Feature Location using Crowd-based Screencasts

Parisa Moslehi
Concordia University, Canada
p_mosleh@encs.concordia.ca

ABSTRACT

Crowd-based multi-media documents such as screencasts have
emerged as a source for documenting requirements of agile soft-
ware projects. For example, screencasts can describe buggy scenar-
ios of a software product, or present new features in an upcoming
release. Unfortunately, the binary format of videos makes traceabil-
ity between the video content and other related software artifacts
(e.g., source code, bug reports) difficult. In this paper, we propose
an LDA-based feature location approach that takes as input a set
of screencasts (i.e., the GUI text and/or spoken words) to establish
traceability link between the features described in the screencasts
and source code fragments implementing them. We report on a
case study conducted on 10 WordPress screencasts, to evaluate the
applicability of our approach in linking these screencasts to their
relevant source code artifacts. We find that the approach is able
to successfully pinpoint relevant source code files at the top 10
hits using speech and GUI text. We also found that term frequency
rebalancing can reduce noise and yield more precise results.

CCS CONCEPTS

« Software and its engineering — Traceability; Documenta-
tion;

KEYWORDS

Crowd-based documentation, mining video content, feature loca-
tion, software traceability, information extraction

ACM Reference Format:

Parisa Moslehi, Bram Adams, and Juergen Rilling. 2018. Feature Location
using Crowd-based Screencasts. In MSR ’18: MSR ’18: 15th International
Conference on Mining Software Repositories , May 28-29, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3196398.
3196439

1 INTRODUCTION

Software traceability, i.e., the process of establishing bi-directional
links among software artifacts, has many applications in the soft-
ware maintenance domain, such as change impact analysis, docu-
mentation, requirements coverage, verification and validation [40].
Feature location is a form of traceability that automatically discov-
ers links between features in the source code and different software
artifacts, such as requirements [2]. Depending on the maturity of
the software development process and the life-cycle model being

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05...$15.00
https://doi.org/10.1145/3196398.3196439

Bram Adams
Polytechnique Montreal, Canada
bram.adams@polymtl.ca

Juergen Rilling
Concordia University, Canada
juergen.rilling@concordia.ca

used, these links are often created by people who directly contribute
to the project development.

However, the importance of formal documentation and therefore
traceability in agile development is debated amongst practition-
ers [12]. Open source and agile development mostly focus on system
functionality and informal documentation in the form of bug or
issue tracking repositories, emails, source control repositories and
crowd-based mult-imedia documents (e.g., screencasts and videos).
Crowd-based multi-media documents are created by people who
are not necessarily direct project contributors, and especially have
become widely accepted by the open source community, to the
point where open source projects have started to make how-to
videos (“screencasts”) an integrated part of their documentation.
For example, WordPress [46] encourages its users and contributors
to create new how-to videos [47] that describe certain use-case
scenarios or features. Some users even enrich their bug reports via
a screencast [8] to exactly demonstrate how to reproduce the bug.

An essential aspect of software traceability, and hence feature
location, is not only the creation of links, but also the need for
these links to evolve as their source artifacts evolve, in order to
ensure the consistency of these links [22]. Existing research in
feature location and link evolution mainly focuses on techniques
for locating system functionalities in the source code based on some
available high-level description of a system’s functionality, such
as source code comments, use-case scenarios, mailing lists, bug
reports, etc. Once identified, this information is used to support
various maintenance tasks such as, localizing bugs described in bug
reports [25, 26], source code navigation [14], or to support software
immigrants in comprehending the core functionalities of a software
system [14].

In contrast, the field of mining (crowd-based) multi-media docu-
mentation is very young [27, 28], with no existing work on feature
location from multi-media documentation. This is an emerging
problem, since more and more open source projects have substan-
tial crowd-generated multi-media documentation that needs to
keep up with the rapidly evolving code base. A key challenge for
linking multi-media documentation to other software artifacts is
the abstraction gap between those artifacts and the information
provided by the screencasts. Multi-media documentation delivers
content in the form of voice and video (images), while traditional
software artifacts mostly deliver content in some form of textual
representation.

Hence, in this paper, we present an approach that leverages both
audio (i.e., speech) and visual cues (i.e., GUI) from screencasts to
locate relevant features in the source code of the corresponding
software application. The contributions of this work are as follows:

e We propose a methodology of source code feature loca-
tion that takes advantage of content presented in screencast
videos.

e We perform an empirical evaluation of our approach on
screencasts created by the WordPress community.

https://doi.org/10.1145/3196398.3196439
https://doi.org/10.1145/3196398.3196439
https://doi.org/10.1145/3196398.3196439

MSR 18, May 28-29, 2018, Gothenburg, Sweden

e We empirically compare the impact of different information
sources extracted from screencasts.

The rest of the paper is structured as follows. Section 2 lays
out the motivation and research questions of our work. Section
3 describes our research methodology, data, and data extraction
techniques. Section 4 presents the setup of our case study, followed
in Section 5 by answers to our research questions obtained through
the case study. Section 6 discusses threats to validity, while Section
7 compares our work with related work. Finally, Section 8 concludes
the paper.

2 MOTIVATION

Popular open source software systems such as Firefox, Eclipse or
WordPress, have numerous how-to videos (“screencasts”) available
online. For example, screencasts exist that explain how to use a new
feature, document an observed bug, or even provide a workaround
for a known problem. While such screencasts demonstrate buggy
scenarios or workarounds, developers who want to resolve such
bugs or integrate the described workarounds into the application
still need to manually trace the screencast content to the applica-
tion’s source code. Our work aims to help developers in tracing
such features described in screencast content to source code, by
automatically recommending source code files that are related to
the implementation of these features.

For example, Sara, a new contributor to WordPress, wants to
customize WordPress for her own usage, by adding an additional
menu option (Figure 1). Since she is still unfamiliar with WordPress,
she decides to search on the Internet for screencasts about “how
to add menus to WordPress”. While watching a screencast for this
scenario, the narrator briefly highlights a WordPress bug related
to the feature’s implementation. Sara decides to contribute to the
WordPress project by fixing the bug described in the screencast.
For her to be able to fix this bug, she first has to locate the source
code relevant to the screencast content.

While feature location from textual documents such as require-
ments is an established field [14], such techniques cannot directly
be applied to content from screencasts, due to a number of major
challenges:

The abstraction level: The content of a screencast is typically
captured by a narrator who is describing verbally (through speech)
and images (by visually demonstrating) the screencast content.
As a result, the content representation in a screencast differs sig-
nificantly from other software artifacts, where content is often
captured in structured or semi-structured formats that simplify the
linking of content across these structured artifacts. Furthermore,
even technical screencasts tend to be at a higher level of abstraction,
only sparsely providing low-level implementation details of the
demonstrated features.

Dynamic vs. Static: Screencasts are dynamic by nature, ie.,
every couple of image frames the screen changes as the narrator
is manipulating the GUI of the demonstrated software applica-
tion [37]. In contrast, the source code of the demonstrated version
of the software application is static, with feature implementations
crosscutting multiple methods, files or even components of a sys-
tem [20]. This crosscutting makes it inherently difficult to manually
identify and link code fragments relevant to the dynamic content
of a screencast shown at some point in a screencast.

P. Moslehi et al.

A WordPress developer WordPress
walches a screencast SOUrCe developer or
screencasts of a buggy scenario Code maintainer
-i\.,

% vuu'_\, ¢ . _____ 9

g
!j) Screencast
escribing a buggy @D

use-case scenario
Linking the

in WordPress
source file and
the screencast

WordPress user
creates how-to

A PHP file relevant
to the buggy use-
Case SCenarnc

Figure 1: How source code feature location within
screencasts helps WordPress users or developers.

Information resources: Screencasts can contain different in-
formation resources (e.g., images, speech, captions, sequence of
GUI events, user actions) [28], which differ significantly from those
found in source code (e.g., language-specific syntax, comments,
function names, identifiers, file names, string literals). However,
the availability and quality of the screencasts’ resources will differ
from screencast to screencast.

3 FEATURE LOCATION METHODOLOGY

In this section, we present a general overview of our proposed
methodology for source code feature location using tutorial screen-
casts. Given a set of screencasts related to a given feature (use-case
scenario), our objective is to locate the source code artifacts exe-
cuted by it. The proposed methodology (Figure 2) is independent
of the underlying application or use-case and includes three main
steps. Before outlining each of these steps in more detail, we de-
scribe first the datasets involved.

3.1 Data Sets

We use two types of data sets: data extracted from screencasts and
source code data. As explained by MacLeod et al. [28], there are
various important elements of information inside screencasts. In
what follows, we discuss their potential use for feature location:

e Speech: Tutorial screencasts often have a narrator who ex-
plains each step of a feature (use-case scenario), while demon-
strating the feature on screen. Generally, parts of the speech
not only will match labels or content in the image frames
shown in the screencast but also keywords found in the
source code. Figure 3 shows an example of such matching
keywords between screencast content (top) and source code
(bottom half).

o GUI frames: Screencasts capture the GUI interactions with
a software application, with each screencast containing a
long sequence of images (frames) played at a constant frame
rate. Since a typical GUI contains both textual and graphi-
cal information, the GUI text on a screencast frame can be
matched to corresponding string literals in the source code,
unless this content is generated dynamically at run-time (e.g.,
user input). Furthermore, icons and graphical information
such as edges, layout of the visual content and color changes
that occur in an image frame can be used as visual informa-
tion clues to identify what particular parts of a feature the
narrator is currently focusing on.

£ Plugins @

& Tools

B Settings

Smenu[60]

Feature Location using Crowd-based Screencasts

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

3.3 Extracting Structured Information from Source
Code and Video Text

—

3

Source Code ™,

Toxt Dataset . | Source Code-Topic ':
Saurce Code Gomments, Identiiers, Yoruirs :
- Proprocossing ‘.?; File Names, String Values i :
i | EEE—— :
— ! Source Code i
WordPress Source \ Document-Tapic Vectors| ©
Gade repository on | | :
GitHuo i L Vidao-Tapic. | Videe Document-Togic | |
| Vidoo|Taxt Weighted Video| : Topic Intarancer . vector Vectar :
1 Datgset Text Dataset | | :

| OCR using Google AP R N IS

GUI Text
(User Actions)’
A

Sereencast |
Screencast

o 5=

How-to Screencasts |
on YouTube I

H Speech
Il ,
% Text to Speach

S using IBM WWalson

Modirying the
Term Frequencies

using a

Weighting Metned

3.2 Extracting Relevant Text from Source Code

and Screencasts

Cosing
Similarity

Ranked Aesults B

3.4 Source Code Feature Location using
Screencasts

Figure 2: Methodology for feature location from screencast data.

some links to get you started:

Source Code

pearance]

Speech GUI

Users [Write your first blog post
Add an About page

o
me completely B3 View your site

'themes

= array(_ {
$submenu [

$appearance_cap,
= array(_ ().

'themes 'Themes' Sappeara

Scustomize_url = add gquery_arg('return', urlencode(wp_uns

Ssubmenu['t e5. 0,] = array(_ { 'Customize' }, 'cust

if (current theme supports/(

) current_theme sup

$submenul['themes.ghy' = array((Yo Tedi

}

Figure 3: Matching keywords between speech, GUI and
source code.

o User actions: The screen shown by a tutorial screencast and
the textual, graphical and speech information that it contains
dynamically change as a result of the narrator’s actions in
the screencast, such as pressing a button, clicking on a menu
item or opening another window. These actions make up the
different steps of a use-case scenario and often correspond
to event handlers and GUI widget labels in the source code.

o Sequence of events: The order in which user actions occur ina
screencast forms a sequence of events that can provide both
essential use-case steps (common across all screencasts of a
given scenario) or optional (occurring only in a few screen-
casts of the scenario). This sequence could correspond to a
chain of event handler executions or sometimes a function
call graph.

e Metadata: When screencasts are uploaded to video portals
like YouTube, they are typically provided with a title, descrip-
tion, upload date, comments, number of likes and dislikes,
closed captioning (if enabled) and other information related

to the screencast. Such metadata provides additional infor-
mation for linking screencast and source code content.

Our second data set corresponds to the source code of the soft-
ware release exercised in the screencasts. In contrast to the screen-
cast dataset, the textual code information is straightforward to
extract from the software’s version control system. Yet, since it
mostly contains low-level information such as source code text and
comments, the extraction and abstraction of semantic information
from the code is inherently difficult. Given this semantic mismatch
between the vocabulary used by screencasts and by the source
code, one should exploit any source code information hinting at
semantics of the developers’ objectives [1, 9, 26, 39], such as:

3.2

Source code comments: Comments explain or annotate parts
of the source code, usually in higher-level terms than the
code itself.

Variables and identifiers: Variable names usually relate to the
scenario-related information stored within them.

String literals: Static string literals often appear on GUI wid-
gets.

Method and class names: Developers choose class names and
method names closer to the software’s domain.

File names: In the absence of object oriented code, file names
are another useful source of information for feature location.

Extracting Relevant Text from Source Code
and Screencasts

Source Code Preprocessing: For every source code file, we ex-
tract the source code elements mentioned above using Exuberant
Ctags [18], then further process them by removing noise in the
form of special characters, numbers, punctuations and stop words.
Finally, we also perform stemming on the remaining tokens.

Screencast Preprocessing: Screencasts are composed of an
audio component and image frames. In what follows, we describe
how we extract the speech and GUI data.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Speech: Tutorial screencasts usually have a narrator who explains
the steps involved in performing a certain feature (use-case sce-
nario). For screencasts with closed captioning available, text extrac-
tion tools can be used to extract a screencast’s subtitle. For screen-
casts published without closed captioning, automatic speech recog-
nition tools to transcribe the speech information can be used [33].
Once the transcribed text is available, the same preprocessing steps
as for source code can be performed.

Image processing and user actions: To extract text from video
frames, one needs to first extract key image frames of the screen-
casts, then extract text fragments from them relevant to the use-case
scenario. Such relevant text fragments typically are either found in
the image frames or in text/labels associated with them. Given the
many frames within a typical video, only those in which a major
event happens (e.g., mouse click or button press) should be targeted.

Unfortunately, identifying these text fragments and frames is the
most challenging data to obtain. We experimented with three dif-
ferent image processing approaches, before settling with a simpler,
textual approach. First, we used Template Matching [7], where one
should provide a template image of a mouse pointer (both the click-
ing and neutral version) to be able to automatically locate the mouse
pointer in video frames and any mouse actions being performed.
We also experimented with image pixel subtraction [34],which sub-
tracts the pixels of neighboring frames to detect changes occurring
between image frames, typically caused by mouse movements. Fi-
nally, we also used connected components detection [35], which
exploits the fact that neighboring pixels typically have similar pixel
values to locate different logical areas in the image frames (e.g., a
“text field”, or “button”).

However, the above image processing approaches have a num-
ber of drawbacks, namely large overhead, strong dependence on
image quality or resolution, and possible information loss due to
image binarization or transformations. For example, if we binarize
a colored image, it will be transformed to a black and white image.
Areas with light background and white text will vanish. Similarly,
the template matching technique fails due to users customizing
their mouse pointer as well as due to the mouse pointer hiding the
label of the clicked button during the actual clicking motion.

Instead, we opted for a simpler, pure textual approach, where we
directly perform common Optical Character Recognition (OCR) [11]
on each frame to recognize all the text on the frame, then subtract
the text (instead of the pixels) of every 2 subsequent image frames:

Dif f = Text(img;) — Text(imgi-1) (1)

The OCR returns all the text enclosed within neighboring pixels
on the images as a sentence or word along with the coordinates of
the words on the images. An advantage of this approach is that it
only uses a bag of words during the analysis. For example, if a user
clicks on a button, the GUI will change to open a dialog menu or
new text field, which will be reflected in the text recovered through
OCR. Dif f then contains the bag of words shown on the second
image frame (Text(img;)) but not on the first one (Text(img;—1)).
Figure 4 illustrates how the above algorithm works.

3.3 Extracting Structured Information from
Source Code and Screencast Text

To extract additional semantic structures from the textual source
code and screencast data, we apply topic modeling using Latent

P. Moslehi et al.

This is the GUI text,
which may be relevant

This is the GUI text on
the previous image

,which may be relevant
to a specific use-case

to a specific use-case frame —— | SCEDATio,
2 — —
scenario, on the current current
image frame
Text(img;) Text(img;_1) Diff

Figure 4: GUI text difference after a user action happens.

27500 == Log Likelihood

-132500

Log Likelihood

-135000

100 200 300 400 200

Number of Topics (K)

Figure 5: Log likelihood values vs. Number of Topics (K).

Dirichlet Allocation (LDA) [6]. This is an unsupervised statistical
approach that models semantics of words based on topics. Each
latent topic is characterized by a statistical distribution over a bag
of words, and documents are represented as random mixtures over
these topics. As such, LDA allows to transform each document
into vectors of topic probabilities, which are then compared to each
other. In our case, documents are either source code files or text files
containing information (GUI, speech or both) from a screencast.

To use LDA, one needs to first determine the number of topics to
be used in the topic modeling process. The smaller the corpus, the
fewer topics should be generated [26]. We applied the approach used
by Thomas et al. [44], who suggest to use different numbers of topics
and evaluate the resulting models based on the topics’ log likelihood
values. The optimal number of topics is determined by the point
where the log likelihood values start to get diminishing returns (i.e.,
a “knee” in the corresponding plot), which represents a good balance
between topic richness and overspecialized topics (Figure 5). The
quality of the topic modeling also depends on the quality of the data
used as input. During our initial evaluation of the topic modeling
approach, we observed that even after our preprocessing steps, the
screencast data still requires additional preprocessing. In particular,
in a single screencast document containing GUI, speech or both
kinds of data, certain words might be less important yet occur more
frequently than a word crucial to the use-case scenario under study.
Such frequent words often occur throughout the dataset and not
only in a single document. Therefore, one would want to rebalance
the occurrences of words within documents. In the specific case of
a screencast document containing both GUI and speech data, such
rebalancing also helps to avoid that the more voluminous GUI data
would dominate the speech data.

For this rebalancing, we use a weighting algorithm to modify the
frequency of the words in a screencast document. The well-known
tf-idf (term frequency-inverse document frequency) [31] approach
does not apply in our case, since it weights down frequent terms (in
favour of important words that are rare across the whole corpus),

Feature Location using Crowd-based Screencasts

yet in our case frequent words (e.g., “post”, “menu”, “add” or “new”
often turn out to be good indicators for feature location. Hence,
in a preliminary study, applying the tf-idf term weighting on the
datasets resulted in poor performance of the approach.

Instead, we focused on rank-order weighting approaches [41],
which consider the rank of each term in a document according
to some ranking formula involving the term frequency of each
word. Since LDA works based on the co-occurrence frequency
of the words, this way we can increase the chance of documents
containing terms relevant to the scenario to appear as top hits. In
particular, we use the Rank-Order Centroid (ROC) approach, which
is generally considered to be the most accurate [41]. This approach
assumes that the weights are uniformly distributed in a way that
Wr, = Wp, 2 -+ 2> Wy, Where wp +wp, +---+w,, =landr;isa
rank position of wy,. The weights are calculated using the following

formula:
1 1
Wi==) — 2
= @

..., where n is the number of unique terms in the whole screen-
cast corpus and rank r; is calculated based on the descending order
of the frequency of the terms in the original corpus. Here, the top
term has j = 1 and gets more terms in the summation than the
last one, where k = n. For instance, imagine the corpus comprises
{(menu, 3), (open, 2), (project, 1)}. The word “menu” has the highest
term frequency and therefore the highest rank (1), yielding a ROC
value of 0.6.

The terms of each GUI, speech or GUI/speech document, ex-
tracted from each screencast in the corpus will be ranked, in a
descending order, based on their term frequencies within the docu-
ment. We then modify the term frequencies in the documents of
each screencast in the dataset using the following formula:

1
New_TF;j = round(TFj x —) 3)
rj

Here, the round() function, rounds off the new value of New_TF;
to the nearest integer. In our example, New_TFy,eny, is calculated
as round(3 X %) = 3. The idea is that wherever the term “menu”
occurs in the text, we repeat it 3 times. Using this approach, the fre-
quency of the important terms increases. At the same time, ROC’s
assumption of uniformly distributed weights W; guarantees that
less important (i.e., irrelevant) words will be either way less fre-
quent than the important ones or removed from the document
(New_TF; = 0). For example, the term “open” obtains a new term
frequency value of 1, and “project” obtains 0 (marking it for removal
from the document).

After determining the number of topics and possible rebalancing
of terms within the GUI and/or speech documents, we then train a
topic model using the source code corpus, which creates document-
topic vectors from the source code documents. Each element of
these vectors corresponds to the probability that a given topic
occurs in a document. Then, we use the trained topic model to
infer the topics of a new document, in this case the GUI and/or
speech text extracted from a screencast (using formula (1) applied
on all images of a single screencast). The inferred screencast topics
again yield document-topic vectors, this time for the screencast
documents.

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

3.4 Source Code Feature Location using
Screencasts

The methodology of Figure 2 performs feature location using screen-
casts as queries and source code as corpus. For this, we use the
cosine similarity measure [30] to compare the document-topic vec-
tor of a screencast with each document-topic vector of the source
code corpus obtained in the previous step. Then, the source code
vectors are ranked from highest to lowest similarity with the screen-
cast vector. Ideally, the highest ranked vector should correspond to
a file most closely related to the screencast’s use-case scenario, and
hence be a starting point (seed) for feature location.

4 CASE STUDY SETUP

In this section, we evaluate our feature location methodology to
address the following research questions:

e RQ1. How accurately can source code files be located from
screencasts?

e RQ2. What is the optimal balance between GUI and speech
data for feature location?

¢ RQ3. Do we need both speech and GUI text to perform
feature location?

4.1 Data Preparation

For our case study, we considered the popular WordPress open
source project, for which many screencasts are available on sites
like YouTube. Unfortunately, not all of these screencasts are of
equally high quality. To have a higher accuracy, we only considered
High Definition (HD) videos. Furthermore, our case study requires
multiple screencasts on a common scenario, ideally on the same
version of WordPress. Hence, to make sure enough screencasts
would be available, we performed different queries on YouTube to
find the most popular use-case scenarios of WordPress. Then, for
each use-case, we searched for the relevant screencasts on YouTube
and grouped them by upload year. The upload year with the most
HD screencasts relevant to the same use-cases was 2015, which is
they year in which WordPress 4.3 was released.

We found out that “How to add menus to WordPress” and “How
to create a post in WordPress” are the 2 most common use-cases
whose videos also meet our criteria. The first scenario considers an
administrative task in WordPress in which the user inputs only a
limited amount of text, while the second scenario requires the user
to enter a substantial amount of text, possibly in another language.
Hence, the second scenario provides more noisy data, which is
bound to provide a larger challenge for our approach than the
first scenario. This will allow us to explore the applicability of the
approach on videos with different quality or signal-to-noise ratios.

To avoid having unbalanced data, by mixing too long and too
short videos in the dataset, we specified a range between 2 to 8
minutes for the duration of the videos. Therefore, maximum number
of screencasts that could be found for both use-case scenarios was 5,
we downloaded 5 screencasts using the same version of WordPress
(version 4.3). Having lengthy videos would lead to having more
noise and also would require more resources to be preprocessed.

We downloaded version 4.3 of WordPress from the project’s
GitHub repository, and used Exuberant Ctags to extract the required
source code data. The code base consisted of 554 PHP files, with

MSR 18, May 28-29, 2018, Gothenburg, Sweden

median size of 162 lines of code (25th/75th percentiles of 52 and
511).

4.2 Applying our Methodology

For this study, we focused on the following screencast data: user
actions, the GUI text and the narrator speech. As explained in Sec-
tion 3.1, the other data elements of screencasts are more challenging
to extract and left as future work.

Since closed captioning was not enabled for the screencasts in
our data set, we used IBM Watson’s speech-to-text service [42] to
automatically transcribe the audio part of the screencast. Moslehi
et al. manually compared this service against 4 other services or
tools, obtaining the highest precision and recall values (0.75 and
0.88 respectively) [33].

Regarding the visual content of the screencasts, we extracted
image frames at 1 frame per second rate using FFmpeg [19], yielding
1,561 video frames to be analyzed for the Menu screencasts and 749
for the Post screencasts. We then OCRed the frames to obtain their
textual content. To perform OCR, we first explored the Tesseract
tool [43] used by Ponzanelli et al. [37]. However, it has a number
of limitations, such as the need to improve the quality of images
by removing the image background, to keep only the areas with
text or to resize the images. Resolving these issues either resulted
in data set-specific scripts or substantial manual effort.

Instead, we opted for Google Vision API’s Text Recognition
service [21]. It does not require these preprocessing steps and is
able to recognize and output the text on the images along with
the (x,y) coordinates of the area in which the text appears. It also
outputs a confidence score with the OCRed text, which can be used
to filter out false positives. A nice characteristic of our textual frame
diff-ing approach in (1) is that incorrect OCR output might still be
discarded if it occurs across all the frames.

We used MALLET [29], a popular topic modeling tool, to perform
LDA. To determine the best number of topics for the experiments,
we split the source code dataset into 90% training and 10% test
portion. We used MALLET’s evaluate-topic command on the test
data for a range of topics. By evaluating the models based on their
log likelihood values, we obtained Figure 5. This figure allows to
find the “knee” point K where one gets diminishing returns in log
likelihood as we increase the number of topics. In this case, K = 80,
which is the number of topics used in our case study.

4.3 Evaluation Measures

The retrieved ranking results will be evaluated against an oracle
(baseline) created by manually executing the essential steps of a
use-case scenario (shared amongst all screencasts of a scenario) and
generating an execution trace using Xdebug [48], which is a popular
PHP profiler. The execution trace then was parsed to extract the
PHP files whose functions were called.

Some extracted source code files are common across both ana-
lyzed scenarios of WordPress and form the “All” baseline. Other
files are unique to a given scenario and hence more indicative of
that scenario. We call this set of files the “Unique” baseline. Note
that, while the files in the All baseline are shared between different
scenarios, in each one of them a different subset of methods could
be executed, since the granularity of our analysis is file-level. We
consider the Unique baseline to be more relevant to the technical

P. Moslehi et al.

implementation of the essential steps in a scenario, while files in
the All baseline tend to be closer to the high-level implementations
of the scenario. Therefore, we consider both baselines in our study.

Since feature location aims to find the starting point (seed) in the
source code for manual exploration, we use evaluation measures
that are able to assess the ability of the approach in retrieving true
positives at the top of the result set [23]. In other words, since the
goal is not to retrieve all relevant results, we did not consider recall
for evaluation purposes, but instead used Average Precision (AP)
and Reciprocal Rank (RR):

1

n
= |RT| Z Precision at k (4)

keR
1

k= rank of the first tp ©)

..., where R is the set of all relevant retrieved items and k is
the number of retrieved items. We use AP, since it considers the
position of the true positives in the ranking. This mainly helps
in ranking applications such as feature location where relevant
items occur among top hits of the search results, since the users of
feature location tend to only browse the first page, i.e., the top 10
hits. We chose AP over the “Precision at k” measure, because AP is
generalizable over multiple queries (values of k)— if we calculate the
mean value for all queries— and it can compute precision at every
correctly returned result. For instance, to have a fair evaluation
using “Precision at 10”, at least 10 actual relevant items must exist
in the corpus for all executed queries [23], while we may not have
this number of relevant items in our corpus for each query.

We also use RR, since it considers the position of the first true
positive in the search results, and is best applied when one has
very few true positives, some of which occurring in the top k of
the search results. In feature location, we indeed risk to have a low
number of true positives, since we are looking for the top ranked
result across different levels of abstraction (GUI and Speech text
versus source code text). In such cases, the AP measure by itself is
not enough, since its value depends on the ranks of all true positives.
Therefore, having true positives at the bottom of the top k list will
penalize the value of AP, and RR should be used as a complementary
measure to AP.

In general, RR can be used to evaluate whether the most relevant
hits are among the top ones, while AP can be used to find out how
well the approach is able to retrieve the relevant results and rank
them among top hits.

5 CASE STUDY RESULTS

5.1 RQ1. How accurately can source code files
be located from screencasts?

To answer this research question, we focus on the leftmost blue
boxplots on Figure 6 and 7 (i.e., “na.gs”), which shows the results
when both GUI and speech data are used as is (without rebalancing).

Results on “menu” Scenario: Figure 6 shows that the median
AP for the All baseline is 0.8 and for the Unique baseline is
0.55, which means that for the All baseline, every 5th result will
be a false positive, while for the Unique baseline every 3rd or 4th
item on the search results will be a false positive. Having an AP
of more than 0.5 means that we have more true positives than
false positives in the top 10 hits, which is a good sign for a feature

Feature Location using Crowd-based Screencasts

[
E—)
0.8

0.6 o

0.4 o

Measure Values

0.2 o

00 -

T
o
3

na.gs |
w.gs
na.s -
w.s

na.g —

(a) Menu - Average Precision - All Baseline
1.0

0.8 1 °
T .
0.6 - H

0.4

Measure Values

27 —

0.0 -

T
o 2
3 3

na.gs
w.gs
na.s -
na.g -

(c) Menu - Average Precision - Unique Baseline

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

0.8

06 -

0.4

Measure Values

02 - —

0.0 <

T
o
3

na.gs |
w.gs |
na.s -
w.

na.g —

(b) Menu - Reciprocal Rank - All Baseline

1.0

0.8

0.6

0.4 -

Measure Values
o

27 —

0.0 -

T T
0 o
H H

na.gs -
w.gs
nas =
na.g -

(d) Menu - Reciprocal Rank - Unique Baseline

Figure 6: Boxplots of RR and AP for the Menu scenario evaluated against All and Unique execution trace files, using both
GUV/speech data (“gs”), only GUI (“g”) or speech (“s”), either with weighted (“w”) or original (“na”) metrics.

Table 1: Random guess probability of the baseline files out
of the total corpus of 554 source code files.

use-case Scenario Baseline #files Random Guess

Post All 92 0.17
Unique 14 0.03
Menu All 92 0.17
Unique 13 0.02

location approach. Considering that there are only 13 PHP files in
the Unique baseline, having a median of only 3 or 4 false positives
in the top 10 hits means that the approach can give a higher rank
to the most relevant files.

More importantly, all screencasts had an RR value of 100%
for the All baseline, while half of them had such a high RR
value for the Unique baseline. The fact that the first true positive
in the majority of the cases has rank 1 indicates that the approach
provides useful seeds in this scenario.

Results on “post” Scenario: Figure 7 shows that the median
of RR is 100% for both baselines, which means that even when
using a noisy dataset such as the “post” scenario, the approach still
is able in the majority of cases to rank the most relevant result in
first position. Also, the median of AP is 0.67 for the All baseline
and 0.63 for the unique baseline, which means that we will have
more true positives than false positives in the top 10 hits.

Further evaluations for both baselines in Table 1 show that the
approach always outperforms random guessing, where one would

try to correctly guess all relevant files in each baseline. Conclusion:

In most of the cases, the approach can successfully rank the first
relevant item at the top of the result set when using both GUI and
speech dataset. In general, the results for the “menu” scenario are
more precise because there is less noise in this data set. Having less
noise (e.g., less user content input into the GUI) allows to have more
terms in common with the source code dataset. However, even for the
noisy scenario, the approach performs better than random guessing,
being able to retrieve more than 50% of the true positives in the top 10
results.

5.2 RQ2. What is the optimal balance between
GUI and speech data for feature location?

To answer this research question, we focus on the two blue boxplots
in the figures (“na.gs” and “w.gs”) to understand if adjusting the term
frequencies of the GUI/speech dataset using ROC (see Section 4.1),
improves the results.

Results on “menu” Scenario : The boxplots in Figure 6 show
that, when term frequencies are adjusted, the median of RR
for both All and Unique baselines is always 100%, which means
that the approach is still able to rank the relevant results at the top
of the result set in most of the cases. Also in the Unique baseline,
all RR values are 100% with zero variance. This means that, in
this scenario, rebalancing the combined GUI and speech data of
screencasts improves the RR compared to the initial data.

Evaluation of AP values against the All baseline shows
that there is an overlap between the blue boxplots, which

MSR 18, May 28-29, 2018, Gothenburg, Sweden

10
[.
—_— o
0.8
0 —
8 !
2 06+
-1
°
a i
H
2 _
§ o4 : =
= ' J——
1
|
02 + 1 |
i
; :
0.0 - — —
T T T T T T
s s 0 " o °
g g (] 3 g H

(a) Post - Average Precision - All Baseline

1.0 o o —_

0.8

0.6

0.4

Measure Values

1
|
i
' o
' -
1 <]
02 1 —l— !
=i |
:
0.0 1 —
T T T T T T
'3 o 0 ? o >
3 g I H s H

(c) Post - Average Precision - Unique Baseline

P. Moslehi et al.

0.8

06 -

0.4

Measure Values

L]

0.2 H

i
|
—_ i
i
1 |
1 i
0.0 4 . =
T T T T T T
@ 0 w o
) <3 b 3 2 g
o 3 2 e
£

(b) Post - Reciprocal Rank - All Baseline

1.0 A -

0.8

0.6

0.4 -

Measure Values

02 — i
e :
1
00 - —
T T T T T T
3 3 o 0 > 9
g g (3 3 g H

(d) Post - Reciprocal Rank - Unique Baseline

Figure 7: Boxplots of RR and AP for the Post scenario evaluated against All and Unique execution trace files, using both
GUV/speech data (“gs”), only GUI (“g”) or speech (“s”), either with weighted (“w”) or original (“na”) metrics.

means that applying a weighting method does not noticeably in-
crease the performance compared to the unweighted method. Never-
theless, in the unique scenario, applying a weighting method
increases the median AP by around 20%, which again means
that by modifying the frequency of the important terms perfor-
mance can be improved.

Results on “post” Scenario: Similar to the menu scenario, Fig-
ure 7 again shows that, for the All baseline, modifying the term
frequencies increases the median AP to 100% and yields an
RR value of 100% for all screencasts. However, applying the
weighting method on the speech and GUI dataset decreases
the median AP and RR for the Unique baseline. This contra-
dicting finding seems to stem from the fact that the weighted docu-
ments are shorter due to removal of less important words (noise)
and the fact that the weights W; in equation (3) are smaller than
1 and hence decrease TF;, possibly leading to less occurrences of
words. As such, the shorter GUI/speech documents, whose words
typically are high-level, have more difficulty linking to the low-level
and technical source code documents in the Unique baseline (such
as post-new.php). Furthermore, that baseline contains only the files
unique to a given scenario.

This shows how reducing the amount of noise in the input data
can both improve or degenerate the results. Indeed, in the All base-
line there are files such as post.php that are ranked at the top of the
results since they contain methods related to the high-level aspects
of the scenario and therefore have a more similar term frequency
with the GUI and speech text.

Conclusion: In case of the “menu” scenario, which has less input
noise, applying a weighting method improves most of the AP and RR

results due to the presence of more similar terms with both high-level
and low-level vocabulary. However, in a more noisy scenario, weights
could lead to too many low-level terms to be filtered out, making it
harder to identify more technical scenario-specific files.

5.3 RQ3. Do we need both speech and GUI text
to perform feature location?

Here, we compare the performance of feature location using ei-
ther GUI (red boxplots) or speech (gray) screencast data to the
performance of using GUI/speech data together (blue).

Results on “menu” Scenario:

Using the speech dataset: The gray boxplots in Figure 6 show
that for both baselines the median AP and RR drop drasti-
cally to between 0.2 and 0.25. While still better than random
guessing (Table 1), the speech data set by itself does not seem
powerful enough. However, modifying the term frequencies
fixes these issues by increasing the median AP and RR val-
ues to 100%. It seems like the many noisy words in the unbalanced
speech data introduced false positives and negatives.Using the
GUI dataset: For both baselines, the median of RR is 100%,
while the median AP value is around 0.85 for the All baseline
and 0.6 for the Unique baseline. In contrast to the speech-only
case, rebalancing the GUI-only screencast data does not change
these results much. Therefore, removing noisy words through re-
balancing had no major effect for the menu use-case.

Results on “post” Scenario:

Using the speech dataset: As the gray boxplots in Figure 7
show, the AP and RR performance again drops substantially

Feature Location using Crowd-based Screencasts

for unbalanced speech data. The median of AP and RR is around
0.15 and 0.1 respectively for the All baseline, and plain 0 for the
Unique baseline! In contrast to the menu scenario, modifying the
term frequencies still fails to rank the first true positive at
the top of the hits, even though the median AP and RR are
increased for the All baseline. This again shows that noise in the
speech dataset (before adjusting term weights) and/or small data
volume (after adjusting term weights) could reduce the performance
of our approach because less terms are shared with the source code.
Using the GUI dataset: Similar to the speech-only data set for
the post scenario, the median AP and RR for the GUI-only data
set is rather low for both baselines (around 0.5). While rebal-
ancing can fix this issue for the All baseline, increasing median AP
and RR to 100%, the performance for the Unique baseline us-
ing only GUI data cannot be repaired and even deteriorates.
Conclusion: In videos with relatively low noise levels, GUI data by it-
self suffices for effective feature location, while the speech data (which
typically is smaller) requires rebalancing to work. When screencasts
become more noisy, such as in the post scenario, the speech and GUI
data sets by themselves do not consistently perform well. Rebalanced
GUI data sets can work well for location of more high-level files (All
baseline), but not for more technical ones (Unique baseline), but only
when combined with speech data performance is more consistent.

6 THREATS TO VALIDITY

This work is the first attempt on using crowd-based tutorial screen-
casts for feature location. Our case study results show that the
approach can successfully locate relevant source code files using a
combination of the speech and GUI, or either dataset. Nonetheless,
there are some threats to external, internal and construct valid-
ity regarding the datasets and the methodology that need to be
addressed in future work.

External Validity. In this work, two datasets, each containing
5 screencasts of WordPress (the most popular CMS platform) are
used in the case studies. This limitation comes from the need to find
similar numbers of screencasts for different scenarios, on top of
additional criteria such as being uploaded in the same year (likely
sharing same WordPress version), being of high quality, and con-
taining both speech and GUI. Furthermore, we had to manually
validate the results of for example the text mined from speech
and image frames. Future work should consider more videos and
scenarios within the WordPress project and outside.

Furthermore, in this work we mined only textual screencast in-
formation from speech and GUI elements. We also captured user
actions through textual difference between every two subsequent
image frames, and from the source code we only used textual infor-
mation in the form of comments, identifiers, string literals and file
names. Although these information sources already provide promis-
ing results, incorporating other information sources, such as the
sequence of user events or for example call graphs from the source
code should be considered for further improving the approach. Ap-
plying the feature location approach on projects developed in other
programming languages can help evaluate its generalizability.

Our exploratory study considers file-level as granularity. Since
this requires the developers to spend more time to find the relevant
method in large source code files, future work should consider
method- or even line-level granularity.

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Construct Validity. Our approach is able to successfully retrieve
relevant results in the top 10 hits of the feature location process.
However, the speech-to-text and OCR tools used in this work may
have noise or false positives in their output. To some extent, using
the ROC term weighting approach alleviates the effect of such
noise in the dataset. Nonetheless, to further reduce the effect of
such errors, one can extend the proposed approach by using more
advanced speech-to-text or OCR approaches.

Also, to extract text from the source code, using parsers that are
designed for a specific language (e.g., the PHP parser used in [17])
may help extracting more data with less noise. One other threat to
construct validity is the use of LDA on short documents. Applying
LDA approaches that are specifically designed for such documents
(e.g., [10, 24]) could improve the topic models.

Internal Validity. We used two types of baselines to evaluate
the performance of the approach. Since the creation of the Unique
baseline requires to compare the files shared across use-cases, con-
sidering more use-cases will reduce the size of the set of unique
files. In our evaluation, the exact size of the Unique baseline does
not matter, since we mainly compare the performance across the
All and Unique baselines instead of focusing only on the absolute
performance values. Also, we used log likelihood values for differ-
ent numbers of topics to determine the best number of topics to be
used in our experiments. Future work should explore the sensitivity
of the work to the number of topics in more detail.

7 RELATED WORK

The increase in the usage of crowd-based tutorial screencasts to
learn software development related skills has motivated researchers
to analyze how and why these tutorials are created [27, 28] or
how to make their content searchable [37, 38]. Other work focused
on making it easier for users to understand the purpose of such
tutorials [16], or on helping screencast creators to produce videos
that are more relevant to what users need [27, 36]. While all of this
research (e.g., [3, 4, 16, 28, 33, 36-38]) focuses on creating, analyzing
and extracting information from screencasts, no research work has
used screencasts for feature location.

In what follows, we present closely related research in analyzing
screencasts and textual feature location (e.g., [5, 15, 26, 32, 45]).

7.1 Analyzing Software Engineering
Screencasts

The first study in the area of using crowd-based screencasts to share
and document developer knowledge was conducted by MacLeod
et al. [28]. They investigated the goals and techniques of devel-
opers in creating screencasts, and the benefits and challenges of
this type of knowledge sharing by analyzing 20 tutorial screen-
casts and interviewing 10 developer/YouTubers. They found that
by using screencasts developers demonstrate and share how to
customize a program, the challenges they encountered and their de-
velopment experiences, solutions to problems, how to apply design
patterns, and their programming language knowledge. They also
found that developers are creating these screencasts to promote
themselves and gain reputation by helping others. An extension of
this study [27] compared how Ruby on Rails screencasts are hosted
and shared on YouTube (a free platform) to how they are shared on
a formal screencast site like RailsCasts, which is a paid platform.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Finally, they extracted guidelines for screencast creators to produce
clear and understandable screencasts.

There are other studies on the usage of crowd-based tutorial
screencasts in the software engineering domain. Amongst the ear-
liest research works in this area, Bao et al. [3, 4] developed a video
scraping tool, scvRipper, to automatically extract developers’ behav-
ior from screen-captured videos. They detect and extract actions of
a developer by employing key point based template matching to
detect visual cues in an image (e.g., icons that appear in a window).
Although scvRipper is not sensitive to screen resolutions and win-
dow color schema, the approach is database dependent since the
applications in screencasts need to use the same layout and window
structures, which reduces the generalizability of the approach.

The speech component of screencasts has been proven to be
highly informative by Moslehi et al. [33]. By leveraging informa-
tion extraction techniques (e.g., LDA), they only used spoken text
to extract the different steps of use-case scenarios. No image frame
content was exploited. Other work [36] classified tutorial video
comments using Support Vector Machines (SVM) in order to sum-
marize the comments to content creators.

The need for designing short video tutorials is addressed in [27,
37, 38]. Ponzanelli et al. [37, 38] developed an approach to extract
relevant fragments of software development tutorial videos and
link them to relevant StackOverflow discussions by mining the
(captioned) speech and GUI content of the video tutorials. In line
with the aforementioned works on software development tutorial
videos, Yadid et al. [49] developed an approach to extract code from
programming video tutorials to enable deep indexing of them. They
attempted to consolidate code across multiple image frames of the
videos and used statistical language models to make corrections on
the extracted code.

Escobar- Avila et al. [16] presented new text retrieval-based
tagging approaches, to help users to identify whether the content
of a tutorial might be relevant to their needs or not. In this paper,
we propose an approach that is database independent. To the best
of our knowledge, there is no research work on linking high-level
information of how-to screencasts (i.e., speech and GUI text) to the
source code of a software project.

7.2 Text Retrieval-based Feature Location

Several feature location techniques have been proposed that use
different types of information in source code or different user inputs.
We refer to elsewhere for a detailed overview [14], however here we
discuss the relevant work that, similar to ours, takes the user input
and maps it to the textual information of source code (i.e., comments,
identifiers, etc.) using information retrieval (IR) or natural language
processing (NLP) approaches.

Marcus et al. [32] leveraged Latent Semantic Indexing (LSI) [13]
to find semantic similarities between a query that is either auto-
matically generated or provided by the user to locate source code
features. Van der Spek et al. [45] also used LSI to find features in
source code. They applied different preprocessing and text normal-
ization methods, such as stemming, stop word removal of common
terms and term weighting to the datasets and evaluated their effect.
The term weighting approach they used is different from ours, since
they aim for finding a balance between having frequent and rare

10

P. Moslehi et al.

words. Instead, since we use LDA, which works based on the co-
occurrence frequency of terms, we aimed for keeping more frequent
terms in the dataset and considered rare ones as noise.

To improve feature location results and overcome limitations of
applying tf-idf in source code-related text in the preprocessing step,
Bassett et al. [5] proposed a new term weighting technique that
uses the structural information in the source code (i.e., function
names and method calls extracted from call graphs). They applied
an LDA-based approach to evaluate their technique and found more
accurate results. Eddy et al. [15] expanded this work and explored
a broader range of variables in source code (e.g., leading comments,
method names, parameters, body comments, and local variables)
and weighted them according to their position in a method. How-
ever, these approaches are programming language-specific and
mostly suitable for feature location using low-level information,
while in our work we try to link high-level information that appears
in screencasts to the source code. Also, Basset et al. [5] only use
Mean Reciprocal Rank (MRR) as an evaluation measure, while we
use RR and Average Precision (AP) to evaluate the the approach.

Lukins et al. [26] proposed an LDA-based bug localization tech-
nique using user-provided queries that are formulated out of bug
reports. They evaluated their approach by calculating the percent-
age of the bug queries whose first relevant result is in the top 10 or
top 1,000 results, which requires the baseline to have at least 10 or
1,000 actual relevant items.

None of the above studies use speech and GUI content of a
screencast as input of feature location. We also used a different
preprocessing technique to rebalance the query dataset. Further-
more, we used 2 complementary measures in our evaluations to
get a better insight into the success of the approach.

8 CONCLUSION

This work presents the first feature location approach that uses
crowd-based screencasts of a given use-case scenario to locate the
scenario’s implementation in the source code. Our methodology
takes as input source code-level textual information (e.g., comments,
identifiers and string literals) and the high-level text extracted from
the audio and visual components of screencasts (i.e., speech and GUI
text). It uses LDA to structure this information to output seeds in
the source code that could form a good starting point for exploring
the implementation of the screencasts’ scenarios.

In case studies on 10 Wordpress screencasts spread across two
scenarios, we evaluated the success of the approach in retrieving
the most relevant result at the top 10 search results. We then ex-
amined how modifying term frequencies, based on the importance
of the terms, affects the feature location results. Eventually, we de-
termined which information source from screencasts (GUI, speech,
or a combination of both) is sufficient to be used in the feature
location process.

In general, our findings show that a combination of GUI and
speech data performs well across different levels of noise in the
screencasts, while a GUI-only data set with rebalanced terms could
still perform well in screencasts with limited amounts of noise. Fu-
ture work should analyze screencasts belonging to different scenar-
ios and software applications. Since we now have established that
screencasts carry enough textual signal, future work should also
compare our approach with other text retrieval-based approaches
for feature location.

Feature Location using Crowd-based Screencasts

REFERENCES

[1] Surafel Lemma Abebe, Anita Alicante, Anna Corazza, and Paolo Tonella. 2013.

[2

(3

[11

[12

(13

[14

[15

[16

[17

[18
[19
[20

[21

[22

[23
[24

[25

=

=

]

]

]

]

]

]
]

1
]

Supporting concept location through identifier parsing and ontology extraction.
Journal of Systems and Software 86, 11 (2013), 2919 — 2938.

Kenneth M. Anderson, Susanne A. Sherba, and William V. Lepthien. 2002. To-
wards large-scale information integration. In Proceedings of the 24th international
conference on Software engineering - ICSE 02. ACM Press, New York, New York,
USA, 524.

Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou. 2017.
Extracting and analyzing time-series HCI data from screen-captured task videos.
Empirical Software Engineering 22, 1 (01 Feb 2017), 134-174.

Lingfeng Bao, Jing Li, Z. Xing, Xinyu Wang, and Bo Zhou. 2015. Reverse engi-
neering time-series interaction data from screen-captured videos. In 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 399-408.

B. Bassett and N. A. Kraft. 2013. Structural information based term weighting in
text retrieval for feature location. In 2013 21st International Conference on Program
Comprehension (ICPC). 133-141.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Journal of machine
learning research : JMLR. Vol. 3. MIT Press. 993-1022 pages.

R. Brunelli and T. Poggio. 1993. Face recognition: features versus templates.
IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 10 (Oct 1993),
1042-1052.

bugVideo [n. d.]. YouTube
https://youtu.be/Am9SNUhSz4w. ([n. d.]).
Tse-Hsun Chen, Stephen W Thomas, and Ahmed E Hassan. 2016. A survey on
the use of topic models when mining software repositories. Empirical Software
Engineering 21, 5 (oct 2016), 1843-1919.

X. Cheng, X. Yan, Y. Lan, and J. Guo. 2014. BTM: Topic Modeling over Short
Texts. IEEE Transactions on Knowledge and Data Engineering 26, 12 (Dec 2014),
2928-2941.

Mohammed Cheriet, Nawwaf Kharma, Cheng-lin Liu, and Ching Suen. 2007.
Character Recognition Systems: A Guide for Students and Practitioners. Wiley-
Interscience.

Jane Cleland-Huang, Orlena C. Z. Gotel, Jane Huffman Hayes, Patrick Mader,
and Andrea Zisman. 2014. Software traceability: trends and future directions.
In Proceedings of the on Future of Software Engineering - FOSE 2014. ACM Press,
New York, New York, USA, 55-69.

Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American Society for Information Science 41, 6 (1990), 391-407.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: A taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (2013), 53-95. arXiv:1408.1293

Brian P. Eddy, Nicholas A. Kraft, and Jeff Gray. 2018. Impact of structural weight-
ing on a latent Dirichlet allocation???based feature location technique. Journal
of Software: Evolution and Process 30, 1 (2018), e1892-n/a. €1892 smr.1892.

J. Escobar-Avila, E. Parra, and S. Haiduc. 2017. Text Retrieval-Based Tagging
of Software Engineering Video Tutorials. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). 341-343. https://doi.
org/10.1109/ICSE-C.2017.121

Laleh Eshkevari, Giuliano Antoniol, James R. Cordy, and Massimiliano Di Penta.
2014. Identifying and Locating Interference Issues in PHP Applications: The Case
of WordPress. In Proceedings of the 22Nd International Conference on Program
Comprehension (ICPC 2014). ACM, New York, NY, USA, 157-167.
ExuberantCtags [n. d.]. Exuberant Ctags. http://ctags.sourceforge.net/. ([n. d.]).
ffmpeg [n. d.]. FFmpeg. https://www.ffmpeg.org/. ([n. d.]).

K. Gallaba, A. Mesbah, and I. Beschastnikh. 2015. Don’t Call Us, We’ll Call
You: Characterizing Callbacks in Javascript. In 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1-10.
google [n. d.]. Google Cloud Vision APL https://cloud.google.com/vision/. ([n.
d.]).

H. Kagdi, J. I. Maletic, and B. Sharif. 2007. Mining software repositories for
traceability links. In 15th IEEE International Conference on Program Comprehension
(ICPC *07). 145-154.

Iman Keivanloo. 2013. Source Code Similarity and Clone Search. (2013).
Chenliang Li, Haoran Wang, Zhigian Zhang, Aixin Sun, and Zongyang Ma. 2016.
Topic Modeling for Short Texts with Auxiliary Word Embeddings. In Proceedings
of the 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR °16). ACM, New York, NY, USA, 165-174.

Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2008. Source Code
Retrieval for Bug Localization Using Latent Dirichlet Allocation. 2008 15th

Video Describing a Bug.

11

™
2

[27

[28

[29

[30

[31

(32]

(33]

(35]

[36

(37]

[38

(39]

S
=

N
=

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Working Conference on Reverse Engineering (2008), 155-164.

Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2010. Bug localization
using latent Dirichlet allocation. Information and Software Technology 52, 9 (2010),
972-990.

Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. 2017. Documenting
and sharing software knowledge using screencasts. Empirical Software Engineer-
ing 22,3 (01 Jun 2017), 1478-1507.

Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, Camera,
Action: How Software Developers Document and Share Program Knowledge
Using YouTube. In Proceedings of the 2015 IEEE 23rd International Conference on
Program Comprehension (ICPC ’15). IEEE Press, Piscataway, NJ, USA, 104-114.
mallet [n. d.]. MALLET: MAchine Learning for LanguagE Toolkit.
http://mallet.cs.umass.edu/. ([n. d.]).

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Sch??tze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, Cambridge,
UK.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schitze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. 2004. An information retrieval
approach to concept location in source code. In 11th Working Conference on
Reverse Engineering. 214-223.

P. Moslehi, B. Adams, and J. Rilling. 2016. On Mining Crowd-Based Speech
Documentation. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). 259-268.

Mark S. Nixon and Alberto S. Aguado. 2012. Chapter 5 - High-level feature
extraction: fixed shape matching. In Feature Extraction and Image Processing for
Computer Vision (Third edition) (third edition ed.), Mark S. Nixon and Alberto S.
Aguado (Eds.). Academic Press, Oxford, 217 - 291.

Mark S. Nixon and Alberto S. Aguado. 2012. Chapter 7 - Object description. In
Feature Extraction and Image Processing for Computer Vision (Third edition) (third
edition ed.), Mark S. Nixon and Alberto S. Aguado (Eds.). Academic Press, Oxford,
343 - 397.

Elizabeth Poché, Nishant Jha, Grant Williams, Jazmine Staten, Miles Vesper,
and Anas Mahmoud. 2017. Analyzing User Comments on YouTube Coding
Tutorial Videos. In Proceedings of the 25th International Conference on Program
Comprehension (ICPC ’17). IEEE Press, Piscataway, NJ, USA, 196-206. https:
//doi.org/10.1109/ICPC.2017.26

Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!. In Proceedings of the 38th International Conference on Software
Engineering - ICSE ’16. ACM Press, New York, New York, USA, 261-272.

L. Ponzanelli, G. Bavota, A. Mocci, R. Oliveto, M. Di Penta, S. C. Haiduc, B. Russo,
and M. Lanza. 2017. Automatic Identification and Classification of Software De-
velopment Video Tutorial Fragments. IEEE Transactions on Software Engineering
PP, 99 (2017), 1-1.

D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. 2007.
Feature Location Using Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval. IEEE Transactions on Software Engineering
33, 6 (June 2007), 420-432.

George Spanoudakis and Andrea Zisman. 2004. Software Traceability: A Roadmap.
In Handbook of Software Engineering and Knowledge Engineering. World Scientific
Publishing, 395-428.

William G Stillwell, David A Seaver, and Ward Edwards. 1981. A comparison
of weight approximation techniques in multiattribute utility decision making.
Organizational Behavior and Human Performance 28, 1 (1981), 62-77.
stt [n. d.]. IBM Watson Speech To
https://www.ibm.com/watson/services/speech-to-text/. ([n. d.]).
tesseract [n. d.]. Tesseract. https://github.com/tesseract-ocr/tesseract. ([n. d.]).
Stephen W. Thomas. 2012. Mining Unstructured Software Repositories Using IR
Models. Ph.D. Dissertation. Queen’s University.

P. van der Spek, S. Klusener, and P. van de Laar. 2008. Towards Recovering
Architectural Concepts Using Latent Semantic Indexing. In 2008 12th European
Conference on Software Maintenance and Reengineering. 253-257.
wpress [n. d.]. WordPress. https://WordPress.com/. ([n. d.]).
wpTutorials [n. d]. WordPress Video
https://en.support WordPress.com/video-tutorials/. ([n. d.]).
xdebug [n. d.]. Xdebug Extension for PHP. https://xdebug.org/. ([n. d.]).

Shir Yadid and Eran Yahav. 2016. Extracting Code from Programming Tutorial
Videos. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2016).
ACM, New York, NY, USA, 98-111.

Text.

Tutorials.

http://arxiv.org/abs/1408.1293
https://doi.org/10.1109/ICSE-C.2017.121
https://doi.org/10.1109/ICSE-C.2017.121
https://doi.org/10.1109/ICPC.2017.26
https://doi.org/10.1109/ICPC.2017.26

	Abstract
	1 Introduction
	2 Motivation
	3 Feature Location Methodology
	3.1 Data Sets
	3.2 Extracting Relevant Text from Source Code and Screencasts
	3.3 Extracting Structured Information from Source Code and Screencast Text
	3.4 Source Code Feature Location using Screencasts

	4 Case Study Setup
	4.1 Data Preparation
	4.2 Applying our Methodology
	4.3 Evaluation Measures

	5 Case Study Results
	5.1 RQ1. How accurately can source code files be located from screencasts?
	5.2 RQ2. What is the optimal balance between GUI and speech data for feature location?
	5.3 RQ3. Do we need both speech and GUI text to perform feature location?

	6 Threats to Validity
	7 Related Work
	7.1 Analyzing Software Engineering Screencasts
	7.2 Text Retrieval-based Feature Location

	8 Conclusion
	References

