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ABSTRACT
In principle, continuous integration (CI) practices allow modern
software organizations to build and test their products after each
code change to detect quality issues as soon as possible. In reality,
issues with the build scripts (e.g., missing dependencies) and/or
the presence of “flaky tests” lead to build failures that essentially
are false positives, not indicative of actual quality problems of the
source code. For our industrial partner, which is active in the video
game industry, such “brown builds” not only require multidisci-
plinary teams to spend more effort interpreting or even re-running
the build, leading to substantial redundant build activity, but also
slows down the integration pipeline. Hence, this paper aims to
prototype and evaluate approaches for early detection of brown
build results based on textual similarity to build logs of prior brown
builds. The approach is tested on 7 projects (6 closed-source from
our industrial collaborators and 1 open-source, Graphviz). We find
that our model manages to detect brown builds with a mean F1-
score of 53% on the studied projects, which is three times more than
the best baseline considered, and at least as good as human experts
(but with less effort). Furthermore, we found that cross-project pre-
diction can be used for a project’s onboarding phase, that a training
set of 30-weeks works best, and that our retraining heuristics keep
the F1-score higher than the baseline, while retraining only every
4-5 weeks.
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1 INTRODUCTION
Producing high-budget video games (“AAA games”) takes a lot of
effort and organization. Modern AAA games are composed of tens
of millions of lines of code, scattered across hundreds of thousands
of files and tens of thousands of code changes created by hundreds of
developers. Furthermore, modern AAA games’ developers need to
manage additional complexities due to the multidisciplinary teams
(i.e., artists, devs, physics experts, data scientists), very different
from code-only projects, and to be compatible and scale across a
multitude of platforms (various consoles, PC and mobile devices).
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The combination of online imperatives and the multiplicity of
platforms has made reliable Continuous Integration (CI) pipelines
paramount to producing AAA games with a limited number of bugs,
if not bug-free. Whenever a code change is submitted for review,
it is forwarded to the CI pipeline, which automates compilation,
testing and other required activities (e.g., static analysis) [22]. If all
the steps are successful, the CI status is green and the change is
integrated into the project. Otherwise, it turns red and the developer
needs to debug/fix the code change based on the CI’s build log. 1

Unfortunately, the CI build results are not always a reliable
indication of a code change’s quality, since builds can fail because
of factors related to the build process [16, 17, 38] (e.g., missing
dependencies or network/disk access on the build machines), or
because of flaky tests [19, 30, 33] (i.e., tests with non-deterministic
outcomes).

We define brown builds as a build failure that changes to a success
on at least one build rerun without changing the build setup or
source code. For instance, a build could fail if the communication
between the CI pipeline and physical game consoles is interrupted.
A test could be failing on an under-provisioned/overused CI job
worker (due to which operations are executed in a different order
than the test expects), but pass otherwise. Simply rerunning such
a “brown build” (on the same code change) could make the build
failure disappear.

In our experience at one of the world-leading AAA game produc-
ers, we saw that brown builds hinder the confidence of developers
in their CI, and impact the productivity of developers and testers
alike. Instead of immediately investigating the source code upon a
build failure, the potential presence of brown builds tends to push
developers to manually trigger reruns of builds, just to be sure. On
six large industrial projects analyzed in this paper, 31% (3.5k/11.4k)
of commits had at least one manually rerun build job, and 15%
(27k/179k) of build jobs were rerun at least once. This is not only a
waste of hardware resources for CI, but also of developers’ produc-
tivity since they have to wait for the reruns to finish, while the CI
pipeline is blocked. While the rerun could still cost less time than
manually checking the source code in vain, it adds to an already
congested CI pipeline and delays even further the manual testing
process of games, since testers wait for a green build.

Hence, there is a strong need for pragmatic approaches that can
distinguish real build failures from brown builds. At a minimum,
such approaches provide a second opinion that could confirm de-
velopers’ suspicions about a build failure, restoring their trust in CI
results. One would also expect the approaches to be integrated into
the CI pipeline, for example to automatically re-run a subset of the
brown builds, or to perform other automated resolution techniques,

1In recent years, the term “CI” has started to refer to these pipelines instead of to the
original, agile practice. The rest of this paper will do the same.
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making better use of CI resources. While approaches have been pro-
posed for flaky test detection, based on code dependencies [11, 25],
dynamic code analysis [18], or test-smell [10], flaky tests are only
part of the problem, since brown builds can be due to the build
process itself, as mentioned before. Furthermore, industrial soft-
ware projects feature a variety of programming languages and tools,
making adoption in practice of existing flaky test models hard. Fi-
nally, brown builds are an issue for both young and old projects,
yet only the latter have sufficient historical build information to
build models (the so-called “cold-start” problem [26]).

To address these shortcomings, this paper presents a language-
independent approach to identify brown builds that leverages the
build logs produced within the CI. We extract and filter vocabulary
from the build logs, transform the resulting words into a vector-
based representation using TF-IDF [36], then train boosted tree-
based classifiers [8] to predict if a job is brown or not.We empirically
evaluate the classifiers on six industrial projects of a leading AAA-
games developer and one open-source project.

This paper addresses the following research questions:
RQ1. Canwe accurately detect brown builds in a language/

project-agnostic way ? Our best models got an F1-score of 84%
(precision of 76%, recall of 94%), with F1-score on par with experts’
prediction (-4% to +17%), suggesting that our models are pragmatic.

RQ2. Can a brown build prediction model be used on an-
other project ? A model trained on a project can be used for a
new project’s prediction during its onboarding phase, but a project-
specific model should be used as soon as onboarding is over.

RQ3. How long can a model stay relevant without being
retrained ? We found that we can schedule the retraining of the
model every 4-5 weeks depending on its performance evolution and
age. Data older than 30 weeks does not significantly improve the
F1-score (< 0.01%), and even harms the model for some projects.

Our major contributions are a language-independent brown
build detection approach with F1-score two to three times higher
than baseline models for 7 large projects (and on par with human
experts), as well as the empirical evaluation of heuristics to counter
the impact of concept drift over time. A replication package is
available online [3].

2 BACKGROUND & RELATEDWORK
A Continuous Integration (CI) server [22] automatically rebuilds
and retests the source code of a project whenever a developer pushes
a code change to their version control system, in order to detect
faults and merge conflicts as soon as possible. A typical CI pipeline
like Jenkins or TravisCI consists of a sequence of build stages (e.g.,
“compile” followed by “test”), each of which are composed of one or
more parallel build jobs (e.g., “compile” jobs on Linux andWindows).
The behavior of such a build job is specified via build scripts in a
domain-specific language like GNU Make, Maven or Gradle. Such
scripts typically transform source code into an executable program
by invoking configuration tools, preprocessors, and compilers, they
automate the execution of test harnesses and/or can even deploy
the produced build artifacts [9, 22].

While conceptually, a CI server is thought of as performing one
build for each new code change, in practice its role is much more

complex. First, the build dashboards of large open source organiza-
tions like Mozilla’s treeherder [7] or OpenStack’s zuul [2] show a
multi-dimensional matrix that tries to summarize results for dozens
of CI pipelines and build jobs, ranging from classic compilation
and unit test execution to deployment or even static analysis. Fur-
thermore, each such pipeline is run multiple times for a given code
change, since, in each build stage, multiple jobs should be run to
cover the major feature and environment configurations the code
base is expected to run on. If a project has 10 features and should
support 5 operating systems, ideally 10 x 5 build jobs should be
scheduled in each build stage. Since a typical project has a much
larger number of features, and its environment comprises of not
only different operating systems (versions), but also different de-
vices, processor models, library dependencies, supporting databases
and web servers, each code change potentially yields a combinato-
rial explosion of build jobs to run. Of course, if a build is deemed to
fail, all builds would need to be repeated for the proposed code fix.

While this “build inflation” phenomenon [38] increases confi-
dence in build results, it brings a number of major disadvantages
as well. First, it increases the build infrastructure (and energy) cost
for organizations. Google, for instance, performs 800k builds per
day, which schedule 150M test runs [32]. Google’s breakneck code
velocity of one commit per second coupled with its linearly in-
creasing test corpus implies a quadratically growing need in build
resources [32]. Similar tomany other organizations, includingOpen-
Stack, they have moved to CI scheduling algorithms that group
multiple code changes (e.g., all changes arriving within 45 minutes)
before starting a new build on the entire group, instead of execut-
ing separate builds for each code change. While successful builds
at the group-level leave out many builds at the individual level,
failures at the group-level do require additional follow-up builds to
determine the individual code changes responsible for the failures.
Furthermore, while interpretation of build failures is the biggest
challenge of CI users [20], the large number of builds generated by
build inflation makes build failures harder to interpret. For exam-
ple, Gallaba et al.’s analysis of 3.7 million GitHub build jobs [16]
found that 12% of passing CI builds contain failing or skipped build
jobs that the CI system was asked to ignore by developers, with 2
out of 3 breakages occuring more than ones. Furthermore, 44% of
the studied build failures were environment-dependent, i.e., only
occurred for some environments.

Even worse than the presence of noise and build inflation due to
different environments is the ambiguity of build results caused by
so-called brown build jobs. These are build jobs that fail inconsis-
tently due to issues with asynchronous calls, multithreading, or test
order dependencies [16, 17, 30]. Only by repeating such build jobs
a sufficiently large number of times, we could determine for sure
whether a build job really failed or succeeded. In the meantime,
the code contribution pipeline conservatively would be locked, ba-
sically preventing other teams to merge in their contributions. If
one could predict that the build is truly brown, i.e., not a real build
failure, the pipeline could remain open, and one could also avoid
propation of brown build results. This is because, in a typical orga-
nization, different software components are reused across different
libraries and products, and the (apparent) success of a new build
is considered as a “go” signal for dependent products to adopt the
new release of the component, potentially inheriting brown-ness.
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While certain build tools like Maven have support for rudimen-
tary flaky test detection through build repetition, this is not efficient,
nor accurate. For this reason, existing work in this area [10, 11, 24,
30, 35] has focused on empirically understanding the causes of
flaky tests, as well as ways to detect such tests for specific pro-
gramming languages. Other reasons of brown builds than flaky
tests are not considered, nor approaches that are independent of
programming language. Ironically, there are often resources avail-
able to optimize and fix the build environment or other resources
code responsible for flaky builds, yet those need to be briefed with
concrete starting points, which currently are unknown. A recent
language-independent approach, proposed by Lampel et al. [27],
will be discussed in Section 4.2.

3 LANGUAGE-INDEPENDENT BROWN BUILD
DETECTION APPROACH

This section will present each step of our methodology for language-
independent brown build detection, as well as the research process
according to which the approach was designed.

3.1 Vocabulary extraction from log files
We first extract the vocabulary from the log file produced by each
build job. To reduce the dimensionality of this vocabulary, we ap-
plied the following series of rules:

Rule 1 All URL and file paths, identified by a regular expres-
sion, are replaced by a known string.

Rule 2 Commit IDs (series of characters containing at least
one letter and one number) are replaced by a known string.

Rule 3 Any non-letter characters are removed.
Rule 4 Camelcase notations are split.
Rule 5 English stop words [1] are removed.
Rule 6 A stemming algorithm [6] extracts the root of words.
On average, these rules reduced the size of the log files by 50%

on the dataset studied. We then split the text into words and per-
form n-gram extraction, since using n-grams (sequences of 𝑛 words)
convey more meaning [13]. In this study, we applied n-grams with
𝑁 = 1 and 𝑁 = 2 (see section 4.2.1 for the hyper-parameter tweak-
ing). We discarded our experiments with 𝑁 = 3 and 𝑁 = 4, because
they were computationally too expensive and did not significantly
improve the results. As output of this step, each build job is repre-
sented as a dictionary of features (words or series of words) to the
number of their occurrences in the analyzed log file. The resulting
dictionaries vary in size depending on the size and variety of the
vocabulary in each file. We also keep track of metadata surrounding
each CI build job such as the date on which it was submitted, the
job ID, the commit ID and the number of retries.

3.2 Vectorization
In this step, we create a uniform representation of the data, where
each build job is represented by a vector of relevant features. The
features consist of the TF-IDF computation of textual build job data
(words and series of words), and other build-related metrics.

3.2.1 TF-IDF computation. We used TF-IDF to represent each tex-
tual feature in order to reduce the impact of large log files on the
vocabulary word counts [36].
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Figure 1: Iterative vectorization approaches.

3.2.2 KBest feature selection. Despite the filtering applied on the
log, the number of unique (series of) words used in the vector rep-
resentation of our data is still significantly larger than the number
of observations (CI build log files). Consequently, we used feature
selection to further reduce the number of features used. For this, we
used the SelectKBest feature selection from the sklearn package [5]
in Python, with ANOVA F-value score function.

Other algorithms considered for feature selection (i.e., infogain [14],
correlation computations [12]) had similar results as KBest in terms
of selected features, but were computationally taxing.

3.2.3 Iterative computation. While KBest’s time and memory com-
plexities are acceptable for most cases, our dataset’s dimensionality
and size made it impractical to apply to the entire data set at once.
Consequently, we perform SelectKBest on subsets of our dataset,
then the union of the best features of each subset is analyzed again
as summarized in the middle of Figure 1.

In particular, we split the training set into sub-matrices of 1,000
build jobs, then perform TF-IDF and KBest on each sub-matrix
individually. Afterwards, the extracted sets of selected features
𝐹𝑖 are united into one large matrix. The KBest feature selection
algorithm is finally applied one last time on the resulting union set
𝐹𝑢𝑛𝑖 , yielding the final matrix with selected features 𝐹𝑓 𝑖𝑛𝑎𝑙 .

For the iterative approach to be acceptable, we need to validate
that the size of the union-ed matrix 𝐹𝑢𝑛𝑖 is similar to the size of
the individual 𝐹𝑖 sets (|𝐹𝑢𝑛𝑖 | ≃ |𝐹𝑖 |). We confirmed that in our
case study a sub-matrix size of 1,000 led to the size of the 𝐹𝑢𝑛𝑖 set
exceeding K by less than 10%, which we considered to be acceptable.

3.2.4 Other metrics. Apart from the build log vocabulary, we also
considered a number of other features related to the life cycle of
CI jobs and to the position of the build job in that cycle. First,
we computed the number of prior reruns, fails, and successes for
each build job. Also, we compute the number of commits since
the last brown job (#commit_since_brown), to control for temporal
information about when brownness was found previously.

3.3 Classification
As shown in Figure 1, the dataset is split into training/test/validation
sets. Vectorization and feature selection is done on the training
set, then applied to the two other sets, such that the model is not
contaminated by either validation or test set. We also avoid set-
contamination by gathering, for each commit, all its jobs in the same
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Figure 3: Prediction with two models. A vote is computed
between both model’s prediction.

set. The test set will be used for the model’s performance estimation,
while the validation set is used to optimize the classification model.

Our models classify failed jobs, since successful builds do not
block the CI pipeline, and hence cannot be brown. However, suc-
cessful jobs might still bring information about brownness, and
thus helps the model identify brown features to be used on failed
jobs’ predictions. We defined a filter to be applied on the dataset,
to identify from which set we filter out all the successful jobs. The
filter application is shown in Figure 1, with the notation 𝐹 (𝑠𝑒𝑡).

• None: no filter applied.
• Train: filter applied to training set;
• All: filter applied to training and validation set.

We use the XGBoost algorithm [8] (eXtreme Gradient Boosting)
to predict the brownness of each build job, using a two-step training
process (Figure 2). XGBoost is a directed classification algorithm
based on random forest. Each prediction is a real value between
0 and 1 (where 1=brown and 0=safe). The model also generates
so-called Shap values [4], which provide the impact of each feature
on the training and validation sets’ predictions.

We opted for a two-step training process, since the resulting com-
posite model allows to first focus only on data from the job’s build
log, then to add the CI lifecycle-related information (Section 3.2.4).
Such a two-step model has been used before[23]. The first step of
our training process only considers the vocabulary-related features,
while the second one considers the other metrics and combines
those with the Shap values of the first model. Then, we pass both
predictions through a vote in order to have a final classification of
the build, before making the final classification based on a threshold
𝛽 . The vote is the weighted sum of both predictions, as follows:

PredF = 𝛼
100Pred1 +

100−𝛼
100 Pred2 (1)

Classification =

{
𝐵𝑟𝑜𝑤𝑛, if PredF > 𝛽

𝑆𝑎𝑓 𝑒, otherwise
(2)

Both hyper-parameters 𝛼 and 𝛽 were chosen experimentally
during the validation phase and will be discussed in the section 5.1.

3.4 Research Process
The brown build detection approach presented in this section was
developed using a design-science process [34]. In particular, we
performed the following activities:

inferring objectives consultations with several teams to es-
tablish KPIs for model accuracy and concept drift;

design and development exploring build features, then iter-
ating over different build log vectorization approaches on a
pilot project (Project A of Section 4.1), eventually adding a
second model to our approach (CI metrics);

demonstration of pilot to teams;
evaluation on projects B-F and OSS (Section 4.1) to validate

generalizability.

4 CASE STUDY SETUP
4.1 Projects studied and data extraction
We gathered data from six large projects of our industrial part-
ner and of one Open-Source project. These projects were different
in language, purpose (i.e., code analysis, cross-platform computa-
tion, animation and path finding), and size, in order to reduce the
threats to external validity of our approach. Table 1 shows the char-
acteristics of the seven projects, with the closed-source projects’
names elided for confidentiality reasons, and project OS being the
open source project “Graphviz”2. We chose to work with Graphviz
because it is a sizeable, multi-language open-source project with
available (brown) build data.

We extracted data about build jobs from the 2 CI/CD platforms
used by the 7 projects: Gitlab3 and TeamCity4, see Table 1. Using
the REST APIs provided by both CI/CD platforms, we are able to
extract the logs produced by each build job, which forms the input
of our approach (see Section 3.1).

In order to obtain labeled data for our study, we leverage de-
velopment guidelines adopted by the analyzed software projects
regarding brown build jobs. In the absence of prediction models,
the developers and other contributors of the six industry projects
have to rerun a failed build job if it is suspected to be brown. This
proportion is shown in the second column of Table 2. Out of the
failed build jobs that were rerun, those that changed build outcome
(without any change to the build setup or source code) are consid-
ered to be brown builds by our industrial partner, and hence by
this paper (third column of Table 2). Other build jobs are labeled as
true-result/safe.

The Brown Failure Ratio 𝐵𝐹𝑅 is the percentage of brown job
failures over the total number of job failures, including the reruns.
Table 1 shows that the projects vary in their BFR among the failed
jobs, from 58% (E) and 35% (A, B) down to 13% (OS), 10% (F) and 5%
(C, D). While Graphviz does not have an explicit policy to rerun
suspicious builds, we notice that its brown failure ratio (BFR) of
13% is close to the median brownness of the other analyzed projects
(15%), which suggests its oracle is representative.

2Graphviz Gitlab link: https://gitlab.com/graphviz/graphviz
3Gitlab: https://about.gitlab.com/
4TeamCity: https://www.jetbrains.com/teamcity/

https://gitlab.com/graphviz/graphviz
https://about.gitlab.com/
https://www.jetbrains.com/teamcity/
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Table 1: Information on the projects studied.

Proj Full project history Scraped data
#Contri-
butors

#commit Main Lan-
guages

Age
[y]

DevOps
Plat-
form

#months #jobs #failing
jobs

Brown
failure ra-
tio (𝐵𝐹𝑅)

Mean job du-
ration [mm:ss]

A 15 3k Go, JS 3.5
Gitlab

18 23k 3008 30% 03:27±04
B 29 2k C# 4 29 63k 8100 37% 03:14±14
C 64 7k C++, C 3 17 22k 5986 5% 15:49±30
D 47 3k C++,C# 1

TeamCity
3 88k 8711 6% 09:28±19

E 45 4k C++ 5 2 53k 1310 58% 03:07±07
F 47 3k Py,JS,C# 5,5 22 9k 1705 10% 05:34±46
OS 20 14k C,C++ 17 Gitlab 43 47k 1237 13% 06:12±17

Table 2: Information on the projects studied regarding the brownness labeling.

Proj #failed_rerun/failed #brown/failed_rerun #reruns (only for brown cases) max #reruns0 1 2 3+
A 34% 76% 1417 506 (371) 202 (163) 122 (94) 14
B 35% 74% 3360 702 (464) 268 (173) 802 (680) 29
C 8% 44% 5077 294 (126) 86 (36) 45 (25) 38
D 6% 84% 8032 497 (414) 48 (45) 7 (4) 9
E 65% 86% 313 79 (62) 191 (137) 318 (309) 24
F 18% 49% 1119 153 (78) 54 (21) 39 (21) 32
OS 13% 82% 984 104 (88) 26 (22) 16 (10) 12

4.2 Validation approach
4.2.1 Model building.

Hyper-parameter tweaking. In the methodology section 3, we
identified a list of hyper-parameters to tweak. Those are gathered
in the following list, with a summary of their purpose and the range
of values that were chosen.

• 𝐹 (𝑠𝑒𝑡): filters to apply on the sets.
(Range: None (no filter), Train (only fails in the training set)
and All (only fails in all sets))

• 𝑁 : Number Ngram to consider.
(Range: [1], [2], [1, 2])

• 𝐾 : Number of features to be chosen by the feature selector.
(Range: 100 to 300, by 25)

• 𝛼 : Weight of the first model’s prediction in the final predic-
tion of Eq. (1).
(Range: 0 to 100, by 10)

• 𝛽 : Threshold for the classification, see Eq. (2).
(Range: 10 to 90, by 10)

For all studied projects, we trainedmodels with all hyper-parameter
combinations. We used cross-validation to validate the results on
the data set obtained in the previous subsection.

Cross-validation settings. To do the cross-validation, all build
jobs were randomly given a group number from 0 to 9 in order to
obtain 10 folds. The group separation respects the constraint that
all builds related to a given commit ID are in the same data set
group. Furthermore, the cross-validation is stratified, conserving
the same proportion of brown jobs in each fold.

Then, for each iteration 𝑖 , the following sets are defined:

• Train set: all folds but fold 𝑖 (90% of dataset);

Table 3: Baselines (BFR is brown failure ratio per project).

Baseline Proba. Brown Safe
name brown

pred
F1 Pre Rec Pre Rec

Random50 50% BFR
1+2BFR BFR 1

2 1−BFR 1
2

RandomB BFR% BFR
2 BFR BFR 1−BFR 1−BFR

AlwaysBrown 100% BFR
1+BFR BFR 1 NA 0

• Valid set: half of fold 𝑖 (5% of dataset);
• Test set: the other half of fold 𝑖 (5% of dataset).

Cross-validation is performed once for each hyper-parameter
combination, with the train set used to vectorize (Section 3.2), the
validation set used to optimize XGBoost’s internal parameters on
the trained models, and the test set to predict the model on an
unseen data set. The validation/evaluation is done twice so that
both halves of the subgroups are used once as a validation set, then
test set, resulting in 20 models being trained per cross-validation.

Performance metrics. We use the commonly known precision
( 𝑇𝑃
𝑇𝑃+𝐹𝑃 ), recall (

𝑇𝑃
𝑇𝑃+𝐹𝑃 ), F1-score (

2
𝑝𝑟𝑒−1+𝑟𝑒𝑐−1 ) measures [15, 21,

28] to evaluate our models. We calculate precision and recall sepa-
rately for the “brown” and “safe” labels. These metrics are used to
compare our models to the baselines in Table 3, as well as to deter-
mine the optimal configuration of hyper-parameters to use for our
models. We computed local and global optimizations of the hyper-
parameters. The local optimization 𝐿𝑜𝑐𝑂𝑝 is the hyper-parameter
combination 𝑐 that optimizes the F1-score of the prediction for each
given project 𝑝 . As such, the optimal local hyper-parameter combi-
nation may be different for each project (𝐿𝑜𝑐𝑂𝑝𝑝 = argmax𝑐 𝐹1(𝑐)).
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In contrast, the global optimization is the hyper-parameter combi-
nation 𝑐 that minimizes the sum of the squared differences between
the F1-score of a hyper-parameter combination and the local op-
tima across all projects (𝐺𝑙𝑜𝑏𝑂𝑝 = argmin𝑐

∑
𝑝∈𝑝𝑟𝑜 𝑗 (𝐿𝑜𝑐𝑂𝑝𝑝 −

𝐹1(𝑐))2).

Baselines. The baselines we use are based on random prediction
models whose theoretical performance is calculated based on a
given percentage of predictions being brown or real failures, as
shown in Table 3. Since the projects we studied are multi-language
in nature, it was difficult to apply existing, language-dependent
approaches as baselines. For example, DeFlaker [11] covers flaky
test detection in Java. Furthermore, Pinto et al. [35] predict flaky test
cases based on the tests’ tokens, yet brown builds do not necessarily
relate to test cases (or even code).

Another approach for brown build detection, language-independent
as well, was proposed by Lampel et al. [27], who leverage addi-
tional resource metrics related to execution time and CPU usage.
The choice for these metrics is based on observations at Mozilla
that brown builds would typically take longer to finish than real
build failures. While promising, most of the metrics required by
this approach were unavailable from our industry partner’s CI. This
is simply due to the CI system being deployed in a cloud, which
makes accurate readings of execution time and CPU usage non-
trivial because of (1) multi-tenancy and (2) unknown changes to
the cloud’s underlying hardware. As such, a project might have a
low BFR running on slow hardware, then start to exhibit a large
BFR on better hardware.

To validate this hypothesis, we scraped our 7 projects’ build
duration data (the only resource metric tracked by our industry
partner) for build failures from 2021. We only included build job
configurations with at least one brown build, then performed a
Mann-Whitney test between the build duration distributions of
(non-)brown failures (𝛼 = 0.01). Results are available online in our
replication package [3].

We found that, at least on the studied projects, multi-tenancy and
evolving infrastructure impact the applicability of resource metrics.
In particular, only projects A and F showed a significant difference
(small Cliff’s Delta effect size), confirming Lampel et al.’s hypothesis.
For those projects, we then split the data chronologically into 5
groups, comparing the build duration of brown and real failures
within each split. For project A, 4 out of 5 groups show a longer build
duration for brown builds (2x large effect, 2x small). For project
F, build duration differences alternate over time between (non-
)significance (2x small).

To conclude, in the context of language-independent brown build
prediction on the studied projects, we were only able to use random
prediction models as baselines.

4.2.2 Manual validation. We also compare our model to experts’
prediction and decision time. To do so, we asked experts of two
projects to answer a survey related to their project. These experts
comprise developers of the projects who are knowledgeable of what
the code changes are doing and have been exposed to CI feedback.
Per project, the experts were split into two groups (project A has
one expert per group, project B two experts per group).

Each survey contained 40 build jobs, selected randomly among
the dataset using the following constraints: (1) at most one build
job per commitID was selected and (2) TP/TN/FP/FN jobs from our
globally optimal model’s prediction were equally represented ( 14 of
the set of jobs in the survey for each category). While each group of
experts received the 40 build jobs to evaluate, half of the jobs were
provided with our model’s prediction (either correct or incorrect)
and the other half without. The jobs coming with predictions for
Group 1 did not come with predictions for Group 2, and vice versa.

Each group was asked to evaluate for each given build job if they
would label it as brown, based on the associated commit (ID, name,
diff), build log, other metrics like #rerun and #commit_since_brown
(see Section 3.2.4), and (for half of the jobs) our model’s prediction.

4.2.3 Cross-project validation. Cross-project predictions means
training the model using a training and validation set of a given
project, then using it to predict the results on another project. If
the results are satisfying, during the early stages of a new project
(onboarding phase), models built on other projects could be used
instead of having to wait until enough builds would have been run
for the new project. In our evaluations, we apply each project’s
models on the other projects to evaluate cross-project performance.

4.2.4 Concept drift. Our concept drift validation aims to evaluate
(1) how long the training set data and the trained model should stay
up, (2) when the model should be retrained, and (3) with which part
of the data. This is important to keep the performance competitive,
since new cases of brown builds might be missed, while old types of
brown builds might never reappear once corrected, making models
obsolete at some point.

Intuitively, we might think that the more data we gather, the
better results we will get. However, training on a large amount of
data can be time- and resource-consuming. Furthermore, old data
could be outdated, with given data patterns never reappearing in
the newest build jobs’ traces (e.g., when fixing a flaky test or the
build machine).

Furthermore, we evaluate the question of when to retrain a
model. On the one hand, predicting after each new build job is
computationally expensive and the benefit of adding a single new
build job to the training set is relatively small. On the other hand,
using the same model forever disregards any new data. As such,
new types of brown builds might never be identified by the model.

First, we want to evaluate how our approach is impacted by
concept drift. Second, we propose a number of switching heuristics,
to decide when to retrain the model. For this validation, we used
the hyper-parameters that get the best global optimization.

Regarding the impact of concept drift on our approach, we
needed to split the data sets into sub-data sets per period of time,
which will be referred to as groups: we chose to split the data into
weekly groups (Sunday to Monday). We then need to choose a train-
ing window size, which will be the number of consecutive groups
that are used as the training data set. The window is then shifted
across the whole data set to simulate a model being retrained each
week: each retraining is referred to as a drifting step (see Figure 4).
The three sets needed for our model computation and validation
(training, validation and test sets) are computed respecting time
isolation (Iso-H), by selecting consecutive ordered groups:
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Figure 4: Switching heuristics.

Iso-H time isolation: The data-set groups are ordered such
that if Group i comes before Group j, all the jobs in Group i
precede all the jobs in Group j.

The sets are then defined for each drifting step 𝑖:
• Train set: {build ∈ group 𝑗 | 𝑗 ∈ [𝑖, 𝑖 +𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 − 1]}
• Valid set: {build ∈ group 𝑗 | 𝑗 = 𝑖 +𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 }
• Test set: {build ∈ group 𝑗 | 𝑗 > 𝑖 +𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 }

By varying the size of the training window, we can evaluate how
far in the past data must be retrieved to achieve relevant prediction
performance.

To evaluate how the model ages across time, we evaluate the
performance on the test sets for each drifting step: we can then
observe the concept drift impact on the Brown-Detector approach
by observing the performance of each drifting step by group (week),
and by the number of weeks since the model was trained.

We also observe the drift of features to analyze whether there is
an evolution in the set of selected features in the vectorization step.
For this, we measure the weekly feature surviving ratio, where
model i’s feature surviving ratio at week j is the percentage of
features selected at week i that still are selected in the model of
week j. If the surviving ratio decreases consistently over time for all
models, then the feature selection and the model are impacted by
the concept drift and a retraining would be relevant. We show the
median feature surviving ratio of models after 𝑥 weeks of existence.

4.2.5 Model switching heuristics. Based on the evolution of the
performance of each model over time, we evaluate when to change
from one model ot another in order to obtain the best performance.
For this, we define different switching heuristics that will be used
to decide when to retrain and switch models. Those algorithms
will either use a priori or a posteriori heuristics. A priori heuristics
choose to switch to the model of week𝑖 based on information about
all weeks𝑗 before 𝑖 ( 𝑗 < 𝑖).A posteriori heuristics choose to switch to
the model of week𝑖 based on information about all weeks𝑗 before
𝑖 and week𝑖 included ( 𝑗 ≤ 𝑖). The latter are unrealistic models
since they need information about the current week before it even
happened, but can be used as baseline for the a priori heuristics.

For the definition of the model switching heuristics, let us as-
sume that the drift parameters are𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 +𝑤𝑖𝑛𝑣𝑎𝑙𝑖𝑑 =𝑊 (with
𝑤𝑖𝑛𝑣𝑎𝑙𝑖𝑑 = 1 the window size of the validation set) and that we have
𝑊 + 𝑁 weeks of data, and that for each week𝑤𝑖 with 𝑖 ≥ 0 there

is a model𝑚𝑖 created with the data from weeks [𝑤𝑖−𝑊 −1;𝑤𝑖−1],
with 𝑖 ∈ [0, 𝑁 ]. We also define the model𝑚𝑠𝑖 as the model selected
by a switching heuristic at 𝑤𝑖 . The performance of model𝑚 𝑗 on
week𝑤𝑖 is 𝑝𝑒𝑟 𝑓 (𝑖, 𝑗). Figure 4 shows an example with𝑊 = 3.

For the following switch heuristics description, we suppose that
we are currently starting week 𝑤𝑖 and that the previous chosen
model𝑚𝑠𝑖−1 is𝑚 𝑗 .

Best: a posteriori algorithm where the model at 𝑤𝑖 is chosen
to be the model𝑚𝑘 with 0 ≤ 𝑘 ≤ 𝑖 with the highest performance
𝑝𝑒𝑟 𝑓 (𝑖, 𝑘), as shown in orange on Figure 4.

BestUp: same as best, but with 𝑠𝑖−1 ≤ 𝑘 ≤ 𝑖 (red on Figure 4).
BestLoc: same as best, but with 𝑘 = 𝑠 𝑗 or 𝑘 = 𝑖 (blue on Figure 4).
Diagonal: a priori algorithm where the model at𝑤𝑖 is𝑚𝑖 , with-

out looking at other models’ performance (switch every week to
the newest model).

Fix: a priori algorithm where the model is switched every fixed
number of weeks to the most recent model. If week 𝑤𝑖 needs to
switch (because the model has been used for the fixed number
of weeks), the chosen model is𝑚𝑖 . Otherwise, keep𝑚𝑠 𝑗 , without
looking at the performances.

Thresh: a priori algorithm where the chosen model at𝑤𝑖 is𝑚𝑖

if the performance 𝑝𝑒𝑟 𝑓 (𝑖 − 1, 𝑠𝑖−1) of𝑚𝑠 𝑗 during week𝑤𝑖−1 was
lower than a threshold 𝑇 , as shown in green on Figure 4.

CumProd: a priori algorithm where the model chosen at 𝑤𝑖

is𝑚𝑖 if the cumulative product
∏𝑖−1

𝑗=𝑐𝑢𝑟𝑟 𝑝𝑒𝑟 𝑓 ( 𝑗, 𝑠 𝑗 ) of the perfor-
mance of the models of week 𝑤 𝑗 with 𝑠 𝑗 ≤ 𝑗 < 𝑖 − 1 was lower
than a threshold 𝑇 . This is shown in purple on Figure 4. We use a
cumulative product such that the model ages over time, since the
multiplication will reduce the value over time.

AlgorithmsBest,BestUp andBestLoc are weekly upper-bounds
for our analysis, representing three ways to choose the best mod-
els a posteriori. While Best will always outperform the other two
a posteriori algorithms, we included the latter to improve under-
standing of the findings. On the a priori side, Diagonal and Fix
are heuristics based only on a model’s age, whereas Thresh and
CumProd are based on a model’s evaluated performance and age.

To compare model switching heuristics, we aggregate the per-
formance over the whole period (weeks𝑤0 to𝑤𝑁 ), for each week’s
selected model, by summing up the weekly confusion matrices into
one overall confusion matrix, i.e., counting up the true positives,
false positives, etc. Averaging the weekly performance would not
have worked due to weeks with very few or no brown jobs at all.
We will as well compare those switching heuristics with Always-
Brown, which is a random prediction based on the brownness
ratio introduced in Section 5.1 and defined in Table 3. Finally, each
switch heuristic has a life expectation (LifeExp), which is the median
number of weeks a model is used before a new model is trained.

5 RQ1: CANWE ACCURATELY DETECT
BROWN BUILDS IN A LANGUAGE/
PROJECT-AGNOSTIC WAY ?

5.1 Hyper-parameter optimization.
Motivation. The purpose of this first validation is to identify

the best hyper-parameters for our model and to evaluate if the
classifiers’ performance is relevant in practice.
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Table 4: Model performance.

Project
Brown-Detector Baseline

Local opti [%] Global opti [%] Random50 [%] RandomB [%] AlwaysBrown [%]
Brown Safe Brown Safe Brown Safe Brown Safe Brown Safe

F1 Pre Rec Pre Rec F1 Pre Rec Pre Rec F1 Pre Rec Pre Rec F1 Pre Rec Pre Rec F1 Pre Rec Pre Rec
A 67 56 85 92 71 62 55 72 86 75 19 30 50 70 50 15 30 30 70 70 23 30 100 na 0
B 73 69 76 85 80 67 57 81 85 64 21 37 50 63 50 19 37 37 63 63 27 37 100 na 0
C 38 41 35 96 97 36 35 38 97 96 5 5 50 95 50 3 5 5 95 95 5 5 100 na 0
D 35 32 38 96 95 24 21 27 96 94 5 6 50 94 50 3 6 6 94 94 5 6 100 na 0
E 88 84 93 88 74 84 76 94 88 58 27 58 50 42 50 29 58 58 42 42 37 58 100 na 0
F 52 51 53 95 94 46 38 58 95 89 8 10 50 90 50 5 10 10 90 90 9 10 100 na 0
OS 63 61 66 91 94 52 47 57 91 91 10 13 50 87 50 6 13 13 87 87 12 13 100 na 0

Median 63 56 66 92 94 52 47 58 91 89 10 13 50 70 50 6 13 13 87 87 12 13 100 na 0
Mean 59 56 63 91 86 53 47 61 91 81 13 22 50 72 50 11 22 22 77 77 16 22 100 na 0

Approach. For this RQ, we use all 7 projects, thus including the
open-source project, using cross-validation to select the best set
of hyper-parameters per project (local optimization) and for the
seven projects at once (global optimization), see Section 4.2. The
best hyper-parameter values for both local and global optimizations
are gathered in Table 5.

Results. Our models are two to three times better than the
best random baseline AlwaysBrown in terms of F1-score for
each studied project.

Table 4 shows the performance per project of the local and global
optimization of hyper-parameters, in comparisonwith the baselines.
We observe that performance varies substantially from one project
to another. This is due to the unbalance of brownness in build jobs
across the studied projects: The higher the ratio of brownness in
the failed build job, the higher the F1-score will be. For instance,
project E has the best F1-score (88%) and the highest brown failure
ratio among the studied projects (𝐵𝐹𝑅 = 58%), while project C has
the second-worst F1-score (38%) and the lowest brown failure ratio
(𝐵𝐹𝑅 = 5%).

When switching from local to global optimization, the F1-score
decreases between 2% for project C and 11% for projects D and OS
when choosing a globally optimal set of hyper-parameters.

The baseline that gets the best F1-score is AlwaysBrown. Yet,
the mean F1-score of this baseline is more than three times (53%
compared to 16%) worse than the global optimization of our models.
Furthermore, the OS project shows results close to project F, which
is the project with the closest 𝐵𝐹𝑅, providing initial evidence that
the results could be generalized to open-source projects.

In addition to F1-score, Table 4 also shows the other performance
metrics. The median precision (recall) goes from 56% (66%) for local
optimization to 47% (58%) for global optimization. Having precision
close to 50% can seem problematic, however, let us not forget that
the dataset is highly unbalanced, and that the values are higher than
the baselines. Furthermore, 89% of the true failures (non-brown)
are correctly identified by our model and 91% of failure predictions
are actually true failures, which meets our objective of making the
CI results more reliable.

Regarding feature selection, we analyzed the features with sig-
nificant tf-idf values of the OS project, to better understand what
drives the models. We observed that occurrences of “read_databas"

Table 5: Optimal hyper-parameter values per project in terms
of F1-score.

Optimization Hyper-parameters
Type Project 𝐹 𝑁 𝐾 𝛼 𝛽

Local

A Train [1] 300 0% 10%
B All [1] 275 40% 20%
C Train [2] 300 90% 20%
D All [1, 2] 100 50% 10%
E All [1] 300 50% 30%
F All [1] 225 100% 10%
OS Train [1] 200 0% 30%

Global All All 2 300 70% 10%

in jobs tend to be related to brownness and of “return_error" tend
to be related to true failures, which are intuitive to understand.
However, less intuitive observations were seen with features such
as “build_object" or “occur_dure" that can be related to both labels,
depending on the other terms in the logs.

5.2 Manual validation
Motivation. While the previous subsection compared our models

to intuitive baselines, this section compares our models’ perfor-
mance to human experts from our industrial partner to validate
the extent to which our prototype can perform as well if not better
than experts in terms of predicting brownness quicker.

Approach. The manual validation was done on projects A and B
only. Each expert is given 40 failed build jobs and must identify if
they are true failures or brown. The final expert’s performance is
computed respecting the original confusion matrix of our model
prediction. For project A, this contains TP:22%, TN:52%, FP:18%,
FN:9% and for project B TP:30%, TN:40%, FP:23%, FN:7%.

Table 6 shows the mean prediction results for the experts in each
project (A and B) by category. We use the mean because there were
only respectively 2 and 4 experts in the projects and only 10 jobs
per category, making outliers unlikely.

Results. Project A’s experts manually predict brown builds
with mean F1-score 4% better than our models, while project
B’s experts manually identify jobs as brown with mean F1-
score 17% lower than our models.
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Table 6: Manual validation’s mean prediction [%] of the
experts by category.

Expected to be Expected to be Mean evaluation
brown (100%) true-failure (0%) time by build job

Project TP FN TN FP [mm:ss]
A 83 73 18 54 2:44
B 68 68 61 65 2:55

Table 7: Manual validation’s performance results.

Project Comparison Brown Safe
F1 Pre Rec Pre Rec

A Pred vs Oracle 62 55 72 86 75
Expert vs Oracle 66 56 80 89 73

B Pred vs Oracle 67 57 81 85 64
Expert vs Oracle 50 39 68 38 37

From Table 6 (i.e., the results for project A), we observe that
experts of project A have predicted TP jobs correctly in 83% of the
cases and TN in 82% (100-18), whereas our model, by definition,
identifies both groups correctly in 100% of the cases. However,
the experts correctly identify 73% of FN and 46% (100-54) of FP,
whereas our model misclassifies all the jobs. Project B shows less
variation from one category of results to another, showing that the
developers on that project globally identify jobs as brown in 61-68%
of the cases, without significant differences between categories. For
both projects, no significant difference was found in the survey (see
Section 4.2.2) for predicting jobs when we provided our prediction
or not.

In Table 7, we evaluated the same metrics as for the hyper-
parameter validation, this time comparing the global optimization
of the hyper-parameters for projects A and B with their respective
experts’ performance. The metrics are computed by weighing the
different categories (TP/TN/FP/FN) with the real ratio of each cat-
egory from the globally optimal model. We observe that experts
from project A have better results than our model, with an F1-score
of 66% (4% higher than our model). For project B, we see that our
model has better results, with an F1-score of 67% (17% higher than
the experts).

Even though our models’ precision and recall are not perfect, we
observe that they are similar to or better than experts’ performance.
Our model can thus be used to improve the CI system, by detecting
brown builds before the developer has to rerun them manually,
saving the experts’ precious time. In fact, our model, once trained,
only takes seconds to predict the status (brown or safe) of a new
build jobs, reducing the effort needed by experts, since the experts of
projects A and B took on average 2min44 and 2min55, respectively,
to interpret the brown-ness of the analyzed build jobs.

6 RQ2: CAN A BROWN BUILD PREDICTION
MODEL BE USED ON ANOTHER PROJECT ?

Motivation. One of the hypotheses we defined from the begin-
ning was that a classifier have to be trained for each project. This is
a limitation as each project needs a cold-start period to gather data

Table 8: Cross-project F1-score. The project “Pred” is pre-
dicted by the a model trained on the project “Train”. (Diago-
nal is the global optimization and “★” is AlwaysBrown.)

Pred
Train F1-score

A B C D E F OS ★

A 62 32 3 45 49 1 5 23
B 15 67 27 47 39 13 4 27
C 2 16 36 16 12 17 8 5
D 8 12 12 24 11 7 4 5
E 53 80 0 35 84 5 23 37
F 10 20 na 6 18 46 29 9
OS 11 12 21 12 12 4 52 12

before being able to provide predictions, while brown build detec-
tion would be required from the start. To challenge this hypothesis,
here we build and evaluate cross-project prediction models.

Approach. For this validation, we used each project’s model to
predict brown builds on other projects (which we call “1-to-1 ap-
proach"). The models use the hyper-parameter values that yielded
globally optimal performance across the projects (for within-project
prediction). We also considered applying a leave-one-out approach
(training with all datasets but one, then testing on the latter), but
this approach would be computationally much more expensive than
the 1-to-1 approach (due to the very large training set) [29].

In this section, we will refer to “cross-project prediction" when
a project is predicted by a model trained on another project, and
will refer to by-project prediction otherwise (see section 5.1).

Results. F1-score of cross-project prediction is between 4
and 84% (median of 12%) lower than the prediction by-project
for all studied projects. Provided the right training project(s)
can be identified, cross-project prediction could be a viable
alternative, at least until a project-specific model is available.

In Table 8, we gathered the performance of cross-project vali-
dation for the seven studied projects (for proj𝑥 and proj𝑦 in stud-
ied projects where 𝑥 ≠ 𝑦, proj𝑥 is predicted by a model trained
on proj𝑦 ). It can be seen that the cross-project prediction for all
projects is 4 to 84% lower than the global hyper-parameter optimiza-
tion. Some cross-project combinations still give results close to the
by-project prediction. For instance, project E predicted by project
B gives an F1-score of 80% (4% lower than by-project prediction).
Other combinations do not perform prediction correctly at all, for
instance, project F’s prediction by project C always identifies failure
as true-failure, yielding an “na”result.

One of the authors, who is an expert on project A, manually
analyzed a sample of TP (true brown) predictions for project A. We
extracted the corresponding TP predictions of each cross-project
combination. From the 25 sampled predictions, 14 corresponded to
cases the author was aware of, while 11 identified new brown build
cases due to issues with the file system and network.

Furthermore, the F1-score of cross-project results are not con-
sistently higher than the AlwaysBrown baseline, varying from an
improvement of 43% to a loss of 37% on the F1-score (with a median
of 3%). This validates that a project-specific model is essential as
soon as historical data is available, but that, given the right training
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Table 9: Switcher comparison with a𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 size of 30. The table vertically is split into a posteriori, a priori heuristics and
baselines. Bold indicates the line with the best (F1-score,life expectancy) of a project per category.

Switcher Project A Project B Project C Project OS
Brown Safe Life Brown Safe Life Brown Safe Life Brown Safe Life

F1 Pre Rec Pre Rec Exp F1 Pre Rec Pre Rec Exp F1 Pre Rec Pre Rec Exp F1 Pre Rec Pre Rec Exp
best (post) 69 70 69 87 87 1 74 79 70 89 83 1 32 59 21 99 96 2 36 28 48 95 98 4

bestup (post) 65 65 64 85 85 2 71 78 65 89 81 2 30 57 20 99 96 3 36 28 48 95 98 4
bestloc (post) 63 64 62 85 84 2 70 77 63 89 80 2 22 45 14 99 95 6 21 24 19 97 97 8

first 51 56 46 84 78 43 62 70 56 86 77 43 14 35 9 99 95 38 32 27 39 96 97 16
diagonale 56 59 54 84 81 1 67 75 61 88 79 1 22 45 15 99 95 1 44 44 45 98 98 1

fix (2 weeks) 57 59 54 84 81 2 66 73 61 86 78 2 27 50 19 99 96 2 39 40 39 98 97 2
fix (5 weeks) 59 60 57 84 82 5 66 73 61 86 79 5 24 44 16 99 95 5 42 39 45 97 98 5
fix (10 weeks) 56 59 54 84 81 10 67 71 64 85 79 10 20 40 14 99 95 10 38 33 45 96 98 8
fix (15 weeks) 56 59 53 84 81 15 66 70 62 84 78 15 22 42 15 99 95 15 34 29 42 96 98 8

cumProd (𝑇 = 0.01) 60 61 60 84 83 6 67 73 62 86 79 5 22 39 15 99 95 5 23 24 23 97 97 8
cumProd (𝑇 = 0.02) 59 61 58 84 82 4 66 74 60 87 78 5 20 42 13 99 95 4 23 24 23 97 97 8
cumProd (𝑇 = 0.05) 60 60 59 83 83 4 66 74 60 87 78 4 20 38 14 99 95 3 29 29 29 97 97 5

thresh (𝑇 = 0.7) 59 60 58 84 82 1 67 74 60 87 79 1 26 52 18 99 96 2 35 35 35 97 97 2
thresh (𝑇 = 0.8) 59 60 57 83 82 1 67 74 60 87 79 1 26 52 18 99 96 2 35 35 35 97 97 2
AlwaysBrown 23 30 100 na 0 27 37 100 na 0 5 5 100 na 0 12 13 100 na 0

Best Hyper-param 62 55 72 75 86 67 57 81 64 85 36 35 38 96 97 52 47 57 91 91

Figure 5: Feature surviving ratio per project with a𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛
size of 30.

project(s), cross-project prediction could be a feasible, temporary
solution.

7 RQ3: HOW LONG CAN A MODEL STAY
RELEVANT WITHOUT BEING RETRAINED ?

Motivation. This RQ evaluates how well models can deal with
and mitigate concept drift. In particular, we aim to (1) evaluate the
size of the data needed for a model to achieve optimal prediction
results and (2) to evaluate when to change models (and thus retrain).

Approach. For this validation, we used hyper-parameter values
of the globally optimal models, see Table 5. Since we are evaluating
the prototype over time, we needed datasets with a long history
and a representative number of builds by month. This is why we
selected projects with at least one year of data and at least 1k build
jobs per month, leaving us with projects A, B, C and OS. In the case
of OS, only the last 48 weeks of data were considered to respect the
condition of 1k build jobs per month.

Results. A window size of 30 weeks of data is sufficient to
have significant performance, since adding more weeks does
not considerably increase the performance (< 0.1%) and , in
the case of project A, using more than 40 weeks even harms
the performance.

We plotted the median performance (F1-score, precision, recall)
of the models over time, depending on the project and 𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛
training window size. For space concerns, we added these plots to
the replication package. These plots showed how the curves of the
three metrics decrease between 0 and 10% per week, for each project.
This decrease in performance over time indicates that retraining
a new model at some point would be beneficial. We also find that
the smaller the𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 size is, the lower the F1-score is. However,
as we increase the𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 size, the median improvement on the
F1-score becomes < 0.1% . For Project A, a closer analysis showed
that𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 sizes 45 and 50 obtain an F1-score worse than 40. This
shows that using too old data harms the model, since the data is
not coherent with more recent data. Closer analysis showed that a
𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛 size 30 gets the best results for all studied projects. Project
OS was ignored for this experiment since the number of weeks was
48 and we needed up to 50 weeks of data in the training set.

The feature surviving ratio drops down to 58-76% after one
week, then decreases consistently over time for all project.

Figure 5 shows the training feature surviving ratio for a𝑤𝑖𝑛𝑡𝑟𝑎𝑖𝑛
size of 30 weeks (i.e., the optimal value). Projects A and B show
similar values, dropping quickly to a median feature drifting rate
of 72% and 76% respectively, then reducing linearly to 60% at week
38. Project C and OS both have a median feature surviving ratio
drops to 63% and 58%, then reduce to 35% at week 30 and 40% at
week 10 respectively. The first drop for the three projects seems to
be due to features local to the week of the training, only relevant
to the prediction of the first few (1 to 2) weeks after training. The
consistent decrease after that shows that other features get rejected
over time, even if they stay relevant longer.
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A priori switching heuristics achieve an F1-score about 7-
10% lower than a posteriori heuristics, while keeping results
2-to-4 times higher than the AlwaysBrown baseline.

Table 9 shows all performance metrics that we used, as well as
the life expectation LifeExp (in number of weeks) when using a
particular switcher.We observe that the a priori switching heuristics
have an F1-score 7-10% under the a posteriori heuristic Best, except
for the project OS. For the latter project, the Best heuristic chooses
the best model each week (performance ≥ diagonal), yet has a lower
overall F1 score because the number of true/false positive and false
negative fluctuates across the studied weeks (known as Simpson’s
paradox[31]). Compared to diagonal, CumProd gets the same F1-
score for project B and C and a higher score for project A, while
needing less training computation (the median LifeExp for project
A is 6 and for project B and C is 5). Project OS’s F1-score is 2% lower
than the diagonal with the Fix (5 weeks) heuristic.

When comparing our switch heuristics with the AlwaysBrown
baseline, we observed that our F1-score is two to four times better.
When compared with the best hyper-parameter combination’s per-
formance, the F1-score performance loses 0-10% depending on the
project when including the time constraint and using a priori switch
heuristics instead of posteriori heuristics. Our prototype, once ex-
tended with a switch heuristic, has thus results significantly higher
than the baseline. The model can adapt through time, retraining
when it is needed to have the best performance possible.

8 THREATS TO VALIDITY
External validity. The approach targets projects involving mul-
tiple programming technologies, of which gaming projects are an
extreme case, since builds involve code, AI, physics, 3D models,
sound objects, etc. on dozens of platforms, each with their own SDK
versions. Our algorithm was evaluated on seven large projects with
various BFRs and build activity. We observed that the recall and
precision performance decrease as the brown failure ratio decreases.

Hence, the approach is expected to generalize to projects with
build logswith default verbosity and a reasonable BFR (i.e., balanced,
unlike projects C/D). A project having a brown failure ratio lower
than 1% might not justify the need for our algorithm, since the
performance might not be sufficient.

We considered only one open-source project, Graphviz, among
the 7 studied projects. Further analysis on other projects would be
relevant to analyze the generalization of our results.

Our approach focuses on the identification of brown builds, but
does not propose any solution on how to fix the identified brown
builds (rerunning builds does not target the root cause of brown
builds). Similar to the related field of flaky tests (subset of brown
builds) [11, 37], fixing flakiness is an ongoing research area, espe-
cially since brown builds are even more challenging to deal with,
due to the occurrence of different languages and build technology.

Construct validity. The oracle used for evaluating the brown
build identification models relies on a heuristic, i.e., if a job is re-
run at least once and changes results for the same commit-ID, it
is identified as brown. However, most of the build jobs are run
only once for a given commit-ID, and hence are considered to be
true build failures or successes. If a developer forgot to re-run a
brown build, our oracle would have missed it. We believe the risk

of losing such builds in our oracle is limited because brown builds
are relatively rare, and the developers of the 6 commercial projects
have as practice to rerun the known cases of brown build to check
if the build’s status switches to success.

In our evaluation, we optimize the models for F1-score, which
maximizes both precision and recall. However, depending on the
use case, organizations adopting our models might prefer to tweak
the model for better precision (less false alarms) at the expense of
recall (missing brown builds), or vice versa.

Internal validity. Internal validity refers to alternative explana-
tions of our results. The ground truth has been “labeled” (decision
to re-run a build failure due to suspicion of being brown) by build
experts of the corresponding project right after the build finished.
Finding a better expert or time to do the labeling seems implausible.

Regarding the user study, the participating experts were experts
in the project they were asked to evaluate builds for, but they were
shown 6-month old builds they may not have been involved with.
This design was used to counter potential learning effects.

9 CONCLUSION
Developers regularly experience brown builds, i.e., build failures
not due to code changes, test cases or build logic, but due to factors
outside their control. Our empirical study on build results of 7 multi-
language projects, 6 developed by one of the leading AAA-game
producers and one open-source project (graphviz), observed that
between 5% and 58% of failed build jobs were brown, depending
on the project, highlighting the need to address this brown build
problem and propose a detection algorithm.

Our brown build detection algorithm is language- and project-
agnostic, and obtained a median F1-score of 52%, more than two
times higher than the AlwaysBrown baseline (for all projects), and
similar to experts’ F1-score (-4% to +17%), while reducing the effort
needed by those experts. We showed that cross-project prediction
can be a workaround for on-boarding new projects, but their perfor-
mance is not consistently higher than the baselines. We recommend
switching to a project-specific model as soon as possible.

Our study of the impact of concept drift on themodels shows that
our approach in its current form is sustainable over time, and forms
a solid base for future research on brown builds. While models
and data age over time and impact the performance, we found a
sweetspot (30 weeks) in terms of the size of the training set and
model change frequency (4-5 weeks), and we proposed promising
heuristics for deciding about switching to a new version of a model.

In terms of implications for practitioners, we have shown how
our language-independent models perform at least as well as human
experts (RQ1), and also function in a predictive setting (RQ3); with
the right training project, cross-project prediction can bootstrap
a new project (RQ2). In terms of research implications, we have
shown how build logs are sufficiently rich to predict brown builds
in a real setting, independent from programming technologies.

These implications open new research directions. Apart from
validating the approach (and future incarnations) on other systems,
we believe that future work could focus on specialized models for
identifying different subsets of brown builds (e.g., due to time-out
vs. hardware failure), as well as on strategies to fix brown builds,
once identified.
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