
On the Co-evolution of ML Pipelines and Source
Code - Empirical Study of DVC Projects

Amine Barrak
Polytechnique Montreal

Montreal, Canada
amine.barrak@polymtl.ca

Ellis E. Eghan
Polytechnique Montreal

Montreal, Canada
ellis.eghan@polymtl.ca

Bram Adams
Queen’s University
Kingston, Canada

bram.adams@queensu.ca

Abstract—The growing popularity of machine learn-
ing (ML) applications has led to the introduction of
software engineering tools such as Data Versioning
Control (DVC), MLFlow and Pachyderm that enable
versioning ML data, models, pipelines and model eval-
uation metrics. Since these versioned ML artifacts
need to be synchronized not only with each other,
but also with the source and test code of the software
applications into which the models are integrated, prior
findings on co-evolution and coupling between software
artifacts might need to be revisited. Hence, in order to
understand the degree of coupling between ML-related
and other software artifacts, as well as the adoption of
ML versioning features, this paper empirically studies
the usage of DVC in 391 Github projects, 25 of which
in detail. Our results show that more than half of the
DVC files in a project are changed at least once every
one-tenth of the project’s lifetime. Furthermore, we
observe a tight coupling between DVC files and other
artifacts, with 1/4 pull requests changing source code
and 1/2 pull requests changing tests requiring a change
to DVC files. As additional evidence of the observed
complexity associated with adopting ML-related soft-
ware engineering tools like DVC, an average of 78%
of the studied projects showed a non-constant trend in
pipeline complexity.

Index Terms—DVC, ML Pipeline, Co-evolution, ML
versioning

I. Introduction
Modern machine learning (ML) applications require

elaborate pipelines for data engineering, model building,
and releasing [1], [2]. Data engineers use a pipeline of
tools to automate the collection, preprocessing, cleaning
and labeling of data. Data scientists, on the other hand,
also use a pipeline to extract the right features from
the data engineers’ data, execute machine learning scripts
while experimenting with different sets of values for hy-
perparameters, validate the resulting models, and then
deploy (serve) the selected models. Since these steps have
to be repeated over and over whenever the data and/or
model scripts or parameters change, in search of ever more
accurate models, automation of these pipelines is essential.

These kinds of pipeline, however, are difficult to manage
using “traditional” software engineering tools like source
code version control systems (e.g., git) or continuous inte-
gration (CI) servers. For example, due to the highly experi-
mental nature of data engineering/science, it is important

to be able to swiftly revert the model to a prior high-
performing model whenever any issues are encountered.
Moreover, since ML models and workflows are centered
around data (training and testing), it is important to keep
track of the data used at each step and iteration of the
workflow, i.e., recording the history of the different ML
stages, to ensure the reproducibility of the ML pipeline
(same inputs, same outputs) and to track data provenance.
Furthermore, the huge amount of data used by ML appli-
cations makes it infeasible for traditional version control
systems to keep tracking them, and more sophisticated
tools are required to store and retrieve them efficiently [2].

As such, a new breed of data and model versioning tools
have appeared to support data engineers and scientists [3].
Popular tools comprise DVC [4], MLFlow [5], Pachy-
derm [6], ModelDB [7] and Quilt Data [8]. They typically
combine the ability to specify data and/or model pipelines,
with advanced versioning support for data/models, and
the ability to define and manage model experiments. In
the same vein as infrastructure-as-code (IaC) [9], many
of these functionalities are based on textual specifications
instead of relying on manual intervention.

Given this new generation of tools, this paper aims to
empirically study the prevalence of ML pipelines in open
source projects, as well as the amount of maintenance
effort involved. Previous studies on non-ML projects have
shown that frequent changes to source code might require
corresponding changes to other software artifacts such as
build files [10] and infrastructure-as-code files (IaC) [11]
(or vice versa), causing overhead to developers. In the case
of ML projects, changes to data and/or model pipelines
might induce similar overhead due to the conceptual cou-
pling between data, model and release pipelines.

Hence, through a high-level empirical study of 391
GitHub projects using the popular DVC versioning tool,
followed by a more detailed analysis on the 25 most active
projects, we address the following research questions:

(RQ1) How common is the usage of DVC in
Github projects? Our empirical study on 391 Github
projects shows that ML versioning is a young practice in
open source repositories. However, we observe early adop-
tion and high usage of DVC functionalities in more than a
quarter of the studied projects; data versioning is the first

1

DVC feature adopted in 321/391 of the studied projects.
Several projects are still exploring and experimenting with
this new practice.

(RQ2) How much coupling exists between soft-
ware artifacts and DVC artifacts? At the pull request-
level, results show a high coupling (a median confidence
value as high as 91.91%) between DVC files and source
code files. The coupling between DVC files and test files,
however, generally is low.

(RQ3) How does the complexity of the DVC ML
pipeline evolve over time? The results show that 78%
of the studied projects have a non-constant complexity
trend, i.e., complexity may increase over time (average
of 26% of projects between both complexity measures),
fluctuate (20% of projects), experience sudden drops (8%
of projects) or a major increase in complexity (24% of
projects).

II. Background - Data Version Control
Data Version Control (DVC), publicly announced on the

4th of May 2017 [12], is a data/model versioning tool that
is integrated with git repositories, such that the history of
data, models, and code can evolve together in an efficient
manner. Its main features include data versioning, data
pipelines (reproduction), and data access (remote storage).

The most obvious functionality of tools like DVC is
tracking the evolution of data and model files in a project.
Given the large size of such files, git is ineffective for
storing them. Thus, tools like DVC utilize a mechanism
based on hashes and a local cache to manage the tracking,
storing, and sharing of such large files. The dvc add com-
mand creates a text file containing the md5 hash of a data
(or model) file and a URI to its storage location. Instead
of having to store the actual data (which is automatically
added to the .gitignore file), it is the generated text file
that is versioned in git, just like regular source code files.
Any change to the data results in a new revision of the
text file, containing the new md5 hash and location of
the updated data. Any modern cloud storage can then
be used to store the physical data/models, while a local
cache is used to cache data during model training and
testing. Similar to git, the dvc push and dvc pull commands
are used to save and retrieve data files from their remote
storage location [13].

Apart from setting up data/model tracking, DVC allows
to declaratively define the pipeline that will take the
tracked data sets as inputs to create and experiment with
models. A DVC pipeline basically is a dependency graph
in which each node specifies a particular command that
will be run, taking incoming edges (data and/or scripts)
as inputs and producing output files that can be used
by dependent nodes. Each DVC node is created with
the dvc run command, yielding a .dvc file as shown in
Figure 1 that specifies the command to be run, the two
inputs (a directory and a file, both with their current DVC
checksum), and the output .json file.

evaluate.dvc

cmd: python code/evaluate.py

deps:

- md5: d751713988987e9331980363e24189ce.dir

path: images/test

- md5: 5a6d5b4a35a3ff13b0571f0703694886

path: model/model.h5

outs:

- cache: false

md5: 346 b27cOaedfe97bc12ca8C584d303F3

metrics: true

path: model/metrics.json

wdir: .

Figure 1: Example DVC file representing pipeline node.

Similar to “make” build dependency graphs [14], DVC
can incrementally execute a pipeline in order to only re-
run nodes whose inputs have changed. Combined with
DVC’s integration with git, pipelines allow reproducing
prior models just by checking out the corresponding git
commit and dvc pull-ing the remote data.

III. Study Design
This section presents the overall design of our empirical

study on the usage of data/model versioning tools and
pipelines in open source projects, addressing the research
questions introduced in the introduction. The data and
scripts used in our analysis are available online [15].

A. Project Selection
Our empirical study focuses on GitHub projects that

adopted the DVC ML versioning tool in their repository.
Compared to other similar ML versioning tools (i.e.,
MLflow, Polyaxon, comet.ml), DVC is considered the most
popular tool of data versioning [16]. It is a lightweight,
open-source technology designed to be integrated into
git repositories and to be programming-language agnos-
tic [17]. Furthermore, DVC provides support for maintain-
ing repositories of non-ML projects, such as traditional
software projects that gradually add ML capabilities [18],
or pure data repositories.

We used GitHub’s advanced search feature (on February
28, 2020) to identify all projects that use DVC. For this, we
narrowed our search to projects with “.dvc” files containing
the “md5” keyword (cf. Figure 1). Our query returned a
result set of 391 projects that have used DVC at some
point in their history.

B. DVC Coupling Analysis
Filtering Projects. To answer RQ2 and RQ3, we fur-

ther filter our initial 391 projects using a manual analysis
to discard any toy projects (projects that only try out
the DVC tool) or unrelated projects (i.e., projects related
to training workshops). We then only considered projects

2

Table I: Characteristics of the selected DVC projects (alphabetically ordered).

Projects name # DVC commits # Months of
DVC usage

Total # Merged
pull requests # DVC files # total files

aerubanov/DS for Air 98 4.71 36 12 1427
AlessandroVol23/kdd-cup-2019* 56 3.11 2 38 178
antonkulaga/rna-seq* 15 1.75 1 29 284
arsalanc-v2/mailsense 3 2.51 1 17 38
bmeg/bmeg-etl 299 13.86 147 217 416
BoiseState/bookdata-tools 87 5.83 0 123 149
CandelaV/UNHCRs population of

concern HDX
* 8 7.56 17 3 72

DAGsHub/clienta 3 4.62 3 6 28
deep-projects/pcam-with-dvc-cca 42 4.86 0 52 57
deep-projects/pcam-with-dvc-cc-sshfsa 19 4.86 0 33 36
gmrukwa/publication-domain-discernibility 14 2.96 2 10 36
jmhsi/lendingclub 14 5.18 14 17 188
kaiml/lease-eda* 86 0.42 51 8 27
kjappelbaum/learn mof ox state 11 3.84 0 9 39
MikeG27/BCI Image EEG Generator 17 1.55 0 13 59
MIR-MU/regularized-embeddingsa 13 2.41 0 3 13
opt-out-tools/study-online-misogyny 24 5.1 11 14 57
phramer/phramer 24 0.43 14 5 60
piojanu/Planning-in-Imagination 3 4.17 12 9 146
shuiblue/INTRUDE-refactor 7 5.06 1 6 51
spacy-pl/utils 46 6.67 20 67 138
src-d/formatml 24 2.06 62 22 125
Valentyn1997/xray* 39 8.85 0 3 70
wildlyclassyprince/data-playground* 8 2.49 1 31 124
yukw777/yureka 31 7.7 0 37 102

a Projects only using DVC data tracking. * Projects only using DVC pipelines. Projects with >10 work items (PRs).

Table II: File type classification examples.

Source Test Data Gitignore
*.sh, *.py, *.go */test/*.(.sh, .py, .go) *.h5, *.csv, *.dot .gitignore

that used DVC for more than 10 days (62 projects).
Finally, we select the 25 most active projects based on
the number of commits in their master branch, yielding
the final dataset in Table I.

Project file classification. We manually classified the
files of the 25 filtered projects of Table I as either DVC
artifacts or traditional software artifacts. All files with a
“.dvc” extension are classified as DVC artifacts, then fur-
ther classified into three sub-categories: DVC files within
the “.dvc” folder (which contains DVC metadata, similar
to git’s “.git” folder) are classified as dvc utilities, files
containing the “deps” and “cmd” keywords (cf. Figure 1)
are considered as dvc pipeline files, while all other DVC
files are classified as dvc data files.

Next, we classify the non-DVC files in each project as
either source code, tests, data (these are data files that
somehow are not put in DVC), gitignore files, and “others”.
It should be noted that since most of the projects were in
Python, they did not have build files. This classification
was performed based on a combination of file extensions
and the Github Linguist tool [19], followed by a manual
verification, which helped to identify the (programming)
language used in files with unfamiliar extensions. Table II
provides example file classifications.

Assigning Commits and Pull Request Work
Items to Classified Files. After classifying the DVC
and source code files, we identify both the commits in

which each of these files were touched (added, deleted, or
modified), as well as the work items. Work item aggrega-
tion provides a more reliable analysis that considers a pull
request as a unit of work [10], enabling the identification
of coupling between separate, but related commits. While
the commit analysis considers all 25 projects, our work
item analysis focuses on the 10 projects in Table I that
have at least 10 closed and merged pull requests (using
GrimoireLab’s Perceval [20]).

Association Rules. To measure the coupling between
DVC files and other project files, we use association rules,
similar to earlier papers in this field [10], [11]. Such an
association rule is of the form A⇒B, describing the possi-
ble coupling of changes to file type A (e.g., “source code”)
implying changes to file type B (e.g., “DVC data file”).
We use the conventional [21] metrics of “Support” (Supp),
“Confidence” (Conf) and “Interest” (Lift) to measure the
importance of an association rule. Supp(A) indicates the
frequency of appearance of A, while Conf(A⇒B) indicates
the percentage of times a change of A will happen together
(“is coupled”) with a change of B. Moreover, Lift(A⇒B)
measures the degree to which the coupling between two file
categories is different and independent from each other.

Supp(A⇒ B) = Supp(B ⇒ A) = P (A
⋂

B) (1)

Conf(A⇒ B) =
P (A

⋂
B)

P (A) = Supp(A⇒B)
P (A) (2)

Lift(A⇒ B) =
P (A

⋂
B)

P (A)P (B) = Conf(A⇒B)
P (B) (3)

We use a χ2 chi-squared test [22] to validate the sta-
tistical significance of the coupling between changes to A

3

and B. If the X2 statistic is greater than 3.84 (α = 0.05),
we consider that A and B have a statistically significant
coupling. Otherwise, the observed relationship is due to
chance. With n the total number of commits or work items
in a project:

X2(A⇒ B) = n(Lift− 1)2 Supp∗Conf
(Conf−Supp)∗(Lift−Conf) (4)

C. Pipeline Complexity Analysis

In order to estimate the overhead that pipeline descrip-
tions represent for data engineers/scientists and devel-
opers, we use two measures of pipeline complexity, i.e.,
McCabe (graph structure complexity of pipelines) and
Halstead (effort to understand the textual form of the .dvc
pipeline specification files).

McCabe complexity. We adapted the notion of Mc-
Cabe Cyclomatic Complexity [23] M for pipelines as fol-
lows:

M = E −N + 2P (5)

where N is the number of nodes in the pipeline graph,
E is the number of edges linking the nodes, and P is
the number of connected pipelines in the project. Similar
to McCabe calculations on the control flow graph of a
method, instead of directly calculating P, we connect all
pipeline input nodes to a common dummy input node and
all output nodes to a common dummy output node. This
results in P equal to 1.

Halstead complexity. Halstead complexity has been
applied before on source code [24], build dependency
graphs [10], etc., and measures the amount of mental effort
required to recreate a program:

Effort = (n1
2 ∗

N2
n2) ∗ ((N1 + N2) ∗ log2(n1 + n2)) (6)

where n1 is the number of distinct operators, n2 the
number of distinct operands, N1 the total number of
operators, and N2 the total number of operands.

Following the example in Figure 1 (Section II), the
operators in the case of DVC would be the top-level
commands/configuration of a DVC file such as cmd, deps,
outs, while the operands will be the parameters passed
to the operators (e.g., path, wdir, repo, etc). We consider
counting these parameters across all .dvc files constructing
a pipeline.

IV. How common is the usage of DVC in Github
projects? (RQ1)

A. Motivation

Similar to other aspects of software engineering for ML
applications, little to nothing is known about how current
ML versioning tools (like DVC) are used in open-source
projects: how much do projects rely on these tools, and
what are their most popular features in practice?

B. Approach
To answer this question, we analyzed the 391 open-

source GitHub projects that use DVC selected in Sec-
tion III-A. For each selected project, we calculate statistics
such as the number and evolution of DVC files, days
taken to adopt DVC. The adoption/usage of DVC within
projects is identified by the commits that touch at least
one DVC file. We also identify the specific DVC features
(data versioning, data pipelines, and remote data storage)
adopted/implemented in the project based on the classi-
fied file categories (Section III-B). For example, a project
is considered to use DVC’s pipeline feature as soon as a
commit touches at least one DVC pipeline file.

Figure 2 shows how quickly the studied projects adopted
DVC after creating the repository. Figure 3 shows how
long a project has used/been using DVC since the first
commit introducing a DVC file. Figure 4 shows the preva-
lence of the different remote storage configurations that
were used to provide a storage location for sharing data
and models.

Figure 5 shows the median proportion of modified DVC
files across the studied projects for different phases in their
lifetime, to better understand the amount of maintenance
involved with such files. Since the studied projects have
different lifetimes, we divided each project’s lifetime into
10 phases: the first 10% of the total commits, the next
10%, etc. It should be noted that only 199 projects are
included in this particular analysis, basically excluding
projects with less than 10 commits in total.

C. Results
It took more than 9 months after its initial release

for DVC to be adopted in any of the studied open-
source projects. The oldest DVC commit observed in
our dataset was in the cats vs dogs [25] project. The 6
studied projects dating back before the release of DVC
took a median of 23 months to start using DVC after the
first DVC official release, with a minimum of 17 months
for the seq2seq-chatbot [26] project.

Among the 385 remaining projects (created after the
DVC release), 294 projects adopted DVC on the first
day of their repository creation, and 56/385 further
projects adopted DVC within the first month of creating
the repository. An additional 30/385 projects adopted
DVC within their first year, while it took over a year for
5/385 projects to adopt DVC.

25% of the projects applied DVC for more than
a week, i.e., are past the exploration and experi-
mentation stage of DVC. Conversely, 230/391 (58.8%)
of the projects only used DVC for less than a day while
62/391 (15.8%) used DVC between 1 day and 1 week (cf.
Figure 3). Among the projects that used DVC for less than
a day, 96/391 (24.6%) projects had one DVC commit only
(likely for testing). This explains why only a median of 3
commits modifying DVC files was observed in the studied

4

0

100

200

300

400

< 1 month 1 - 12 > 12 months

Figure 2: #projects adopting DVC
a given period after DVC’s launch.

0

50

100

150

200

250

a single day within a
week

within a
month

More than a
month

Figure 3: #projects using DVC for
a given period.

0

50

100

150

no
 re

mote s3
loc

al gs

co
mpo

se
d

hid
de

n
ss

h
htt

p
az

ure
gd

riv
e

hd
fs

Figure 4: #projects using the differ-
ent DVC remote storage options.

10 20 30 40 50 60 70 80 90 100
Projects Percentage Lifetime

0.0

0.2

0.4

0.6

0.8

1.0

DV
C

fil
es

 p
ro

po
rti

on
(c

ha
ng

ed
 fi

le
s/

to
ta

l f
ile

s)

Figure 5: Distribution of the median proportion of DVC
files changed by project commits (chronologically grouped
into 10% chunks).

projects. The bmeg project [27] had the maximum number
of DVC-related commits, with 299 commits.

50% or more of the DVC files in a project
are changed at least once every one-tenth of the
project’s lifetime. We observe from Figure 5 that DVC
files are changed frequently within the 199 projects (with
10 or more total commits). The only exception is observed
at the 90% mark of the timeline, with a median proportion
of 33.3% changed DVC files across the studied projects. A
total of 5,192 (761) DVC-related file additions (deletions)
were performed during the entire lifetime of the projects.

An analysis of the changed files within all DVC-related
commits (total of 2,653 commits) in our dataset shows
that data versioning is the first DVC feature im-
plemented in most projects (added in the first commit of
321/391 projects), while model pipelines is the second
feature adopted. In total, 1,855 commits modified parts
of the projects’ DVC files related to data versioning, 1,093
commits modified dvc utility files that contain configura-
tions on remote data storage, and 924 commits modified
dvc pipeline-related content. 279/391 (71.4%) projects
adopted at least two features throughout their lifetime,
while 73 (18.7%) projects ended up using all three of the
main DVC features. The remaining 206 (52.7%) projects
used only two of the DVC features.

Amazon S3 (84 projects), the local cache (78),
and Google Cloud Storage (35) are the three top
used data storage locations. In addition, 21 projects
configured multiple remote storage locations. This phe-
nomenon can be attributed to several factors such as (1)
experimentation with different storage platforms and (2)
the need to duplicate data on different servers to ensure
a higher level of safety. These combinations of storage
locations are represented as composed remote in Figure 4.
The most commonly used combination was [http, s3].

On the other hand, for 127/391 of the projects, we did
not find any trace of their DVC remote in their GitHub
repository. 84/127 (66%) of these projects only have a
single day of DVC usage, while the other projects might
have left out the remote information for confidentiality
reasons. In fact, we found that 14/391 were not sharing
their DVC config file at all in the public repository, likely
because their local config file contained sensitive remote
storage information [28]. This lack of sharing could be a
threat to further empirical studies of ML versioning.�

�

�

�

Despite ML versioning being a young practice in open
source repositories, 71.4% of the studied projects use at
least two of the main DVC features, i.e., data versioning
and pipelines. More than half of the DVC files within
projects past the experimentation stage are frequently
changed, suggesting non-negligible maintenance effort
for practitioners.

V. How much coupling exists between software
artifacts and DVC artifacts? (RQ2)

A. Motivation
Studies have shown that changes to software artifacts

like build and environment files that are coupled with
traditional software artifacts such as source code, test files,
introduce overhead as developers have to maintain the
source code and tests together with these artifacts, and
vice versa [10], [11]. Since RQ1 has shown that more than
25% of the studied projects are past the experimentation
stage of their DVC adoption, and the software engineering
of machine learning applications is a multi-disciplinary
activity (data engineers, data scientists, and developers),
this RQ aims to study the effort required to add or change
data/model files and the ML pipeline specification in a
project during regular development.

5

Table III: Number of projects with significant χ2 statistical
test (α = 0.05) for commit-level (pull request-level) cou-
pling between DVC classes and/or source code artifacts.

x dvc pipeline dvc data dvc utilities Gitignore Source Test Data Others
dvc pipeline 5 (3) 10 (2) 11 (5) 5 (4) 2 (4) 8 (4) 8 (5)
dvc data 5 (3) 5 (4) 16 (6) 5 (5) 2 (5) 4 (3) 3 (5)
dvc utilities 10 (2) 5 (4) 2 (6) 6 (5) 2 (5) 1 (4) 0 (4)
Gitignore 11 (5) 16 (6) 2 (6) 9 (4) 4 (4) 9 (7) 5 (2)
Source 5 (4) 5 (5) 6 (5) 9 (4) 4 (4) 6 (6) 21 (4)
Test 2 (4) 2 (5) 2 (5) 4 (4) 4 (4) 3 (3) 5 (4)
Data 8 (4) 4 (3) 1 (4) 9 (7) 6 (6) 3 (3) 8 (6)
Others 8 (5) 3 (5) 0 (4) 5 (2) 21 (4) 5 (4) 8 (6)

B. Approach
This RQ performs two levels of coupling analysis be-

tween the manually identified categories of files: a fine-
grained commit-level analysis and a more coarse-grained
pull request-level analysis (see Section III-B). The commit-
level coupling analysis is performed on the 25 most active
projects in our dataset (based on the number of commits in
their master branch), while the pull request-level analysis
is performed on the 10 projects having more than 10
merged pull requests (bold projects in Table I).

Figure 6 and 8 show the commit-level and pull request-
level coupling (i.e., confidence value of association rules),
respectively, between the 3 types of DVC files. It should
be noted that only 15/25 (8/10) of the studied projects
at the commit-level (PR-level) contain both DVC data
and pipeline files. Also, since no prior work has studied
the coupling within ML versioning artifacts, we adopt the
thresholds used in related work [10], [11] to identify high
and low coupling results (coupling below 12% is considered
low). Figure 7 shows the commit-level coupling between
the DVC and source code artifacts, while Figure 9 shows
the corresponding pull request-level coupling.

Finally, Table III shows the number of projects hav-
ing statistically significant coupling between the different
DVC and software artifacts at the commit-level and pull
request-level. This helps us determine which of the cou-
pling observations or statistically significant vs. due to
noise. The table shows in bold the coupling relations that
were significant for at least 40% of the studied projects
(≥10/25 for commit-level, and ≥4/10 for pull request-
level). Note that the χ2 test is symmetric (same value for
A⇒B and B⇒A).
C. Results

1) Commit-level coupling:
Finding 1. 6.25% of commits changing dvc-

utilities co-occur with the changes in dvc-pipeline.
While low, this is the only commit-level coupling relation
that is significant for at least 40% of the projects. The
highest median coupling value in Figure 7 is 7.14% for dvc-
data⇒dvc-utilities. Contrary to expectations, we observe
that the median coupling between DVC data files and
DVC pipeline files is 0, in either direction (Figure 6).
Although DVC pipeline files have to be modified to contain
the updated md5 references of changed DVC data files,
we observe that such changes tend to occur in separate
commits (cf. work item-level analysis below).

Finding 2. The commits changing DVC
files mainly tend to change the gitignore file
(significant) and source code. We observe from
Figure 7 that Conf(dvc-utilities⇒source), Conf(dvc-
pipeline⇒source) and Conf(dvc-data⇒source) have high
median values of 50%, 46.6% and 33.3% respectively.
This indicates that up to half of the changes to DVC files
require a change to the source code, for example, to a
Python file that is a part of the workflow of the tracked
pipeline. However, none of these coupling relations was
significant in at least 40% of the studied projects.

In contrast, 16 (10) projects have a significant
DVC data⇒gitignore (DVC pipeline⇒gitignore) coupling,
yielding high median coupling values such as 63.6% for
DVC⇒gitignore files. This result can be attributed to the
fact that whenever a new file or data repository is added
to DVC, it will be followed by an automatic update of the
gitignore files to specify the files/folders paths that need
to be untracked by Git and instead added to the DVC
cache or remote (as described in Section II).

Finding 3. Commits changing source or
test files rarely require changes to DVC files.
Conf(source⇒dvc-pipeline) with a median value of 7.4%
is the highest observed coupling value between non-DVC
and DVC files (the median Conf(test⇔DVC) even is 0).
This result could be explained, since, first, there are more
source files (with proportionally more changes) than DVC
files, and, second, only a minority of the code within
an ML application is actually related to ML-specific
tasks/features, and therefore to the DVC pipeline [29].�

�

�

�

Although there is low commit-level coupling amongst the
DVC files of a project, most coupling observed with dvc-
utilities and software artifacts are automated by DVC.
On the contrary, DVC files and software artifacts such
as tests and data files are rarely changed together at the
commit-level.

2) Pull request (work item) level coupling:
Finding 4. DVC data and utilities files have

high (significant) median PR-level coupling of
29.5% and 23.3%. We observe from Figure 8 that
PR-level Conf(dvc-data⇒dvc-pipeline) and Conf(dvc-
pipeline⇒dvc-data) have the highest median values of
54.4% and 31.4%, yet only for 3/10 projects. Conf(dvc-
data⇒dvc-utilities) and Conf(dvc-utilities⇒dvc-data)
have slightly lower median values of 29.5% and 23.3%,
but significant for at least 4/10 projects.

Finding 5. PR-level analysis confirms finding 2,
with source code, test and data files now also
showing statistically significant coupling with DVC
categories. In total, 9 of the 10 projects have a significant
coupling between at least one DVC and one software
artifact category at the pull request level. Almost all
coupling relations are significant for at least 4/10 projects.

Figure 9 shows that Conf(dvc-utilities⇒source),
Conf(dvc-pipeline⇒source) and Conf(dvc-data⇒source)

6

data/pipeline
direction

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

coupling
data=>pipeline
pipeline=>data

(a) DVC data/pipeline

data/utilities
direction

0

20

40

60

80

100

pe
rc

en
ta

ge

coupling
data=>utilities
utilities=>data

(b) DVC data/utilities

pipeline/utilities
direction

0

20

40

60

80

100

pe
rc

en
ta

ge

coupling
pipeline=>utilities
utilities=>pipeline

(c) DVC pipeline/utilities

Figure 6: Commit-level coupling amongst DVC categories.

gitignore data source test others
coupling

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

direction
DVC

DVC

(a) DVC pipeline/software artifacts

gitignore data source test others
coupling

0

20

40

60

80

100

pe
rc

en
ta

ge

direction
DVC

DVC

(b) DVC data/software artifacts

gitignore data source test others
coupling

0

20

40

60

80

100

pe
rc

en
ta

ge

direction
DVC

DVC

(c) DVC utilities/software artifacts

Figure 7: Commit-level coupling between DVC and other software artifact categories.

data/pipeline
direction

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

coupling
data=>pipeline
pipeline=>data

(a) DVC data/pipeline

data/utilities
direction

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

coupling
data=>utilities
utilities=>data

(b) DVC data/utilities

pipeline/utilities
direction

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

coupling
pipeline=>utilities
utilities=>pipeline

(c) DVC pipeline/utilities

Figure 8: PR-level coupling amongst internal DVC categories.

have a high median values of 80.90%, 88.82% and 91.91%
respectively. This indicates that at least 8 out of 10 pull
requests changing DVC files require a change to the source
code. This makes sense since changes in the structure
of an ML pipeline might require the scripts inside the
pipeline to accept more or fewer arguments, or to split
the output into multiple files. Furthermore, similar to
the commit-level analysis, high median coupling values
are observed between the DVC and gitignore files (e.g.,
Conf(dvc-data⇒gitignore) has a median value of 92.79%).

Furthermore, we observe high median coupling values
of 51.9% and 34.7% for Conf(dvc-pipeline⇒data) and
Conf(dvc-data⇒data). Yet, the coupling between DVC
categories and test files, while slightly higher than the
observed coupling at commit-level, is still low.

Finding 6. Changes to software artifacts tend
to change DVC files at the PR-level, un-

like the commit-level results. We noticed that
Conf(gitignore⇔DVC) again has the highest median cou-
pling values. Similarly, source and test files recorded me-
dian coupling values of 27.46% for Conf(Source⇒DVC-
pipeline) and 50.54% for Conf(test⇒DVC-pipeline). In
other words, one out of four pull requests changing a
source code file, and one out of two pull requests chang-
ing a test file, require changes to the DVC pipeline. In
fact, there are more projects with statistically significant
coupling between source code and DVC utilities/data (5)
than between source code and tests (4)! This indicates
a substantial maintenance effort for ML pipelines both
during source code development and testing.�

�

�

�
Coupling between DVC and software artifacts are much
stronger than would be expected by chance, with one out
of four PRs changing source code, and one out of two
PRs changing tests, requiring changes to pipeline files.

7

gitignore data source test others
coupling

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

direction
DVC

DVC

(a) DVC pipeline/software artifacts

gitignore data source test others
coupling

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

direction
DVC

DVC

(b) DVC data/software artifacts

gitignore data source test others
coupling

20

0

20

40

60

80

100

120

pe
rc

en
ta

ge

direction
DVC

DVC

(c) DVC utilities/software artifacts

Figure 9: PR-level coupling between DVC and software artifact categories.

VI. How does the complexity of the DVC ML
pipeline evolve over time? (RQ3)

A. Motivation
Previous studies have shown that source code [30]–[33]

and build code [10] evolve in terms of complexity and
size, providing another source of maintenance effort apart
from change frequency (RQ1) and file coupling (RQ2).
This RQ aims to study whether these previous findings
on complexity generalize to ML versioning technologies.

B. Approach
To compute the complexity evolution of the DVC

pipeline, we check out all commits where a DVC file
was changed. For each checked-out commit, we measure
the McCabe and Halstead complexities for DVC pipelines
using the formulas introduced in Section III-C. We then
plotted the evolutionary trend of complexity over time
for each project, such as shown in Figure 10 for McCabe
complexity . These trends, both for McCabe and Halstead
(not shown), were manually classified by all authors into
five categories (identified during the classification process):
constant, increasing, fluctuating, sudden drop, and major
impact. Constant trends that experience a sudden increase
in complexity are classified under major impact while
increasing trends that suddenly decrease significantly are
classified under sudden drop. It should be noted that our
results here exclude 1.3% of the DVC commits that had
DVC files that were corrupted by unfixed merge conflicts,
leading to syntactic errors [34].

C. Results
18/25 of the projects have a non-constant Mc-

Cabe complexity trend. 6/25 projects have an increas-
ing trend in McCabe complexity. An example of such
increasing complexity trends is shown in Figure 10a for
the utils project, where the complexity was increasing
gradually during the entire project’s lifetime.

5/25 projects have a high fluctuation in the McCabe
complexity. Such fluctuations are caused by frequent re-
movals and additions of DVC files or pipeline stages. For
example, in the DS-for-air project shown in Figure 10b,

there are several periods within which DVC files are re-
moved or different separate pipelines are merged to reduce
the complexity.

We observe that 5/25 projects had a single change at
the end of their project lifetime that suddenly increased
their complexity. For example, Figure 10c shows a sudden
increase in the complexity of the formatml project after
additional DVC files and stages were added to track new
data files. Similarly, 2/25 of projects show a sudden drop
in complexity. For example, in the bookdata-tool project
shown in Figure 10d, there is a sudden drop in the
complexity caused by a deletion of 20/85 DVC stages in
two changesets.

Similar to the McCabe trends, 21/25 projects
have a non-constant Halstead complexity trend.
7/25 projects experience a sudden increase in complexity
due to a single major change to their pipelines. Further
investigation shows that this sudden increase is due to
large (tangled) commits that introduce multiple stages to
the pipeline and increase the total number of operators
and operands (N1 and N2).

We also observe an increasing trend in 7/25 projects,
a fluctuating trend in 5/25 projects, and a sudden drop
in 2/25 projects. The fluctuating Halstead complexity was
caused by either refactoring (restructuring) the DVC files,
auto-generation of the pipeline via Makefile, or the man-
ual removal of unwanted auto-generated DVC files. The
sudden drop in complexity was due to a partial deletion
of DVC files in a merged branch (in the phramer project)
and a split of the pipeline into multiple components (in
the bmeg-etl project).

The observed median McCabe and Halstead
complexities over time do not correlate, with a
Pearson correlation value of 0.145 (p-value of 0.48).
As shown in Figure 11, an increase in the McCabe
complexity does not correlate with an increase in the
Halstead complexity of a project and vice versa. The
McCabe complexity metric is primarily concerned with
the number of decision points in the generated pipeline
graph. The Halstead metric on the other hand focuses on
the file’s verbosity (operands and operators). Hence, while
the pipelines’ structural (McCabe) complexity is similar

8

0 20 40 60 80 100
Timeline Percentage

0

5

10

15

20

25

30

35

M
cC

ab
e

Co
m

pl
ex

ity

utils

(a) Increasing trend

0 20 40 60 80 100
Timeline Percentage

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
cC

ab
e

Co
m

pl
ex

ity

DS_for_Air

(b) Fluctuate trend

0 20 40 60 80 100
Timeline Percentage

2

4

6

8

10

12

14

16

M
cC

ab
e

Co
m

pl
ex

ity

formatml

(c) One Major Impact

0 20 40 60 80 100
Timeline Percentage

10

20

30

40

50

60

M
cC

ab
e

Co
m

pl
ex

ity

bookdata-tools

(d) Sudden Drop

Figure 10: McCabe Complexity

Halstead (Effort) Complexity

M
cC

ab
e

C
om

pl
ex

ity

0

20

40

60

10.00 100.00 1,000.00 10,000.00 100,000.00 1,000,000.00

Figure 11: McCabe vs. Halstead Complexity

for most projects, the textual (Halstead) complexity varies
substantially between projects.�

�

�

�

While no general trends could be observed about the
complexity of DVC files, an average of 78% of the
projects (between both complexity measures) had a non-
constant complexity trend for DVC files. The structural
McCabe and textual Halstead complexity measures do
not correlate.

VII. Implications of our findings

Implications to ML application developers. Our
results in RQ1 show that most studied Github projects
are still exploring and experimenting with DVC. As a
result, we observed a number of cases that do not follow
the recommended DVC practices. First, there are cases
in which developers add their DVC cache to git (e.g., the
DS for Air project [35]) instead of using the remote stor-
age functionality provided by DVC. Secondly, we observe
the creation of DVC file for each individual data file (e.g.,
in the bgc-pipeline [36] and dvc-test [37] projects). This
practice increases the complexity and effort required to
understand or maintain the pipeline. Developers might
consider to either group stages together (e.g., regroup
similar data files in a folder and only create the DVC stage
for the regrouped folder) or break down pipelines into sub-
components to facilitate maintenance tasks and reduce the
complexity of a pipeline.
Implications to ML versioning tool developers/-
companies. Interactive environments such as Jupyter

notebooks currently are amongst the most popular means
used by data scientists for interactive development and
presentation of data science projects. The cells within
these notebooks are analogous to pipeline stages. However,
current ML versioning tools like DVC are only able to
track the entire notebook file, not the individual cells.
For example, the regularized-embeddings [38] project is
using only one DVC file to track a jupyter notebook
file containing 35 cells. The fact of being programming-
language agnostic makes it impossible for tools like DVC
to provide fine-grained pipeline support for notebook-style
artifacts.
Implications to Researchers. As shown by the key
findings of this study, the high coupling and the non-
constant trend of complexity of the DVC pipelines in-
troduce overhead to developers during maintenance tasks
such as fixing a bug in the pipeline, adding new dependen-
cies, or reverting to an old pipeline stage. Thus, it is easy
for a novice developer to introduce a source code change
without being aware of a required DVC change, and vice
versa. This provides several avenues for researchers to
propose techniques and tools that can assist developers
to identify code changes that require DVC maintenance.

VIII. Threats to validity

Construct validity. The use of the Halstead (and McCabe)
complexity measure for DVC pipeline evolution may be
considered unreliable [39] compared to measures such as
average degree of a graph. However, we adopt the Halstead
complexity definition based on the prior work of McIntosh
et al. [40], given the similarity between the structure
of build files and DVC pipelines, yet other definitions
are possible. Also, the classification of project files and
complexity trends were manually verified by all authors
to mitigate the false positives introduced by the utilized
tools (e.g. Linguist). In the coupling analysis of RQ2, we
did not filter out tangled changes i.e., commits/PRs that
include multiple tasks in the same changeset (new feature,
bug fix, code refactoring, etc.) [41].
Internal validity. While the observed coupling between
DVC and software artifacts in commits and PRs can be
due to noise, the reported X2 provides statistical evidence
that in many cases these coupling relationships are much
stronger than would be expected by chance.

9

External validity. Our study analyzed the 391 GitHub
projects that had adopted DVC (and were still active) by
February 2020. To some extent, these projects can still be
considered as early adopters of ML versioning technology,
hence future research should replicate our study on more
mature adopters of DVC, as well as on adopters of other
ML versioning technology like MLFlow and Pachyderm,
both in open- and closed-source systems.

IX. Related Work
A. ML versioning tools

The versioning of ML data and models is a young and
growing practice, with several tools created to help devel-
opers with tracking the various aspects of their workflow.
Airflow [42] is used to create, schedule and monitor ML
workflows as a directed acyclic graph (DAG) that may be
composed from multiple tasks. Similarly, Luigi [43] is a
workflow engine framework that helps to write static and
fault-tolerant data pipelines in Python.

Miguel et al. [44] presented the Marvin engine that
supports the exploration and model development of dis-
tributed computing systems of data-intensive applications.
It provides a standard interface to allow other applications
access to shared model artifacts and to support high
throughput and processing of large datasets.

MLflow [5] is a platform to streamline machine learning
development. It basically is divided into three components
for (1) tracking experiments, (2) packaging code into
reproducible runs, and (3) sharing and deploying models
trained using diverse ML frameworks. Kedro [45] provides
a development workflow framework that implements soft-
ware engineering best-practice for data-pipeline construc-
tion, basically leveraging data abstraction and clear code
organization to bring models into production.

Pachyderm [6] is a data science platform aimed for
enterprise that combines data lineage [3] with end-to-end
pipelines on Kubernetes, with a graphical pipeline builder
and data versioning.

The choice of DVC [4] in this work is based on its sup-
port for gradual adoption of ML capabilities in traditional
software projects. This enables empirical analysis of the
coupling between source code/DVC artifacts and pipeline
complexity in open source projects.

B. Software evolution
A large body of research exists on co-evolution [11],

[46]–[48] and change coupling [49]–[52] , here we focus on
studies that have been conducted on the co-evolution of
(non) traditional software artifacts. Zaidman et al. [46]
studied how production and test code co-evolve using
projects’ version control systems, code coverage reports,
and size-related metrics. They find that test coverage is
positively correlated with the percentage of test code in
the system. They also observe that changes in production
code are reflected in tests; new tests are added and old
tests are modified to ensure a running test suite.

McIntosh et al. [10] explored the complexity of the GNU
Make build systems of nine large open-source projects, by
measuring the coupling between build- and source code-
related files in individual commits and work items. They
found that the build maintenance increases the overhead
of the source code development and test activities respec-
tively by 27% and 44%, similar to our PR-level findings
in RQ3. Jiang et al. [11] investigated the co-evolution of
Infrastructure-as-Code (IaC) and other software artifacts
in OSS repositories, again observing co-evolution relations
between IaC and other artifacts like Makefiles.

Passos et al. [53] studied the changes in the variability
model of the Linux kernel due to changes to related
artifacts (i.e., Makefiles and C source code) to extract
the co-evolution patterns for the Linux kernel variability
model. They created a catalog of patterns describing how
certain classes of changes affect different code artifacts.

McIntosh et al. [40] studied the evolution of ANT build
system specifications using software metrics adopted from
the source code domain. They find that ANT build scripts
continuously change in existing software projects and have
a growing trend in complexity, in sync with changes to the
projects’ source code.

In this paper, we analyzed the coupling between DVC
changes and source code artifacts at commit and pull
request granularity levels. We also studied the evolution
of the machine learning pipeline complexity using McCabe
and Halstead complexity.

X. Conclusion And Future Work
Software engineering of machine learning applications

has led to the introduction of novel tools in the software
engineering process, such as ML versioning tools to track
and reproduce data, models and pipelines over time. Our
empirical study on the DVC versioning tool shows that ML
versioning is a growing practice in open source repositories,
and it imposes a non-negligible maintenance overhead
for developers and data scientists working on machine
learning applications.

In particular, we find that 25% of the studied projects
are past the initial exploration phase with DVC, and half
of them frequently change DVC-related files (especially
DVC data files). Furthermore, one out of four PRs chang-
ing source code (and one out of two changing test code)
require changes to DVC pipeline files. Finally, 78% of
the projects (average between both complexity measures)
exhibit a non-constant complexity of DVC files over time.

Armed with this understanding, we plan to investigate
recommendation models for DVC-related maintenance ac-
tivities. Furthermore, we plan to extend this study to cover
additional ML versioning tools such as MLFLow and also
gather insights (through surveys) from developers familiar
with these tools.
Acknowledgment: We would like to thank DVC’s Dmitry
Petrov and his team for their patience and help to under-
stand the finer details of DVC.

10

References
[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar,

N. Nagappan, B. Nushi, and T. Zimmermann, “Software engi-
neering for machine learning: A case study,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP), May 2019, pp. 291–
300.

[2] C. W. Danilo Sato, Arif Wider, “Continuous delivery for ma-
chine learning,” https://martinfowler.com/articles/cd4ml.html,
09 2019.

[3] H. Atwal, “Dataops technology,” in Practical DataOps.
Springer, 2020, pp. 215–247.

[4] “Data version control · dvc,” https://dvc.org/, (Accessed on
06/05/2020).

[5] “Mlflow - a platform for the machine learning lifecyclew,” https:
//www.mlflow.org/, (Accessed on 10/07/2020).

[6] “Pachyderm — version-controlled data science,” https://www.
pachyderm.com/, (Accessed on 06/05/2020).

[7] “Modeldb: Home,” https://senselab.med.yale.edu/modeldb/,
(Accessed on 06/13/2020).

[8] “Quilt is a versioned data portal for aws,” https://quiltdata.
com/, (Accessed on 06/13/2020).

[9] J. Humble and D. Farley, Continuous Delivery: Reliable Soft-
ware Releases through Build, Test, and Deployment Automation,
1st ed. Addison-Wesley Professional, 2010.

[10] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E.
Hassan, “An empirical study of build maintenance effort,” in
2011 33rd International Conference on Software Engineering
(ICSE), May 2011, pp. 141–150.

[11] Y. Jiang and B. Adams, “Co-evolution of infrastructure and
source code - an empirical study,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, May
2015, pp. 45–55.

[12] D. Petrov, “Release beta-release · iterative/dvc,” https:
//github.com/iterative/dvc/releases/tag/0.8.1, (Accessed on
07/27/2020).

[13] “remote add — data version control · dvc,” https://dvc.org/
doc/command-reference/remote/add.

[14] S. I. Feldman, “Make—a program for maintaining computer
programs,” Software: Practice and experience, vol. 9, no. 4, pp.
255–265, 1979.

[15] A. Barrak, “Link to the data/scripts used in the study,” https:
//zenodo.org/record/4434719, January 2021.

[16] “kerneld4769833fe — kaggle,” https://www.kaggle.com/
rtatman/kerneld4769833fe, Jan 2019.

[17] C. Jansen, J. Annuscheit, B. Schilling, K. Strohmenger,
M. Witt, F. Bartusch, C. Herta, P. Hufnagl, and D. Kreft-
ing, “Curious containers: A framework for computational re-
producibility in life sciences with support for deep learning
applications,” Future Generation Computer Systems, 2020.

[18] P. Janardhanan, “Project repositories for machine learning with
tensorflow,” Procedia Computer Science, vol. 171, pp. 188–196,
2020.

[19] “github/linguist: Language savant. if your repository’s language
is being reported incorrectly, send us a pull request!” https://
github.com/github/linguist, (Accessed on 05/18/2020).

[20] valerio Cosentino, “animeshk08/grimoirelab-perceval: Send
sir perceval on a quest to retrieve and gather data from
software repositories.” https://github.com/animeshk08/
grimoirelab-perceval, (Accessed on 10/24/2020).

[21] A. A. Sergio, “Chi-squared computation for association rules:
preliminary results,” Technical Report BCCS-03–01, 2003.

[22] S. A. Alvarez, “Chi-squared computation for association rules:
preliminary results,” Boston, MA: Boston College, vol. 13, 2003.

[23] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[24] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai,
“Software complexity analysis using halstead metrics,” in 2017
International Conference on Trends in Electronics and Infor-
matics (ICEI). IEEE, 2017, pp. 1109–1113.

[25] D. Petrov, “Init dvc · dmpetrov/cats vs dogs@7fe0c2b,”
https://github.com/dmpetrov/cats vs dogs/commit/
7fe0c2b, Feb 2018.

[26] G. COTER, “gcoter/seq2seq-chatbot: A chatbot using
the seq2seq framework.” https://github.com/gcoter/
seq2seq-chatbot, (Accessed on 10/24/2020).

[27] K. Ellrott, “bmeg/bmeg-etl: Etl configuration for bmeg,” https:
//github.com/bmeg/bmeg-etl, (Accessed on 10/24/2020).

[28] “config — data version control · dvc,” https://dvc.org/doc/
command-reference/config, (Accessed on 12/29/2020).

[29] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Den-
nison, “Hidden technical debt in machine learning systems,”
in Proceedings of the 28th International Conference on Neu-
ral Information Processing Systems - Volume 2, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, p. 2503–2511.

[30] L. A. Belady and M. M. Lehman, “A model of large program
development,” IBM Systems journal, vol. 15, no. 3, pp. 225–252,
1976.

[31] M. M. Lehman, “On understanding laws, evolution, and conser-
vation in the large-program life cycle,” Journal of Systems and
Software, vol. 1, pp. 213–221, 1979.

[32] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry,
and W. M. Turski, “Metrics and laws of software evolution-
the nineties view,” in Proceedings Fourth International Software
Metrics Symposium. IEEE, 1997, pp. 20–32.

[33] Q. Tu et al., “Evolution in open source software: A case
study,” in Proceedings 2000 International Conference on Soft-
ware Maintenance. IEEE, 2000, pp. 131–142.

[34] A. aerubanov, “change fillnan method -
aerubanov/proj air quality@7418752,” https://github.
com/aerubanov/DS/ for/ Air/commit/7418752, Jan 2020.

[35] ——, “partialy update data on 2019-12-08 -
aerubanov/proj air quality@5a7c8f9,” https://github.com/
aerubanov/DS/ for/ Air/commit/5a7c8f9, Dec 2019.

[36] Jasonmvictor, “Initial commit · merck/bgc-
pipeline@29300da,” https://github.com/Merck/bgc-pipeline/
commit/29300da, Jan 2019.

[37] T. Jensen, “adding dvc files individually · thorbenjensen/dvc-
test@3186671,” https://github.com/ThorbenJensen/dvc-test/
commit/3186671, Dec 2019.

[38] V. Novotný, “Mir-mu/regularized-embeddings: Experimental
code for the “text classification with word embedding regular-
ization and soft similarity measure” (novotný et al., 2019) pa-
per,” https://github.com/MIR-MU/regularized-embeddings/,
(Accessed on 10/24/2020).

[39] M. Shepperd and D. C. Ince, “A critique of three metrics,”
Journal of systems and software, vol. 26, no. 3, pp. 197–210,
1994.

[40] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of
ant build systems,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), May 2010, pp. 42–
51.

[41] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in 2013 10th Working Conference on Mining Software Reposi-
tories (MSR). IEEE, 2013, pp. 121–130.

[42] “Apache airflow,” http://airflow.apache.org/, (Accessed on
06/04/2020).

[43] “spotify/luigi,” https://github.com/spotify/luigi, (Accessed on
06/04/2020).

[44] L. B. Miguel, D. Takabayashi, J. R. Pizani, T. Andrade, and
B. West, “Marvin-from exploratory models to production,”
Journal of Machine Learning Research, pp. 33–44, 2017.

[45] “quantumblacklabs/kedro: A python library that implements
software engineering best-practice for data and ml pipelines.”
https://github.com/quantumblacklabs/kedro, (Accessed on
06/05/2020).

[46] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of pro-
duction test code,” in 2008 1st International Conference on
Software Testing, Verification, and Validation, April 2008, pp.
220–229.

[47] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and
realities of test-suite evolution,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012, pp. 1–11.

11

https://martinfowler.com/articles/cd4ml.html
https://dvc.org/
https://www.mlflow.org/
https://www.mlflow.org/
https://www.pachyderm.com/
https://www.pachyderm.com/
https://senselab.med.yale.edu/modeldb/
https://quiltdata.com/
https://quiltdata.com/
https://github.com/iterative/dvc/releases/tag/0.8.1
https://github.com/iterative/dvc/releases/tag/0.8.1
https://dvc.org/doc/command-reference/remote/add
https://dvc.org/doc/command-reference/remote/add
https://zenodo.org/record/4434719
https://zenodo.org/record/4434719
https://www.kaggle.com/rtatman/kerneld4769833fe
https://www.kaggle.com/rtatman/kerneld4769833fe
https://github.com/github/linguist
https://github.com/github/linguist
https://github.com/animeshk08/grimoirelab-perceval
https://github.com/animeshk08/grimoirelab-perceval
https://github.com/dmpetrov/cats_vs_dogs/commit/7fe0c2b
https://github.com/dmpetrov/cats_vs_dogs/commit/7fe0c2b
https://github.com/gcoter/seq2seq-chatbot
https://github.com/gcoter/seq2seq-chatbot
https://github.com/bmeg/bmeg-etl
https://github.com/bmeg/bmeg-etl
https://dvc.org/doc/command-reference/config
https://dvc.org/doc/command-reference/config
https://github.com/aerubanov/DS/_for/_Air/commit/7418752
https://github.com/aerubanov/DS/_for/_Air/commit/7418752
https://github.com/aerubanov/DS/_for/_Air/commit/5a7c8f9
https://github.com/aerubanov/DS/_for/_Air/commit/5a7c8f9
https://github.com/Merck/bgc-pipeline/commit/29300da
https://github.com/Merck/bgc-pipeline/commit/29300da
https://github.com/ThorbenJensen/dvc-test/commit/3186671
https://github.com/ThorbenJensen/dvc-test/commit/3186671
https://github.com/MIR-MU/regularized-embeddings/
http://airflow.apache.org/
https://github.com/spotify/luigi
https://github.com/quantumblacklabs/kedro

[48] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan,
“Cross-project build co-change prediction,” in 2015 IEEE 22nd
International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 311–320.

[49] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Min-
ing co-change information to understand when build changes are
necessary,” in 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 241–250.

[50] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history,” in Proceedings.
International Conference on Software Maintenance (Cat. No.
98CB36272). IEEE, 1998, pp. 190–198.

[51] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Min-
ing version histories to guide software changes,” IEEE Trans-
actions on Software Engineering, vol. 31, no. 6, pp. 429–445,
2005.

[52] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship
between change coupling and software defects,” in 2009 16th
Working Conference on Reverse Engineering, 2009, pp. 135–144.

[53] L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski,
K. Czarnecki, P. Borba, and J. Guo, “Coevolution of variabil-
ity models and related software artifacts,” Empirical Software
Engineering, vol. 21, no. 4, pp. 1744–1793, 2016.

12

	Introduction
	Background - Data Version Control
	Study Design
	Project Selection
	DVC Coupling Analysis
	Pipeline Complexity Analysis

	How common is the usage of DVC in Github projects? (RQ1)
	Motivation
	Approach
	Results

	How much coupling exists between software artifacts and DVC artifacts? (RQ2)
	Motivation
	Approach
	Results
	Commit-level coupling
	Pull request (work item) level coupling

	How does the complexity of the DVC ML pipeline evolve over time? (RQ3)
	Motivation
	Approach
	Results

	Implications of our findings
	Threats to validity
	Related Work
	ML versioning tools
	Software evolution

	Conclusion And Future Work
	References

