
To Build or Not to Build
The Build Lifecycle of a Commit

Bram Adams
Polytechnique Montreal
http://mcis.polymtl.ca/

Mahdis Zolfagharinia

Foutse Khomh

joint work with …

and special input by …

Yann-Gaël Guéhéneuc

Who is
Bram Adams?

Wolfgang De Meuter
Vrije Universiteit Brussel

Herman Tromp
Ghent University

Ahmed E. Hassan
Queen's University

M
C IS

(Lab on Maintenance,
Construction and Intelligence

of Software)

RELENG: International Workshop on
Release Engineering

5

>300 participants4 editions

http://releng.polymtl.ca

dozens of industry

& academic talks

M
C IS

JojoBram

Parastou

Mohammed
Alexandre

MahdisParisa

Act 1: “Dawn of the Build Inflation”

8

Builds are conceptually
simple!

make;
make test;

make install

ht
tp

s:
//w

w
w.

th
ev

er
ge

.c
om

/2
01

6/
11

/7
/1

35
48

76
0/

sir
i-j

ap
an

-p
en

-p
in

ea
pp

le
-a

pp
le

-p
en

-p
pa

p

commit

ht
tp

s:
//w

w
w.

th
ev

er
ge

.c
om

/2
01

6/
11

/7
/1

35
48

76
0/

sir
i-j

ap
an

-p
en

-p
in

ea
pp

le
-a

pp
le

-p
en

-p
pa

pbuild

10

compilation

What does a Build do?

generation of

partial update

binaries

generation of
documentation

tests

packaging of app
and its

dependencies

static analysis

signing

executables
internationalization

of an app

11

Testing is the process
of executing a program
with the intent of
finding errors.

[Glenford J. Myers]

12

You mean that build failures
are more useful than build

successes as well?

I guess it
depends on the

timing of the
build …

13

during

development

When to run Builds?

CI builds!!!

nightly builds

local testing

right before a

release

Why do Automated Builds Break? An Empirical Study (Kerzazi et al., ICSME 2014)

changes	requested CI	server

“try”/p
re-subm

it
developer

reviewers

14

						
revision

files

configurations a & b

release 1.0

revision

files

configurations a & b

release 1.0

push

acceptedquality	
gates

What are
CI Builds?

15
https://douroucouli.wordpress.com/2012/02/16/ontologies-and-continuous-integration/

build	
history

last	
build

We know
all that …

16

17

Yes, but now things
become interesting!

CI does a lot More than just “CI
Builds”: OpenStack’s Zuul1

https://www.usenix.org/sites/default/files/conference/protected-files/ures14_slides_zapata.pdf 19

$XWRPDWHG�%XLOG�3LSHOLQH

&RPSLOH��8QLW�
7HVW����
3DFNDJH

3DWFK�&,�
6HUYHU

5XQ�6PRNH�
7HVWV

3XVK�7R�,QWHUQDO�
(QYLURQPHQWV

3XVK�7R�
&DQDU\

&DQDU\�
$QDO\VLV

6TXHH]H�
7HVW

3XVK�7R�
3URGXFWLRQ

&UHDWH�'HY�
%UDQFK

&RPPLW�
&KDQJHV

2SHQ�3XOO�
5HTXHVW

E.g., CI forms Backbone of Many
Release Engineering Pipelines

CI

https://www.usenix.org/sites/default/files/conference/protected-files/ures14_slides_zapata.pdf

Jenkin’s Even has a Pipeline DSL!

https://jenkins.io/blog/2017/09/25/declarative-1/

Some “builds” actually

“deploy” or even

“release”, multiplying the

number of build activities

CI does All these Builds for All
Variants of a Software System!2

Just Think about how easily a Variant
is Created using Feature Toggles …

22

feature	initially	
turned	off	during	
testing	until	stable

new	feature	being	
developed	for	
upcoming	release

https://martinfowler.com/articles/feature-toggles.html

Testing	a	
Toggled	
Feature

23https://martinfowler.com/articles/feature-toggles.html

N toggles = 2
variants to test!

N

http://cpantesters.org/

There are also Different Variants
of the Software’s Environment

different Perl versions

different OSes

3

Explosion of
Additional CI
Builds!

operating system
(OS)

libraries config.

application

external
dependencies

network
communication

deployed into
hardware (sensors,

RAM, …)

26

build on
different

versions of
OSes

different
versions of

libraries
different

configurations different
providers of

dependencies

Infrastructure-as-Code makes it easy to specify different variants of environment

28

Travis CI also Builds in Different
Environments!

.	.	.

29

Travis CI build environment
Operating	
System

Run-time	
Environment

30

And I guess
that each failing

build should probably
be followed up by a
code fix, which in turn
needs to be built on

all variants!

Act 2: “What is Wrong
with this Build Inflation?”

compilation test releng …

CI
activities

CI
variants

OS

library
version

runtime
version

√

√ X

X√

√ X

Compilation and
Test Failures are

Only a Small Part
of the Picture

X

…

tim
e of build

√ √
1

X

33

triggering

commit

… while Existing Build Research Mostly Focuses
on Predicting compilation/test failures, using:

feature vs. bug

fix

development
team

trigger author

build history

role who
triggered commit

trigger time/

period
type of VCS action

Build / Test Compute Resources

Ja
n 2

01
1

Ja
n 2

01
2

Ja
n 2

01
3

 Ju
l 2

01
2

 Ju
l 2

01
1

https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

More Builds, More Load

>5k developers

>50k builds/day
150k tests/commit

bursty nature of
build load

2

Not Only for Web Apps

0

75

150

225

300

11/2009 01/2012 08/2012 09/2013 11/2013

https://atlee.ca/blog/posts/blog20091102what-happens-when-you-push.html
https://atlee.ca/blog/posts/blog20120113what-happens-when-you-push-2012-edition.html

x 6 in 4 years

removing unused

environments, test
suites, etc.

#machine
hours/
commit

Load Becomes so High that CI
Servers cannot Cope Anymore

Mitigation #1: Coalescing
Commits Arriving Together

XX X X X X XXX XX

builds

problem: if build fails,

not clear which commit

is the root cause

in that case,
expensive bisecting

needed

Speculative vs. serial gating

1

1 2

1

1

3

4

2

2 3 1 2 4

1 1 2 1 2 3 1 2 4

ht
tp

s:
//a

rc
hi

ve
.fo

sd
em

.o
rg

/2
01

4/
sc

he
du

le
/e

ve
nt

/o
pe

ns
ta

ck
_t

es
tin

g_
au

to
m

at
io

n/

time required

time required

faster than

Mitigation #2: Speculative
vs. Serial Gating

https://archive.fosdem.org/2014/schedule/event/openstack_testing_automation/

JIT Scheduling

Schedule tests to run only when
system has capacity.

Produce project-wide results at
periodic changelists.

https://testing.googleblog.com/2011/06/testing-at-speed-and-scale-of-google.html

Mitigation #3: JIT Scheduling

Schedule tests to run only when
system has capacity.

Produce project-wide results at
periodic changelists.

Continuous Integration:
● Run every test affected at every changelist.

In Production:
● Build and run tests concurrently on Google’s distributed

build and test backend.

JIT
as often as possible

i.e., test case

prioritization!

40

Ugly side-effect of
these strategies:

traceability from commit to
build is screwed up!

• assuming that:

• only AWS build costs money (incorrect => cost estimation is lower
bound)

• two cheapest AWS regions are used for daily production load, and a
third region on hot-backup

• healthy mix of “OnDemand”, “Reserved” and “Spot” AWS instances is
used

• then: the build cost of one Mozilla commit is USD 26.40

• having 7,601 commits in 12/2013, the total monthly cost is USD 201k

Builds = $$$

https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/

3
John O’Duinn

42

Let’s Revisit our Travis CI Example

.	.	.

 1 failure
1 Commit 42 Builds
 41 Successes

43

Build Inflation ≡ Diminishing
Value of Build Result

API unsupported
by Ruby 1.8.7

nice to know that 41 variations of library and runtime versions build correctly, but are all 41 really worth the $$$?

4

Act 3: “An Empirical Study on
the Value of a Build”

Do not trust build results at face value: an empirical study of 30 million CPAN builds
(Zolfagharinia et al., MSR 2017)

Case Study Setup

45

Mining the whole history of

CPAN-Testers builds (39k packages,

10 OSes & 103 Perl versions)

46

~30 million builds

CPAN Packages were Filtered Based on
Distribution of #Builds and #Versions

47
0

150

300

450

600

2011-A 2011-B 2012-A 2012-B 2013-A 2013-B 2014-A 2014-B 2015-A 2015-B 2016-A

X

10X

10-fold Increase in Average
#builds per Release

48

Build Inflation:
More Builds Finding Less Failures

5

10

15

20

5.0
8

5.1
0

5.1
1

5.1
2

5.1
3

5.1
4

5.1
5

5.1
6

5.1
7

5.1
8

5.1
9

5.2
0

5.2
1

Major Perl Version

 Not Every Environment Yields
Equally Reliable Build Results

49

Even Perl
version (stable)

Odd Perl version
(development)

Pe
rc

en
ta

ge
 o

f b
ui

ld
s a

cr
os

s a
ll

pa
ck

ag
es

6

8

10

12

5.0
8

5.1
0

5.1
1

5.1
2

5.1
3

5.1
4

5.1
5

5.1
6

5.1
7

5.1
8

5.1
9

5.2
0

5.2
1

Major Perl Version

 Not Every Environment Yields
Equally Reliable Build Results

49

Even Perl
version (stable)

Odd Perl version
(development)

Pe
rc

en
ta

ge
 o

f f
ai

lu
re

 a
cr

os
s a

ll
pa

ck
ag

es

 Build Results on Some Oses Are
Less Reliable Than on Others

50

%builds0

4

8

12

16

20

0 8 16 24 32 40

%failures
%build failures

51

How often do Builds Succeed/Fail
Consistently across all OSes?

52

Median of 86.5% of Builds Succeed/
Fail Consistently across All OSes

#OSes on which packages were built

do we need all
of these?

Basically, not all runtime
environments or OSes
have the same value,

one obtains diminishing
returns!

Act 4: “What You Should
Remember from This Talk”

55

Obviously,
any build provides some

insights…

… and if
your build just broke,

you’ll likely need to run all
builds on the bug fix

commit

However, we should Change
our Focus

Will this build fail? Which tests should be run?

Which files are likely buggy? How fast will this build be?

What is the minimal number of builds necessary to have
sufficient confidence that (1) the major variants of the
system satisfy their (2) functional and (3) non-functional
requirements across (4) the major targeted environments?

In other words …

commit

build task
specifications

to build
or not to

build?

Adding Brains to CI

brain should optimize the cost of running

the build, of fixing identified failures, of

cross-compatibility on all supported OSes,

of each feature combination, etc.

Finally, Support Manual
Interpretation of Build Results

CI activities

CI variants

tim
e of

build

techniques like

coalescing/gating, …

Explosion of
Additional CI
Builds!

operating system
(OS)

libraries config.

application

external
dependencies

network
communication

deployed into

hardware (sensors,
RAM, …)

26

build on
different

versions of
OSes

different
versions of

libraries
different

configurations different
providers of

dependencies

Infrastructure-as-Code makes it easy to specify different variants of environment

compilation test releng …

CI
activities

CI
variants

OS

library
version

runtime
version

√

√ X

X√

√ X

Compilation and
Test Failures are

Only a Small Part
of the Picture

X

…

tim
e of build

√ √
1

X

• assuming that:

• only AWS build costs money (incorrect => cost estimation is lower
bound)

• two cheapest AWS regions are used for daily production load, and a
third region on hot-backup

• healthy mix of “OnDemand”, “Reserved” and “Spot” AWS instances is
used

• then: the build cost of one Mozilla commit is USD 26.40

• having 7,601 commits in 12/2013, the total monthly cost is USD 201k

Builds = $$$

https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/

3
John O’Duinn

commit

build task
specifications

to build
or not to

build?

Adding Brains to CI

brain should optimize the cost of running

the build, of fixing identified failures, of

cross-compatibility on all supported OSes,

of each feature combination, etc.

