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Abstract 
Crowd-based multimedia documents such as screencasts have emerged as a source for documenting require-

ments, the workflow and implementation issues of open source and agile software projects. For example, users 
can show and narrate how they manipulate an application’s GUI to perform a certain functionality, or a bug 
reporter could visually explain how to trigger a bug or a security vulnerability. Unfortunately, the streaming nature 
of programming screencasts and their binary format limit how developers can interact with a screencast’s content. 
In this research, we present an automated approach for mining and linking the multimedia content found in screen-
casts to their relevant software artifacts and, more specifically, to source code. We apply LDA-based mining 
approaches that take as input a set of screencast artifacts, such as GUI text and spoken word, to make the screen-
cast content accessible and searchable to users and to link it to their relevant source code artifacts. To evaluate 
the applicability of our approach, we report on results from case studies that we conducted on existing WordPress 
and Mozilla Firefox screencasts. We found that our automated approach can significantly speed up the feature 
location process. For WordPress, we find that our approach using screencast speech and GUI text can successfully 
link relevant source code files within the top 10 hits of the result set with median Reciprocal Rank (RR) of 50% 
(rank 2) and 100% (rank 1). In the case of Firefox, our approach can identify relevant source code directories 
within the top 100 hits using screencast speech and GUI text with the median RR = 20%, meaning that the first 
true positive is ranked 5 or higher in more than 50% of the cases. Also, source code related to the frontend imple-
mentation that handles high-level or GUI-related aspects of an application is located with higher accuracy. We 
also found that term frequency rebalancing can further improve the linking results when using less noisy scenarios 
or locating less technical implementation of scenarios. Investigating the results of using original and weighted 
screencast data sources (speech, GUI, speech and GUI) that can result in having the highest median RR values in 
both case studies shows that speech data is an important information source that can result in having RR of 100%. 

Keywords- Crowd-based documentation; mining video content; speech analysis; feature location; software 
traceability; information extraction; software documentation 

1. Introduction 
In traditional software development processes, software documentation has played a vital role in capturing 

information relevant to the various stakeholders and as assessment criteria for the maturity and quality of a soft-
ware product and its underlying development processes (Moslehi, Adams and Rilling, 2016). However, over the 
last decade, with the economical (e.g., globalization, open source projects), social (e.g., collaborative and agile 
work habits), and technological (e.g., Internet) changes in our society, new software processes (e.g., agile and 
open source) have been introduced to deal with these ongoing changes. What is common to these development 
processes is that communication and data become more important than formal and complete documentation. As 
a result of this paradigm shift, projects are now often left with no or very little documentation (Turk, France and 
Rumpe, 2014), or documentation that is often incomplete or lacking sufficient details (e.g., explanations or ex-
amples) to meet the needs of project stakeholders.  
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Product reviews, how-to videos, tutorials, Q&A sites like Stack Overflow1 have started to replace many of the 
more traditional forms of documentation media, requiring open source users and contributors to resort to the 
Internet for finding relevant documentation and insights to support their current work context. This trend has been 
further facilitated by the next generation (also referred to as digital natives) of developers entering the workforce, 
who grew up using the Internet to create and share their own work. This change on how people use and share 
information on the Internet increased the popularity of crowd-based documents (e.g., Wiki pages, Q&As, mailing 
lists, tutorial videos) that are created by many and viewed by many (Parnin et al., 2012). However, this ever-
increasing volume of crowd-based information and resources has also led to a situation where information re-
sources are now not only fragmented across different online portals and repositories, but also across different 
types of resources (e.g., textual and multimedia), making it difficult for users to locate and navigate through 
relevant artifacts.  

One type of crowd-based multimedia documents that has gained popularity in recent years, are screen-captured 
videos (i.e., screencasts). Screencasts deliver their content in the form of audio (narrator), video (images), and 
textual metadata (e.g., subtitle, title, description). For example, a user might demonstrate how to perform a certain 
task in an application by clicking on GUI buttons, entering text, etc. according to that user’s workflow. Similarly, 
one could visually demonstrate how a bug or vulnerability could be triggered in an application, or what the new 
features of an upcoming application release are (Moslehi, Adams and Rilling, 2018). This kind of information 
contrasts with more traditional software artifacts, where content delivery is based mostly on textual or, at best, 
static graphical snapshots (instead of a dynamic sequence of snapshots). In fact, the open source community has 
started to make screencasts an integrated part of their product documentation. For example, WordPress2 encour-
ages its users and contributors to create new how-to videos3 that describe certain use-case scenarios or features. 
Some users even enrich their bug reports through screencasts4 to exactly demonstrate how to reproduce a bug.  

Mining crowd-based multi-media documentation is still an emerging research field (MacLeod, Bergen and 
Storey, 2017), (MacLeod, Storey and Bergen, 2015). While the MSR community has addressed the problem of 
mining unstructured repositories such as mailing lists, Q&A sites and Wiki pages by analyzing non-structured 
free form text, only limited work exists on mining, linking, and analyzing video files. In our previous research 
(Moslehi, Adams and Rilling, 2018), we presented an approach that leverages high-level information found in 
both the audio (i.e., speech) and visual content (i.e., image frames) of screencasts to locate application features 
presented in the screencasts and link them to their corresponding source code implementations. We conducted a 
case study on 10 WordPress screencasts that showcase how to use a WordPress feature. The results from our case 
study showed that our approach is capable to locate source code artifacts that are relevant to such screencasts. 

In this research paper, we extend our previous work (Moslehi, Adams and Rilling, 2018) with results of a user 
survey and an additional case study on a larger data set of screencasts for Mozilla Firefox. In addition, while we 
applied, in our previous work, unigram topic modeling to link screencasts to WordPress source code, we extended 
these case studies using bigram topic modeling on the same data set to better understand the impact of gram size 
on the performance of our approach. We also evaluate our linking approach on both WordPress and Firefox’ 
front- and back-end. These additional studies provide us with insights on the need for and performance of our 
mining approach to establish traceability links between product features described in screencasts and source code 
artifacts implementing these features. The main contributions of this paper are as follows: 

• We provide a summary of  a survey which we conducted in (Moslehi, Rilling and Adams, 2020) to help 
support and motivate the research in this paper. We report on some of the relevant survey results that 
show, screencasts demonstrating application features are actually used by software engineers with differ-
ent expertise levels and for different purpose. 

 
1 https://stackoverflow.com/  
2 https://wordpress.com/  
3 https://en.support.wordpress.com/video-tutorials/  
4 https://youtu.be/Am9SNUhSz4w  
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• We compare the performance of our approach on WordPress using different gram sizes (unigram and 
bigram). 

• We perform a case study on WordPress and Mozilla Firefox to evaluate how our approach is capable to 
link video content to the relevant source code artifacts. 

• We further evaluate and compare the applicability of our approach in linking application features shown 
in screencasts to their corresponding front- and back-end source code implementation. 

• We compare the performance of our approach on Mozilla Firefox with a guided search approach. 

The remainder of this paper is structured as follows: In the next section, we describe our motivation. Section 
3 gives a brief introduction to crowd-based multimedia documentation and the topic modeling technique that we 
used in our approach. Section 4 covers related work, where we describe and contrast similar attempts in analyzing 
and linking crowd-based documentation and text retrieval-based feature location. Section 5 explains our proposed 
methodology. We then present our evaluation techniques and our experiments and results on the research in sec-
tion 6 followed by a discussion in section 7. We present the opportunities and threats to validity of our study in 
section 8 and finally conclude in section 9.  

2. Motivation 
Research (Wells, Barry and Spence, 2012) has shown that using tutorial videos as a learning aid for traditional 

lectures can significantly improve students’ performance in education. Also, when compared to written text, 
screencasts can provide a clearer explanation of a subject matter while being accessible through different devices 
(Mohorovičič, 2012). The latter work also showed that visual learners and students benefit from screencasts by 
being able to learn at their own pace, whenever and wherever they want (Mohorovičič, 2012).  

In software engineering, tutorial videos are used as a medium to share information for different purposes (e.g., 
learning, technological trends, job training, how-to guides) (Storey et al., 2014). Multimedia documents have 
started to replace existing structured software documentation and workflows that have been used traditionally to 
capture and document software projects. Agile development approaches no longer rely only on formal documen-
tation and instead promote more informal types of software documentation.  

Our approach is motivated by the fact that, especially for open source projects or agile development pro-
cesses, existing system documentation is often incomplete, inconsistent or does not provide clear enough exam-
ples. Developers and maintainers therefore often resort to the Internet for additional help (Parnin et al., 2012), 
(MacLeod, Storey and Bergen, 2015). These online resources are created by users who are not directly involved 
in the development of the actual product, also referred to as “the crowd”. Such crowd-based documentation exists 
in different formats such as multimedia or informal textual documentation, describing a product feature or how 
to solve a particular problem (Subramanian, Inozemtseva and Holmes, 2014). Furthermore, users may also create 
a bug report that is enriched by a screencast that clearly showcases the steps of reproducing a bug5 on the GUI of 
an application or provide workarounds for an issue6. Developers then must locate the source code artifacts that 
are relevant to the bug to fix the reported issue.  

To further investigate the relevance of using tutorial screencasts as an information source in software engi-
neering we conducted a survey in earlier work (Moslehi, Rilling and Adams, 2020). The objectives of this user 
survey7 were as follows: 

 
5 https://www.reddit.com/r/firefox/comments/4fq1g0/firefox_ui_bug/ 
6 https://youtu.be/CIvTVvFTWDA  
7 https://mcislab.github.io/publications/2020/emse_parisa/OnTheUseOfMultimediaDocumentationGoogle_Forms.pdf  
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1) to identify the type of documentation software engineers with different levels of experience prefer to use 
and in which context (e.g., help with a particular software engineering task, to improve their current skills, 
or getting familiar with the GUI of a software application); 

2) to better understand how frequently they watch how-to tutorial videos and what they consider as key ben-
efits and disadvantages of using tutorial screencasts over written documentation; and 

The survey questions comprise multiple choice questions, free-form answers and scenarios that are related to both 
programming and non-programming purposes (e.g., questions 14, 28, 29, 30, 31 in the survey). In what follows, 
we summarize some of the results from our complete survey (Moslehi, Rilling and Adams, 2020) to further mo-
tivate the work presented in this research. 

For the survey, we received 99 responses from participants with different backgrounds in the software engi-
neering domain. There were 61 graduate students and 14 undergraduate students among the participants. Most of 
the participants stated that they have 2-5 years of professional experience as a software engineer (33.3%) and 
19.2% had no prior professional experience as a software engineer (Figure 1).  Among the most popular program-
ming languages that we received in the responses are “Java”, “Python”, “JavaScript”, “C++”, “C#”, and “PHP” 
(Figure 2). Since “JavaScript” and “PHP” are typically used for frontend development, we assume that: a) partic-
ipants who selected one or both of these languages can be considered as frontend developers, b) participants who 
selected “Java”, “Python”, “C++”, and “C#” are more likely involved in backend development and, c) participants 
who chose languages that are in both categories can be considered as both backend and frontend developers. 
Based on this classification, our further analysis of the received responses showed that 43% of the participants 
can be considered as only backend developers and 54% are both backend and frontend developers since they use 
languages that fall into both categories. Another 3% of the participants are working with languages that do not 
belong to these two categories. 

 

 

Fig. 1 Professional experience of the survey participants as a software engineer.  
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Fig. 2 Programming languages that participants use for development or maintenance tasks. Top 3 languages are colored in “blue”.  

We summarize the findings from the survey as follows: 

The findings show that while tutorial screencasts are considered by most users (i.e., survey participants) to be 
useful for “comprehending and learning new tasks/concepts”, the level of experience plays an important role in 
choosing a media type or an information source for different purposes/tasks (here we summarize the results for 
screencasts). Based on the results, “to complete their tasks or learn new skills”, survey participants that have less 
than 2 years of professional experience prefer to use “YouTube” or “Videos” as information sources compared 
to other social media resources (e.g., GitHub, Stack Overflow, Twitter, etc.) or other media types (e.g., books, 
blog posts, question and answer sites, etc.). For technical or programming-related purposes (e.g., learning a pro-
gramming language), survey respondents with less than one year of professional experience mostly watch screen-
casts. This is while more experienced participants watch videos “to familiarize themselves with an application” 
or “to learn how to setup an application” which are of more GUI related or non-technical (non-programing) tasks. 

Furthermore, survey participants found the ability to trace and link crowd-based screencasts with other soft-
ware artifacts or documentation to be an important aspect. In response to an open-ended question, survey partic-
ipants made suggestions about providing traceability to “keep screencasts up-to-date” (i.e., version compatibility) 
or to “complement screencasts with other documents”. Having traceability between screencasts and other software 
documentation can help providing more details or documentation that complement the screencast content (e.g., 
source code), updating screencasts’ content (e.g., based on the changes in the code such as adding new features), 
and locating screencasts that are relevant to the users’ information need. 

With the assumption of contributing to an open source project in which our survey respondents have no prior 
experience, 27.3% of the participants indicated that they would often try to locate source code artifacts related to 
the content they watched in a video (i.e., “a feature that is being demonstrated in a video”), with most of this 
content being GUI or non-technical (non-programming) related video content. Also, 4% declared that they always 
try to do so when they contribute to an open source project. Furthermore, again 27.3% of the participants indicated 
that they often “decide to watch a screencast that showcases application features of a software project whose 
source code they want to customize” and 5% declared that they always try to do so.  

These findings show that screencasts are not only a popular source of documentation but also linking them to 
other documents and application source code is considered by many users to be important for maintaining source 
code, understanding application features/concepts, and keeping screencasts up to date. 
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Fig. 3 Motivating example. 

Figure 3 shows an example of a fictional web developer named Bob, an open source enthusiast, who is new to 
WordPress. As part of his contribution, Bob decides to modify a comment moderation feature in the source code 
of the Akismet WordPress plugin for his personal project. Bob, who is unfamiliar with the workflow and innards 
of the plugin, first resorts to the available software documentation to understand the high-level context and 
features the plug-in provides to users. However, Bob is unable to find any relevant documentation describing 
these features and their (sequential) interaction in the existing project documentation. He therefore decides to 
search the Internet for how-to videos and blogs describing the plugin features. Such documentation, especially 
how-to screencasts, by many developers are considered to be more intuitive since they visually and dynamically 
can demonstrate workflows compared to written documentation (MacLeod, Storey and Bergen, 2015).  

 

Fig. 4 How linking source code features to screencasts helps WordPress users or developers. 

While watching a how-to video, Bob notices that the narrator mentions a bug when setting up the plug-in in 
WordPress dashboard. Bob decides to contribute to the WordPress plugin (Figure 4) by fixing the bug that was 
shown in the screencast. However, Bob being unfamiliar with the implementation details of the plug-in, finds it 
challenging to locate the implementation of the buggy feature in the source code.  

As the motivating example has illustrated, software developers and maintainers might rely on screencasts that 
showcase GUI features (not source code), and the workflow used to manipulate those features, for different rea-
sons (e.g., learning how to use application features, how to reproduce a bug). However, users and creators of 
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screencasts face several challenges when screencasts are being used as a source of software documentation 
(MacLeod, Storey and Bergen, 2015). We categorized these challenges as follows:  

• Relevance: How well does a screencast describe the task at hand? Although many screencasts and crowd-
based documentation may contain useful information, developers find it still challenging to identify the 
most relevant video to watch. They have to manually browse through videos to see whether a video con-
tains content that is relevant to their needs or to skip non-relevant parts of videos. While existing search 
engines provide a ranking of their search results, this ranking typically relies on indexing of user-provided 
titles and descriptions, or words recovered from automatic speech-to-text but does not consider the actual 
content of the video.  

• Quantity: How many videos exist that cover the same topic? Depending on the popularity of the topic, 
many videos exist that often vary significantly in their length and content.  

• Traceability: What are the software artifacts that are relevant to the content that is presented in a screen-
cast? While screencasts demonstrate buggy scenarios or workarounds, developers who want to resolve 
such bugs or integrate the described workarounds into their own application still need to manually trace 
the screencast content to the application’s source code. This process can be time-consuming, especially if 
a developer is unfamiliar with the project and its implementation. 

 Considering the increasing popularity of tutorial screencasts, especially among young professionals and stu-
dents, there is a need to link the content of screencasts (e.g., showcasing how to use certain product features) to 
different software artifacts to provide support for various programming activities. The main motivation of our 
research can therefore be described as deriving a methodology for mining the content of screencasts and link this 
video content to the relevant source code implementing of application features shown in screencasts. More spe-
cifically the contributions of our research are: 

Derive an approach that takes advantage of content created by the crowd, a resource that has been una-
vailable in the past and is still underutilized currently by users and organizations, to enrich existing system docu-
mentation. More specifically, this includes extending traditional MSR approaches to mine and analyze video 
artifacts (e.g., speech and image frames) related to features of a software product. As part of our research, we 
introduce a methodology that allows the automated linking of videos to their relevant source code artifacts. Since 
our goal is not to link source code shown in videos to their source code files, it should be noted that our work 
differs from that of researchers like Khandwala et al. (Khandwala and Guo, 2018) and Ponzanelli et al. (Ponzanelli 
et al., 2016, 2019). Indeed, we instead propose an approach that can link content (features) demonstrated in 
screencasts to the corresponding source code implementation of the demonstrated tool, not the source code shown 
on screen. 

3. Background 
Our research is based on concepts and techniques from several sub-domains within computer science, including 

crowd-based multi-media documentation, topic modeling, traceability and feature location. In what follows, we 
provide a brief introduction of the underlying concepts and techniques used in this research. If you are already 
familiar with these concepts, you can safely move on to the next section. 

3.1. Crowd-based Multi-Media Documentation 
Software users and developers use the Internet to search for informal documentation that can support them 

during specific tasks. These types of documentation that are created by many and viewed by many are called 
“crowd-based documents”(Parnin et al., 2012), (Moslehi, Adams and Rilling, 2016). Crowd-based documents 
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can be categorized as textual (e.g., wikis, emails, Q&As8) and multimedia (e.g., images, podcasts, screencasts9) 
documents.  

Multimedia documents, and more specifically screencasts, differ from formal and textual documents. Screen-
casts are “movies of software” that capture the screen as the narrator describes verbally (through speech) and 
visually (by demonstrating) certain features of a software application or a programming language, by navigating 
through menu options or the source code respectively (MacLeod, Bergen and Storey, 2017). They are digital 
documents that are composed of one or multiple media elements (text, image, video, sound, etc.) as a logically 
coherent unit. The motivation behind creating such documents is for the document creators to gain an online 
reputation as well as to learn a new subject better and improve their skills by teaching them to others, and to 
describe features that are difficult to be explained as text only (MacLeod, Storey and Bergen, 2015). 

Unfortunately, several issues exist that make it challenging for screencasts to be analyzed and integrated with 
other types of software artifacts: 

● Abstraction level: The content representation in a screencast, which is verbally narrated and visually 
demonstrated, differs significantly from other, more traditional software artifacts. In traditional software 
artifacts, content is often captured in structured or semi-structured textual formats that simplify the anal-
ysis of content across these structured artifacts. Furthermore, even technical screencasts tend to be at a 
higher level of abstraction, only sparsely providing low-level implementation details of the demonstrated 
features, which makes it challenging for the developers to locate more low-level software artifacts (e.g., 
code fragments) that are relevant to the screencast. 
 

● Dynamic vs. Static: Screencasts are dynamic by nature, i.e., every couple of image frames the screen 
changes as the narrator is manipulating for example a GUI widget of the demonstrated software applica-
tion (Ponzanelli et al., 2016). In contrast, there are other crosscutting software artifacts (e.g., source code, 
emails, wiki) that are static and relevant to the demonstrated version of the software application. This 
crosscutting makes it inherently difficult to manually identify and link software artifacts to part of the 
dynamic content of a screencast that were shown only at some specific point of time during a screencast. 

 
● Information resources: Screencasts can contain different information resources (e.g., images, speech, 

captions, sequence of GUI events, user actions) (MacLeod, Storey and Bergen, 2015), which differ sig-
nificantly from those found in software artifacts such as source code (e.g., language-specific syntax, com-
ments, function names, identifiers, file names, string literals). It should be noted that the availability and 
quality of these information resources can differ from screencast to screencast. 

3.2. Topic Modeling 
Topic models provide statistical information related to sets of words (“topics”) that occur together often enough 

to represent a semantic relation (Blei, 2012). For example, in a newspaper the “sports” topic consists of sports-
related words that are semantically related and co-occur across most of the sports-related articles. Topic models 
can be used in automatic indexing, searching, classifying, and structuring a large corpus of text (Chen, Thomas 
and Hassan, 2016).   

Generally, topic modeling has been used in different software engineering tasks such as document clustering 
(Kuhn, Loretan and Nierstrasz, 2012), (Kuhn, Ducasse and Gîrba, 2007), feature location (Baldi et al., 2008; 
Bassett and Kraft, 2013), bug prediction (Nguyen et al., 2012), source code evolution (Thomas et al., 2010), 
traceability (Asuncion, Asuncion and Taylor, 2010), (Ali et al., 2012), and search (Grechanik et al., 2010), 

 
8 Portals such as https://www.wikipedia.org/ and https://stackoverflow.com/ contain crowd-based textual documentation. 
9 Portals such as https://commons.wikimedia.org/wiki/Main_Page and https://www.youtube.com/ contain crowd-based multimedia 
documents. 
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(Bajracharya and Lopes, 2012). The repositories whose data has been used as input for topic modeling include 
source code, email, requirements and design documents, logs, and bug reports (Chen, Thomas and Hassan, 2016).  

Latent Dirichlet Allocation (LDA) is a probabilistic topic model proposed by Blei et al. (Blei, Ng and Jordan, 
2003). LDA is a fully generative model that works in a way that assumes the corpus contains a set of K topics. 
The topics are corpus-wide, which means that each document of the corpus contains one or more topics that 
describe the entire corpus. Also, each term in the entire corpus vocabulary can be contained in more than one 
topic and each term in a document originates from one single topic. The most important benefit of LDA is that, 
since topics are corpus-wide and generated based on all available documents in the corpus, topics for newly added 
documents can easily be inferred. Also, LDA overcomes the statistical shortcomings of LSI, such as the assump-
tion that the term counts in the corpus follow a Gaussian distribution (Hofmann and Thomas, 2001). In addition, 
LDA generates human-readable topics that can be used and interpreted easily. As a result, LDA has become a 
popular topic modeling approach. In Chen et al. (Chen, Thomas and Hassan, 2016), the authors provide an over-
view of other variants of LDA (e.g., Hierarchical Topic Models (HLDA) (Blei et al., 2003), Supervised Topic 
Models (sLDA) (Mcauliffe and Blei, 2008), Labeled LDA (LLDA) (Ramage et al., 2009), etc.). 

3.3. Software Traceability 
Software traceability has been widely recognized as an important quality factor of well-engineered software 

systems (Cleland-Huang et al., 2014). Software and system traceability can be defined as the ability to establish 
links between related software artifacts to maintain safe and correct operation of critical software systems 
(Cleland-Huang et al., 2012). Feature location is a form of traceability that automatically discovers the source 
code artifacts that implement a certain feature of a software application (Chen, Thomas and Hassan, 2016). It 
aims to find the starting point (seed) in the source code that corresponds to a system functionality to guide manual 
exploration (Dit et al., 2013). Using such a seed will reduce the effort required by a software maintainer to locate 
the parts of the code relevant to a particular feature. 

Software traceability can help stakeholders to discover discrepancies and inconsistencies between requirements 
and their implementation, assessing if software requirements are completely covered in the implementation, and 
is typically required to receive certificates of assurance (Gotel et al., 2012), which are certificates that ensure the 
software conforms to user requirements or other policies (Gaffney Jr., 1981).  

For open source projects, it has been shown that the requirements analysis and requirements traceability of a 
project is very different from that of traditional approaches in software engineering (Kagdi and Maletic, 2007). 
There are different types of informal resources that capture requirements and documentation of a project, such as 
issue trackers, emails, source control repositories, and screen-captured videos. To reduce maintenance effort, it is 
essential to keep such project documents consistent with the current state of the source code by being able to 
uncover traceability links between these artifacts (Kagdi, Maletic and Sharif, 2007). 

4. Related Work 
In what follows, we present an overview of closely related work, as well as a discussion on how our method-

ology differs from this existing research. We first describe research related to linking and analyzing crowd-based 
documents followed by a review of text retrieval-based feature location approaches. We then present current work 
on analyzing software engineering screencasts. 

4.1. Linking and Analyzing Crowd-based Documents 
A significant body of work exists that attempts to establish traceability links between crowd-based documents 

such as Q&A sites (e.g., (Jiau and Yang, 2012; Barzilay, Treude and Zagalsky, 2013; Subramanian, Inozemtseva 
and Holmes, 2014)) and source code artifacts. For example, Jiau and Yang (Jiau and Yang, 2012) measured the 
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inequality of crowdsourced API documents in StackOverflow and found that a larger proportion of existing doc-
uments addresses a smaller portion of topics and that the documents obeyed the Pareto principle or 80:20 rule. 
They leveraged this inequality and proposed a method that projects a crowdsourced documentation into a concept 
domain and recovers traceability links based on reusability of the concept domain. They claim that their proposed 
method improves documentation coverage by 400%, when they reuse existing documentations that are related to 
popular API concepts for unpopular API concepts. Barzilay et al. in (Barzilay, Treude and Zagalsky, 2013), also 
explored the design and characteristics of StackOverflow and developed a code search tool, Example Overflow, 
on top of StackOverflow to extract high quality code examples. As part of their empirical analysis, they studied 
the type of questions posted on StackOverflow and to what extent these questions could be answered by their 
approach. Subramanian et al. (Subramanian, Inozemtseva and Holmes, 2014) proposed a method for linking code 
examples posted on StackOverflow to API documentation. Based on the proposed method, they implemented a 
tool, Baker, that links code snippets to Java classes and methods or JavaScript functions, with an observed preci-
sion of 97%.   

Many exploratory studies have been conducted to analyze the characteristics of textual crowd-based documents 
(e.g., (Parnin et al., 2012), (Campbell et al., 2013), (Pham et al., 2013)). Parnin and Treude (Parnin et al., 2012) 
investigate in their work the use of crowd-based documents to replace traditional software documentation. They 
measured in their work the extent to which blog posts cover methods of a particular API. They observed that 
social media posts can cover 87.9% of the API methods and therefore could potentially replace traditional docu-
mentation. Nasehi et al. (Nasehi et al., 2012) analyzed code examples of Stack Overflow that are voted by users 
as being good code examples to identify the characteristics that, if applied, can improve the development and 
evolution of API documentation. Campbell et al. (Campbell et al., 2013) combined Stack Overflow questions and 
PHP and Python projects’ documentation and used LDA and found topics in Stack Overflow that did not overlap 
the topics on projects’ documentation. Their results also show that many topics that are covered on Stack Over-
flow but not by traditional project documentation, are related to external project documentation or tutorials. Pham 
et al. (Pham et al., 2013) investigate the possibility of extracting a common testing culture to tackle challenges 
that social coding sites introduce to testing behavior. They conducted a survey among GitHub users to identify 
the challenges, the impact of these challenges on testing practices and based on the survey results they suggest 
strategies that, if applied by software developers and managers, can positively affect the testing behavior in their 
projects.  

While this existing research analyses how developers can use textual content extracted from crowd-based doc-
uments as a source of documentation, our work focuses on the extraction and integration of crowd-based multi-
media content with source code. 

4.2. Text Retrieval-based Feature Location 
Several feature location techniques have been proposed in the literature, with a detailed overview of these 

techniques being presented in (Dit et al., 2013). In what follows, we discuss the work that is most closely related 
to our approach. 

Marcus et al. (Marcus et al., 2004) leveraged Latent Semantic Indexing (LSI) (Deerwester et al., 1990) to find 
semantic similarities between a query that is either automatically generated or provided by the user to locate 
source code features. Van der Spek et al. (van der Spek, Klusener and van de Laar, 2008) also used LSI to locate 
features in source code. They applied different preprocessing and text normalization methods, such as stemming, 
stop words removal, common terms weighting to their data sets and then evaluated effect of each processing step 
on their feature location approach.  

To improve feature location results, Bassett et al. (Bassett and Kraft, 2013) proposed a new term weighting 
technique that uses the structural information in the source code (i.e., function names and method calls extracted 
from call graphs). Since tf-idf term weighting is designed for unstructured documents written in natural language, 
they overcome this limitation by applying tf-idf in source code-related text using an LDA-based approach. Their 
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evaluation shows that the LDA-based approach delivers more accurate results. Eddy et al. (Eddy, Brian P. and 
Kraft, Nicholas A. and Gray, 2018) expanded the work by Bassett et al. (Bassett and Kraft, 2013) by exploring a 
broader range of criteria in the source code (e.g., leading comments, method names, parameters, body comments, 
and local variables) and weighted them according to their position in a method. Lukins et al. (Lukins, Kraft and 
Etzkorn, 2010) proposed an LDA-based bug localisation technique using queries that are extracted and formulated 
out of bug reports. They evaluated their approach by calculating the percentage of bug queries whose first relevant 
result is in the top 10 or top 1,000 results. 

Common to these existing approaches is that they use LDA or LSI to locate software artifacts through queries, 
which are either provided by a human or automatically generated from information found in bug reports or source 
code data sets. In contrast, our approach applies LDA to extract high-level information about features extracted 
from screencasts and then links this information to the implementation of these features. Furthermore, to improve 
our linking results, we apply term weighting to modify the term frequencies in screencasts using corpus-wide 
term frequencies.  

4.3. Linking and Analyzing Software Engineering Screencasts 
The first study on using crowd-based screencasts to share and document developer knowledge was conducted 

by MacLeod et al. (MacLeod, Storey and Bergen, 2015), who investigated why developers create screencasts. 
They also discuss the benefits and challenges of this type of knowledge sharing by analyzing 20 tutorial screen-
casts and interviewing 10 developers/YouTubers. They found that by using screencasts developers demonstrate 
and share information related to how to customize a program, the challenges they encountered and their develop-
ment experiences, solutions to problems, how to apply design patterns, and their programming language 
knowledge. They also observed that developers are creating these screencasts to promote themselves and gain 
reputation by helping others. MacLeod et al. (MacLeod, Bergen and Storey, 2017) performed a study of Ruby on 
Rails screencasts comparing screencasts published through free platforms (i.e., YouTube) with screencasts spe-
cifically designed for a specialized paid platform (i.e., RailsCasts). As part of this study, the authors extract guide-
lines for screencast creators on how to produce clear and understandable videos. 

Other research studied the usage of crowd-based tutorial screencasts in the software engineering domain. 
Amongst the earliest work in this area is that of Bao et al. (Bao et al., 2015, 2017), who developed a video scraping 
tool, scvRipper, to automatically extract developers’ behavior from screencasts. They extract actions of a devel-
oper by employing key point-based template matching based on visual cues in an image (e.g., icons that appear 
in a window). Although scvRipper is not sensitive to screen resolutions and window color schema, the require-
ment for applications in screencasts to use the same layout and window structures reduces the generalizability of 
the approach. Bao et al. [45] proposed a method to track user activities and developed a tool called ActivitySpace 
to support inter-application information needs of software developers. The tool reduces the effort required by 
developers for locating documents and recalling their history activities in daily work. 

In (Bao et al., 2019), Bao et al. also introduced a tool, VT-Revolution, that captures the workflows in program-
ming tutorials and enables timeline-based browsing of tutorials as well as accessing the API documentation of a 
selected code element. In their approach, they record the low-level Human-Computer Interaction (HCI) data used 
by tutorial creators while working with screencast authoring tools. Khandwala et al.’s Codemotion (Khandwala 
and Guo, 2018) used a computer vision algorithm to extract source code and dynamic code edit intervals from 
tutorial screencasts. The tool uses a video player UI to enable code search and navigation. In our previous work 
(Moslehi, Adams and Rilling, 2016), we extract documentation from the speech component of tutorial screencasts 
that describe how to use the features of a GUI application. A case study evaluating how this approach can be used 
to extract usage scenarios from a total of 25 WordPress screencasts of 5 scenarios showed that the approach 
extracts usage scenarios from screencasts with the median precision and recall of 83.33% and 100%, respectively. 

Other work (MacLeod, Storey and Bergen, 2015; MacLeod, Bergen and Storey, 2017), (Ponzanelli et al., 2016, 
2019) addresses the need for designing concise video tutorials that have less noise and precisely describe what 
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viewers need (Ponzanelli et al., 2019). Ponzanelli et al. (Ponzanelli et al., 2016, 2019) developed an approach to 
extract relevant fragments of software development tutorial videos and link them to relevant Stack Overflow 
discussions by mining the (captioned) speech and GUI content of the video tutorials. Yadid et al. (Yadid and 
Yahav, 2016) developed an approach to extract code from programming video tutorials to enable deep indexing 
of these videos. Their approach consolidates code across multiple image frames of the videos and uses statistical 
language models to make corrections on the extracted code. Another work by Ott et al. (Ott et al., 2018) presented 
an approach that uses deep learning, and more specifically convolutional neural networks and autoencoders, to 
identify source code examples in image frames of a large data set of videos. 

Escobar-Avila et al. (Escobar-Avila, Parra and Haiduc, 2017) and Parra et al. (Parra, Escobar-Avila and Haiduc, 
2018) presented text retrieval-based tagging approaches to help users to identify whether or not the content of a 
video tutorial might be relevant to the needs of a user. Poche et al. (Poche et al., 2017) classify tutorial video 
comments using Support Vector Machines (SVM), to summarize the comments for content creators. Ellmann et 
al. (Ellmann et al., 2017) used a frame similarity approach (i.e., cosine similarity and LSI) to identify and distin-
guish development screencasts from other types of videos on YouTube and link them to their relevant API docu-
mentation using only the audio transcript of the videos. 

Common to this related research is that they use programming tutorial videos as input and try to extract source 
code or programming documentation from them and link these code artifacts to corresponding source code arti-
facts. The approaches often rely on a combination of natural language processing (NLP), image processing, and 
machine/deep learning techniques. In contrast to this existing work, our goal is to analyze and link screencasts 
that do not show source code and instead demonstrate or provide walkthroughs, using features/options which are 
typically part of the GUI of the actual application. In our approach we link this high-level GUI information of an 
application that is shown in a screencast to the corresponding source code artifacts in the software project using 
LDA. 

5. Methodology for establishing traceability links between screencasts and source 
code 
     Given a set of screencasts demonstrating a given application feature, our objective is to locate the source code 
artifacts related to the GUI interactions (scenarios) shown in screencasts. It should be noted that our 4-step meth-
odology (Figure 5) is independent of the programming language used by the application. Before outlining each 
of these steps in more detail, we first describe the types of data sources used by our methodology. 

 
Fig. 5 Methodology for feature location from screencast videos describing an application feature to the corresponding source code implementing this 

feature. 
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5.1. Data Sources 
We use two data sources for our approach: data extracted from screencasts and source code. As explained by 

MacLeod et al. (MacLeod, Storey and Bergen, 2015), there are various important elements of information inside 
screencasts. In what follows, we discuss their potential use for feature location: 

Speech: Tutorial screencasts often have a narrator who explains each step of a feature (use-case scenario), while 
demonstrating the feature on-screen. Parts of the speech not only will match labels or content in the image frames 
but likely also keywords found in the source code. Figure 6 shows an example of such a keyword matching 
between screencast content (top) and source code (bottom). 

 

 
Fig. 6 Matching keywords between speech, GUI and source code. 

• GUI frames: Screencasts capture GUI interactions within a software application, with each screencast 
containing a long sequence of images (frames) played at a constant frame rate. Since a typical GUI con-
tains both textual and graphical information, the GUI text on a screencast frame could be matched to 
corresponding string literals in the source code, unless the content is generated dynamically at run-time 
(e.g., user input). Furthermore, icons and graphical information such as edges, layout of the visual content 
and color changes that occur in an image frame could be used as visual information clues to identify which 
feature aspect the narrator currently is focusing on.  

• User actions: A tutorial screencast includes textual, graphical and speech information that dynamically 
changes as a result of a narrator’s actions during the screencast (e.g., pressing a button, clicking on a menu 
item or opening another window). These actions are often closely related to corresponding source code 
artifacts, such as GUI widget labels or event handlers. 

• Sequence of events: The order in which user actions occur during a screencast form a sequence of events 
that could correspond to a chain of event handler invocations or a method call graph. 

• Metadata: When screencasts are uploaded to video portals like YouTube, they are typically annotated 
with some form of meta- and viewer related data (e.g., title, description, upload date, comments, number 
of likes and dislikes, and other information related to the screencast). Such metadata provides additional 
information that can be used during the linking of screencasts and source code content. 

Our second data source contains the source code of the software release exercised in the screencasts. In con-
trast to the screencast data set, the textual code information is easy to extract from a software project’s version 
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control system and contains mostly low-level information such as source code text and comments. A main chal-
lenge when dealing with such low-level information is to extract and abstract meaningful semantic information, 
to reduce the semantic gap between the vocabulary used by screencasts and by the source code. To close this 
semantic gap, different elements of source code information should be used to recover the semantics of the de-
velopers’ objectives (Adrian et al., no date; Kagdi and Maletic, 2007; Subramanian, Inozemtseva and Holmes, 
2014; Bao et al., 2015), such as: 

• Source code comments: Comments explain or annotate parts of the source code, usually in higher-level 
terms than the code itself. 

• Variables and identifiers: Variable names usually relate to the scenario-related information stored within 
them. 

• String literals: Static string literals often appear on GUI widgets. 
• Method and class names: Developers choose class names and method names closer to the software’s do-

main. These names may also map to the features and their relevant text that appear on the GUI of the appli-
cation. 

• File names: File names are another useful source of information for feature location, since they typically 
describe the objective or usage of source code.  

5.2. Extracting Relevant Text from Source Code and Screencasts 
Source Code Preprocessing: For every source code file, we extract source code elements using Exuberant 

Ctags10. From the full path to a source code file, we extract only the file name (e.g., “browser-customization” from 
“/path/to/browser-customization.js”). These source code elements are further processed by removing noise in the 
data, such as special characters, numbers, punctuations and stop words. For the remaining tokens, we perform 
identifier splitting using ‘_’, camel case and word splitting (e.g., words that contain special characters, such as ‘-
’ in ‘menu-item’ are replaced by a space), as well as word stemming to further normalize and improve the later 
linking to relevant code elements. 

Screencast Preprocessing: Screencasts are composed of an audio component and image frames. In what fol-
lows, we describe how we extract the speech and GUI data. 

Speech: Tutorial screencasts usually have a narrator who explains the steps involved in performing a certain 
feature (scenario). For screencasts with closed captioning available, tools (e.g., youtube-dl11) can be used to extract 
a screencast’s subtitles. Since not all screencasts have closed captioning available, for all screencasts (published 
with or without closed captioning), we used automatic speech recognition tools to transcribe the speech infor-
mation (Moslehi, Adams and Rilling, 2016). Once the transcribed text is available, the same preprocessing steps 
as for source code are performed. 

Image processing and user actions: To extract text from video frames, one needs to first extract image frames 
of the screencasts, then extract text fragments from them that are relevant to the use-case scenario. Such relevant 
text fragments typically are either found in the image frames or in text/labels associated with them. Given the 
many frames within a typical video, only those in which a major event (e.g., mouse click or pressing a button) 
happens, i.e., key image frames, should be targeted. 

Unfortunately, identifying these text fragments and frames is quite challenging. We experimented with three 
different image processing approaches, before settling with a simpler, textual approach. First, we used Template 
Matching (Brunelli and Poggio, 1993), where one should provide a template image of a mouse pointer (both the 
clicking and idle version) to be able to automatically locate the mouse pointer in video frames and any mouse 

 
10 http://ctags.sourceforge.net/  
11 https://youtube-dl.org/ 
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actions being performed. We also experimented with image pixel subtraction (Nixon and Aguado, 2012a), which 
subtracts the pixels of neighboring frames to detect changes occurring between image frames, typically caused 
by mouse movements. Finally, we also used connected components detection (Nixon and Aguado, 2012b), which 
exploits the fact that neighboring pixels typically have similar pixel values to locate different logical areas in the 
image frames (e.g., a “text field”, or “button”). 

However, these image-processing approaches have several drawbacks, namely processing overhead, strong 
dependence on image quality or image resolution, and possible information loss due to image binarization or 
transformations. We also experimented with both, the transformation of images to gray scale and their binarization 
to: 1) reduce the dependency of our approach on background color, 2) to improve the recognition of text and 
icons, and to 3) reduce the computational resource overhead by reducing the image dimensions. However, these 
transformations caused areas with light background and white text to vanish. In addition, our template matching 
technique did not perform well due to users customizing their mouse pointers and mouse pointers often being 
hidden by labels during the mouse click. 

Instead, we opted for a much simpler, pure textual approach to detect features during a screencast. For the 
feature detection we use Optical Character Recognition (OCR) (Cheriet et al., 2007), which we applied on image 
frames to recognize text shown in the frame. We then subtract the text (instead of the pixels) of every 2 subsequent 
image frames after extracting image frames with a specified frame rate: 

	𝐷𝑖𝑓𝑓(𝑖) = 𝑇𝑒𝑥𝑡(𝑖𝑚𝑔!) − 𝑇𝑒𝑥𝑡(𝑖𝑚𝑔!"#)   
                                                        	𝐷𝑖𝑓𝑓 = [𝐷𝑖𝑓𝑓(2), 𝐷𝑖𝑓𝑓(3), … , 𝐷𝑖𝑓𝑓(𝑘)]      
                                                        	𝐷𝑖𝑓𝑓$!%&' = [𝑑!|	𝑑! ∊ 𝐷𝑖𝑓𝑓	 ∧ 	 |𝑑!| > 0]                    (1) 

where k is the number of the image frames of a screencast. OCR returns all text enclosed within neighboring 
pixels on the images along with its coordinates in the images. An advantage of this approach over image pro-
cessing approaches is that during the analysis only a bag of words is used and therefore significantly reduces the 
processing overhead. For example, if a user clicks on a button, the GUI will change to open a dialog menu or new 
text field, which will be reflected as a change in the text recovered through OCR. 𝐷𝑖𝑓𝑓(𝑖) contains the bag of 
words (Figure 7) that are added/modified in each subsequent image frame (i.e., 𝑇𝑒𝑥𝑡(𝑖𝑚𝑔!)) and are considered 
to be relevant words to the scenario. Our screencast data sets, in which each screencast becomes a text document, 
contains only the 𝐷𝑖𝑓𝑓$!%&', which corresponds to the text extracted based on the GUI text difference between 
successive image frames (formula 1). 

 
Fig. 7 GUI text difference after a user action happens. 

5.3. Extracting Structured Information from Source Code and Screencast Text  
To extract additional semantic structures from the textual representation of the source code and screencast data, 

we use LDA (Blei, Ng and Jordan, 2003) as a topic modeling approach. As described in section 3.2, in LDA each 
latent topic is characterized by its statistical distribution over a bag of words, and documents are represented as 
random mixtures over these topics. LDA transforms each document into vectors of topic probabilities, which are 
then compared with each other. In our case, documents are either source code files or text files containing infor-
mation extracted from a screencast (GUI, speech or both), with all extracted text being stored in the same docu-
ment.  
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To use LDA, one has first to determine the number of topics that should be used for the topic modeling process. 
The smaller the corpus, the fewer topics should be generated, while for a larger corpus more topics can be gener-
ated (Lukins, Kraft and Etzkorn, 2010). To find the optimal number of topics, we applied the approach used by 
Thomas et al. (Thomas, 2012), who suggest using different numbers of topics and evaluating the resulting models 
based on their topics’ log likelihood values. The optimal number of topics can be determined by the point where 
the log likelihood values start to get diminishing returns (i.e., a “knee” in the corresponding plot), which represents 
a good balance between topic richness and overspecialized topics and avoids having too few or too many topics. 
As an example, Figure 8 shows the corresponding plots and knees for the two systems (i.e., WordPress and Fire-
fox) used in our case studies. 

We also can specify the gram size for topic modelling. For instance, bigram topic models split the text into 
word groups of length 2 (e.g., ‘add_new’, ‘blog_post’, ‘search_engine’, ‘remove_password’). Using bigram topic 
modeling, the model considers the sequential order of words (after the removal of stop words) by exploiting that 
word A was immediately succeeded by word B (Wallach, 2006). As a result, words that rarely occur in a corpus 
(e.g., due to errors and noise from STT and OCR tools) will have very low co-occurrence in bigrams.  

 
a. WordPress – 80 topics using unigram topic modeling 

 
b. WordPress – 55 topics using bigram topic modeling 
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c. Firefox – 130 topics using bigram topic modeling  

Fig. 8 Log likelihood values vs. Number of Topics (K) using different gram size. 

ln Jurafsky et al. (Jurafsky and Martin, 2009), the authors performed a comparison of statistical language mod-
els using different n-gram models. Their study shows that bigram models result in lower perplexity (higher log-
likelihood values) and therefore better models compared to unigrams. As Figures 8a and 8b show, when we com-
pared the log-likelihood values between n-gram models for our WordPress data set, our analysis also showed that 
bigram topic modeling (with vocabulary size of 8,014 words before applying text preprocessing) outperforms 
unigram topic modeling. Bigram topic models are considered to be more useful for understanding the semantics 
of a text (Wang, McCallum and Wei, 2007), since the meaning of some words may be affected by their precedent 
or subsequent word in a sentence (e.g., ‘search’ and ‘engine’ vs. ‘search_engine’). Specifying the gram size can 
be used to adjust the granularity level of the topics as well as reducing the effect of noise in the text and errors in 
both OCR and STT outputs. As Figure 8a and 8b show, using bigram topic modeling the number of topics will 
be reduced from 80 to 55 topics for WordPress source code dataset. For projects, such as Mozilla Firefox, where 
one has to deal with a large vocabulary size (51,294 words before preprocessing the text), multiple programming 
languages, and different abstraction layers in the implementation, using bigrams can further improve the inter-
pretability of the documents that contain the same terms in different contexts or scenarios. 

After determining the number of topics using the source code data set, we then train a topic inferencer using our 
source code corpus. The topic model creates document-topic vectors from the source code documents. Each ele-
ment of these vectors corresponds to the probability that a given topic occurs in a document. Next, to be able to 
use screencast documents to query our source code data set, we use the trained topic inferencer to infer the topics 
of an input screencast document. We infer screencast documents topics using our source code data set’s topic 
inferencer to convert the screencast documents to document-topic vectors that contain the same topics as our 
source code document-topic vectors. In the next section, we discuss another preprocessing step which we apply 
to our screencast documents to modify their term frequencies and see how this can improve our results. 

5.4. Modifying Term Frequencies in Screencast Data  
The quality of a topic model also depends on the data being used as input. During our initial evaluation of the 

topic modeling approach, we observed that even after preprocessing, the screencast data contained a significant 
amount of noise. For a single screencast document containing GUI, speech or both types of data, certain words 
might be less important to the use-case scenario under study yet occur more frequently than words that are essen-
tial to this scenario.  
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To address this imbalance, we rebalanced the occurrences of terms within documents based on their importance, 
using a weighting algorithm to modify the term frequencies in a screencast document. The commonly used tf-idf 
(term frequency-inverse document frequency) (Manning, Raghavan and Schütze, 2008) approach does not apply 
in our case. In a preliminary study using tf-idf term weighting on our screencast data, we observed the tf-idf did 
not improve the performance of our approach. This is because tf-idf reduces the weight of frequent terms in favor 
of words that are rare across the whole corpus. However, in our case, since we use LDA, which is based on a 
corpus-wide co-occurrence frequency of the terms, these corpus-wide frequent terms are therefore relevant for 
locating features. 

We instead applied a rebalancing approach that favors screencast documents that contain terms that are more 
likely to be relevant to source code documents. This rebalancing approach allows us to significantly reduce the 
effect of noise (i.e., non-relevant terms for a given scenario, OCR and STT errors) in each document, when com-
bined with bigram topic models. Our rebalancing approach calculates the term-frequency ranks in a single docu-
ment based on the corresponding term-frequency ranks in the whole corpus across all available documents of the 
same use-case scenario. For the rebalancing, we first merge all screencast text documents, each of which contain-
ing the 𝐷𝑖𝑓𝑓$!%&' value (formula 1) of a screencast related to the same use-case scenario, into one single docu-
ment, then calculate term frequencies for this single document (containing all screencasts related to the same 
scenario). Using these term frequencies, we can now determine the relative importance of each term and rank 
these terms in each single document based on their assigned corpus-wide term frequency. During the last step of 
our rebalancing, we modify the term frequency of each term 𝑗 that appears in each screencast document using the 
following formula: 

                 𝑁𝑒𝑤𝑇𝐹𝑗 = 𝑟𝑜𝑢𝑛𝑑"𝑇𝐹𝑗×
1

𝑁𝑒𝑤𝑟𝑗
#  (2) 

Using the 𝑟𝑜𝑢𝑛𝑑() function, we round off the 𝑁𝑒𝑤𝑇𝐹𝑗 to its nearest integer, with 𝑁𝑒𝑤/# being the new local 
rank of the term j in a single document based on its corpus-wide rank. Using this approach, the term frequencies 
in each document will be modified to adjust their weight based on the importance of terms across all screencasts 
for a given scenario. At the same time, lesser or not important terms will have lower term frequencies or are 
removed completely from the document (i.e., 𝑁𝑒𝑤𝑇𝐹𝑗 = 0). For example, given a non-relevant term that is ranked 
#10 for the whole corpus, and is the most frequent term in a given document (e.g., 𝑇𝐹𝑗 = 35 and 𝑟𝑗 = 1). After 
applying our term weighting approach, its new local rank (𝑁𝑒𝑤/#) in the document will be reduced for the docu-
ment and accordingly its 𝑁𝑒𝑤012 will be modified proportional to its importance or new local rank (e.g.,	𝑁𝑒𝑤/# =
5	and	𝑁𝑒𝑤012 = 7).  The value of 𝑁𝑒𝑤/# or the new local rank of a term, shows how many of the other terms 
that are ranked above the current term (i.e., their corpus-wide rank is higher) exist in the screencast document. In 
the above example, the corpus-wide rank of the term was #10 and its new local rank is #5, this means that, 5 out 
of 10 terms did not exist in the screencast document, while they appear in other screencasts. 

The rebalanced screencast documents are also used as input to our topic inferencer, which was created using 
our source code data set (see Section 5.3), to be converted to screencast document-topic vectors and used as our 
query vectors. 

5.5. Locating Source Code Features Relevant to Screencasts 
For the last step of our methodology (Figure 5), we use the screencast document-topic vectors as queries and 

source code document-topic vectors as corpus, to identify source code file(s) that are most relevant to a given 
screencast. We use the cosine similarity measure (Manning, Raghavan and Schütze, 2008) to compare the screen-
cast vector with each source code vector. The highest ranked vector corresponds to a file with the highest simi-
larity score, which is therefore the most relevant for a given screencast. Eventually, a list of source code files is 
obtained ranked from most to least relevant for a given screencast. These ranked files can now be used as a starting 
point (seed) for further source code navigation during the feature location process.   



 

19 
 

6. Case Studies  
In this section, we evaluate our feature location methodology using two distinct data sets to address the follow-

ing research questions: 

• RQ0. What is the performance of the approach using unigram topic modeling vs bigram topic modeling? 
• RQ1. How accurately can source code files be located from screencasts? 
• RQ2. How does applying our term weighting approach on GUI and/or speech data affect the feature lo-

cation performance? 
• RQ3. Are both speech and GUI text data required for feature location? 
• RQ4. What is the performance of the approach in locating source code related to frontend and backend 

implementation of a project? 
• RQ5. How accurately can our approach locate source code directories compared to a guided search ap-

proach? 

6.1. Case Study Setup  
The goal of our case study is to gain new initial insights on how the linking of GUI features/elements shown 

in screencasts to the source code artifacts implementing these features might be affected when these source code 
artifacts either belong to the backend or frontend of an application. Additionally, we study how the project size 
and architecture (with WordPress being a medium-sized and Mozilla Firefox a large project) may affect our link-
ing results. We therefore measure the accuracy of our feature location approach using both: 

1) a project (WordPress) whose backend and frontend components12 closely interact with each other and 
are also mostly implemented using a single programming language 

2) a project (Mozilla Firefox) that follows a stricter multilayered architecture, with frontend and backend 
not only being decoupled from each other but also being implemented using different programming 
languages13.  

Data Preparation: For our case studies, our target tutorial screencasts are videos in which a narrator explains 
the use of an application to perform a specific task. For our study, we considered screencasts for two applications, 
i.e., WordPress and Mozilla Firefox. Both projects differ significantly in their application domain, their size and 
architectural design (e.g., their front- and backend implementations). Given the popularity of these projects, for 
each of them many tutorial screencasts have been created and made available on YouTube that explain how to 
use the features of these projects. Furthermore, at the time of conducting this research, WordPress is ranked as 
the best CMS tool14 in terms of providing tools, variety of themes, and affordable cost. It is also known as the 
most popular CMS tool used by more than 60 million websites15. Mozilla Firefox is known to be one of the top 
browsers for its speed and security16 and is the second most popular browser after Google Chrome17. 

A common challenge when analyzing screencasts is that video quality (resolution) differs among screencasts, 
which will affect the OCR processing. Since our objective is not to evaluate the quality of the OCR, but rather 
the quality of our linking approach, we consider only High Definition (HD) videos for our study. If a screencast 
has a narrator, describing the features being displayed during the screencast, only English narrations are extracted 
and used. In addition, we only considered screencasts for popular features (or scenarios) that are available in the 
same WordPress or Firefox releases.  

 
12 https://codex.wordpress.org/images/2/20/WP_27_modules.JPG  
13 http://tiberius.byethost13.com/pcw_lab/lab1/assign1.pdf?i=1  
14 https://www.techradar.com/news/best-cms-of-2018  
15 https://en.wikipedia.org/wiki/WordPress 
16 https://www.toptenreviews.com/best-internet-browser-software  
17 https://en.wikipedia.org/wiki/Firefox  
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In our approach, as explained in Section 5.3, we train a topic inferencer using the source code then each single 
video of the same scenario is used to infer its topics (screencast document-topic vectors). The resulted screencast 
document-topic vectors are used as queries and their similarity to source code document-topic vectors are calcu-
lated to retrieve and rank the most similar source code documents. As a result, for the purpose of evaluating the 
results against different baselines (e.g., performance of the approach on frontend vs. backend in Firefox or All vs. 
Unique in WordPress) we use multiple videos since the number of data points in our evaluations (see boxplots in 
Section 6) directly depends on the number of available screencasts. In addition, the number of available screen-
casts (and therefore image frames) for each scenario can also affect the term weighting results, since these weights 
depend on the term frequency of important words). In what follows, we describe in more detail this screencast 
selection process and the data preparation steps we applied for the two case study projects (WordPress and Fire-
fox). 

WordPress Video Selection and Data Preparation: 

Common to CMS tools such as WordPress is that they provide a dashboard that allows users to select func-
tionalities and features for creating content pages. Typical steps to create a website using WordPress18 include a) 
choosing and purchasing a domain and web hosting, b) installing WordPress, c) choosing and/or installing a 
WordPress theme and configuring it, d) publishing a page, e) creating a menu, f) configuring the WordPress 
settings, and, g) installing WordPress plug-ins. Among these steps, publishing a page (or post) and creating a 
menu are the main steps than do not require installing third-party tools or plug-ins and can be done through the 
WordPress default dashboard. Therefore, for our study, we therefore selected two scenarios from the WordPress 
online documentation that describe such dashboard use: 1. “How to add menus to WordPress”19 and 2. “How to 
create a post in WordPress”20. 

For the selection of the screencast scenarios, first we performed different queries on YouTube using keywords 
being selected from the project’s official online documentation21 (e.g., add new post in WordPress). The first 
scenario describes an administrative task in which a WordPress user has to enter only a limited amount of free-
form text, while for the second scenario, the user has to provide a substantial amount of text. The amount of user-
specific text in these scenarios provides us with variation in the data in terms of different signal-to-noise ratios.  

We restricted the selection to screencasts to videos that are in HD quality and were uploaded in the same year 
as each other to determine the most popular version of WordPress (with most videos available on YouTube), 
since videos that are uploaded in the same year are more likely to be related to the same version of WordPress. 
Our analysis shows that the largest number of uploads for both scenarios is in 2015. WordPress version 4.3 is the 
latest version of WordPress in 2015 and therefore its source code will be used in our analysis. While YouTube 
provides an advanced filtering feature to limit the length of videos to a maximum length (e.g., less than 4 minutes), 
such filtering would also return videos that are very short or do not contain any useful content, and hence would 
again add noise in the data set. We therefore eliminated through manual filtering videos that are too short (less 
than 120 seconds in our data set) and chose videos that were shorter than 10 minutes, since in our data set videos 
of longer than this would contain more noise or cover multiple topics. After applying the other selection criteria, 
the length of videos in our data set is between 120 to 480 seconds. Limiting our data to shorter videos provides 
us with a more balanced data set that contains less noise, since these shorter videos are more likely to only cover 
one single usage scenario. For our WordPress case study (Moslehi, Adams and Rilling, 2018) we also limited our 
search to screencasts that have both English narration and contain only English text on the screen. For each sce-
nario, 5 screencasts that met our selection criteria (i.e., HD quality, having a narrator, covering the same Word-
Press version and having the same upload year) were selected and downloaded using youtube-dl (Table 1). 

 
18 https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-beginners-create-your-first-site-in-10-steps/ 
19 https://www.youtube.com/playlist?list=PLdf7gmFvpFlDU-TLQV83LezrwSP9Pudd8  
20 https://www.youtube.com/playlist?list=PLdf7gmFvpFlCRBsGKdkyVrRbYJRNBAwbS  
21 https://wordpress.com/ 
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Next, we downloaded the source code for WordPress version 4.3 from the project’s GitHub repository22, and 
manually replicated and recorded the execution traces of these scenarios. We then used Exuberant Ctags to extract 
source code data (e.g., variables, comments, identifiers - see Section 5.1 for more details). Since most of the 
WordPress features are developed using PHP, we only considered the PHP files for our study. We extracted for 
WordPress 554 PHP files, with a median size of 162 lines of code with 25th/75th percentiles of 52 and 511.  

Mozilla Firefox Video Selection and Data Preparation: 

Firefox is among the most widely used multi-platform Internet browsers on the market. Browsing the Internet 
involves several remote server calls to asynchronously load remote page elements. Since these remote method 
calls are not part of the Firefox’s core JavaScript or C++ application source code, they are difficult to trace and 
analyze. We therefore focus in our study only on features that involve modifying or executing browser-level 
functionality that is executed on a user’s local machine (e.g., modifying security settings, managing saved user 
logins, saving web pages).  

Firefox main menu is divided into categories from which we excluded features that are related to design (e.g., 
“Customize” menu) since they are simple scenarios that typically can be done in few steps. We also excluded 
plug-ins (e.g., “Add-ons”) since they do not exist on the default installation of Firefox and therefore are not 
directly counted as Firefox features. Instead, we investigated the menu items and their sub-menus to locate fea-
tures that provide more advanced browser-level features and functionalities such as privacy and security, or pref-
erences and options that are related to web browsing functionalities since they are more popular and complicated.  

 As a result, for our case study, we selected the following seven scenarios from the Firefox online documenta-
tion23: 1. “How to import bookmarks”24, 2. “How to change the default search engine”25, 3. “How to set the 
homepage”26, 4. “How to save a web page to PDF”27, 5. “How to remove saved logins and passwords”28, 6. “How 
to clear history and cache”29, and 7. “How to do private browsing in Firefox” 30. From these scenarios, we ex-
cluded “How to do private browsing in Firefox” since the Firefox profiler (i.e., Gecko profiler) does not record 
execution traces if the browser is in private mode. 

Given the long development history of Firefox and the large number of available videos on YouTube covering 
these Firefox features, we limited our search to screencasts that were uploaded during the last year (at the time of 
conducting this research) to further improve the ability to locate screencasts that are potentially related to Firefox 
Quantum (Version 65), which has been available since the beginning of 2019. Similar to the WordPress scenarios, 
these screencasts contain both information directly related to the Firefox application, but also some user specific 
(noisy) information (e.g., the scenario “How to save a web page to PDF” will typically also show a random web 
page that will be saved). Like for the WordPress data, we reduced the noise and imbalance in the data by limiting 
the length of the selected screencasts. For the Firefox videos, after performing an initial manual analysis, we again 
restricted the video length to 10 minutes since these videos typically only cover a single use case scenario and 
contain therefore less noise. This, in combination with our other selection criteria (HD quality and upload year), 
resulted in a video data set with videos that are between 28 to 430 seconds long.  

For our Firefox case study, the objective is to evaluate the performance of our approach on a large-scale project, 
where its backend and frontend implementation of features is not only distributed across different architectural 
layers but also using different programming languages. To address this challenge, we increased the number of 

 
22 https://github.com/WordPress/wordpress-develop/tree/4.3  
23 https://support.mozilla.org/en-US/products/firefox 
24 https://www.youtube.com/playlist?list=PLdf7gmFvpFlDcfwNGmefCDCFpolHm_fwy  
25 https://www.youtube.com/playlist?list=PLdf7gmFvpFlC5z8SiLcCXbEzJqBcaGlXS  
26 https://www.youtube.com/playlist?list=PLdf7gmFvpFlD-J_gerUJ1i6URXLGOT2-H   
27 https://www.youtube.com/playlist?list=PLdf7gmFvpFlDzRSj0L1-zZhTzC0KynHhD  
28 https://www.youtube.com/playlist?list=PLdf7gmFvpFlAlxfUyVSyTZyjiPQm-ST7K  
29 https://www.youtube.com/playlist?list=PLdf7gmFvpFlBPWzefVqisCRnBtApQ5yC-  
30 https://www.youtube.com/playlist?list=PLdf7gmFvpFlACZGdcb1Crh6T48VzEfYqT  
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videos we used as queries for locating source code artifacts to cover these additional scenarios. For this evaluation, 
videos no longer were required to have an English narrator and only English text on the screen. Instead, we relied 
on using bigram topic modeling (see Section 5.3) in addition to modifying term frequencies (see Section 5.4) to 
reduce the effect of noise in our data that may result from having non-English text or characters in the OCR output 
and errors in the STT output when narrator is not an English speaker. Selected screencasts were then downloaded 
using youtube-dl (Table 1).  

We obtained the Firefox source code used in our study from the project’s Mercurial repository31. Firefox con-
sists of a large codebase with source code written in different programming languages (e.g., JavaScript, C, C++, 
Rust, Python, XML, XUL). The Firefox backend is implemented mostly in C/C++, while JavaScript is mostly 
used for the user interface or frontend development. We performed the experiments on a Mac running OS X, 
which only uses Firefox code that is developed specifically for OS X platforms. Using again Exuberant Ctags, 
we extracted the source code facts from JavaScript and C/C++ source code files. The analyzed codebase consisted 
of 36,666 JavaScript files and 33,440 C/C++ files, with a median size of 45 lines of code for the JavaScript files 
(25th/75th percentiles of 27 and 83) and a median size of 133 lines of code for C/C++ files (25th/75th percentiles 
of 64 and 332). 

Applying our Methodology: For our case studies, we consider the following screencast data: user actions, text 
shown in the screencasts and narrator speech (if available). For screencasts with a narrator, we used IBM Wat-
son’s speech-to-text service (STT) to automatically transcribe the audio part of these screencasts (Moslehi, Adams 
and Rilling, 2016). The tool also provides a confidence score that specifies how accurately each term is transcribed 
from the speech. To reduce the effect of noise and errors in the STT output, in our previous study on WordPress 
data set we filtered out words from the transcribed text with a low confidence score (below 0.7) (Moslehi, Adams 
and Rilling, 2018). As mentioned earlier (Section 5.3), in this work we use bigram topic modeling to mitigate the 
problem of having errors in our STT output by emphasizing the word context. Using bigrams in addition to ap-
plying term weighting on speech data will reduce the effect of noise and therefore there was no need to apply a 
confidence score threshold to the Firefox STT output.  

For the processing of the image frames content, we extracted image frames at a rate of one frame per second 
using FFmpeg32 (Table 1). It should be noted that the number of reported frames (Table 1) corresponds to the 
frames after manually removing the begin/end of each video, since these parts (e.g., greetings, information related 
to the video author or YouTube channel, thank-you notes, or closing remarks inviting viewers to like or share the 
screencast) typically do not contain any information relevant to the scenario.  

Table 1 Number of transcribed speech documents and image frames extracted from each video. 

 
31 https://hg.mozilla.org/mozilla-central  
32 https://www.ffmpeg.org/  

Project Usage Scenario Number of Screencasts Number of Speech Documents Number of Image Frames used for OCR 

WordPress 
Menu 5 5  1,561 

Post 5 5  749 

Mozilla 
Firefox 
 
 
 
 
 

Import Bookmarks 12 5  1,349 

Clear History 21 6  1,402 

Set Homepage 21 7  1,393 

Remove Passwords 16 7  1,131 

Save-to-pdf 6 1  680 

Default Search En-
gine 

13 6  694 
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Next, we apply OCR to extract the textual content of each sampled video frame. We first explored the Tesseract 
tool33 used by Ponzanelli et al. in (Ponzanelli et al., 2016). However, the tool requires a significant amount of pre-
processing to improve first the quality of the image frames, by removing the image background, resizing the 
image and removing frame areas that do not contain any text. We instead opted for Google Vision API’s Text 
Recognition service34, which does not require these preprocessing steps and can also recognize text on images 
with any background, while providing the (x, y) coordinates of the area in which the text appears on the image 
frame as well as a confidence score for the recognized words.  

   
Fig. 9 A sample user action in a screencast. 

Google Vision API is an image analysis service that is built on top of machine learning models that are trained 
on a large volume of image data with various characteristics (e.g., image background, quality, text font, language). 
For evaluating the performance of our user action detection approach (Formula 1, Figure 9) using Google Vision 
API, we calculated the precision and recall of the user actions that are identified using our approach. We manually 
verified, using one randomly selected video, the user actions leading to a change of the screen content (e.g., clicks 
on a button or menu items, scroll up/downs, zoom in/outs) and the corresponding text changes to identify the true 
positives and false positives. 

From our analysis of the raw OCRed text (without any preprocessing), we observed that our approach is able 
to detect all user actions and text fragments (recall 100%) with a precision of 49%. This low precision is due to 
errors in the OCRed text of image frames that resulted in 42 out of 121 image frames (35%) being wrongly flagged 
as user actions. These false positives mainly occur if two subsequent image frames while very similar, contain 
erroneous OCRed words that result in wrongly identifying a new user action due to partial word differences. 
However, when we compare the manually extracted user actions to the ones extracted by our proposed approach, 
the length of the text (i.e., number of words) in the OCRed text that is identified incorrectly by our approach as a 
user action is short (Median = 4 words). Such false positives (Table 2) can be removed by applying additional 
preprocessing on the text (i.e., modifying term frequencies and bigram topic modeling). In addition, since for 
each screencast we merge the text of all identified user actions in one large data set, these relatively few short text 
outliers will become less important. Table 2 provides results of our statistical analysis of the word length in each 
OCRed text based on the text differencing approach introduced in formula 1. 

In addition, by using our frame sampling approach (with one frame per second), we can reduce the processing 
cost for image and OCR processing significantly compared to an approach that would process the full frame rate 
of videos (e.g., 30 frames per second). Also, our approach is scalable since the OCR (text detection) process is 
executed in a cloud environment, which allow us to take advantage of elasticity and scalability provided by cloud 
computing. 

 
33 https://github.com/tesseract-ocr/tesseract  
34 https://cloud.google.com/vision/  
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Table 2 Statistical analysis of the OCR differencing approach on a randomly selected video. 

Observation Minimum Length Maximum Length Mean  Median 

True Positive 1 72 19.42 17.4 

False Positive 1 58 6.0 4.0 
 

For our topic modeling, we used MALLET35 to perform LDA. To determine the optimal number of topics for 
our study, we split the source code data set into a 90% training and a 10% test portion. For the WordPress and 
Firefox data sets, we used bigram topic modeling (see Section 5.3 and RQ0). To determine the number of topics, 
we evaluated both models based on their log likelihood values (Figure 8) to identify the “knee” point K where 
one gets diminishing returns in log likelihood as the number of topics increases. For WordPress bigram topics we 
identified K = 55, for WordPress unigram topics K = 80, and for Firefox (bigram topics) K = 130, which we used 
later for our case studies. 

Baselines: We evaluate our ranking results against baselines that we manually created by executing the locally 
compiled and built versions of the projects and recording their execution traces for the scenarios described in the 
screencasts. 

WordPress Baseline Creation: Using Xdebug36, which is a popular PHP profiler, we create execution traces in 
the form of a call-graph for each usage scenario of WordPress. We then parsed the call-graph trace to extract the 
path for each PHP file whose method executions was recorded. 

We create two different types of baselines. The first baseline, the Unique baseline, contains only files whose 
methods were executed and that are unique to a given scenario. This baseline can be considered to be more rele-
vant to the technical implementation of the essential steps of a particular scenario while still containing a low 
amount of generic information. In contrast, the All baseline consists of the Unique baseline and in addition also 
includes methods which might be shared with other scenarios. For example, in WordPress functions.php37 includes 
methods that are called during the execution of different WordPress features, since these methods are responsible 
on how a site is publicly displayed. The All baseline is more generic, since it includes both some general execu-
tions and executions specific to a given scenario.  

Firefox Baseline Creation: The execution traces for the Firefox usage scenarios are created using its built-in 
Gecko profiler38. The input to the profiler is created by replicating and recording the execution traces for the 
scenarios shown by the screencasts. The Gecko profiler is a sampling profiler that interrupts the threads that it is 
profiling at regular intervals (e.g., 1-2 milliseconds by default depending on the platform) and captures the call 
stack each time the thread is interrupted. As a result, some calls might be omitted in the call-graph since the 
profiler does not include them in the snapshots of that execution. To mitigate this threat, we profiled the same 
scenario several times, creating different trace snapshots, which we then combine in a single trace. 

The output of the Gecko profiler contains the fully qualified names of the executed methods for C/C++ or 
Chrome39 URLs40 that are used to reference the JavaScript source code files. The mapping of the Chrome URLs 
to concrete file names is based on manifest files that contain the rules for resolving the URL into their concrete 
file paths. Instead of decoding the complex rules to translate Chrome URLs to concrete files we used a simpler 
approach that uses the JavaScript file name in the URL, method name, and the method’s line number, which are 
provided by the profiler, to locate the corresponding file. Also, in Firefox many of the recorded execution traces 

 
35 http://mallet.cs.umass.edu/  
36 https://xdebug.org/  
37 https://codex.wordpress.org/Functions_File_Explained  
38 https://perf-html.io/  
39 https://developer.mozilla.org/en-US/docs/Glossary/Chrome  
40 https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/The_Chrome_URL#The_Chrome_URL  
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are lower-level system calls that are part of the general Firefox initialization. These system calls introduce addi-
tional noise in the trace data in terms of being not directly related to the specific scenario. To mitigate this issue, 
we recorded the execution trace of Firefox while it was in idle mode and subtracted this recorded (idle) trace from 
that of each scenario.  

Evaluation Measures: Since the objective of our feature location approach is to identify a starting point (seed) 
in the source code to be used for further manual feature exploration, we use Average Precision (AP) and Recip-
rocal Rank (RR) as evaluation measures to assess the ability of our approach in retrieving true positives at the top 
of the result set (Keivanloo, 2013): 

𝐴𝑃 = #
|4|
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑎𝑡	𝑘%
5∈4             (3) 

𝑅𝑅 = #
/&%5	8$	9:;	$!/<9	9=

    (4) 

, with R being the set of all relevant retrieved items and k being the number of retrieved items. We prefer AP 
over “Precision at k” measure since unlike “Precision at k”, AP is generalizable over multiple queries (values of 
k which in our case are screencast data). Using AP, one can calculate now the mean of the “Precision at k” value 
for all queries (here we used the median value to avoid bias caused by outlier values). Furthermore, AP considers 
the position of the true positives in the ranking and is a measure that does not require creating relevancy scores. 
Also, similar to “Precision at k”, AP has this limitation that to be able to provide a fair assessment, using for 
example “Precision at 1000”, the corpus for all executed queries must contain at least 1000 (i.e., k) relevant items 
(Keivanloo, Roy and Rilling, 2014) 

RR can be considered as a complementary measure to AP for assessing the quality of query results. RR con-
siders the position of the first true positive in the search results and is best applied when one has very few true 
positives (such as in feature location), some of which are located in the top k of the search results. RR therefore 
evaluates whether the most relevant hits appear at the top of the result set, while AP determines if an approach 
can retrieve the relevant results and rank them among top hits. 

For Firefox, we used directories as our granularity level for the search results, since our initial evaluation at 
both file and directory granularity levels showed that our approach performs better in locating source code at 
directory level compared to the file level (our evaluation data can be found online for file41 and directory42 granu-
larity levels). Our analysis for locating and ranking source code relevant to the backend development of Firefox 
at the file granularity level resulted in median values close to zero for both AP and RR, making our approach not 
applicable at this granularity level. Closer analysis showed that this is due to the large difference in vocabulary 
between GUI-related features and C/C++ source code. 

Table 3 Mean, median, 25th Percentile, 75th Percentile, maximum, and minimum number of JavaScript and C/C++ files. 

Language Mean 25th Percentile 75th Percentile Median Max Min #Directories 
C/C++ 14.29 1 10 3 2014 1 2623 
JavaScript 14.91 1 10 3 1660 1 4268 

However, re-applying our approach at directory level granularity, we were able to locate and rank in most cases 
the directories that contain the relevant files. While this approach no longer directly locates relevant individual 
files, it still allows for a reduction of the search space and provides users with an approach to partially automate 
the feature location process. Using the directory level granularity, a user only has to search manually through an 
individual (relevant) directory for the source code file(s) implementing the particular feature rather than manually 
searching across all directories. These ranked directories of files can therefore be used as a starting point (seed) 

 
41 https://mcislab.github.io/publications/2020/emse_parisa/Firefox-File-Level-Analysis.zip  
42 https://mcislab.github.io/publications/2020/emse_parisa/Firefox-Directory-Level-Analysis.zip  
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for further source code analysis during the feature location process. Table 3 presents statistics about the number 
of JavaScript/C/C++ files in directories of Firefox source code containing such files.  
Table 4 Random guess probability of the baseline files out of the total corpus of 554 source code files in WordPress, 36,666 JavaScript files, 33,440 

C/C++ files, and 7,433 directories containing JavaScript or C/C++ files in Firefox. 

Project use-case Scenario Granularity Baseline #files or #dirs Random Guess % 

WordPress Post file 
 
 
 

All files 92   17 

Unique files 14 3 

Menu All files 92 17 

Unique files 13 2 

Firefox Import Bookmarks directory C/C++  56 0.7 

JavaScript 2315 31 

file C/C++  156 0.5 

JavaScript 1309 4 

Clear History directory C/C++ 215 3 

JavaScript 1294 17 

file C/C++ 1298 4 

JavaScript 1420 4 

Set Homepage directory C/C++ 27 0.3 

JavaScript 1288 17 

file C/C++ 66 0.2 

 JavaScript 1447 4 

Remove Passwords directory C/C++ 262 3 

JavaScript 1299 17 

file C/C++ 1898 6 

JavaScript 1470 4 

Save-to-pdf directory C/C++ 25 0.3 

JavaScript 1131 15 

file C/C++ 63 0.2 

 JavaScript 1183 3 

Default Search Engine directory C/C++ 30 0.4 

JavaScript 1331 18 

 file C/C++ 91 0.3 

JavaScript 1573 4 

We also calculated random guess probabilities for both WordPress and Firefox, which we use as a baseline for 
our result comparison. The random guess probabilities were calculated by dividing the number of files/directories 
in the baseline by the number of all files/directories in the project. For the random guess probabilities, we calculate 
how probable it is that a developer by randomly (without considering any bias or prior knowledge) selecting 
files/directories, would select all the files/directories that are captured in the scenario baseline (Table 4). 
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For the evaluation, we use the top 10 hits (files) in WordPress and top 100 hits (directories) in Mozilla Firefox. 
Our initial analysis showed that our approach would only yield no or very few true positives in the top 10 results 
using the chosen granularity levels. Instead, we used top X/100 as an evaluation measure for the Mozilla Firefox 
data set, since Firefox is not only a significantly larger project than WordPress, and its front/backend implemen-
tation are in distant architectural layers (compared to the WordPress implementation), but it also relies on different 
programming languages. Furthermore, since the maximum number of directories in our baseline for Firefox may 
contain fewer than 100 directories in the complete result sets for the baselines, we therefore consider top X/100 
(Keivanloo, 2013), with  X<=100 and X being determined by the number of directories in the baselines that we 
extracted for Firefox. For example, if the baseline contains only 60 directories, then the top 60 results are evalu-
ated. 

6.2. Case Study Results 

RQ0. What is the performance of our approach using unigram topic modeling vs. bigram 
topic modeling? 

As we use LDA in our linking methodology, different factors can affect its performance, including the number 
of topics (see Section 5.3) and the gram size. In our previous work (Moslehi, Adams and Rilling, 2018), we 
applied unigram topic modeling on our WordPress data set (Figures 10 and 11). In this paper, we extend our 
previous analysis using unigram topic modeling to also include bigrams (Figures 12 and 13) and compare the 
performance of both gram sizes. As part of bigram topic modeling, the number of topics was reduced from K = 
80 (unigram) to K = 55 (bigram), with few topics needed to form a particular well-defined topic context. 

Results for “menu” Scenario: Figure 10 shows that using unigram topic modeling for the All baseline, except 
for the speech data, the RR values are always 100%, meaning that the first true positive is ranked at the top of the 
result set. Using bigram topic modeling (Figure 12), we have the same results and the median RR value of speech 
data not only is improved by 75% but also the variance in the distribution of the RR values is reduced. In case of 
the Unique baseline, the RR value of the speech data improved by 30%. This is while the median RR values when 
using GUI or GUI-and-speech data decreased to 50% and the variance when using GUI and speech data is re-
moved. 

The median AP values of bigram topic modeling when using the All baseline are all improved compared to 
unigram topic modeling. Especially when using speech data, the median AP improves by 70% and the variance 
in the boxplot is reduced. Evaluations against the Unique baseline shows that for the speech data the median AP 
values improved by 30%, while the variance in other boxplots is decreased and their median AP values are also 
decreased on average by 19% using bigram topic modeling.  

Results for “post” Scenario: The evaluations against the All baseline (Figures 11 and 13) shows that the rank 
of the first true positive drops from the first to the second hit when using GUI weighted or GUI-and-speech 
weighted data in bigram topic modeling. However, using bigram topic modeling improves the median RR of 
speech data by 89% and reduces the variations in the box plots. In case of the Unique baseline, although the 
median RR values decreased for five out of six data types using bigram topic modeling, this value increased for 
the speech data from 0 to 12% and the variations are either removed or reduced which makes the results more 
reliable.  
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Fig. 10 RR and AP boxplots for the unigram topic modeling of the “Menu” scenario evaluated against All and Unique execution trace files, using 

both GUI/speech data, only GUI or speech, either with weighted or unweighted metrics. 

 
Fig. 11 RR and AP boxplots for the unigram topic modeling of the “Post” scenario evaluated against All and Unique execution trace files, using 

both GUI/speech data only, GUI or speech, either with weighted or unweighted metrics. 
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Fig. 12 RR and AP boxplots for the bigram topic modeling of the “Menu” scenario evaluated against All and Unique execution trace files, using 
both GUI/speech data, only GUI or speech, either with weighted or unweighted metrics. 

 
Fig. 13 RR and AP boxplots for the bigram topic modeling of the “Post” scenario evaluated against All and Unique execution trace files, using 

both GUI/speech data only, GUI or speech, either with weighted or unweighted metrics. 
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Evaluations against the All baseline using bigram topic modeling (Figure 13) show that the AP values of the 
GUI weighted, and GUI-and-speech weighted dropped from 100% (using unigram topic modeling) to 57%. This 
means that still the number of true positives is higher than the number of false positives in the top 10 results, and 
the RR values show that the first true positives appear at the second rank of the top hits. For the other data types 
the variance in the box plots reduced and the median AP values increased especially for the speech data the 
increase is by 42%. The evaluations against the Unique baseline show that the median AP values for all data types 
except for the speech data dropped on average by 9.4% while the variance in the boxplots is reduced and the 
median AP of the speech data increased from 0 to 17%. 

Conclusion: While the improvement in median AP and RR values varies between using bigram vs. unigram 
topic modeling, in general, using bigram topic modeling reduced the variance in the boxplots, which makes the 
results more reliable. Also, in all baselines, and for both AP and RR, bigram topic modeling improved the per-
formance of the approach when using speech data, which compared to GUI data is shorter. As a result, we use 
bigram topic modeling in the rest of the paper. 

RQ1. How accurately can source code files be located from screencasts? 
In what follows, we report on the AP and RR results that we obtained when we take advantage of both GUI 

and speech data for the linking of screencast content to source code (Figures 12, 13, 15, and 16 the far-left blue 
boxplots).  
Results for WordPress: 

Results for “menu” Scenario: Figure 12 shows that the median AP for the All baseline is 0.99. Having an AP 
above 0.5 indicates that we have more true positives than false positives in the top 10 hits, which can be considered 
a good result for average precision. Given that there are among the 554 WordPress files only a total of 13 PHP 
files (true positives) for the Unique baseline, while the median RR value is 0.5, meaning that the first true positives 
appears at the second top of the result set, the median AP is 0.36 which means that every third item in the result 
set is a true positive. 

More importantly, all screencasts had an RR value of 100% for the All baseline, and 100% of the RR values 
for the Unique baseline were 50%. With the first true positive being ranked first or second indicates that our 
approach can provide useful seeds for further feature location. 

Results for “post” Scenario: Figure 13 shows that the median of RR for the All baseline is 100% and for the 
Unique baseline this value is 50%, which indicates that even for a noisier data set (e.g., “post” scenario), our 
approach is able to rank in most cases the relevant result in first or second position. Also, the median of AP is 
0.73 for the All baseline and 0.5 for the Unique baseline, which shows that, in most cases, the number of true 
positives that our approach will return is more than (All baseline) or equal to (Unique baseline) the number of 
false positives in the top 10 hits. 

Further evaluation of both baselines (Table 4) shows that our approach always outperforms random guessing 
by a factor of at least 16.66 for the Unique baselines and 4.29 for the All baselines. Random guessing refers here 
to the process where one would try to correctly guess all relevant files in each baseline.  

Our analysis also shows that the Unique baseline contains fewer files and therefore fewer true positives that 
can be ranked compared to the All baseline. Also, for the All baseline data set, files such as post.php that are 
commonly ranked at the top of the result set, contain methods that are directly related to features (i.e., GUI items), 
and therefore have a higher similar term frequency with the screencast artifacts (GUI and speech text). 

Results for Mozilla Firefox: 

 We present the detailed AP and RR results for the two scenarios of “Import Bookmarks” and “Default Search 
Engine” where the latter belongs to the group of scenarios with more noise in the data (i.e., “Set Homepage”, 
“Save-to-pdf”, “Default Search Engine”). The results are shown again in the far-left blue box plot of Figures 15 
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and 16. Also, a summary of the median AP and RR values for all scenarios is shown in Figure 14. The complete 
set of all box plots for the Mozilla Firefox scenarios is available online43.  

Results for “Import Bookmarks” Scenario: Figure 15 shows that the median of AP is 0.18 for the C/C++ files 
and 0.23 for the JavaScript files. This reflects that every fifth result is a true positive among the top hits. The RR 
values for both C/C++ and JavaScript are the same, with 0.2. For the JavaScript results 25% of the screencasts 
have an RR value of more than 0.5, which means that the first true positive appears at rank 1 or 2. 

Results for “Default Search Engine” Scenario: Figure 16 shows that also for this scenario JavaScript results 
outperform our C/C++ results. The first true positive for the JavaScript files appears at rank 5 and for the C/C++ 
files the first true positive appears at rank 7 of the top hits. 

Our study (Figure 14) shows that, scenarios that are more likely to contain noise or irrelevant data in their GUI 
text (i.e., “Save-to-pdf”, “Default Search Engine”, and “Set Homepage”) have the lowest median AP and RR 
values for the C/C++ evaluations. We also observed that noise in the data has a negative effect on both JavaScript 
and C/C++, however the RR values for the JavaScript (frontend) are less affected than the RR values for the 
C/C++ files. 

In our study, the median AP for both JavaScript and C/C++ always outperform random guessing (Table 4), 
except for the random guess value of the JavaScript directories of the “Import Bookmarks”. This is because the 
speech data in this scenario is of very low quality, due to errors in the output of the STT tool (caused by the accent 
of the narrators) and the significant amount of noise in the data, since the narrators not only talk about importing 
bookmarks from Firefox but also how to export bookmarks from another browser. As a result, after preprocessing 
the speech text these documents become very short which negatively affects the LDA performance. 

 
Fig. 14 Scatter plot of the median AP and RR values for each scenario and each language in Mozilla Firefox using GUI and Speech Data. 

 
Conclusion: In WordPress, our approach can successfully rank the first relevant item at the first and second 

rank of the result set when using the GUI and speech data set, with the results for the “menu” scenario being more 
precise since there is less noise in this data set, which leads to having more terms in common with the source code 
data set. Even for noisier scenarios, our approach outperforms random guessing (Table 4), by being able to retrieve 
50% or more of the true positives in the top 10 results. In Mozilla Firefox, with its larger codebase, it is more 
challenging to obtain accurate results. However, the median AP and RR values of all scenarios show that the 
approach can return the first true positives in rank 1 to 30 (in the worst case) of the top X/100 results. Also, except 
for the median AP of the JavaScript results of the “Import Bookmark” scenario, in all other scenarios, the approach 
outperforms random guessing. 

 
43 https://mcislab.github.io/publications/2020/emse_parisa/Firefox-Directory-Level-Analysis.zip  
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Fig. 15 Boxplots of RR and AP for the “Default Search Engine” scenario evaluated against C/C++ and JavaScript files, using both GUI/speech 

data, only GUI or speech either with weighted or original metrics. 

 
Fig. 16 Boxplots of RR and AP for the “Import Bookmarks” scenario evaluated against C/C++ and JavaScript execution trace files, using both 

GUI/speech data, only GUI or speech either with weighted or original metrics.  
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RQ2. How does applying our term weighting approach on GUI and/or speech data affect 
the feature location performance? 

For this research question, we analyze and compare non-weighted and weighted results (boxplots) in Figures 
12, 13, 15 and 16 (“gui speech” and “gui speech weighted”, “speech” and “speech weighted”, “gui” and “gui 
weighted”) to gain insights on how adjusting the term frequencies in the GUI and/or speech data (Section 5.3) 
affects our linking approach. 

Results for WordPress: 
Results for “menu” Scenario: The blue boxplots (“gui speech” and “gui speech weighted”) in Figure 12 show 

that, with the adjusted term frequencies, the median RR for both All and Unique baselines is always 100%, with 
our approach ranking the relevant results at the top of the result set. For the Unique baseline, the RR value im-
proves from 50% when using “gui speech” data to 100% after applying term frequency rebalancing, showing that 
rebalancing the combination of GUI and speech data improves the RR for this baseline. 

When comparing the AP values (non-weighted vs. weighted) of the All baseline we see that in this case applying 
term weighting does not noticeably change the performance of our approach. However, for the Unique baseline, 
term weighting improves the median AP by around 21%. 

For the “speech” and “speech weighted” data sets in Figure12, both the All and Unique baselines applying term 
weighting on the speech data reduce the variance in the AP and RR results and improved the median AP and RR 
values, by 7% and 50% respectively, when evaluated against the Unique baseline. 

For the “gui” and “gui weighted” data sets (red box plots in Figure 12), the RR values for the Unique baseline 
improved by 50% after applying term weighting. While the median AP value for the All baseline does not notice-
ably change, the median AP for the Unique baseline after applying term weighting improves by 21%, reflected 
by the reduction in the variation in the boxplot.  

Results for “post” Scenario: The blue boxplots (“gui speech” and “gui speech weighted”) of both All and 
Unique baseline (Figure 13) show that, modifying the term frequencies reduces the median AP and RR values 
while reducing the variations which makes the results more precise. 

 

Fig. 17 Scatter plot of the median AP and RR values for each scenario and each language in Mozilla Firefox using Weighted GUI and Speech data. 

Comparing the gray boxplots (“speech” and “speech weighted”) in Figure 13 shows that, for the All baseline 
applying term weighting improves the median AP and reduces the variation in the plots. The median RR value 
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shows that after applying term weighting the rank of the first true positive drops to the second hit while the results 
are more precise with no variation in the plots. For the Unique baseline the median AP and RR values drop to 0 
after applying term weighting.  

Analyzing the red boxplots (“gui” and “gui weighted”) in Figure 13 shows that, for the All baseline the median 
AP value dropped by 16% and the median RR value dropped from 100% to 50% with still having the first true 
positive ranked at the second hit of the result set. The variations of the boxplots are also removed by applying 
term weighting making the results more precise. At the same time, for the Unique baseline, although the variations 
are again removed by applying term weighting, the median values are not improved and had an 15% and 12% 
decrease in both AP and RR values respectively. 

A more detailed analysis of these somewhat unexpected decreases in both AP and RR values in the results 
shows that this decrease is due to the weighted documents being shorter after the removal of less important words 
(noise) with a low corpus-wide frequency, resulting in a lower 𝑇𝐹𝑗 (the occurrences of words).  

Results for Mozilla Firefox: 
Results for “Import Bookmarks” Scenario: Our evaluations of the blue box plots (“gui speech” and “gui speech 

weighted”) for C/C++ file directories (Figure 15) show that after adjusting the term frequencies, the median AP 
slightly decreases, while the median RR increases by 25% (from rank 5 to rank 4). Rebalancing of the data reduces 
the variance in the RR results and the improvement from the rebalancing was significantly larger for the JavaS-
cript compared to the C/C++ results. Also, the variances in both AP and RR results have significantly be reduced 
and the first true positive’s rank improves from rank 5 to rank 2. The median AP of 0.59 and median RR of 0.5 
means that while the first true positive is ranked at rank 2 of the results, every 3rd item on the result set is a false 
positive.  

Analyzing the “speech” and “speech weighted” boxplots in Figure 15 shows that, for C/C++ directories, ad-
justing term frequencies reduces the variance in both the AP and RR values and reduces the median values for 
both boxplots on average by ~1%. For the JavaScript results, term weighting reduces AP and RR variations in the 
boxplots and increases the median AP value by 14% and reduces the median RR value by 50%. However, the 
first true positive is still ranked first or second in 50% of the time. 

Comparing the “gui” and “gui weighted” (red boxplots) results in Figure 15 shows that, for the C/C++ direc-
tories, applying term weighting results in a small decrease (2%) in the median AP value with no change in the 
median RR value. At the same time, the variation in the boxplots is reduced only for the RR values and marginal 
changes are observed for AP values. The effect of applying term frequency rebalancing for the JavaScript results 
shows that the median AP and RR values improved on average by 33% and variations in the boxplots are reduced 
(AP) or removed (RR). 

Results for “Default Search Engine” Scenario: After rebalancing the “gui speech” data (blue box plots in 
Figure 16), both median AP and RR increase. The median AP increases from 0.2 to 0.67 and the median RR 
increases from 0.22 to 0.5 indicating that the first true positive being ranked now 2 in the top hits of JavaScript 
evaluations. In contrast, for the C/C++ directories, rebalancing did not improve our ranking results, which is 
reflected by lower median AP and RR values. 

Rebalancing the “speech” data (gray boxplots in Figure 16) shows that, for the JavaScript results the median 
AP and RR values improved by 13% and 67% respectively. While for the C/C++ results, rebalancing the speech 
data results decreased the median AP and RR values by 5%. 

Applying term weighting on the “gui” data (red boxplots in Figure 16) for the C/C++ directories, slightly 
changes the median AP and RR values and the variations (decrease in AP and increase in RR). For the JavaScript 
directories, the median AP and RR values decreased by 4% and 17% respectively and the variation in the boxplots 
for the RR values was also reduced. 
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Based on the median values for all scenarios, term frequency rebalancing improves both AP and RR values for 
most of the JavaScript results, except for the median AP and RR values of “gui weighted” and the RR value of 
“speech weighted”. For the C/C++ directories, term weighting did not show any improvements for the AP and 
RR values. Also, similar to the WordPress “Unique” baseline evaluations, C/C++ documents contain a low num-
ber of words that can be linked to screencast documents’ words. Therefore, removing noise from screencasts by 
rebalancing results in shorter documents, which limits the applicability of LDA and leads to a lower median RR 
and AP values for the C/C++ evaluations. This contrasts with the frontend development in JavaScript, which 
handles GUI events and therefore shares more high-level words (i.e., GUI related words) with the GUI of the 
Firefox browser and the adjustment of term frequencies improved the overall results. 

Conclusion: Our WordPress analysis shows that, for scenarios with less noisy data (e.g., menu.php), applying a 
term weighting approach can improve the AP and RR results for locating project features in the source code by 
removing variations. However, for a scenario with noisy data, applying such term weighting often results in lower 
AP and RR values. Similarly, in Mozilla Firefox, term frequency adjustment improves results when the source 
code documents contain more high-level concepts (e.g., containing direct references to GUI elements).  

RQ3. Are both speech and GUI text data required for feature location? 

In what follows, we compare the impact of using either GUI (red boxplots) or speech (gray) screencast data or 
a combination of both (blue) on the performance of our feature location approach (Figures 12, 13 and Figures 15, 
16). 

Results for WordPress: 

Results for “menu” Scenario:  

Using speech data only: The gray boxplots in Figure 12 show the feature location results our approach achieved 
for the WordPress All and Unique baselines. For the All baseline, using speech data only, we obtained a median 
AP of 98% and a median RR 100%. For the Unique baseline, both median AP and RR are 50%. Rebalancing the 
term frequencies shows an improvement in the variations of the AP and RR values for both baselines and im-
provements for the median AP and RR of the Unique baseline. These improvements through the rebalancing are 
due to the fact that the unbalanced speech data contains a significant amount of noise, which introduces both 
many false positives and false negatives.  

Using GUI data only: For the All baseline the first true positive is ranked at the top (median RR = 100%) and 
in case of the Unique baseline the first true positive is ranked at the second top result. The median AP value for 
the All baseline is 0.99 and 0.38 for the Unique baseline. Here also, rebalancing the GUI-only screencast shows 
improvement in the AP and RR values of the Unique baseline. 

Results for “post” Scenario:  
Using speech data only: As Figure 13 (the gray boxplots) show, using only speech data without rebalancing 

for the All baseline, the median AP and RR values are 58% and 100% which are as performant as other data types. 
However, for the Unique baseline these values are lower compared to the other data types. Rebalancing the speech 
data in the Unique baseline results in median of 0 for both AP and RR, which is again due to having shorter 
documents after rebalancing and having fewer common terms with the source code files in the Unique baseline.  

Using the GUI data only: The median AP and RR for the All baseline is 73% and 100%, which can be inter-
preted as our approach being able to rank the first true positive at the top of the results and the number of true 
positives being larger than the number of false positives in the top 10 hits, while the observed performance for 
Unique baseline is lower. Rebalancing of the GUI data reduces the performance for both baselines and both 
measures while removing the variations. 
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Fig. 18 Scatter plot of the median AP and RR values for each data type and each language in Mozilla Firefox. 

Results for Mozilla Firefox: 
 

Using speech data only: For linking the screencast speech data to C/C++ source code (Figures 15 and 16), 
adjusting term frequencies in speech data always results in lower median AP and RR values compared to the 
speech-only data, which is not rebalanced. Removing noise from speech-only documents leads to a poorer per-
formance (yet smaller variance in the results) of our approach since we are now dealing with shorter documents 
that share less words with C/C++ files, affecting the performance of LDA.  

Using GUI data only: The “Import Bookmarks”, “Clear History”, “Set Homepage”, and “Remove Passwords” 
scenarios have the largest number of image frames (Table 1) and therefore are expected to have more GUI data. 
However, Table 5 shows that speech data in general outperforms the GUI data. This is due to the fact that the 
speech data contains more words that are related to the scenarios compared to the noisier GUI data, which contains 
also many unrelated terms. Also, in most cases, using speech data or combining it with the GUI data and applying 
term frequency rebalancing, will lead to improve the AP. 

 For the JavaScript results specifically, Table 5 and Figure 18 show that using speech-only, rebalanced speech 
(sw), or rebalanced GUI with speech data (gsw) will result typically in the highest median RR and/or AP values, 
except for the “Import Bookmarks” and “Remove Password” scenarios, where the speech-only data produced the 
highest median RR value. 

The “Save-to-pdf” scenario has the lowest observed median AP and RR values for C/C++ files, followed by 
“Default Search Engine” and “Set Homepage” scenarios, which have also quite low median AP and RR values 
for their C/C++ evaluations. A common characteristic of these scenarios is that they contain a significant amount 
of noise in the GUI data, since the narrator opens as part of these scenarios a web page that contains text unrelated 
to these scenarios. In all cases with noisy GUI data, the speech data becomes the more reliable data source. 

In WordPress and Firefox, a combination of GUI data with speech data will in general provide a good perfor-
mance, while rebalanced speech data in Firefox is overall the most reliable information source.  
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Table 5 Data sets with the highest median AP and RR values for each project and each baseline (g: gui, s: speech, w: weighted). 

Project Scenario Baseline Highest Median AP Highest Median RR 
WordPress Menu All files 0.99 (gs, g)  1 (gs, gsw, sw, g, gw)   

Unique files 0.57 (gsw, sw, gw) 1 (gsw, sw, gw) 
Post All files 0.73 (gs, g) 1 (gs, s, g) 

Unique files 0.5 (gs) 0.5 (gs) 
Mozilla 
Firefox 

Import Bookmarks C/C++ dirs 0.23 (s) 0.33 (s) 
JavaScript dirs 0.6 (sw) 1 (s) 

Clear History C/C++ dirs 0.39 (sw) 1 (s) 
JavaScript dirs 0.66 (sw) 1 (gsw, sw) 

Set Homepage C/C++ dirs 0.18 (s) 0.5 (s) 
JavaScript dirs 0.77 (gsw) 1 (gsw, gw) 

Remove Passwords C/C++ dirs 0.69 (gw) 1 (gs, s, gw) 
JavaScript dirs 0.69 (sw) 1 (s, sw) 

Save-to-pdf C/C++ dirs 0.08 (s) 0.08 (s) 
JavaScript dirs 0.57 (gsw) 1 (gs, gsw, sw) 

Default Search En-
gine 

C/C++ dirs 0.12 (gs, s) 0.24 (s) 
JavaScript dirs 0.67 (gsw, gw) 0.5 (gsw, gw) 

Conclusion: In WordPress, our analysis has shown that for videos with relatively low noise levels, both GUI 
and speech data by themselves can be sufficient for feature location while they require additional rebalancing. 
For screencasts with noisier data (e.g., “post” scenario), both speech or GUI data (without rebalancing) on their 
own can be sufficient for locating high-level or less technical source code (i.e., All baseline) while for the Unique 
baseline neither of the data types on their own do perform consistently well.  In Mozilla Firefox, speech-only data 
or rebalanced speech data is the most important information source in locating relevant source code artifacts.  

RQ4. What is the performance of the approach in locating source code related to frontend 
and backend of a project? 

As mentioned earlier, our screencast data set contains feature descriptions that are typically related to high-
level GUI elements. In this research question, we evaluate the ability of our approach to link features shown in 
screencasts to their corresponding frontend and backend implementation. More specifically, we analyze if our 
approach can successfully trace features shown in screencasts to their corresponding low-level (i.e., backend) and 
high-level (i.e., frontend) implementation. Next, we report our analysis results for Mozilla Firefox, in which 
frontend and backend development of features are not only implemented in different architectural layers but also 
using different programming languages (i.e., JavaScript and C/C++). 

Mozilla Firefox uses C/C++ for its backend development to implement the scenario logic and typically has 
only very few references to any GUI elements of the Firefox browser. As our analysis shows, the median AP 
values for mapping screencast content to the C/C++ implementation is rather low, since fewer of these high-level 
terms or GUI-related elements can be directly found in the backend implementation. For the backend implemen-
tation, a combination of GUI and speech data produced always the highest median AP or RR values.  

JavaScript is used by Firefox to implement and handle GUI events as part of the frontend development and 
therefore more GUI-related words appear directly in the JavaScript source code. Our study shows that the median 
AP and RR for the JavaScript data set are always significantly higher than the ones we obtained for the C/C++ 
data set. 

Conclusion: While our approach can trace feature implementations from screencasts to low-level backend devel-
opment source code, its accuracy is noticeably higher when applied to the frontend implementation that handles 
high-level or GUI-related aspects of an application.  
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RQ5. How accurately can the approach locate source code directories compared to a guided 
search approach? 

To validate the effectiveness of our approach in locating source code directories that are relevant to a tutorial 
screencast, we compared our Mozilla Firefox evaluation results not only to a random guess approach (Section 
6.1, Table 4), but also to a basic guided search that is more typically used by developers. In such a guided search 
(Gray, 2007) approach, a developer (or observer) uses their (programming) knowledge and expertise (i.e., domain 
knowledge) to search for objects (or source code artifacts that implement a feature) amongst other (distracting) 
objects. Using this approach, developers narrow their search space more swiftly while locating the source code 
implementing a feature. For the evaluation of the guided search approach, we again use AP and RR as perfor-
mance measures.  

To simulate this process, we selected the longest screencast for each scenario of our Firefox data set. It should 
be pointed out that captions of GUI components that are demonstrated in a screencast are not necessarily men-
tioned or similar to the titles or descriptions of a screencast that are usually used by video portals to search for 
relevant content. Also, our goal is to simulate a developer who views a screencast and then decides based on the 
application features demonstrated in the screencast to locate the source code for the viewed features. We therefore 
manually extracted the text of buttons, labels, and menu items on the GUI that are used (e.g., clicked on) or 
discussed by the narrator in the screencast while performing an action. Instead of using an IDE or text editor to 
index the Firefox source code, we used Searchfox44, a source code indexing tool that is available for Mozilla 
Firefox, to search for the exact words and patterns that we extracted from the screencasts’ GUI widget labels. 
Searchfox allows for advanced filtering options (e.g., case sensitive matching, regular expression matching, and 
path filtering) that also help with locating exact words and patterns. In what follows we describe how we simulated 
a developer’s actions who tries to locate the source code for the viewed features on a screencast: 

Since we are interested in the frontend and backend feature implementations of Firefox that are developed in 
JavaScript (i.e., .js) and C/C++ (i.e., .h, .cc, .c, .cpp) source code directories respectively, we limited our search 
to locate those file extensions.  

 

Fig. 19 Example results of searching a localization file (preferences.ftl) in Searchfox.  

First, we consider files that contain the exact query string that can result in any file extension (e.g., .xul, .dtd, 
.ftl, .properties, .js, .xml, .cpp, etc.) as long as the content of the file matches our search criteria. Among the 
different strings that we use for our query matching are: comments in the code, string literals in localization files, 
or identifiers. From this initial result set, we store the .js, .cpp, .h, and .c file paths if there is any, and we do not 
rely on cross-referencing and navigating through the located source code files, instead we only use the name of 

 
44 https://searchfox.org/  
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the returned localization files45 (i.e., .dtd, .ftl, and .properties file formats that are used to translate the user inter-
face to different languages) or .xul files to search for other JavaScript or C/C++ paths, since these files contain 
references to GUI elements or text that is shown in the screencasts and their name is included in our target source 
code (Figure 19).Next, we further reduce the search space by only selecting source code files that contain the 
name of the located localization or .xul files and store the directories to these files. We stopped our guided search 
when a.) no more localization or .xul files could be found or b.) no additional JavaScript or C/C++ source code 
files were added to our search results. We then calculated the AP and RR values and compared them with the 
baseline results from the four RQs introduced earlier. Table 6 shows the AP and RR values of guided search for 
JavaScript and C/C++ code at the directory level. We also compared the highest median AP and RR values of the 
guided search against our feature location approach (Figure 20). 

 

Fig. 20 Scatter plots of the best median AP and RR values of the proposed approach vs. the AP and RR values of guided search. 

Table 6 Average Precision and Reciprocal Rank of guided search approach in Mozilla Firefox. 

Scenario Baseline 
Guided Search 

AP RR 
Import Bookmarks C/C++ 0.5 0.5 

JavaScript 0.25 

 

0.2 
Clear History C/C++ 0.58 0.5 

JavaScript 1 1 
Set Homepage C/C++ 0.14 0.16 

JavaScript 0.86 1 
Remove Passwords C/C++ 0 0 

JavaScript 0.28 0.16 
Save-to-pdf C/C++ 0.5 0.5 

JavaScript 0.46 1 
Default Search Engine C/C++ 0.47 0.33 

JavaScript 0.72 1 

 
45 https://mozilla-l10n.github.io/localizer-documentation/   
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Findings: The guided search and our feature location approach both performed better for the frontend 
(which is developed in JavaScript) compared to the backend (which is developed in C/C++) results. The 
scatter plot of the AP values shows that for the “Default Search-engine”, “Set Homepage”, and “Clear History” 
scenarios, the guided search outperformed our proposed approach. Two of these scenarios (“Default Search-en-
gine” and “Set Homepage”) contain a significant amount of noise due to having text that appears on web pages 
that is not relevant to these scenarios. While the guided approach performs better than our approach, an AP above 
0.5 for our approach still indicates that the number of true positives is higher than the number of false positives 
in the top X/100 results returned for these three scenarios. 

The AP values for C/C++ using our approach are mostly lower compared to the guided search results, except 
for the “Remove Passwords” and “Set Homepage” scenario where our approach outperforms the guided search. 
However, for 8 out of 12 RR values in the case of JavaScript and C/C++, our approach performed equal or better 
than the guided search. For the AP results, our approach outperformed guided search in 5 out of 12 cases. Fur-
thermore, for all JavaScript directories, the best median AP value for our approach is above 0.5, which means that 
the number of true positives is larger than the number of false positives in the top 100 results. 

Given that our approach attempts to locate only a seed or starting point for searching relevant source code 
artifacts, the median RR values (which correspond to the rank of the first true positive in the top hits), clearly 
indicate that our approach significantly outperforms guided search. Furthermore, using our automated approach, 
such relevant source code directories can be identified/extracted in advance and without the need to watch the 
screencast or manually interpret feature captions.  

Conclusion: Although we only searched for JavaScript and C/C++ files/directories in our guided search and 
did not include any other call dependencies (files) that might be referenced within these source code files, we still 
found the guided search a time-consuming, manual process that needs to be repeated for each scenario. Even if 
our approach did not always outperform the guided search, especially for AP, our approach is automated and can 
therefore significantly speed up the location of relevant source code directories with an accuracy higher or similar 
to a guided search performed by a developer. 

7. Discussion 
Our case study results show that our current approach can link video content (application features) to guide 

developers and maintainers in locating source code related to features illustrated in the videos. Our approach 
works best for those features that are related to the frontend/GUI-related development of a project. We also found 
that speech is a very important component of a video and having high-quality speech is an essential information 
source.  

In what follows, we present some general guidelines that can further improve the automated linking of features 
demonstrated in screencasts to their corresponding source code implementation. Our case study results confirm 
other researchers’ findings (MacLeod, Bergen and Storey, 2017) about best practices in creating tutorial screen-
casts. The performance of our automated approach can be improved if developers and video creators follow these 
best practices: 

1) Provide a transcript. Screencast creator should provide a transcript of their video and its content, eliminat-
ing the dependency on automated transcription services, which are still prone to errors. 

2) In cases, when no video transcription is provided by the video creator, the screencasts should be presented 
using high-quality speech that is understandable, has less noise, and can be transcribed with high accuracy.  

3) Recording high definition (HD) videos that have a readable text size (MacLeod, Bergen and Storey, 2017), 
which can improve the accuracy of the OCR’s output. 



 

41 
 

4) Reducing noise in videos by showing only the features that are related to the topic that is being presented 
in the video and by minimizing the amount of time spent on showing non-relevant subject on the screen. 
This can be done by providing links to other screencasts that cover other topics (MacLeod, Bergen and 
Storey, 2017).  

5) Providing complementary documents (MacLeod, Bergen and Storey, 2017) such as written documents or 
slides that can further improve the linking results. 

6) Annotating or tagging screencasts using keywords that can help to clearly distinguish one video that covers 
a usage scenario from a video that covers another usage scenario (MacLeod, Bergen and Storey, 2017) . 

7) How-to screencasts should include information about the version of the software application whose feature 
are being demonstrated to improve the location of the correct source code version. 

Also, our findings confirm other software traceability researchers’ findings (Gotel et al., 2012) about program-
ming guidelines and conventions that should be followed by developers to enable better source code localiza-
tion: 

8) Modifying the projects’ naming conventions to reflect the high-level purpose or feature that a source code 
artifact (method, identifier, etc.) is implementing. 

9) Include comments in the source code that describe what high-level features of the project are implemented 
by this source code. 

10) Having separation of concerns and designing modular code by the use of design patterns (Leach, 2000). 

8. Threats to Validity 
This work is the first attempt to use crowd-based tutorial screencasts for feature location. Our case study results 

show that the approach can successfully locate relevant source code files in WordPress and source code directories 
in Firefox using a combination of the speech and GUI, or either data set. Nonetheless, there are some threats to 
external, internal and construct validity regarding the data sets and the methodology that need to be addressed in 
future work. 

External Validity. In this work, 5 data sets of WordPress tutorial screencasts and 6 data sets of Mozilla Firefox 
tutorial screencasts, are used. This limited number of videos is due to our selection criteria, such as being uploaded 
in the same year (likely sharing the same WordPress or Firefox version), being of high quality, and containing 
both speech and GUI. Also, the curation of the data sets was time consuming, since the results from the text 
transcription and mined text from the image frames had to be manually verified. For the Firefox data sets, we 
faced additional challenges in finding tutorial videos with an English speaker narrator. We therefore also included 
screencasts without any speech. One approach to mitigate this threat would be applying the guidelines for creating 
screencasts (Section 7). Following these guidelines would significantly alleviate these challenges by providing a 
larger number of higher quality screencasts that are easier to process automatically. Also, automating the process 
of removing greetings and closing marks of a screencast can reduce the manual effort required for preparing the 
screencast data. 

In this work, we mined only textual screencast information from speech and GUI elements. We also captured 
user actions through textual difference between every two subsequent image frames, and from the source code 
we only used textual information in the form of comments, identifiers, string literals and file names. Although 
these information sources already provide promising results, incorporating other information sources, such as the 
sequence of user events or for example call graphs from the source code should be considered for further improv-
ing the approach. 
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Our exploratory studies consider file and package/directory as granularity level for the WordPress and Mozilla 
Firefox evaluations respectively. In addition, our feature location approach could be refined to include also 
method- or even statement-level granularity in the analysis, to provide a more fine-grained analysis. 

Construct Validity. Our approach can successfully retrieve the first true positive in the top 10 hits for Word-
Press, and top X/100 hits for Mozilla Firefox. However, the speech-to-text and OCR tools used in this work may 
have noise or false positives in their output. In our WordPress case study, we partially mitigate this problem by 
keeping only the words that have a confidence score or accuracy of 0.7 or more in speech documents. While using 
term weighting can alleviate the effect of such noise in our data sets, the analysis of the text from the transcription 
or code analysis could be further improved by more advanced speech-to-text or OCR approaches and by using 
language models and specific language parsers. 

One other threat to construct validity is the use of LDA on short documents. Applying LDA approaches that 
are specifically designed for such documents (e.g., (Cheng et al., 2014; Li et al., 2016; Pedrosa et al., 2017)) 
could improve the topic models. 

Internal Validity. In the case of WordPress, we used two types of baselines to evaluate the performance of the 
approach. Since the creation of the Unique baseline requires us to compare files shared across scenarios, consid-
ering more scenarios can potentially reduce the size of unique data sets. In our evaluation, the exact size of the 
Unique baseline does not matter since we compare the performance across the All and Unique baselines instead 
of focusing only on the absolute performance values. 

In case of Mozilla Firefox, the Gecko profiler does not provide the exact path to the source code files whose 
methods are executed. In addition, multiple runs of the same scenario are required to have the profiler capture a 
more complete execution trace for a specific scenario. Using other profiling approaches or tools (e.g., aspect-
oriented programming, DTrace46) to capture the exact file paths should be considered as future work. Also, we 
used log likelihood values for different numbers of topics to determine the best number of topics to be used in our 
experiments. Future work should explore the sensitivity of our approach to the number of topics in more detail. 

8. Conclusion 
This paper presents a feature location approach that uses crowd-based screencasts for a given usage scenario 

to locate the scenario’s source code implementation. We motivated our work, by highlighting results from a user 
survey which we conducted to evaluate the use of screencasts by developers We then present our methodology 
that takes as input textual information (e.g., comments, identifiers, and string literals) from the source code and 
audio and visual components of screencasts (i.e., speech and GUI text). We apply LDA to structure this infor-
mation and rank the output seeds in the source code based on the similarity with the feature shown in the screen-
cast. These ranked outputs provide a good starting point for further exploring the implementation of the screen-
casts’ scenarios. 

In a case study using 10 WordPress screencasts covering two different feature implementations, we evaluated 
the applicability of our approach in retrieving relevant results at the top 10 search results. We also performed 
another case study on 89 Mozilla Firefox screencasts, which cover 6 different Firefox features and in this case 
the ranking of relevant directories at the top X/100 hits. As part of our evaluation we also studied how modifying 
term frequencies, based on the importance of the terms, affects the feature location results. From our case studies, 
we observed that speech and image frame data are sufficient to perform our feature location approach. Our find-
ings show that, in general, rebalancing of the data improves the quality of results.  

 
46 http://dtrace.org/blogs/about/  
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Future work should extend the data sets by including additional screencasts involving different scenarios and 
software applications. Also, while our work established that screencasts contain enough textual information, fu-
ture work should extend our approach with other text retrieval-based approaches for feature location. 
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