evaluate code changes by executing tests to ensure the correctness
and consistency of the proposed patch. Apart from (human) team members, Continuous
Integration (CI) tools are commonly used as verifiers, automatically compiling and testing
newly submitted versions of a patch. The reports generated by these CI tools can then be
appended to the code review.

6.3 Case Study Setup

This section discusses the data set used in our case study analysis to address our RQs,
extracted metrics and finally our methodology.

6.3.1 Dataset

We used the OpenStack data set of 10 projects provided by Tourani et al. (Tourani and
Adams, 2016), with the statistics shown in Table 6.1. Openstack6 is a popular open source
ecosystem with a large number of projects that use a modern code review repository (Gerrit),
issue repository (Launchpad), and version control system (Git). Developers typically follow
guidelines to make explicit links between the code reviews, issues and commits, enabling
researchers to link a substantial number of commits to reviews and issues.

The data set originally was mined by Gonzalez-Barahona et al. (Gonzalez-Barahona et al.,
2015) in the form of a relational database. Tourani et al. (Tourani and Adams, 2016) then
used a variety of heuristics to recover the links between commits, reviews and issues. Because
of rebasing (Bird et al., 2009c), only for 60% of the reviews the corresponding Git commit
could be found. For more than 50% of the missing cases, the correct Git commit identifiers
were mentioned in review comments or in some other field, eventually leading to at least 70%
of the reviews being linked to commits.

To link commits to issue reports, issue identifiers mentioned in commit messages or commit
5https://code.google.com/p/gerrit/
6http://openstack.org

https://code.google.com/p/gerrit/
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identifiers mentioned in issue reports were used. Finally, the links of 72% of issue reports
were identified. By combining the links between commits and reviews, and commits and
issue reports, a data set of commits linked to both review and issue reports was obtained.
The properties of this data set are shown in Table 6.1.

6.3.2 Independent Metrics

As independent variables for our study, we considered the set of code change metrics proposed
by Kamei et al. (Kamei et al., 2013a), and the sets of metrics related to human discussions
introduced by Ortu et al. (Ortu et al., 2015a) and Tourani et al. (Tourani and Adams, 2016).
We also introduced additional metrics.

Change-level metrics were extracted from the Git version control repository. For each commit,
its issue and review discussion metrics subsequently were mined from the Launchpad issue
repository and Gerrit review repository. For commits linked to several issue reports, one
issue report randomly was selected . Table 6.9 shows the resulting list of metrics, categorized
per domain (code change, review, issue or both) and dimension. In the following, we briefly
describe these metrics.

Code Change (First 5 dimensions) The complexity of a patch proposed to resolve an
issue dictates not only the time to develop the patch for the code change, but likely also its
review time. For example, the more diffused a code change is, the more effort and hence
time is required from developers to analyze the patch . A code change has several attributes
relevant to the diffusion, size, purpose, history and experience involved in a code change, as
proposed by Kamei et al. (Kamei et al., 2013a).

Focus More experience at certain tasks make people confident and likely faster at reviewing
or resolving issues. However, such people might also be more susceptible to resolving more
difficult issues. For this reason, we included focus-related metrics like experience into our
study. Apart from experience-related metrics, other metrics in this dimension are indicators
of the complexity and accuracy of the reviewing/resolution work.

Integration The easier and smoother a proposed patch integrates into the existing code base
(i.e., the lower NegativeCI and workflow, and the larger PositiveCI), the shorter review time
might be. Note that “pausing” a review means that the reviewers can continue providing
review comments, but the review cannot be flagged as accepted (i.e., be integrated into the
code base), effectively blocking a patch from progressing.

Quantity The more people contributing during the review process, the more difficulties
might have arised. For each review, we counted the number of times a review score was
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Table 6.1 Statistics of the studied OpenStack projects.

Project Start Date
# commits linked to
issues and reviews
(%total)

cinder 2012-05-03 1654 (33%)
devstack 2011-09-11 827 (15%)
glance 2010-08-11 1155 (28%)
heat 2012-03-13 1982 (27%)
horizon 2010-07-12 1043 (24%)
keystone 2011-04-14 1996 (30%)
neutron 2010-12-31 2979 (35%)
nova 2010-05-30 6600 (20%)
openstack-manuals 2011-09-20 2290 (27%)
tempest 2011-08-26 1453 (25%)

given.

Length The length of comments and the number of comments are two indicators of the
amount of discussion. More discussions may reveal a controversial problem that might take
longer to be solved. Other length-related metrics like #sentences or #authors were highly
correlated with #comments, and hence not included Comments generated automatically by
the version control servers or other tools were excluded.

Affect Every piece of text consists of two aspects of information: facts (objective expres-
sion) and opinion (subjective expression) (Thelwall). Facts are about various entities, their
attributes and events, while opinion expresses feelings, emotions or sentiments towards a
subject. In the context of our study, we consider the text inside issue or review comments,
which information, have been shown to carry emotions and sentiments (Murgia et al., 2014;
Ortu et al., 2015a; Tourani and Adams, 2016).

To extract such affective metrics, first we filtered out automatically generated comments
, as we are interested only in affective metrics of human conversations. Furthermore, each
comment can have non-human language parts like code snippets or stack traces. By applying
a lightweight method using regular expressions, we were able to filter out such parts of
comments.

To calculate the sentiment of comments, we applied SentiStrength, as explained in section 6.2.
We calculated the average sentiment value for review and issue comments, as well as the
sentiment of the first and last comment only, as Ortu et al. showed that the sentiment and
politeness of the last comment of an issue report may have a strong impact on the issue fixing
time (Ortu et al., 2015a).
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To measure the politeness of comments we adopted the tool of Danescu et al. (Danescu-
Niculescu-Mizil et al., 2013), and for emotions the emotion classifier of Ortu et al. (Ortu
et al., 2015a).

6.3.3 Preliminary Analysis of Review Discussion Metrics

Handling Collinearity After collecting the required metrics, we observed correlations be-
tween metrics, due to redundancy, for example between comment sentiment and the last
comment’s sentiment. As a matter of fact, we expected some of these correlations while
designing and selecting the different metrics, but still put these metrics in our initial list
to analyze these correlations in more detail. To remove collinearity, we calculated the vari-
ance inflation factors (VIF) for each metric, then metrics with VIF greater then 5 will be
removed (Fox and Weisberg, 2010).

Handling Skew Positive skew, i.e., a long tail of values towards higher values, is a threat
for the performance of models. Here, we dealt with the effect of skew by using standard log
transformation.

6.3.4 Building Explanatory Models

According to Tantithamthavorn et al. (Tantithamthavorn et al., 2016), classification tech-
niques like logistic regression models produce defect prediction models that outperform mod-
els trained using clustering, rule-based, SVM, and neural network techniques. Hence, we
applied logistic regression models to investigate influential factors on the issue resolution or
review time. Similar to Ortu et al. (Ortu et al., 2015a), we mapped issue resolution and
review time, which are numeric values, to a binary value using their median value as a cri-
terion. A review or issue resolution time larger than the median was considered as “long”
(value 1), and a shorter time as “short” (value 0). Using this binary dependent variable, the
output of each logistic regression model then reveals the probability of the issue resolution
or review time spent being long (probability of at least 0.5).

To remove metrics without significant impact on the model, we applied Mallow’s Cp crite-
rion (Mallows, 1973) in a stepwise variable selection. The final model just contains variables
with significant impact, such that the deletion of the filtered out variables would not improve
the model.
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6.3.5 Evaluating the Models

To validate the models, we use the following common performance measures: precision, recall,
F1-measure and AUC. Precision measures the percentage of cases where the model correctly
classifies something as “long”, whereas recall measures the percentage of all “long” cases
successfully found by the model. The F1-measure is the arithmetic mean of precision and
recall. Finally, the AUC value provides an overall performance of a model across all possible
probability thresholds (not just 0.5). The higher the AUC compared to 0.5, the better the
model performs compared to a random model.

These validation metrics are calculated using 10-fold cross validation technique (Efron and
Tibshirani, 1995) . Using this technique, the data set is divided into 10 folds (each having
a similar proportion of “long” review of issue resolution time). Then, one at a time, each
fold is selected as test data, with the rest of the data used as training data for building
a model. After ten iterations, this process finally yields a so-called confusion matrix from
which precision, recall, F1-measure and AUC can be calculated.

6.3.6 Identifying Significant Metrics

To determine the metrics with the strongest impact on issue resolution or review time, we
used the technique by Shihab et al. (Shihab et al., 2013). This approach calculates a baseline
output of the model with all input variables set to their median value. Then, one metric at a
time, 1) we change the value of that metric by adding one standard deviation to its median
value, while the values of the other metrics remain unchanged on their median values; then
2) for the given metric, we compute outputofchangedvalue−basevalue

basevalue
, the so-called called effect size

of that metric, which is the relative increase or decrease for the corresponding output.

The effect size value is independent of the type or unit of the corresponding metric, which
facilitates comparisons among different metrics. This value also has a direction indicating
either an increase or a decrease in output variable and enables us to identify metrics with
decreasing (negative, i.e., shorter time) or increasing (positive, i.e., longer time) impact. For
each metric, we analyze the distribution of its effect size across the 10 studied projects.

6.4 Case Study Results

RQ1. What is the relation between the review and issue resolution periods?

Motivation Intuitively, one would expect the work on a particular issue (such as a bug fix
or new feature) to start from the time the issue is reported, going through a period of issue
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discussions to understand the requirements and start sketching an initial design, until a first
patch version is proposed by a developer. This patch then would enter the reviewing process,
where reviewers might ask subsequent patch versions to address errors, omissions or wrong
decisions. If the patch is accepted, it would be integrated into the version control system
of the project and the issue report marked as resolved. If the patch is rejected, the issue
discussions could continue until a new patch is proposed and successfully passes review, or
the issue is closed without resolution.

Before analyzing and comparing the factors that impact issue resolution and reviewing time,
this research question empirically studies whether the above interaction between issue and
review process matches reality.

Approach In order to analyze the relationship between the issue resolution and reviewing
process, we analyze the overlap between the issue resolution and reviewing period. To do
this, we first extract, for each issue report and its corresponding review, the issue’s and
review’s start and end time. For issues, we consider as start time the moment a particular
issue is reported, and as end time the moment the issue’s status changed to fix committed.
For reviews, the start time is the moment on which a patch has been submitted and the end
time is the moment on which the final version of the patch has been merged. Note that our
data set only comprises issues with accepted patches, and ignores rejected patches.

Before comparing issue resolution and review periods, we had to check the timezone used for
the recorded issue (Launchpad) and review (Gerrit) dates. In contrast to the Gerrit review
dates, which are stored in the Eastern time zone7, Launchpad issue dates are stored in the
GMT time zone 8. Therefore, by converting the review dates to GMT using R’s built-in
functions (which take into account leap years and other exceptional circumstances), we could
compare the start and end time of issues and reviews to each other.

Using this data, we studied the three theoretically possible overlaps between the issue reso-
lution and review periods graphically shown in Figure 6.1.

7https:en.wikipedia.orgwikiEastern_Time_Zone
8https:en.wikipedia.orgwikiGreenwich_Mean_Time

Figure 6.1 Patterns of overlap between issue resolution and review periods.
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Findings. A median of 95% of issues in the studied systems have the reviewing
period embedded inside the issue resolution period (pattern1). As shown in Ta-
ble 6.2, the theoretically expected interaction between issue resolution and reviewing time
by far is the most popular, followed by pattern2 (issue resolution process is stopped before
the reviewing process finishes). This means that the rest of our study will focus only on the
issues/reviews that follow pattern1.

Despite the reviewing period being embedded into the issue resolution period
(pattern1), there is only a weak correlation between issue resolution and review-
ing time. Indeed, the Spearman correlation between issue resolution and review time is
shown in Table 6.4. As is commonly done, we considered weak a correlation less than 0.4,
moderate a correlation from 0.4 to 0.7, and strong a correlation greater than 0.7. Only for
horizon and tempest, the correlation reaches 0.4, but even these correlations could not be
considered as moderate. This low correlation suggests that the lengths of both periods are
mostly independent, and hence are impacted by different factors.

One possible explanation for this is shown on Figure 6.4 and 6.5a, which show respectively the
distribution of the lengths of issue resolution/reviewing periods and the distribution of the
ratio of review time to the issue resolution time. Only for cinder, devstack, horizon and nova,
the issue resolution and reviewing periods have similar lengths. For the other projects, the
length of the reviewing period drops down to a median of 8% (openstack-manuals), indicating
that the issue resolution time is an order of magnitude larger in several of the projects.

In a non-negligible number of cases, the issue resolution process is not immedi-
ately closed after patch acceptance. Figure 6.5b shows on the one hand that the median
time between the end of the review and issue resolution period is 8.74 hours, since various
projects automatically close an issue upon patch acceptance, but that the 75th percentile can
go up to 40% of the total issue resolution time. We manually analyzed such cases sampling 99
issues. This number of issues in purpose of obtaining a confidence level of 90% and confidence
interval of 10%. This means that a proportion of X%in our sample of issues with certain
characteristics actually corresponds to X±10% in the population of issues. In Table 6.3, you
can see various reasons observed in our sample, mostly the importance of a bug is set to low
or medium. Another major reason is reopening of bugs, which also observed and investigated
in detail by An et al. (An et al., 2014). Holiday (new year holiday) is another reason, also
while many discussions happened around the bug report or the bug report is not complete
and it takes some time to be completed, for instance to be reproduced. For some bug reports
their states changed to “fix committed” not immediately after the review and it takes time.
Finally, frequent changes of assignees or setting them late, different milestones, integration
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Table 6.2 Popularity of the three patterns.

Project Pattern3 Pattern2 Pattern1
nova 92% 6% 2%

glance 96% 2% 2%
openstack-manuals 96% 4% 0%

keystone 92% 7% 1%
cinder 95% 4% 1%

tempest 94% 5% 1%
neutron 95% 4% 1%
devstack 96% 3% 1%
horizon 95% 2% 3%

heat 92% 7% 1%

and merge new changes to main branch are also other factors that might contribute to longer
issue resolution time length.

Table 6.3 Reasons for delayed issue times.

Cause of delay Count
Low importance 16
Medium importance 14
Bug Reopening 14
No reason (for one month or more wihout any changes) 13
Related bugs (even in other systems) 10
Holiday 7
Long discussions (around the bug report) 6
Incomplete bug report 5
Late change state to fix committed 4
Milestone changes (5 times) 2
Making bug report as wish list 2
Assignee changes (3 times or more before review) 2
Setting assignee late 2
Merged to master branch late (from stable branch) 2

�

�

�

�

The issue resolution and code reviewing pe-
riods have different lengths that are not
correlated to each other, which suggests
that different factors are likely to influence
both processes.
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Table 6.4 Correlations between issue resolution and review time, for the studied projects.

cinder devstack glance heat horizon keystone neutron nova . . . -manuals tempest
0.58 0.23 0.24 0.59 0.36 0.57 0.38 0.47 0.12 0.33

RQ2. How well can review discussion metrics explain reviewing time?

Motivation.

Reviewing has become one of the cornerstones of modern software quality assurance (Bacchelli
and Bird, 2013). As the main quality gate between software developers and a project’s code
repositories, reviews aim to intercept errors, coding style violations or bad practices in general
in submitted patches before they pollute the main code base and might impact the whole
development organization. Given their central role, reviews should not only be thorough,
but also be as fast as possible, in order to not slow down regular development and not
generate more severe merge conflicts (as the patch under review gradually would become less
compatible with the main code base (Bird et al., 2009c)). In this research question, we study
which factors impact review time.

Approach.

For each project separately, we build an explanatory logistic regression model of review time
based on the metrics discussed in subsection 6.3.4 to analyze how the factors measured by
these metrics can explain review time. The model explains the probability that a given
review would belong to the 50% slowest reviews. Since in some projects review time can
represent a median of up to 50% of issue time, we also considered issue-related metrics in
our models, even though we expect issue-related metrics to play a minor role compared to
the review-specific metrics.

We first built baseline models involving only the change-related metrics. Then, we added
either review-related metrics or issue-related metrics, and finally we built models with all
three groups of metrics. For each kind of model, we evaluated the performance using 10 fold
cross validation, yielding the results in Table 6.5.

Since some metrics might have a larger influence on the dependent variable, i.e., the proba-
bility that review time belongs to the 50% slowest reviews, we then calculated the impact of
each metric in the generated logistic regression model as explained in subsection 6.3.5. We
then studied the resulting effect sizes. Metrics not appearing in the models were given an
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effect size of zero.

Findings. The models using review-related metrics obtain an average precision
and recall of 0.78 and 0.79. For these models, glance has the largest improvements in
performance compared to the baseline model based solely on change-related metrics, i.e., an
increase of 23% in precision, 21% in recall and 21% in AUC. Next up is horizon, with a 22%
increase in precision, 21% in recall and 21% in AUC. Among all projects, openstack-manuals
and tempest have the lowest increase in recall with 7% and 10%, and lowest improvement in
precision with 7% and 8%. Generally, on average, we can see 16% increase in precision, 14%
in recall, and 14% across all projects when review metrics are added to the change metrics.

Combining issue metrics to change metrics does not lead to a significant improvement in the
models’ performance, which confirms our findings from RQ1 about the large difference in
length between review and issue process. The improvements obtained when combining all
metrics together all are due to the review-related metrics. The issue resolution process does
not play a large role in the reviewing process, since considering just issue related metrics, the
model performance does not improve significantly Table 6.5.

Reviews involving continuous integration builds, changes with high number of
votes tend to have a longer review time.

Figure 6.2 shows number of votes has most impact on the review time. Reviews investigated
by more reviewers may take a longer time, which seems intuitive. The total number of
continuous integration checks has a large, positive median effect size and hence are associated
with longer review times. One hypothesis is that many reviews with passing builds also have
earlier failing builds, although we did not find strong correlations between both metrics.
Alternatively, it is clear that due to the traffic of submitted patches, the CI environment
cannot be kicked off immediately for each new patch version. The resulting delay could
be one of the reasons for the strong link with long review times . This is confirmed by
OpenStack’s efforts to improve the scheduling algorithm of their CI system (Carrez, 2014).
Length of comments during reviews is the third metric with the most positive impact size
indicating reviewing with more explanations will take longer time, probably they are more
complicated.

Apart from these review-related metrics, the amount of churn (ADD) also has a large, in-
creasing link with review time. This seems intuitive, as larger changes to lesser known code
indeed require more effort by reviewers.

Reviews of non-bug fixes, involving positive interaction between reviewers or
more modified subsystems tend to have a shorter review time.
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Table 6.5 Performance of review time models with only “change metrics” c, “change metrics”
and “review metrics” c+r, “change metrics” and “issue metrics” c+i, and all metric categories.

project pc rc fc aucc pc+r rc+r fc+r aucc+r pc+i rc+i fc+i aucc+i p r f auc
cinder 0.66 0.69 0.67 0.66 0.82 0.78 0.80 0.81 0.69 0.66 0.67 0.68 0.82 0.80 0.81 0.81
devstack 0.57 0.58 0.58 0.62 0.67 0.73 0.70 0.73 0.54 0.58 0.56 0.60 0.67 0.71 0.69 0.72
glance 0.62 0.65 0.63 0.66 0.85 0.86 0.85 0.87 0.56 0.65 0.60 0.61 0.87 0.86 0.87 0.88
heat 0.58 0.64 0.61 0.62 0.78 0.79 0.79 0.80 0.61 0.64 0.62 0.64 0.78 0.80 0.79 0.80
horizon 0.63 0.60 0.61 0.60 0.82 0.76 0.79 0.78 0.65 0.63 0.64 0.63 0.82 0.75 0.79 0.79
keystone 0.54 0.74 0.63 0.66 0.70 0.88 0.78 0.81 0.57 0.84 0.68 0.71 0.67 0.89 0.77 0.80
neutron 0.63 0.63 0.63 0.62 0.85 0.85 0.85 0.85 0.63 0.63 0.63 0.62 0.84 0.84 0.84 0.84
nova 0.60 0.68 0.64 0.65 0.77 0.79 0.78 0.80 0.63 0.69 0.66 0.67 0.77 0.79 0.78 0.80
. . . -manuals 0.68 0.65 0.66 0.66 0.76 0.71 0.73 0.73 0.66 0.64 0.65 0.64 0.76 0.74 0.75 0.74
tempest 0.65 0.66 0.66 0.66 0.76 0.75 0.75 0.76 0.68 0.68 0.68 0.69 0.76 0.78 0.77 0.78
Average 0.62 0.65 0.63 0.64 0.78 0.79 0.78 0.79 0.62 0.66 0.64 0.65 0.78 0.80 0.79 0.79

Table 6.6 Performance of issue time models with only “change metrics” c, “change metrics”
and “review metrics” c+r, “change metrics” and “issue metrics” c+i, and all metric categories.

project pc rc fc aucc pc+r rc+r fc+r aucc+r pc+i rc+i fc+i aucc+i p r f auc
cinder 0.73 0.65 0.69 0.67 0.76 0.64 0.69 0.69 0.82 0.66 0.73 0.73 0.83 0.70 0.76 0.75
glance 0.59 0.58 0.58 0.56 0.60 0.61 0.60 0.57 0.75 0.71 0.73 0.72 0.76 0.72 0.74 0.73
heat 0.67 0.60 0.63 0.60 0.71 0.59 0.64 0.63 0.76 0.57 0.65 0.67 0.77 0.62 0.68 0.69
horizon 0.65 0.58 0.61 0.60 0.74 0.63 0.68 0.68 0.72 0.58 0.65 0.65 0.77 0.66 0.71 0.71
keystone 0.69 0.49 0.57 0.54 0.71 0.50 0.59 0.56 0.82 0.64 0.72 0.69 0.80 0.63 0.71 0.67
neutron 0.53 0.54 0.53 0.51 0.52 0.49 0.51 0.50 0.72 0.65 0.68 0.69 0.72 0.64 0.68 0.69
nova 0.69 0.61 0.65 0.63 0.71 0.64 0.67 0.66 0.75 0.64 0.69 0.68 0.77 0.69 0.73 0.72
. . . -manuals 0.76 0.50 0.60 0.60 0.75 0.49 0.59 0.59 0.81 0.61 0.70 0.67 0.81 0.59 0.68 0.66
tempest 0.69 0.65 0.67 0.66 0.71 0.66 0.68 0.68 0.79 0.68 0.73 0.74 0.82 0.75 0.78 0.78
devstack 0.57 0.58 0.58 0.62 0.67 0.73 0.70 0.73 0.54 0.58 0.56 0.60 0.67 0.71 0.69 0.72
Average 0.66 0.58 0.61 0.60 0.69 0.60 0.64 0.63 0.75 0.63 0.68 0.68 0.77 0.67 0.72 0.71

The metric with the most negative median effect size is Change_Type, indicating that
changes other than bug fixes tend to take the least amount of time to review. This makes
sense, as bug fixes, although users wish them to be delivered faster, need to be checked in
more detail to ensure that the bug is really fixed and no further damage is made to the
organization’s reputation.

Interestingly, the average of love emotion (which means gratitude) in review comments has a
decreasing effect, i.e., reviews with comments having a kinder tone seem to take less time to
review. Of course, we cannot make any causality claims, but intuitively this observation seems
to make sense. More kindness expressed among reviewers may imply better communications,
leading to more constructive and effective collaboration. This result is consistent with the
impact of other affective metrics in our models, with firstComment_sentiment also having a
decreasing effect. Conversely, firstComment_politeness was seen with an increasing impact
on reviewing time, again suggesting that positivity and openness seems to be more interesting
during reviews.
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Figure 6.2 Distribution of effect size for metrics in the reviewing time models, ordered from
highest to lowest median effect size.

Finally, the more modified subsystems (NS), the shorter the change’s reviewing time. This
was a surprise to us, since modifying more subsystems probably require more time to inves-
tigate different aspects and impacts of a commit on various subsystems.

�

�

�

�

We obtained very good explanatory models
based on review-related metrics, number of
votes, CI builds, non-bug fixes and posi-
tive interaction between reviewers as most
influential review-related metrics (in addi-
tion to the traditional churn metric).
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Figure 6.3 Distribution of effect size for metrics in the issue resolution time models, ordered
from highest to lowest median effect size.

RQ3. How well can issue discussion metrics explain issue resolution time?

Motivation.

Issue resolution time can be interpreted as one of the major measures of development ef-
fort (Weiss et al., 2007), providing an indicator of the productivity of developers in complet-
ing their tasks, including fixing defects and developing new features. Faster issue resolution
not only is a good sign in terms of developer productivity, but also is well regarded by the
end user. Hence, this question aims to understand what factors tend to be related to faster
or slower issue resolution time.

Approach. We take a similar approach as for RQ2, but with as dependent metric the
probability that issue time is longer than the median issue time. We again consider change-
, review- and issue-related metrics, but this time we expect the issue-related metrics to
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dominate (with some review-related metrics in the projects with longer review time). The
models’ resulting performance metrics are shown in Table 6.6, while the distribution of effect
sizes is shown in Figure 6.3.

Findings. The models combining issue and review metrics obtain average pre-
cision and recall of 77% and 67%, with review metrics only contributing in the
projects with long review time. Compared to the baseline models containing only change-
related metrics, the combined models’ precision of 7 projects improved more than 10%, and
for 5 projects recall improved with more than 10%. While all projects saw both precision
and recall increase, the precision and recall of neutron increased the most, with 19% and
10% respectively. Generally, we can see significant improvement in both precision and recall,
with increases of 16% (glance), 13% (tempest), 12% (horizon) and 10% (heat and devstack)
compared to recall increases of 14% (glance and keystone), 12% devstack, 10%(neutron and
tempest). Finally, the AUC of 5 projects increased by more than 10%.

As suggested by the findings in terms of the ratio between review and issue resolution time
(Figure 6.5a), the projects with proportionally longer review time have models in which the
review-related metrics play a larger role. In particular, we can see that the recall of the
review-related models for devstack, heat, horizon and nova is at least as high as the recall for
the issue-related models, while the same holds for the AUC values of heat, horizon and nova.
In other words, one first needs to check the interaction between issue resolution and reviewing
period before deciding which metrics to consider in the issue resolution time models.

Incomplete issues and issues with low importance, also with insubstantial tossing,
status changes, churn added take longer until resolution.

If an issue has low importance or changed to a wish list, it is likely to be resolved later, also
incomplete issue reports are more probable to fix in a longer time. These observations intu-
itively seem correct as developers naturally will address critical and high importance issues
first. When a bug report is not complete, it takes extra time and effort to be understood.
Another influential metric is the number of times an issue is tossed around to different de-
velopers, i.e., the initial person assigned to resolve the issue was not able to do so and tossed
the issue to someone else, until the right person was found. Similarly, the more the status
of an issue is changed, the larger the indication that an issue is being tossed around, more
information is required from the issue reporter to for example reproduce a bug, or some other
event happened involving a delay in resolution. Surprisingly, the length of review comments
also shows increasing impact on issue resolution time, by indicating that the corresponding
issues is more complicated and requires more explanations or discussions. Also, similar to the
review time models of RQ2, the amount of churn added is related to longer issue resolution
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time. This effect especially was observed in the projects with longer review time.

More experienced issue fixer is linked with faster issue resolution time.

This observation intuitively makes sense as the more experienced someone is in resolving
issues, the more familiar he or she is with the software system and issue resolution process,
likely leading to faster resolution.�

�

�

�

Issue-related metrics dominate issue res-
olution time, except for projects with rel-
atively long review time. Experience is
linked with lower issue resolution time,
while low importance, incomplete bug re-
port, tossing, status changes, and churn
are linked with larger issue resolution time.

6.5 Related Work

Regarding review practices, Bavota et al. (Bavota and Russo, 2015) found that reviewed
code has a significantly higher readability and less chance of defect-introducing commits with
respect to non-reviewed code, while review participation degree (i.e., the number of reviewers
and review comments) may affect this chance. Kononenko et al. (Kononenko et al., 2015)
showed that code review quality is affected by both technical and personal attributes, like
review experience In their later study (Kononenko et al., 2016), they surveyed 88 Mozilla core
developers to understand their perception of code review quality. As factors affecting review
time, the survey identified technical ones like change complexity and patch size, and human
or social ones like experience of reviewer and patch writer, personality of reviewer and his
personal priorities. Our study also adopted human-related factors like sentiment, politeness
and emotions of discussion participants, apart from more traditional code change-related
factors. Jiang et al. (Jiang et al., 2013) built a model of review time in the Linux kernel,
mainly using patch-, email- and developer-related metrics. The above work is the latest in
a long line of review research (Bacchelli and Bird, 2013; McIntosh et al., 2014; Rigby and
Bird, 2013). With respect to issue fixing time, Weiss et al. (Weiss et al., 2007) presented an
approach that automatically predicts the person-hours spent on resolving an issue. Given a
new issue report, they identify a sufficient number of issue reports that are textually most
similar in terms of their title and description, then take their average resolution time as
prediction for the new issue. Their predictions were promising and performed well. Giger et
al. (Giger et al., 2010) also studied issue reports of three open source projects to propose a
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model that can predict a new issue to be resolved fast or slow. This model used attributes
of a newly reported issue, such as the reporter, assignee, milestone and severity . Our study
includes the same metrics, but complements them with many other dimensions and two other
domains of metrics, i.e., code change- and review-related metrics.

Wolf et al. (Wolf et al., 2009) found that there is a relation between communication structures
and software quality. They defined and calculated social network metrics and communication
characteristics that have an important impact on the quality of software integration. Betten-
burg et al. (Bettenburg and Hassan, 2013) measured the impact of social interaction measures
on software quality . Tourani et al. (Tourani and Adams, 2016) studied the impact of hu-
man discussion metrics on JIT (Just-In-Time) defect prediction models using 15 large open
source projects. Strong connections between human discussion metrics and defect-inducing
commits were observed. In this study, we extended those metrics and studied their impact
on the length of time spent for reviewing or issue fixing by developers and reviewers.

Graziotin et al. (Graziotin et al., 2014) showed that studying the human factors of software
engineering is necessary. They found a correlation between affect and analytical problem
solving performance of software developers in their experiments. Based on their results,
happier software developers are more productive specially in problem solving performance.
Wagner et al. (Wagner and Ruhe, 2008) conducted a systematic literature review in order to
extract a list of major effective factors for software development productivity. They assigned
an importance score to each factor based on the number of papers that refer to that factor.
They found that special considerations go to human-related (soft) factors like Communi-
cation, Team Cohesion (cooperativeness of software stakeholders), Respect, and Fairness.
Technical factors such as Software Size, Product Complexity, and Development Flexibility
also play a role in the productivity of developers.

De Choudhury et al. (De Choudhury and Counts, 2013) investigated emotions expressed
by employees in internal microblogging tools (considering 500 corporations). Guzman et
al. (Guzman et al., 2014) studied sentiments expressed in commit comments, then analyzed
the extracted sentiments based on different factors like programming language, team distri-
bution, and time of the commit. Their results show promise for understanding the factors
that affect developers’ sentiments, or the role that developers’ sentiments may play in the
developers’ outcome. Tourani et al. (Tourani et al., 2014) showed that both positive and
negative sentiments are expressed in open source software development mailing lists, and
they identified different categories for both positive and negative sentiments presented in
software mailing lists. Murgia et al. (Murgia et al., 2014) found that software artifacts like
issue repository comments can also convey emotional information of developers. Later, Ortu
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et al. (Ortu et al., 2015a) showed that extremely positive or negative sentiments presented in
issue comments are linked with lower issue fixing time. Here, we also focused on sentiments,
emotions and politeness of issue and review comments (besides other metrics) to identify
their impact on review or issue fixing time.

6.6 Discussion

6.6.1 Influential metrics

As suggested by our findings in RQ1 that issue resolution and review period are mostly
independent, we found in RQ2 and RQ3 that review time and issue resolution time models
are impacted by different metrics, except for those projects with longer review times. Churn
and review comment length are the only major metrics in common between both kinds of
models. Hence, one of the main take-home messages of this work is that prior to selecting
factors for use in models to explain review and/or issue resolution time, one should first
analyze the characteristics of both processes.

Affective-related metrics seem to play a smaller role than experience or churn, but still ap-
peared in the top 10 major influential attributes on both models explaining reviewing time
and issue resolution time factors. Review_comment_politeness, and issue_comment_politeness
have increasing impact on review time and issue resolution (that are partly backed up by
related work (Ortu et al., 2015a)), while the love emotion has contradictory impact, i.e. the
more love emotions expressed in review comments, the less time will be spent on reviewing.

6.6.2 Issue resolution models

To compute issue fixing time as an output parameter in section 6.4, we calculated the time
span between the time an issue status changed to fix committed and the time it was reported.
In other words, we considered the last fix committed as status that a particular issue was
addressed. However, as described in subsection 6.2.2, the lifetime of an issue is composed of
fix released which is the final status of an issue when it is integrated into the release. Based on
the metrics obtained from the issue repository, we assumed those metrics mainly can explain
the time span before issue fixing, since between fix committed and fix released, there might
be other external factors related to the integration phase and testing that were not recorded
in the issue repository. Here, we change our assumption and consider fix released as the end
point for computing issue time and rebuild the models to examine the power of our models
in explaining issue releasing time.
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First, like section 6.4, we computed different patterns shown in Figure 6.1, and built the
models and evaluated their performance.Table 6.7 illustrates how pattern 1 is still the dom-
inant one and here we continue our study with pattern1 and excluded patern2 and pattern3
from our data.

The results are depicted in Table 6.8 computed using the same approach as discussed in sec-
tion 6.4 except that the output parameter was computed differently i.e. fix released assumed
as final status of an issue report. We can still see improvements by adding issue and review
metrics. However, issue metrics and review metrics nearly have the same impact on the
performance (average precision and recall of modelsc+i are just 5% higher than modelsc+r),
which might indicate that selected issue metrics are not very impactful on the output param-
eter and there might be other significant factors not considered in this study. Combining all
metrics, the performances of the models are still lower than the results achieved in section 6.4,
specially regarding precision, which is above 75% in section 6.4 and here is almost less than
70%.

These results can confirm our assumption that there are metrics influencing issue release
time than those studied in this paper. Recent study by Alencar da Costa et al. (da Costa
et al., 2016) reveals that queue rank and cycle queue rank are the two most important
factors affecting integration delay in traditional and rapid releases respectively. Although
they studied a different project, i.e. Firefox, their result also is an indicator of the presence
of some impactful factors on issue release time that are beyond the studied metrics.

6.7 Threats to Validity

We expect that the different proportion of review versus issue resolution time also holds for
other systems, but generalizability of our case study results is a threat to the external validity
of this study. Although we studied 10 large open source projects, they all belonged to the
same OpenStack ecosystem. Studies on other open and closed-source systems are necessary.

Regarding threats to internal validity, i.e., other factors that could explain our results, there
are likely other unknown and hidden factors that could influence the review or issue resolution
time that we have not measured yet, either because we are not aware of them, or they are
not extractable from the available repositories and artifacts. Despite this threat, we studied
a wide range of metrics covering ten different dimensions (including code change and human
discussion measures).

One major threat to construct validity is the accuracy of the affective metrics. Sentiment,
emotion and politeness are measured based on textual analysis of human discussions in re-
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Table 6.7 Statistics of the defined patterns across several projects with regard to issue released
time

Project Pattern1 Pattern2 Pattern3
nova 98% 2% 0%

glance 99% 1% 0%
openstack-manuals 97% 3% 0%

keystone 98% 2% 0%
cinder 99% 1% 0%

tempest 96% 4% 0%
neutron 98% 2% 0%
devstack 98% 2% 0%
horizon 99% 1% 0%

heat 99% 1% 0%

Table 6.8 Performance of explanatory models for issue time. c means model based on “change
metrics”,c+r means model based on “change metrics” and “review metrics”, c+i means model
based on “change metrics” and “issue metrics”

project pc rc fc aucc pc+r rlc+r fc+r aucc+r pc+i rc+i fc+i aucc+i p r f auc
cinder 0.54 0.54 0.54 0.53 0.60 0.59 0.59 0.59 0.59 0.60 0.59 0.59 0.61 0.62 0.61 0.61
devstack 0.51 0.59 0.55 0.56 0.55 0.61 0.58 0.60 0.66 0.63 0.65 0.68 0.70 0.69 0.69 0.72
glance 0.66 0.66 0.66 0.66 0.76 0.69 0.72 0.73 0.75 0.76 0.76 0.75 0.76 0.78 0.77 0.76
heat 0.62 0.61 0.61 0.61 0.63 0.63 0.63 0.63 0.62 0.57 0.59 0.60 0.64 0.61 0.63 0.63
horizon 0.59 0.58 0.58 0.57 0.63 0.58 0.60 0.61 0.63 0.59 0.61 0.60 0.65 0.62 0.63 0.63
keystone 0.67 0.54 0.60 0.55 0.71 0.50 0.59 0.59 0.71 0.57 0.63 0.60 0.74 0.54 0.63 0.62
neutron 0.52 0.49 0.51 0.52 0.55 0.37 0.44 0.53 0.67 0.60 0.63 0.65 0.68 0.62 0.65 0.66
nova 0.56 0.58 0.57 0.55 0.62 0.63 0.63 0.61 0.63 0.62 0.62 0.62 0.65 0.65 0.65 0.64
. . . -manuals 0.64 0.63 0.63 0.62 0.63 0.60 0.61 0.61 0.76 0.72 0.74 0.73 0.74 0.71 0.73 0.72
tempest 0.61 0.60 0.60 0.60 0.61 0.58 0.60 0.60 0.65 0.63 0.64 0.64 0.66 0.61 0.63 0.64
Average 0.59 0.58 0.58 0.58 0.63 0.59 0.60 0.61 0.69 0.63 0.65 0.65 0.68 0.65 0.66 0.66

view and issue comments. In this paper, we adopted state-of-the-art tools like SentiStrength,
Danescu et al.’s politeness tool (subsection 6.2.1), and the emotion classifier tool proposed by
Murgia et al. (Murgia et al., 2014). However, due to the ambiguity in natural language, the
affective measures are approximations and there are some exceptions like sarcasm that can
not be identified by tools. Elfenbein and Nalini also claim that to precisely identify emotions,
sentiments or politeness in comments, one should understand the developers’ culture, includ-
ing their dictionary and slang (Elfenbein and Ambady, 2002). Tools clearly are not able
to do this, yet the fact that we confirmed Ortu et al.’s findings regarding positive sentiment
gives us confidence that the tools and measures used convey a trend.

Apart from the impreciseness of natural language analysis, our study assumes that the textual
write-up of issue and review comments clearly convey the emotions, sentiment and politeness
of the developers involved. Based on empirical evidence (Pang and Lee, 2008), we assume
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that there is indeed a causal relationship between developer’s feelings and his or her writings
in comments.

A final threat to construct validity are the heuristics and data filtering techniques used to
extract the different metrics, requiring us to link three kinds of repositories (version control,
bug repository, and code review). We mitigate such a threat by using a well-known outlier
filtering procedure and by testing our scripts. In particular, we had to ensure that the
extracted dates had the right time zone information and no inconsistencies existed. As
mentioned in section 6.2, there are commits with more than one issue report, which might
impact our results. To mitigate this threat, we computed the number of commits with more
than one issue reports and found out that except for “swift”, 70% of commits in the projects
corresponded to only one issue report.

Moreover, we assumed that code reviews and issue resolutions are fully documented and
communicated in the Gerrit and Launchpad tools. While these assumptions hold in most
cases, some issue resolution and code review activities could be performed via other channels
such as in person meetings, emails, and so on.

6.8 Conclusion

Given the growing pressure in today’s software companies to decrease time-to-market, this
paper contrasts the factors impacting time of two main tasks of developers, i.e., issue reso-
lution and peer reviewing. We found that, although related, both processes are only loosely
correlated, suggesting that different factors impact the time taken by issue resolution and
review. We indeed found that the review time models were dominated by review-related
metrics, and issue resolution models by issue-related metrics, except for those projects where
review time was a large enough part of the issue resolution process. CI builds, non-bug fixes
and positive interaction between reviewers were the most influential review-related metrics
impacting review time, while tossing, status changes, and experience are the most influential
issue-related metrics.

While our findings regarding the impact of CI builds and positive interaction between dis-
cussion participants could be interesting, at a higher level, the take-home message of this
paper is that, although relatively accurate models of review and issue resolution time can be
built, preliminary empirical analysis is essential to determine the categories of metrics that
make sense in such a model. In particular, differences between projects in the proportion of
time taken up by reviews relative to the time taken for issue management explain important
differences in the impact of metrics.
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Figure 6.4 Distribution of (a) Review and (b) Issue time (#hours).
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Figure 6.5 Proportion of issue resolution time spent (a) during and (b) after review.
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Table 6.9 Summary of change-related (c) (Kamei et al., 2013a), issue-related (i) (Ortu et al.,
2015a) and review-related (r) (Tourani and Adams, 2016) metrics used in our study. Metrics
applicable both to review and issue resolution are marked as “b”.
Dimension Name Expected Rationale

c
NS (#) More modified subsystems likely means longer review/resolution.
ND (#) More modified directories likely means longer review/resolution.

Diffusion NF (#) More modified files likely means longer review/resolution.
ENT (#) Changes affecting multiple files equally might need more time to review/resolve.

Size c
LA (#) Changes adding more code probably require more time.
LD (#) Changes removing more code probably require more time.
LT (#) Larger code files might be harder to review/resolve

Purpose c FIX (boolean) Bug fixes might require more thought to review/resolve.

History c
NDEV (#) The higher the avg. #developers that changed a file before, the more time.
AGE (#) The higher the average time (#days) since the last change to a file, the more time.
NUC (#) The more #unique changes happend to the modified files before, the more time.

Experience

c EXP (#) Developers with more prior commits might be faster at reviewing/resolving.
REXP (#) Developers that recently modified a file have more fresh knowledge.
SEXP (#) Developers dominant in a subsystem might be faster to review/resolve.

b commenter_experience (#) The more experienced in leaving review/issue comments, the more
participative and helpful in discussions .

i issue_reporter_experience (#) The more experienced in issue reporting, the more accurate the
information provided, the faster review/issue resolution can be done.

issue_fixer_experience (#) The more experienced in issue fixing, the more skillful,
the faster issue resolution can be done.

issue_changes (#) The more often an issue changes its status, the longer the resolution time.
issue_tosses (#) The more time lost finding the right person, the longer review/resolution takes.

Focus
r

reviewer_experience (#) The more experienced in reviewing, the faster reviewing will be.
patch_Revisions (#) The more revisions a patch required, the more time it needs to be reviewed.

inline comments (#) The more comments reviewers provide on specific lines of a patch,
the more detailed and hence slower the reviewing process.

r
PositiveCI (#) The more successful verifications done by CI, the less build and test problems,

and hence the shorter the review process.

Integration NegativeCI (#) The more failing verifications done by CI, the more build and test problems,
and hence the longer the review process.

workflow (#) The more the review of a patch is paused, the longer the review time.
Quantity

r
votes (#) The more review scores, the more reviewers and hence longer review time.
negative_votes (%) Larger percentage of negative review scores may indicate longer review time.

b comments (#) The more comments are posted in a discussion, the longer the review/resolution.

Length comment length (#) The more number of lines a review/issue comment takes, the more discussion,
indicating that the patch’s review/resolution might take longer.

Comment Sentiment (#)
(first/last comment, title, avg)

Negative sentiment of the participants during issue or review discussions may
indicate an unsatisfied situation and longer resolution/review time.

Affect b Comment Politeness (#)
(first/last comment, title, avg)

Low politeness during discussions might be an indicator of aggression in
communication, resulting in longer time for resolution or reviewing.

love/sadness/anger/joy (prob.)
(avg)

More love and joy during discussions may be indicators of effective and
constructive communication, while sadness and anger may disclose hidden
problems or obstacles during development, impacting review/resolution time.
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CHAPTER 7 ARTICLE 4: CODE OF CONDUCT IN OPEN SOURCE
PROJECTS

Abstract

Open source projects rely on collaboration of members from all around the world using web
technologies like GitHub and Gerrit. This mixture of people with a wide range of backgrounds
including minorities like women, ethnic minorities, and physically challenged people may
increase the risk of offensive and destroying behaviours in the community, potentially leading
affected project members to leave towards a more welcoming and friendly environment. To
counter these effects, open source projects increasingly are turning to codes of conduct, in an
attempt to promote their expectations and standards of ethical behaviour. In this first of its
kind empirical study of codes of conduct in open source software projects, we investigated
the role, scope and influence of codes of conduct through a mixture of quantitative and
qualitative analysis, supported by interviews with practitioners. We found that the top
codes of conduct are adopted by hundreds to thousands of projects, while all of them share
5 common dimensions.

7.1 Introduction

Since technologies have enabled new forms of open collaboration on the Internet by adopting
tools like version control, mailing lists, chat systems and wikis, a large crowd of project
members with diverse experiences and interests are able to collaborate in open source projects
to produce large, complex and successful systems (Gutwin et al., 2004). Indeed, according
to the Open Source Initiative, “In order to get the maximum benefit from the [open source]
process, the maximum diversity of persons and groups should be equally eligible to contribute
to open sources” (ope). Furthermore, Vasilescu et al. have shown that gender diversity is
beneficial for productivity of GitHub teams (Vasilescu et al., 2015a).

However, a mixture of people with different cultures, personalities and interests may increase
the risk of offensive behaviours happening. For example, on June 18 2015, one of the core
maintainers of OpalRB, a Ruby-to-Javascript transpiler, left transphopic comments on Twit-
ter1. The resulting pile-on of responses ranged widely from those discussing that publicly
stated opinions of a member have no bearing on the community, to those who expected
consequences for the offensive person (e.g., excluding him from the community) or those

1https://twitter.com/krainboltgreene/status/611569515315507200
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thinking that as long as the contributed code was good, working with the offensive member
was acceptable2. Similarly, gender-related incidents have been reported as cause for leaving
a project (Vasilescu et al., 2015b).

Therefore, it seems essential for open source communities to protect their members from
these kinds of unacceptable, destroying behaviours and provide a welcoming, safe, friendly,
and inclusive environment in which people can collaborate effectively towards presenting
successful products. So far, the concept of code of conduct has been emerging as possible
solution, since e.g. in OpalRB the above discussion has led to a discussion on adopting a
code of conduct for this project3. Such a code of conduct basically establishes ground rules
for communications between participants, outlines enforcement mechanisms for violations
and tries to codify the spirit of a community, such that anyone can contribute comfortably
regardless of gender, ethnicity, physical challenges or sexual orientation.

However, some communities find codes of conduct repressive and a threat for open source
communities. One common argument is that participants in open source communities are
mature enough to deal with debates and differences, and hence it should be obvious for
members how to behave. Some strong opponents explicitly picked a “No Code of Conduct”
for their communities4. Furthermore, even in projects that do adopt a code of conduct,
the adoption process suscitates substantial discussion because of doubts whether codes of
conducts work and disagreement about what should go into them and the exact wording to
use5.

Since there is no empirical evidence regarding the status, nature of, and procedure for es-
tablishing codes of conduct in open source projects, the primary purpose of this paper is to
empirically examine codes of conduct in open source projects, identifying the procedures fol-
lowed in their implementation and monitoring, as well as understanding its scope and impact
in open source communities. To this end, we address the following research questions:

RQ1) What are the major codes of conduct in open source projects?

There are seven common codes of conduct used by more than 51,000 open source projects.

RQ2) What do major codes of conduct stipulate?
2https://github.com/opal/opal/issues/941
3https://github.com/opal/opal/issues/942
4https://github.com/domgetter/NCoC
5https://github.com/opal/opal/issues/942

https://github.com/opal/opal/issues/941
https://github.com/opal/opal/issues/942
https://github.com/domgetter/NCoC
https://github.com/opal/opal/issues/942
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Codes of conduct outline OSS community’s expectations and values against members’ be-
haviours to create friendly and inclusive community, while, violations of them have conse-
quences. Their scope is all spaces of the community, either online or offline, however, it can
be broader.

RQ3) How are codes of conduct used in open source projects?

Community’s concerns, needs and history play an important role in their code of conduct
design. But, similarities among communities may lead communities to reuse same code of
conduct.

In the remainder of this paper, we first describe the necessary background notions and related
work (section 7.2). Then, we investigate the first research question, present its approach and
results(section 7.3), this section will be followed with the second and third research questions
(section 7.3, section 7.3). After mentioning the threats to validity (section 7.4), we finish
with conclusions (section 7.5).

7.2 Background and Related Work

7.2.1 Open Source Projects and Diversity

Eric Raymond (Raymond, 1999) summarized open source software (OSS) differences and
properties in comparison to other types of software development. More specifically, the open
access model of OSS development encourages participants with maximum ability and skill,
specific expertise and minimum restrictions in geographical issues to participate. This leads
to a high degree of diversity amongst project members in terms of gender, ethnicity, religion
and age, which is likely to be an influential factor impacting OSS project success (Colazo
and Fang, 2010). Bazile-Jones et al. (Renee Bazile-Jones, 1996) stated that managing and
valuing diversity in workplaces, as one intellectual asset, can bring long-term wealth. Valuing
diversity refers to recognizing individual differences and dissimilarities, and respecting them
by considering everyone’s needs and expectations. Sherae et al. expanded on the theoretical
understanding of diversity and its implications in OSS projects (Daniel et al., 2013). They
defined three types of diversity, i.e., disparity (based on contribution reputation), separation
(based on culture) and variety (reputation) diversity. They discussed how each of these types
plays a role in the project success from a community engagement point of view or market
success. Vasilescu et al. in (Vasilescu et al., 2015a), discussed about the various aspects
of diversity in open source projects. Using GitHub, the largest public code repository for
OSS projects for data extraction, they finally showed more diversity in gender and tenure
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is associated with higher productivity and turnover. In other words diverse teams which
consist of both men and women while some having more experience and some less, show
better performance.

7.2.2 Code of Conduct

According to wikipedia 6, a code of conduct generally is a set of rules articulating standard
behaviour and responsibilities for an individual, party or group. It is commonly written for
employees of a company in order to 1) protect the business and 2) inform the employees of the
company’s expectations. The International Federation of Accountants (IFA), IFAC, provided
a more precise definition. According to them, a code of conduct comprises principles, values,
standards and rules that act as guidelines that have the overall benefit of the stakeholders in
mind and at the same time respect the rights of members.

Recently, codes of conduct have been adopted in OSS communities, as open and welcoming
communities, to deal with diversity problems. One of the oldest codes of conduct in OSS
communities is Ubuntu designed for Ubuntu community more than 10 years ago, newer
versions of it published later. Some OSS codes of conduct like Ubuntu are being used by
other OSS projects. We will discuss about famous OSS codes of conducts and their prevalence
in section 7.3.

It is worth mentioning that a code of conduct is different from a code of ethics. A code of
ethics is adopted to clarify for members the meaning of “right” and “wrong” based on the
business of the company, and therefore is applied to make decisions (IFA) about their actions
and manners. A code of conduct on the other hand is confined to actions or behaviours of
employees and is usually intended for them only (instead of for stakeholders).

Workplace Harassment

Most codes of conduct aim to protect members from harassment, thus it seems important
to understand what workplace harassment means. According to the Oxford dictionary, ha-
rassment is “Aggressive pressure or intimidation”. As such, workplace harassment is any
offensive, belittling or threatening behaviour toward an individual worker or group of work-
ers. It results in an unpleasant, humiliating or intimidating environment employees feel
uncomfortable in and consequently damages effective work and productivity of employees7.

In OSS communities, just like any other workforce, workplace harassment may include, but is
6https://en.wikipedia.org/wiki/Code_of_conduct
7https://web.archive.org/web/20120328034350/http://apsc.gov.au/publications01/

harassment.htm

https://web.archive.org/web/20120328034350/http://apsc.gov.au/publications01/harassment.htm
https://web.archive.org/web/20120328034350/http://apsc.gov.au/publications01/harassment.htm
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not limited to, online or offline harassing behaviours such as verbal comments, sexual jokes or
insults, sexual images in public spaces, intimidation, stalking, inappropriate physical contact,
bullying.

7.2.3 Related Work

The subject of the use of codes of conduct in business is not new, as Heermance discussed
similar concepts in 1924 in his book (Brogan, 1925). According to J. White et al. (White
and Montgomery, 1980), a number of proposals for general and industry-related codes of
conduct appeared, with the business communities also showing interest in codes of conduct
to establish standards of behaviours in their corporation. J. White et al. also mentioned
the need for codes of conduct increased in the late 1970s due to many corporations, all over
the world, getting decentralized, geographically dispersed, since their management wanted to
share their core philosophy among the various offices. A code of conduct was the corporations’
primary means to ensure and promote appropriate behaviour.

White et al. conducted a survey study of 673 financial corporations in that period. Ac-
cording to their study, corporations then would call a code of conduct differently, such as
“ethical practices statement”, “guidelines for employee conduct” or “policy statement on cor-
porate ethics”. They analyzed the contents of these codes of conduct and found that most
of them contained a general statement expressing the philosophy of the company’s manage-
ment, employees’ responsibility to comply with laws and regulations, and also the employees’
responsibility to avoid conflict-of-interest situations with competitors, suppliers or customers.

According to Brenner et al. (Brenner and A.Molander, 1971), corporations apply a code
of conduct to achieve goals such as fostering positive values, resolving ethical problems,
communicating and promoting a company’s moral values. Codes of conducts can also provide
a basis for ethical behaviour in other domains like academia (Rezaee et al., 2001). Rezaee et
al. discussed that such codes of conduct in colleges and universities should highlight some
key issues, such as preventing financial and scientific fraud.

Rashid et al. (Rashid et al., 2015) considered ethical concerns of a software engineering society
from a different perspective. They discussed how contemporary software systems increasingly
are getting more open while managing a large portion of people’s daily lives. Moreover, these
systems may lead to crime and jeopardize people’s safety and sustainable living. These
concerns should be tackled by software engineers during the design and implementation of
the system. Although software engineering codes of ethics like the one of ACM (ACM) give
some guidelines for ethical decision making throughout the software engineering process, they
are not practical enough to be applied in the software construction and development process.
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Instead, Rashid et al. proposed a framework based on Boehm’s Spiral model of software
engineering (Boehm, 1988) to decompose ethical concerns and needs in different steps of the
framework to be tackled in each stage. Even though their research deals with ethical concerns
in software engineering, it mostly focuses on the final software products, not the software
community and teams developing a software product.

Becker et al. (Becker et al., 2015) provided a common perspective for researchers and practi-
tioners of the role of software engineering in sustainability, to enable effective communication
about this concern. Similar to Rashid et al., they discussed how the software engineering
discipline can impact sustainability challenges related to society and natural environment.
Existing codes of ethics for computing professional are not extensive enough to cover these
issues and the software engineering discipline lacks a framework to incorporate sustainability
thinking into the design of software. Hence, they identified five sustainability dimensions. We
conjecture that codes of conduct can cover parts of the social (equity, justice and democracy)
and individual (comfort and welfare) dimensions in the software engineering discipline.

Tourani et. al in (Tourani and Adams, 2016), empirically studied the impact of human dis-
cussion metrics such as developers’ sentiments expressed in their discussions, beside change-
metrics, on the quality of the resulting work in terms of the number of defect-introducing
commits. Their results showed that sentiment-related metrics play role in more than half of
their models, i.e., they have impact on product quality. Their results revealed the importance
of developers’ sentiments on the quality of the project. Previously, Ortu et al. showed human
affective metrics of developers, like politeness, emotion and sentiment can affect issue fixing
time, e.g. positive emotions like happiness are linked with shorter issue fixing time (Ortu
et al., 2015a).

7.3 RQ1. What are the major codes of conduct in open source projects?

Motivation This first research question is concerned with finding the frequently used codes
of conduct as well as with determining their prevalence in open source projects. In addition
to showing the relevance of this paper and motivating the need for further research on codes
of conduct, a list of popular codes of conduct, with the high number of usages, will be used
to answer RQ2, i.e., to understand the common ingredients of codes of conduct.

Approach

We used a two-pronged approach. First, we used a list of seven codes of conduct, consisting
of the Open Code of Conduct of the ToDo group8, a well-known organization in the field, as

8http://todogroup.org/opencodeofconduct/

http://todogroup.org/opencodeofconduct/


111

well as six other codes claimed by the ToDo group to be the giants on whose shoulders Open
Code of Conduct stands. We performed a brute-force search on GitHub with the names
of these codes of conduct to determine the order of magnitude of their popularity of these
codes. GitHub is a popular code repository site used by millions of popular and active open
source projects (Dabbish et al., 2012). Since this first approach only aims to provide an
order of magnitude for the prevalence of the seven suggested codes of conduct, and given
the number of search results, we did not eliminate duplicate search results or false positives.
Furthermore, searching only by name ignores projects that just mention the URL of the code
of conduct used.

While the above limitations are acceptable to obtain an order of magnitude, our second
approach instead uses a second group of data sets and involves manual analysis to get an
accurate set of mappings between projects and the codes of conduct that they use. To do
this, we used the principles of systematic reviews proposed by Kitchenham (Kitchenham
et al., 2009): our population is “Open Source communities”, our intervention is “Code of
Conduct”, and two electronic databases are used, i.e., Github9 and Google. The latter allows
to find projects not hosted on GitHub or whose code of conduct is not stored in their version
control system.

We used the same queries for both GitHub and Google: 1) “code of conduct” “open source”
and 2) “code of conduct” software community. Quotation marks were explicitly added to
reduce the number of false positive hits. Furthermore, we added “open source” and software
community to filter out codes of conduct for conferences and other events as opposed to codes
of conduct for software projects, which are the focus of this paper.

Although the Google search engine initially claimed that 57,000 and 2,110,000 hits were
found, respectively, for the two search queries mentioned above, in reality, after Google’s
own duplicate filtering, the number of hits turned out to be around 500 and 700. After
further manual removal of additional duplicates and incomplete matches of the query, the
results yielded only 395 and 324 actual hits, respectively. Finally, after filtering out search
results related to schools and conferences, we obtained 306 and 241 hits, respectively. Manual
analysis of the entire collection of 547 = 306 + 241 links yielded 108 unique open source
communities using a code of conduct, including well-known ecosystems such as Apache,
Eclipse, Openstack, Debian, and Scala.

For GitHub, the two queries yielded 17,498 and 2,417 textual files in markdown format
(mostly README files), respectively. The top 200 hits of the first query (based on GitHub’s
“best match”), and top 40 hits for the second query (idem) were manually checked to see

9https://github.com/search

https://github.com/search
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if they belong to codes of conduct of open source projects. Out of these 240 links, 184
corresponded to actual open source projects using a code of conduct. The false positive links
include duplicate links across different versions of a project, or irrelevant links of non-software
communities (e.g., Software Carpentry10).

Finally, as an additional data source, we also studied the top GitHub projects to analyze
whether they use a code of conduct, and if so, which one. We used the number of watchers of
a GitHub project as a measure of project popularity, similar to other work (Vasilescu et al.,
2015c). We studied the 150 most watched projects and found that 52 of them have a code
of conduct, including such projects as Linux, JQuery, Angular and Swift.

In the obtained search results in Google and GitHub, we then compared the number of
occurrences of each identified code of conduct to the order of magnitude numbers for the
initial seven codes of conduct, and also tried to identify any missing major codes of conduct.
However, since some projects may focus more on GitHub, while others do not, we considered
each data source separately. In addition, we noticed that many Google results correspond
to ecosystems instead of to individual projects, while the GitHub results mostly correspond
to individual projects. As such, the Google ecosystem results actually imply that a larger
number of existing projects are using the same code of conduct Table 7.2.

Results �

�

�



Eleven codes of conduct are commonly used
in open source projects, with seven of them
ranging from 500 up to several thousands
of adopting projects.

RQ2. What do major codes of conduct stipulate?

Motivation In the previous research question, we identified seven common codes of conduct
used either directly or as the basis for a custom code of conduct. Here we are interested
in understanding the content of such a code of conduct, i.e., the basic elements, measures
or other guidelines, as well as the way in which these are written up. In particular, we are
interested in understanding the kinds of behaviour addressed by codes of conduct, potential
measures taken, but also whether codes of conduct are written up as suggestions versus
stringent rules (i.e., the style of writing).

Approach To answer this research question, we manually studied the seven popular codes
10http://software-carpentry.org

http://software-carpentry.org
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Table 7.1 Popularity numbers (order of magnitude) for codes of conduct obtained from
GitHub (first approach).

Code of Conduct Number of Hits on GitHub Examples

Contributor Covenant 43,681
Molajo/Molajo, trevororeilly/dotfiles,
SecComm/Crayon,
yuluyi/Isomorphic-React-Seed, tweetstockr

Open Code of Conduct 2,167
wildland/cli-tools, KineticCafe/code-of-conduct,
Tacklr/CacheManager,
spotify/ios-ci, PearlCast/PearlCast

Python 2,025
PyDiff/PyDiff.github.io,
18F, brettcannon/oplop, link39/205-pi,
roadcap/homebrew,sfdevs/sdcodecamp

Citizen 1,253
npr/npr-one-api-js-sdk, cworth-gh/stony,
gulpjs/gulp, lkodai/Design-LK,
ojs/ojs, ctdk/goiardi

Ubuntu 1,180
goodeggs/format-location, Star2Billing/cdr-stats-docs,
garyjs/Newfiesautodialer,Alamofire/Foundation,
Trustroots/trustroots

Django 1,054
jrief/django-angular,
DBCboots, Pythonkc,
Calagator, ordergroove/check_mariadb_slaves

Geek Feminism 544
nzruby, brave/chromium,
crosswalk-project/chromium-crosswalk,
javascripthers/javascripthers.github.io, openSNP/snpr

of conduct obtained in RQ1. For each of them, we read and identified the underlying com-
ponents, then looked for similarities and differences. Whereas most of the seven codes are
independent, we found considerable overlap in terms of their major components and ingredi-
ents. In particular, each code of conduct included the following five components in one form
or the other:

• Purpose: the rationale for the code of conduct, typically the desire to obtain a certain
kind of environment for project members to work and collaborate in.

• Honorable behaviour: behaviour that is valuable for and accepted by the community.

• Unacceptable Behaviour: negative behaviour that should be avoided.

• Enforcement: mechanisms for reporting and punishing violations of the code of conduct.

• Scope: the online and offline spaces where the code of conduct applies, for example
only in mailing list or any online discussion forum.

Below, we detail each of these components in more detail, while Table 7.1 summarizes how
the above components and other dimensions apply to each of the seven codes of conduct.
Note that for codes of conduct with more than one version, we referred to the latest one.
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Table 7.2 Popularity numbers for codes of conduct obtained via Google (second approach).
Codes of conduct from Table 7.1 have been emphasized.

Code of Conduct #Google Results
(out of 108)

Ubuntu 20
Contributor Covenant 20
Django 13
Python 9
Citizen 9
Open Code of Conduct 7
Geek Feminism 7
Mozilla 6
Twitter 5
Rust 5
Ada Initiative 4
KDE 4
SpeakUP 3
Apache 2
Thoughtbot 3
Openstack 3
Debian 2
Puppet 2
PyCon 2

Results

Purpose: All codes stress the desire of diversity and of a welcoming community,
while some explicitly list the desired diversity attributes (e.g. gender, sexual
orientation and disability). Since OSS project communities consist of professionals and
volunteers from around the world, the seven codes of conduct all promote an inclusive and
safe environment to everyone, for the sake of sustainability of the community. For example,
the Contributor Covenant refers especially to personal characteristics like gender, age, size,
body, religion, ethnicity, and sexual orientation. Python and Ubuntu just generally refer to
diverse groups, without explicitly naming them, while Citizen also mention socio-economic
status and Django adds political belief and family status to the list of known diversities.
The Open Code of Conduct contains a separate section, i.e., “diversity statement”, which
explicitly deals with diversity and encourages members towards some expected behaviours
in different situations like when a participant has made a mistake. Furthermore, they also
refer to language and technical abilities as diversity axes.

Honorable behaviour: codes of conduct tend to pinpoint general positive be-
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Table 7.3 Popularity numbers for codes of conduct obtained via GitHub queries (second
approach). Codes of conduct from Table 7.1 have been emphasized.

Code of Conduct #GitHub Results #top GitHub Results
(out of 184) (out of 52)

Ubuntu 42 3
Twitter 42 3
Django 38 2
SpeakUP 36 0
Apache 35 0
Python 32 0
Contributor Covenant 15 19
Mozilla 11 3
Open Code of Conduct 7 2
Thoughtbot 5 0
Citizen 4 2
Rust 3 4
Ada Initiative 3 0
Geek Feminism 0 1

haviours like being respectful, patient, kind, focusing on the best for community,
being considerate and collaborative. The Python code of conduct is the least specific
about positive behaviours, only mentioning being open, considerate and respectful, while
Geek Feminism does not mention any accepted or encouraged behaviour. Ubuntu listed
more detailed positive actions such as encouraging community members to ask questions in
case of doubt, stressing the responsibility of everyone to answer such questions. They also
encourage any members who want to leave the community to do so with minimal interruption
for the project. The Ubuntu code of conduct also has a special part about leadership and re-
sponsibility, for instance pointing out that leadership can be taken up by anyone competent
in the community, basically declaring themselves as meritocracy in their code of conduct.
Expected behaviours for leaders are also named, such as highlighting and rewarding great
work of others, or being courageous to take bold decisions. Such leadership-related clauses
seem specific to ecosystem-related codes of conduct.

Unacceptable behaviour: most codes of conduct denounce sexist/racist language,
contempt and jokes that harass marginalized people, as well as violence and
threats. The Contributor Covenant explicitly mentions sexualized language or imagery,
trolling, insulting and publishing of private information of others as unexpected behaviors.
Django adds discriminatory jokes and violent threats to this list. Geek Feminism and the
Open code of conduct provide a more detailed list, pointing out additional issues such as
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deliberate misgendering, physical contact, stalking, following, harassing photography and
recording, and threats of violence. Python and Ubuntu do not refer to unexpected or negative
behaviors in their codes of conduct at all.

The studied codes of conduct differ in the style used in their description, i.e., some like
Geek Feminism just mention negative behaviours to discourage community members from
exhibiting those, while on the opposite side of the spectrum Python, for instance, just states
desired and valued behaviours to reinforce such positive behaviours. Finally, some codes like
Citizen and Ubuntu refer to both unacceptable and honorable behaviours. The styles of the
analyzed codes of conduct, either positive or negative, are shown in Table 7.1.

Furthermore, while expressing positive and negative behaviours, some codes of conduct like
Citizen are phrased in the form of rules like “Refrain from demeaning, discriminatory, ...”,
while others like Ubuntu instead state their intent by listing the expected values of the
community like “Be respectful”. In other words, codes of conduct can be phrased in two
different ways (IFA): a policy-based (or rule-based) approach or a values-based (or principles-
based) approach. The former are very detailed and provide rules and policies in the form
of dos and don’ts, while the latter are expressed by examples and principles rather than
exhaustive policies and rules. In between these two extremes of codes of conduct, some codes
of conducts can mix both approaches. For instance, Django is rule- and values-based at the
same time, since it discusses both the value of “Being respectful”, but also states “Do not
insult or put down other participants”. Table 7.1 shows the approach taken by the analyzed
codes of conduct.

Enforcement: In communities with a code of conduct, unacceptable behaviors
typically are reported to a specific group of team members with the power to
decide about the appropriate actions to take. In the Contributor Covenant, violations
can be reported via a specified email address. The reporter should be treated confidentially,
while the report must be investigated and followed up appropriately. In addition, if the code
of conduct is not enforced correctly, the project leadership can repress the corresponding
maintainers. The Open code of conduct specifies a more detailed process, such as the in-
formation required in a report and who will be responding in special cases (e.g., when the
respondent himself did the harassment). Django promises to answer reports within a specific
period (one week) but they prioritize ongoing situations and threats to physical safety as
distinguished incidents to be addressed immediately.

Geek Feminism proposes a responsible team called the “Geek Feminism Anti-Abuse Team”
that promises to not name the victim publicly and respect her confidentiality. Citizen just
introduces a specific group of members with their contact information for receiving the vio-
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lation reports, claiming that respondents will help victims. Surprisingly, Ubuntu and Python
do not mention any reporting or enforcement guidelines in their codes of conduct.

Since some codes of conduct, especially those intended to be customized by other open source
projects, express honorable and unacceptable behaviours in a generic way, declaring concrete
enforcement and punishment mechanisms is not possible for them as these would differ based
on the specific project that adopts them. However, even in those case, some codes of conduct
like Django and Geek Feminism still provided boundaries for any punishments. For example,
Django proposes a list of punishments ranging from “Nothing” to “A request for a public
or private apology” that will be performed in response to violations, while Geek Feminism
warns to exclude offenders from the community as response to a violation, or to publicly
identify the harasser to the project’s (or even general) community. Citizen briefly mentions
the consequences of unaccepted behaviors like permanent expulsion from community as worst
case penalty.

Scope: codes of conduct apply to all community members, i.e., both paid and vol-
unteering contributors, in all community spaces (online or offline). The Contributor
Covenant and Citizen define their scope not only as the communication spaces within the
project, such as mailing lists, but also as any outside space a community member is represent-
ing the project, for example when using an official project email address. The enforcement
scopes of Django and Geek Feminism seem wider, as they cover not only the community
spaces, but also any intervention of a member outside the community (either when repre-
senting the community or not). In case of any violation, the responsible committee should be
informed and this may have consequences for that member. Python, Ubuntu, and the Open
Code of Conduct do not explicitly state the scope of their codes of conduct.

The different scopes of codes of conduct are related to the intention behind the code. For
example, Geek Feminism, as a community supporting women who do geeky activities, has
as goal to support women within these activities everywhere, with as consequence that their
code of conduct ranges even outside the community spaces. This contrasts with the goal in
some communities like OpalRB that aim at representing the more successful projects, and
only care about things that are strictly related to their projects’ community11. This is why the
Opal community, after the notorious incident discussed in section 7.1, adopted12 Contributor
Covenant v1.013, a version of this code of conduct where the boundary of enforcement is not
specified and can be restricted to the inside of the community.

11https://github.com/opal/opal/issues/942
12https://github.com/opal/opal/pull/947
13http://contributor-covenant.org/version/1/0/0/
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Table 7.4 Comparison of the characteristics of the seven studied codes of conduct.

Code of Conduct Length
(pages) Phrasing Style Scope > 1 Version? Dependencies

Citizen 3 Rule Both

All community venues online
or offline.
Outside the scope of community
when violations adversely affect well-being
of community.

Yes Django, Geek Feminism

Contributor Covenant 2 Rule Both

Within project spaces and
in public spaces when
representing the community,
for example by email.

Yes

Django
4
(with reporting
guidelines)

Both Positive

All spaces online or
offline,
outside spaces may affect
person’s participation

Yes Speak UP!

Geek Feminism 3 Rule Negative
All Geek Feminism sponsored
spaces, both online and
offline, and also outside.

No

Open Code of Conduct 3 Rule Both Not mentioned No (stopped)
Python 1 Value Positive Not mentioned No
Ubuntu 4 Both Positive Not mentioned Yes

�

�

�

�

Codes of conduct outline OSS community’s
expectations and values against members’
behaviours to create friendly and inclusive
community, while, violations of them have
consequences. Their scope is all spaces
of the community, either online or offline,
however, it can be broader.

RQ3. How are codes of conduct used in open source projects?

Motivation So far, we focused on the popularity of codes of conduct in open source projects,
and tried to understand the basic elements and attributes of codes of conduct. In this
research question, we investigate why and how they emerged in the open source world, which
problems they are dealing with, the process and thought behind them, and their influence
and limitations in open source communities.

Approach

Since no quantitative data is available about the adoption of codes of conduct, nor their
enforcement (e.g. there is no such thing as a code of conduct complaint repository), we
opted for interviews with leaders and creators of codes of conduct in open source communities.
Creators of 6 of the top codes of conduct in Table 7.2 were contacted and invited to a Skype
call interview14. Of the 5 positive reactions, we were able to perform 4 interviews, two via

14Creation of a code of conduct usually is a collaborative process.
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email and two via Skype (each interviewee belonged to a different open source community).
We refer to the anonymous interviewees as A, B, C, and D in the rest of the paper.

Skype interviews were held in semi-structured form and email interviews in structured form (Co-
hen and Bailey, 1997), both based on our list of questions in Table 7.5. In the semi-structured
interviews, interviewees could also bring up new ideas to complement our predetermined ques-
tions, while in our email interviews they could just answer the predetermined questions. One
Skype call took half an hour, the other took one hour (based on the interviewees’ availability).

The interviews were audio-recorded and afterwards we prepared a transcription of the talk.
Again by applying an open coding process, we analyzed the interviews and decomposed them
into distinct themes, which approximately mapped to the questions, such as motivation,
evolution, and strengths, while labeling them with any important information from the tran-
scripts. Finally, a table was built with the major identified themes as rows, and the different
viewpoints of the four interviewees in the different columns.

Results

Motivation for creating a code of conduct (even early on in a project): obser-
vations of negative behaviour in previous communities. All interviewees stated that
they reflected on their own personal experience of negative behaviours in the past, in different
spaces of the community such as on mailing lists or IRC. Therefore, they were motivated to
create a dedicated code of conduct for their community. For instance, interviewee B said
they wanted to create a new community around some desired behaviours and attitudes that
were uncommon in their previous community.

A and B have created their own codes of conduct from the beginning of the project when
their communities were still small. They stated that the code of conduct acted as ground
rules for the project helping the community to grow, without it they would not be able to
tolerate working in the community.

C stated that arguments happen all the time in open source communities, like the typical
argument between people who implemented a product and pursue its stability in contrast to
members who are looking to grow the product by adding new features. Hence, open source
communities are contentious sometimes, and a code of conduct could be one solution to
protect the community, retaining a safe and friendly environment.

Ingredients of code of conduct: concerns, expectations, priorities and even his-
tory of a community. Similar to the aforementioned motivation for creating a code of
conduct, the ingredients to add to those codes of conduct also relate back to the experiences
of the creators in previous communities. Two interviewees, B and C, both pointed out that
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Table 7.5 Prepared questions for interviews with open source practitioners.

1- What motivated your community to create a code of conduct?
2- To create your project’s code of conduct, how were the needs

of the community gathered?
3- Did you reuse an existing Code of Conduct (from other industries

or software industry)?
4- How did your project’s community react to the idea of having a

Code of Conduct?
5- How is your Code of Conduct enforced? Have any violations been

reported already?
6- What are the strengths and weaknesses of a Code of Conduct for

open source projects?

these needs can also be based on the histories of certain kinds of behaviours in the community,
the priorities of the community, their products and consequently situations the community
might be running into. One interviewee also affirmed that during the writing phase of a
code of conduct, the corresponding community should be understood well and should not
be dictated by other communities on how they are supposed to behave. Interviewee C also
indicated that even culture and geography play a role. For instance, they got feedback from
their project members in India and Middle East stating that their code of conduct reflected
issues that are too specific to the United States.

Corporate-supported open source projects15 encountered a duality, as Interviewee C men-
tioned. On the one hand, they have to comply with their company’s policies about campus,
central buildings and so on. On the other hand, they also want to offer a welcoming and
protective environment for their projects. Thus, there is a gap between existing codes of
conduct and the typical issues those organizations have to deal with as corporations, which
should be handled in their specific code of conduct too.

However, interviewee A believed that codes of conduct will converge to some extent, because
communities already copy text from one another, and he expects this to continue. For
instance interviewee A’s community copied some sentences from another code of conduct,
which were acknowledged explicitly in the text. His opinion was confirmed by interviewee C,
since A realized that some communities have similarities that can lead to reuse of codes of
conduct. In section 7.3, we also observed that many projects reused another code of conduct.

Evolution: Similar to software artefacts, codes of conduct evolve as well. Inter-
viewee B explained that their code of conduct has been updated five or six times in 10 years.

15I.e., major commercial software companies like Microsoft that manage their own open source projects.
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Starting from a short document that did not seem to be that serious, gradually several ele-
ments were changed, for example the phrasing changed from rule-based to value-based, and
they added significant details on the leadership of the community, whereas leadership was
not a big deal for them at the beginning. He also stated that throughout all of these versions,
they only changed the textual expressions, but not the intention of the code of conduct.

According to interviewee A, every new suggestion about the code of conduct from their
community members is welcomed until there are enough arguments and justifications. In
interviewee C’s community, the discussion for the code of conduct is started by the board,
then passed around to all members via the member mailing list. This list is where community
needs were addressed and implemented as necessary. Afterwards, changes were voted on by
board membership.

As such, all interviewees experienced or expected some changes to their codes of conduct
across time. This is because new situations come up, new members are invited, communities
are expanded and new or more concrete needs are raised that need to be covered by codes of
conduct. From the interviews, it followed that, similar to regular code changes, such changes
to a code of conduct should be revised and investigated by a committee before applying them,
although different communities might use different processes to apply changes. For instance,
in community D, voting among the board membership happens.

Reaction: especially people outside a project complain about the code of conduct.
Since most of the interviewed communities grew around their codes of conduct, their projects
considered a code of conduct to be a good thing and codes have been adjusted as needed
by the community across time. Interviewee A said that the code largely served to attract
like-minded people and repel those who did not agree, which caused reinforcement of the
norms embedded within the code of conduct. B also confirmed that his community rejected
those who wanted to join the community but did not like their code of conduct. Based on
B’s opinion, a code of conduct is a means for “retention of newcomers but it does not attract
any newcomers”.

Interviewee C said that none of the communities he runs reacted negatively, i.e., the code of
conduct was a non-issue to them. However, according to him, from outside the community,
several criticisms have been voiced, mostly like “heterosexual white man can not write a code
of conduct and can not understand how to do it”. However, in his opinion the criticism that
someone is not capable to do something because of his/her color in fact goes against the code
of conduct.

Enforcement policy: varies from signing the code by all members to a respon-
sibility for project leaders to protect the community. In B’s community, members
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should sign their code of conduct, while in communities of other interviewees, there was no
such need and the code is adopted implicitly by any contributor. However, interviewee C
believed that the code of conduct is a declaration on the part of the project leader, not the
community members. It should say that someone as a leader will take the responsibility to
address all complaints and will not harass members for complaining.

Interviewee B stated that in their community, a code of conduct is mostly enforced in the
sense that people refer to it whenever someone is being disrespectful, for example on a chat
channel or mailing list. Just the act of mentioning the code suffices in most of the cases to
calm down a conflict. In a select number of cases, when a difficult situation occurred, it had
to be raised to a public community counselor. Interviewee A talked about actions that his
community chose to enforce a code of conduct: first a polite notice, later a stern notice or
warning, then a request to leave, finally a technical measure to prevent participation. During
his tenure of around 3 years, only a handful of people had to be asked to leave. Interviewee
D had experienced two reports during his tenure.

Strength and weaknesses: codes of conduct promote a friendly and inclusive en-
vironment, but may induce a policing environment. Finally, all interviewees believed
that a community with a code of conduct has an advantage to foster clear, explicit norms
that make the social environment more tolerable, friendly and welcoming to many individu-
als, while empowering diversity. Interviewee A mentioned that “it helps a community grow
in a way that reinforces those norms, by articulating common reference points. It encourages
development of social awareness, in this way reflecting on appropriate behaviour, i.e., people
skills.” Interviewee C believed that having a code of conduct means that leaders make a
commitment that they care about their community members.

Interviewee A mentioned that it is impossible to exhaustively enumerate all situations or
resolutions for conflicts in a code of conduct, which he identified as a drawback or inability
of codes of conduct. He also believed that a code of conduct may embed and enforce norms
more specific or larger than some community members desire. The interviewee also stated
that some community members may find a code of conduct intolerable, as it may imply a
degree of behavioural scrutiny or “policing”. Interviewee D confirmed this issue as a weakness
and mentioned that some people feel that a code of conduct prohibits them from speaking
freely.

About the difference between rule-based and value-based phrasing of a code of conduct, in-
terviewee B found that both have their benefits, such as signaling a safe and welcoming
environment. Rule-based phrasing is more clear and allows to easily react when a conflict
happens, whereas value-based phrasing is less likely to deter people from joining the com-
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munity, which is an advantage. Since in rule-based phrasing, misbehaviours are mentioned,
they may induce to others that the related community is an environment with hostile and
unfriendly issues.

�

�

�

�

A community’s concerns, needs and his-
tory play an important role in the design
of its code of conduct. Yet, similarities
among communities may lead communities
to reuse an existing code of conduct.

7.4 Limitations and Threats to Validity

Threats to construct validity focus on how accurately our observation measurements are
done. To measure the number of open source projects with a code of conduct and also the
most popular codes of conduct, we performed queries on Google and GitHub. Certainly,
there were false positive hits among these results, as discussed before, while the applied
search queries might not return all possible cases. To mitigate these risks, we complemented
a rough name-based search approach with 3 smaller, manually analyzed data sets that were
used together to evaluate the most popular codes of conduct.

Regarding external validity, for RQ2 we considered seven codes of conduct as representative
codes, however these might be different from other existing codes of conduct, or not compre-
hensive enough to cover others. We reduced this risk by considering seven codes of conduct
that seem to be among the most popular codes according to Google queries. However, fur-
ther studies need to confirm our findings on other codes of conduct. Similarly, while the
practitioners invited for the interviews were creators of actual codes of conduct, only 4 of the
invited people could be interviewed. Given their experience with the creation and adoption of
a code of conduct, and the overlap between their answers, we are confident that our findings
cover a large spectrum of codes. Of course, interviews with other practitioners as well as a
larger-scale survey are necessary to generalize our findings.

Threats to internal validity concern confounding factors that can influence the results. For
example, the interviewees may be biased, since they were the driving force behind the creation
and adoption of a code of conduct. We tried to lessen this risk by designing structured
and semi-structured interviews, preparing unbiased questions that also encompass different
aspects of codes of conduct. Again, more interviewees should be considered to further reduce
this risk.
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7.5 Conclusion

In this paper, we found that adopting codes of conduct in open source projects is an emerging
phenomenon in order to deal with diversity issues and provide a safe and inclusive commu-
nity. The phrasing of a code of conduct, enforcement mechanism used, scope and other
properties might vary depending on the code of conduct and community. We obtained these
insights through a combination of manual analysis of the codes themselves, as well as through
interviews with creators and adopters of codes of conduct.

Although our study is the first step showing the role of codes of conduct in open source
projects, we believe it opens up a variety of research opportunities, since it is one of the first
mainstream solutions to deal with conflicts in a software project. Indeed, recently research on
detection of emotions, politeness and sentiment in software engineering interactions has taken
off (Ortu et al., 2015a; Tourani and Adams, 2016; Tourani et al., 2014). Except for Dullemond
et al. (Dullemond et al., 2013), most of this work focuses on measuring the presence of some
kind of conflict or negative feelings, with the aim of informing managers about these. Codes
of conduct are a concrete tool to act on such information.

However, since codes of conduct are relatively young, more detailed empirical evaluation of
their effectiveness and of best practices is required. More qualitative and quantitative studies
should be done to provide recommendations and guidelines for the design and improvement
of codes of conduct in this domain. Once codes of conduct will be more mature, more data
will be available for quantitative studies, especially regarding enforcement and effect of the
code of conduct in different stages and processes of the software development process.
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CHAPTER 8 GENERAL DISCUSSION

In this thesis, we conducted a series of empirical studies to first identify the presence of
affective metrics and next investigate their impact. To investigate the impact of affective
metrics, we considered two major output parameters, quality in terms of the number of buggy
commits and time in terms of the issue resolution time and code reviewing time. Quality
is one of the most important concerns in software engineering, received huge attention in
recent years, for instance bug prediction models have gained importance. Time and the
performance of the process are other important factors contributing to software success.
Finally, we explored one general solution adopted in many open source projects providing a
healthier work environment regarding emotional and affective status of participants.

8.1 Detecting sentiment from software engineering artifacts and evaluating au-
tomatic sentiment analysis tool

We evaluated the adoption of an automatic sentiment analysis in mailing lists to identify
positive or negative sentiments (happiness or distress) and their evolution. This study was
backed with our previous study (Murgia et al., 2014), which revealed developers do express
their emotions in issue reports towards different matters such as design choices, maintenance
activity or colleagues. Moreover, mailings lists are common for discussion in distributed
software engineering. Sentiment scores were computed for each email of Apache Software
Foundation mailing lists, both developer and user mailing lists. In order to evaluate the
adopted tool and also observe the evolution of sentiment across different months we did
sampling in a special way described in section 4.4. Two raters separately scored the selected
sample. Raters reached agreement of 76.62% while in the beginning they have less agreement
and after discussions they obtained this percentage of agreement. To continue the rest of
study we discarded disagreement cases.

However, the evaluation results, precision and recall, were low. We identified two problems
cause these low performance and tried to conduct another experiment to measure them more
accurately. Those problems, explained in detail in section 4.4 of chapter 3, were related to 1)
the way of sampling 2) usage of technical keywords with polarities in terms of SentiStrength’s
dictionary meanings. We overcame these problems and conducted further experiment with
SentiStrength explained in the following.
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8.2 An Empirical Comparison of Different Sentiment Analysis and Aggregation
Methods

Knowing the sentiment of each sentence, finally we need to find out the sentiment of the
whole email composed of several sentences. In this section, we empirically compare the two
major approaches for sentiment analysis, machine learning and lexical-based, on developer
and user mailing lists. We again study the same two large, successful open source software
projects: Ant and Tomcat. For machine learning methods, we chose state-of-the-art tool,
Stanford Sentiment Analysis1, while for lexical-based approaches we used the Sentistrength
tool. To reach one score for each email, we evaluated different possible ways of aggregating
scores of email sentences.

8.2.1 Experimental Setup

We randomly picked for each mailing list of each project 200 sample emails in contrast to
chapter 4 which used a conditional sampling over most positive and most negative months.
Moreover, this number of sample emails was adequate as it leads a confidence level of 95%
and confidence interval of 5%. Providing the appropriate inputs for sentiment analysis from
emails, we adopted the same approach described in section 4.4, i.e., automatic emails were
filtered out and any non-natural language text inside the rest of emails were removed too.
Then, Sentistrength and Stanford tool separately run on the extracted texts from emails.

Stanford Sentiment analysis tool scores based on 5 sentiment classes from "very negative" to
"very positive" (very negative, negative, neutral, positive, very positive) for each sentence.
SentiStrength based on its 4 configuration can return several values as sentiment score. By
default, its reported score ranged in the following values:

• -1 (not positive) to -5 (extremely negative)

• 1 (not negative) to 5 (extremely positive)

While binary (positive/negative), trinary (positive/negative/neutral) and single scale (-4 to
+4) are other configurations of SentiStrength. Therefore, both tools return a range of values,
since our raters evaluate the polarity of each email and ignored the amplitude (because
of simplicity), we need to map those ranges to sign, i.e., negative, positive, and neutral.
Therefore, we discretized different possible scores in various ways. For instance, the -4 to +4
values returned by Sentistrength tool in single scale mode can be mapped to the combinations
of positive, negative and neutral values depicted in Table 8.1.

1http://nlp.stanford.edu/sentiment/
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Table 8.1 Sample of discretizations for Sentistrength returned scores in single scale mode

Negative Neutral Positive
[-4,-1] 0 [1,4]
[-4,-2] [-1,0] [1,4]
[-4,-3] [-2,0] [1,4]
-4 [-3,0] [1,4]

[-4,-1] [0,1] [2,4]
[-4,-2] [-1,1] [2,4]
[-4,-3] [-2,1] [2,4]
-4 [-3,1] [2,4]

[-4,-1] [0,2] [3,4]
[-4,-2] [-1,2] [3,4]
[-4,-3] [-2,2] [3,4]
-4 [-3,2] [3,4]

[-4,-1] [0,3] 4
[-4,-2] [-1,3] 4
[-4,-3] [-2,3] 4
-4 [-3,3] 4

Running the tools, we achieved one sentiment score for each sentence, however, we need
the one sentiment score for each email. To this end, several aggregation methods can be
adopted to combine sentiment scores of sentences: minimum, first quartile, mean, median,
third quartile, and max.

To evaluate the results, like section section 4.4 of chapter 3, two separate raters read the emails
and manually scored them while their scores were compared. First, there was an agreement
for 75% of emails between raters. However, raters discussed about their discrepancies and
for 95.34% of sample emails they reached equal scores.

Results

Max and Mean Methods performed better than other aggregation methods. For both Ant
and Tomcat systems, Sentistrength appeared with better performance regarding the follow-
ing discretizations: [-5,-2][-1,0][1,5] (negative, neutral and positive ranges), [-5,-1][0,1][2,5],
[-5,-1]0[1,5] and so on as depicted in Table 8.2. However, we found that the Stanford tool
shows higher performance for user emails with negative sentiment, which also observed for the
Tomcat system. Mean seems the best aggregation method for Stanford toolTable 8.3. How-
ever, for Tomcat, binary Sentistrength with Max method has better performance considering
positive sentiments emails for both user and developer mailing lists.



128

To conclude, we found out machine-learning based approaches applying Mean method show
better performance for user emails having negative sentiment, while lexical approaches with
Max method work better for emails, either developers or users, having positive sentiment.
Our results have no impact on results achieved in chapter 4, as there we conducted our study
to investigate the existence of sentiment in mailing lists and its evolution. However, we
explained in chapter 4 the performance calculated for SentiStrength tool was not accurate
enough, while through this additional study, we compared SentiStrength with Stanford and
calculated its performance more precisely.

Table 8.2 Sentistrength tool best results for developer and user emails with positive and
negative sentiments

Approach Metric Discretization Sentiment Mailing-list Type Fmeasure System

Sentistrength MaxS
0,[-1,0],[0,1],

[-2,0],[-2,1],[-3,0],
[-3,1],[-1,1]

Positive Developer 0.8 Ant

Sentistrength MaxS
0,[-1,0],[-1,1]

,[0,1],[-1,2],[0,2]
,[-1,3],[0,3]

Negative Developer 0.68 Ant

Sentistrength-Binary Mean 0 Positive User 0.72 Ant

SentiStrength MaxS
0,[-1,0],[0,1]

,[-1,1],[0,2],[-1,2]
,[-1,3],[0,3]

Negative User 0.48 Ant

Sentistrength-Binary Mean
Median 0 Positive Developer 0.78 Tomcat

Sentistrength
Sentistrength-Scale Mean 0,[-1,0],[-2,0]

,[-3,0],[-4,0] Negative Developer 0.59 Tomcat

Sentistrength-trinary Mean 0 Positive User 0.71 Tomcat

SentiStrength MaxS 0,[0,1],[-1,0]
,[-1,1],[-1,2],[0,2] Negative User 0.53 Tomcat

Table 8.3 Stanford tool best results for developers and users emails with positive and negative
sentiments separately

Approach Metric Discretization Sentiment Mailing-list Type Fmeasure System
Stanford Max 0 Positive Developer 0.54 Ant
Stanford Mean [1,0] Negative Developer 0.51 Ant
Stanford ThirdQ [-1,0],[0,0] Positive User 0.43 Ant
Stanford Mean [-1,0] Negative User 0.63 Ant
Stanford Max 0 Positive Developer 0.62 Tomcat
Stanford Mean 0 Negative Developer 0.58 Tomcat
Stanford Max 0 Positive User 0.53 Tomcat

Stanford Median
Mean 0 Negative User 0.78 Tomcat
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8.3 Understanding positive and negative sentiments in OSS mailing lists

As explained before, two raters scored sample emails while obtained an agreement of 76.62%,
therefore, we found out there are positive and negative sentiments in emails. We investigated
those sample to figure out the meaning of positive and negative sentiment of them, i.e. in
which cases they are positive, and when they are negative. We found out several categories
for both emails with positive sentiment and with negative sentiment. Therefore, we obtained
more insights about the meaning of positive and negative sentiments in emails so that we
could compare user mailing list and developer mailing list regarding their sentiment in our
selected OSS projects, i.e. Ant and Tomcat. Certainly, there is no evidence to support the
claim that our results are generalizable to other OSS projects.

8.4 Explanatory Models for Just-In-Time Quality

We studied Just In Time (JIT) quality prediction models in chapter 4. While previous
studies proposed this model using change metrics obtained from source code such as churn,
our work was the first to link change (technical) data, reviewing discussions data and data
of issue fixing discussions together to analyze the overall models. It is worth mentioning
that recent work by Tim Menzies et al. (Menzies et al., 2016) shows the effort to resolve
delayed issues are not greater than when issues were resolved immediately after introduction.
In this chapter, we built the explanatory models to understand the relation between human
discussions and bug proneness of a patch, which provides clues for understanding the causes
of defects. For half of the studied projects, the precision and recall of the proposed models
improve substantially.

The major contribution of chapter 4 is involving feelings of stakeholders in the proposed mod-
els through computing the sentiments of corresponding review comments and issue comments
which is so unique in the domain of study. Our previous studies in chapter 3 and in (Murgia
et al., 2014) showed the presence of affects in software artifacts, while by performing fur-
ther study explained in section 8.2, we observed good performance for SentiStrength tool
applying for developer and user mailing lists, i.e., texts used for communication in software
development environment.

We have other observations like when the type of a commit changes from bug fix to no bug fix,
the probability of defect-proneness increases. These observations need more investigations to
find out to what extent they are general and also understand the reason behind them.

Our final results showed sentiment-related metrics also played role in quality explanation
while featured in more than half of the models. However, more research is needed to fully
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explain how they impact the quality.

8.5 Explanatory Models for Code Reviewing Time and Issue Resolution Time

In chapter 5, we studied issue resolution time and code reviewing time, investigating factors
impacting these times. This is the first study that examine issue resolution and code reviewing
time while contrasting and comparing their scale, proposing reasons for their differences.

Wide range of metrics spread across 10 different dimensions proposed with the rational
behind them covering various aspects of issue resolution and code reviewing process, including
metrics related to a code change, or human discussion related metrics. We specifically showed
extra metrics rather than metrics related to code change improved the performance of the
proposed models significantly. Our models for code reviewing time reach high performance
up to 78% precision and recall, and our models for issue resolution time have an accuracy of
up to 70%.

Although these explanatory models are not able to predict future issue resolution time or
code reviewing time, they can explain existing metrics and provide key insights for obstacles
and problems delaying issue resolution or code reviewing time. Moreover, such a good perfor-
mance of models paves the way for building prediction models with reasonable performance.

8.6 Identifying affective-related metrics influencing quality and Time

In chapter 4, we considered feelings expressed through review discussions using sentiment
analysis tools. However, in chapter 5, to analyze the factors influencing time of the code
reviewing and issue resolution, we extended affect related metrics, i.e., politeness, emotion,
and sentiment of comments computed using appropriate tools. As discussed in both of
these studies, chapter 4 and chapter 5, integrating these metrics into other metrics to build
explanatory models was unique. However, for both of them, a list of influential metrics were
also computed so that we were able to show affective-related metrics are among influential
metrics impacting quality and time. However, there were more impactful metrics from other
dimension. Our work is the first empirical study that measures the impact of affective-
related metrics on quality and time (time of code reviewing and issue resolution), in software
engineering, using quantitative analysis.
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8.7 Understanding the role and characteristics of codes of conduct in open
source software projects

Our previous results showed the importance of affective-related metrics in open source projects.
Recently, as one solution for providing more friendly and inclusive environment, codes of con-
duct are being adopted in open source communities. Therefore, we were motivated to find
out why they appeared in open source communities, and how they can impact interactions
of members and provide a healthier and more friendly environment.

We figured out the role of codes of conduct in open source projects and conducted qualitative
study interviewing different famous creators of codes of conduct in open source projects to
obtain more fundamental insight about them. So far, no study has been performed about
codes of conduct in open source projects.

Codes of conduct may indicate that open source communities understood the risks of offen-
sive behaviours for their projects and tried to prevent those threats by applying appropriate
solution. In other words, open source communities realized that providing comfortable at-
mosphere for participants is one of the success keys for their project, so that participant
can freely and regardless of their gender, religion, ethnicity, and so on can work together
to succeed the project. We conjecture that codes of conduct consequently influence affects
of members so that they feel better participating in safe and protective teams, however,
certainly further studies needed to evaluate this assumption.

8.8 Overview of the obtained results and their impacts

In Table 8.4, insights of our obtained results and their impacts in software engineering context
have been listed.
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Table 8.4 Studies and their impacts
Concern Results and Their Impact

Feasibility of affect detection
from software collaborative artifacts

Our results in chapter 4 (motivated by (Murgia et al., 2014)) revealed the presence and
evolution of affects in the collaborative software media like issue reports or mailing lists.
This may provide solutions for software managers and practitioners to monitor
their teams’ environment regarding the affects of members and notice problems in
proper time. Consequently, they can avoid serious problems by taking appropriate
measurements.

Evaluating tools measuring affects
in software engineering context

Results observed in chapter 4 and subsection 8.2.1 showed tools designed for sentiment
analysis like SentiStrength or Stanford have reasonable performance in software engineering
context in comparison with their performance in contexts they have been designed for them initially.
However, for SentiStrength, we observed that tuning the tool before application
(e.g. by removing technical terms) beside preparing the text (cleaning the text from non-human texts)
lead to higher performance. This also may provide guides for practitioners
showing them how to measure affects using software textual collaborative artifacts used in
software engineering process. In addition, limitations and deficiencies of the tools
have been discussed too.

Investigating the link between
affective-related metrics and
quality

Results in chapter 5 showed that sentiment-related metrics featured among the most influential
metrics in defect prediction models. Based on our studied projects, healthier and happier software
environment teams have less defect-prone commits. Our approach also help researchers
how to investigate the impact of collaborative characteristics on software quality.

Investigating the link between
affective-related metrics and
development time

Results in chapter 6 revealed affective-related metrics appeared among
the 10 most influential attributes on both models explaining code reviewing time
and issue resolution time. While, more investigation in our studied projects showed that
happier environment leads to faster code reviewing.
We also proposed prior to selecting factors for use in explanatory models,
one should first analyze the features of output parameters as we did for review and
issue resolution time.

Examining one current solution
applied in open source projects to
improve affects of community

Codes of conduct has been adopted in open source projects as a solution
to provide a healthier and more friendly environment. Performing quantitative and qualitative
studies, we investigated open source codes of conduct to understand how this solution
may lead to happier or more positive environment. Our study is the first study in
software engineering domain presenting fundamental insights about codes of conduct
in open source projects such as understanding their popularity, the requirements behind their
design, their scope, enforcement, and limitations.
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CHAPTER 9 CONCLUSION AND FUTURE WORK

On the one hand, the software engineering process as cognitive and collaborative process
is being performed by human beings. On the other hand, affects (emotions, moods, and
feelings) influence cognitive processing activities and the productivity of individuals. The
affects of software stakeholders may impact software engineering process in different aspects.

As a preliminary step towards investigating our hypothesis, we analyzed the feasibility of
automatically measuring affects including emotions and sentiments from software artifacts,
since emotional awareness can help management to better understand various characteristics
of their team environments, foreseeing some problems and obstacles. Then, we ran several
empirical studies to examine the relation of affect-related metrics on quality of commits and
the time taken for issue resolution and code reviewing.

Our results indicated strong link between affective-related metrics and two important vari-
ables, i.e., the quality of the product, and time spent for code reviewing and issue resolution.
Finally, we studied codes of conduct, a solution adopted by open source projects to improve
the affect so that participants feel more comfortable and friendly environment despite the
existing diversity in open source communities.

9.1 Extracting affective metrics from software artifacts

Our first preliminary study (Murgia et al., 2014), towards evaluating the feasibility of a tool
for automatic emotion mining from software artifacts, revealed that issue reports do carry
emotions of developers during their discussions. This motivated us for our next study in
chapter 4, investigating the presence and evolution of positive and negative sentiment in
the email communication of users and developers of two large open source projects, Tomcat
and Ant. We observed that developer and user mailing lists do contain sentiment, and we
identified 6 categories of positive sentiment in emails, and 4 categories of negative senti-
ment. We also conducted additional experiments to study and compare two state-of-the-art
sentiment analysis tools, one (Stanford) as representative for machine-learning-based tools
and one (SentiStrength) as representative for lexical-based tools. SentiStrength shows better
performance for developer mailing list (FMeasure higher than 0.68). Later, in chapter 5
and 6, we adopted SentiStrength to compute sentiment score of issue comments and review
discussion comments. Also, for each comment, in addition to sentiment score, we determined
emotion and computed politeness too using proper tools.
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9.2 Investigating the role of affective-related metrics

In chapter 5 we defined human discussion metrics across various categories including the
sentiment category consisting of comments sentiments to study the link between these met-
rics and the “Just-In-Time” defect prediction models. Our results indicated that human
discussion metrics improve models and show strong linkage between them and buggy com-
mits. Although, among human-discussion metrics, those related to the experience of people
have stronger link with defect-proneness, sentiment related metrics play role in the mod-
els. According to sentiment-related metrics, higher sentiments indicating higher quality by
decreasing impact on the bug-proneness commits.

In chapter 6, we focused on metrics that impact the time taken for code reviewing and issue
resolution by considering a wider range of metrics. Those metrics were obtained from 3
domains: source code, review or issue discussions. We found the code reviewing time and
issue resolution time are mostly independent variables, suggesting that different factors are
influencing them. Our models reach high precision and recall, specially for code reviewing
time. By computing influential metrics, we found that affective-related metrics appeared
in the top 10 most powerful metrics. We observed that the more love(gratitude) expressed
through comments, the lower the total time spent on code reviewing, while higher politeness
is linked with longer code reviewing or issue resolution time.

9.3 Understanding the role of codes of conduct in open source projects

Finally, in chapter 7, we conducted an empirical study to obtain insights from codes of
conduct in open source projects, since their purpose is to provide more friendly and welcoming
environment to every participants. Affect detection from software artifacts, as discussed in
this thesis, measures presence of affects and can be used to help managers to gain more
emotional-awareness about their teams and working environment while codes of conduct can
be used to act based on such awareness.

9.4 Hypothesis Revisited

Based on our results in chapter 5 and 6, we can accept part of our hypothesis subsection 1.3.3
as there is a strong relation between affects of participants in open source projects and
software quality and time of their work. For quality, we considered buggy commits as a
measure of quality, while it is possible to extend our study to other definitions of quality
explained in section 2.2.5. Also, time of code reviewing and issue resolution as two major
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activities were considered as dominant time.

Our results in chapter 7 revealed that open source communities, by applying codes of conduct,
are trying to improve friendly and comfortable environment and consequently bring about
more positive affects in community. However, due to the lack of enough data, we were not
able to measure the affect improvement resulting of adopting codes of conduct in open source
projects.

9.5 Future Work

9.5.1 Adopting more accurate affect measurement

In our empirical studies, we applied different tools for computing affects (including sentiment,
politeness, emotion). These tools all have enough accuracy that does not affect the correctness
of our conclusion, especially by applying aggregation. However, their accuracy might be
increased adopting new techniques. For instance, one can upgrade machine-learning based
tools like Stanford by feeding new training data, i.e., software engineering corpus of data
with known affects. Certainly, we would like to adopt such more accurate tools to redo the
empirical analysis to find out more precise findings.

In our empirical studies to investigate the impact of affects, issue and review comments
were adopted as sources for extracting the affects of participants during their discussions.
However, other communication tools like IRC chat messages or mailing lists can be added
for finding members’ affects. However, one essential challenge for using these repositories is
providing the linkage between their data and commits as needed in our conducted empirical
studies.

9.5.2 Individual vs. group study

Since software engineering is a discipline consisting of different stages like design, devel-
opment, deployment, and maintenance, there are also specific roles such as programmers,
systems analysts, and project managers. Distinguishing between these roles and investigat-
ing the affect-related metric of each group separately, can bring about new findings which
is more precise. In this way, their interactions can be analyzed to find out what types of
interactions can increase the positivity of working environment.
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9.5.3 Feature-based sentiment analysis

Sentiment analysis can be run on the contents of software artifacts towards various features
including specific patch, new release or new technology. In this way, finer granularity will
be achieved for the obtained sentiments and more particular study and analysis can be done
based on various features. Other affect metrics, emotions and politeness also can be computed
based on specific features.

9.5.4 Affect evolution in critical periods of time

Affect related metrics can be computed in different periods of time based on specific events of
the project like release time or particular milestones of the projects. One can first check the
presence of affect evolution, and secondly, study the impact of affect evolution on different
parameters of software process like its quality.

9.5.5 Empirical study on the relation between affect and quality defined from
different perspective

Quality measurement used in our study in chapter 4 of this thesis was based on the defect
density definition regarding commits, however, we can consider quality from different view-
points like customer satisfaction as explained in section 2.2.5. For instance, customer rating
information can be applied to measure software quality, then investigate how various metrics
including affect-related metrics of developers may impact customer satisfaction. Quality also
can be measured by amount of changes that each developer has submitted.

9.5.6 Can affects of developer reveal their loyalty towards organization?

In order to identify the risk of project members leaving a project, we conjecture that the
affects of stakeholders in project communication media can be used as an indicator of their
intent to leave. In particular, we conjecture that when stakeholders leave because of disinter-
est, conflicts or other issues, their negative affect (related to sadness) should be much more
prevalent in their communications. Hence, by measuring the affects of developers, it seems
possible to detect and predict symptoms of leaving developers. Similarly, the affect of new
developers during their ramp-up process might be identified, making it possible to identify
frustration or other growing pains.
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9.5.7 Measuring the adoption of codes of conduct and their impact

It would be interesting to investigate the evolution of affect-related metrics in open source
projects after adopting codes of conduct, in other words studying the impact of codes of
conduct on affect-related metrics. This may also lead to some guidelines for improving codes
of conduct.
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