
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

On Practitioners’ Concerns when Adopting Service Mesh
Frameworks

Yihao Chen · Eduardo Fernandes ·
Bram Adams · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Context: The emerging service mesh architecture tries to simplify
microservices by delegating crucial tasks to dedicated infrastructure. How-
ever, service mesh introduces new notions and enables complex capabilities
such as sidecar proxies that inevitably bring major adoption concerns. Ob-
jective: We investigate the adoption concerns in two dominant open-source
service mesh frameworks via a mixed-methods empirical investigation of the
past, current and evolution of 5,497 practitioner questions posted on generic
and framework-specific question-and-answer fora. Method: We first mine the
topics of questions with the help of Dynamic Topic Modeling (DTM). We
identify evolution by applying topic modelling to time periods and aggregat-
ing topics into macro-topics. We conduct a qualitative analysis to understand
the three major types of questions and to generalize common fix patterns
for the extracted error symptoms. We consulted a service mesh domain ex-
pert to provide feedback on our findings and discuss implications. Results: We
found that about half of the questions are error-related and mined 18 topics,
covering service mesh traffic, infrastructure, security, observability and appli-
cation. We discovered a drastic decline in traffic-related concerns while finding
persisting infrastructure-related concerns and a rise in security and observ-

Yihao Chen
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: yihao.chen@cs.queensu.ca

E. Fernandes
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: eduardo.fernandes@queensu.ca

B. Adams
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: bram.adams@queensu.ca

A.E. Hassan
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: hassan@queensu.ca

2 Yihao Chen et al.

ability concerns. We identified 54 error symptoms from two popular service
mesh frameworks and generalized 9 common fix patterns. We found complex
symptom-to-fix relationships, yet, surprisingly, minimal configuration changes
were able to fix most symptoms. Conclusion: Providing consistent documen-
tation and practical automation that assists customization of service mesh
deployment and functionalities is crucial in the current service mesh domain,
given the diversity of discovered intentions, goals and symptoms. Furthermore,
there should be more work towards better container orchestration to deploy
service mesh frameworks and reliable customization of security and observ-
ability service mesh features.

Keywords Service mesh · Microservices · Mixed-methods empirical study ·
Discussion forum · Technology adoption · Software architecture

1 Introduction

Microservices is an architectural pattern for heterogeneous applications that
gained popularity in recent years [19]. Microservices allow distributed devel-
opment and deployment of software components that together form a large
application. In a traditional microservices architecture, software components
handling the communication between services are known as shared Software
Development Kits (SDKs). With the help of SDKs, services written in different
languages and frameworks follow the same standards to keep their functional-
ities consistent throughout a microservices network1.

However, despite their wide adoption, traditional microservices architec-
tures that rely on language and framework-specific SDKs [30]. Custom-built
SDKs that suit large projects would require careful development efforts and
are prone to inconsistencies due to human errors. For example, if one would
like to enforce a security measure in a microservices network, the developers
must carefully maintain and release multiple SDKs across their microservices
to avoid security vulnerabilities led by SDK inconsistency [20]. In addition to
the security cost, releasing SDKs into thousands of microservices in the pro-
duction environment also requires sophisticated control since different versions
of SDKs may not correctly communicate with each other.

One of the major technologies trying to reduce these costs are so-called
service meshes. A service mesh is a dedicated infrastructure layer that de-
ploys and manages a list of proxies alongside each service to intercept network
communication [30]. By doing so, a service mesh network could monitor and
manipulate traffic towards large deployments of heterogeneous services just by
making configurations changes, without changing the source code of said ser-
vices. Such proxies essentially eliminate the maintenance overhead of SDKs [28]
and promote the reuse of microservices. According to the 2022 Annual APIs
and Integration Report [10], over 40% of organizations with a microservices
application implement service mesh, although the same report indicates that

1 https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 3

only 9% of those organizations’ respondents claim they face “no challenges”
while adopting service mesh frameworks.

As an emerging technology, service mesh may not suffice to address the
adoption concerns in the microservices domain or may even lead to new criti-
cal concerns regarding their usability, performance, and runtime stability [30].
For instance, service mesh proxies require dedicated management effort and are
prone to occasional failure. Additionally, previous work [24] suggests that ad-
vanced features in a service mesh framework could confuse new adopters. Un-
fortunately, to our knowledge, existing empirical studies [22,24,37] on service
mesh primarily focus on controlled experiments regarding framework-specific
functionalities, such as the exploration of optimal traffic control configurations.
Thus, empirical knowledge on service mesh adoption concerns remains scarce,
if not non-existent.

This paper introduces a mixed-method empirical study of 5,497 posts on
Stack Overflow and on public discussion fora hosted by open-source service
mesh frameworks. Our goal is to understand practitioners’ concerns when
adopting service mesh frameworks, with a particular focus on question types
(e.g., “how-to” and “error-related”), topics (e.g., “Access Control” and “Ma-
chine Management”), error symptoms (e.g., “Certificate mismatch”) and their
common fixes (e.g., “Correct certificate signing”). We target open-source ser-
vice mesh frameworks that previous work commonly studied [22,24,30,37],
namely Istio, and Consul. We validate and discuss the findings of our study
with a service mesh expert who has over five years of cloud computing and
open-source experience in the service mesh domain.

Regarding the study methodology, we use keyword heuristics to charac-
terize the different types of questions and their distribution in the dataset.
We then adopt Dynamic Topic Models (DTMs) [8] to mine the topics of the
analyzed questions in terms of service mesh capabilities that concern the prac-
titioners. We next apply aggregation and regression analysis to topic time
frames of 3 months to reveal the evolution of topics and identify observable
trends (e.g., increase or decrease of topic prevalence) over time. We compare
our service mesh findings to traditional microservices in all these analyses.
Finally, we conduct a qualitative analysis based on representative samples of
knowledge-transfer, how-to and error-related questions to understand ques-
tion intentions, adoption goals and error symptoms. For error symptoms, we
additionally assess common fix patterns for each symptom.

Our main study results and their implications include the following:

– Error-related concerns are predominant and represent 48.3% of all concerns
faced while adopting service mesh, against 29.9% for traditional microser-
vices. On the other hand, service mesh practitioners post surprisingly few
questions (6.3%) on the general concepts and practices of the technology,
compared to 19.8% in the traditional microservices domain. Because ser-
vice mesh practitioners are primarily concerned with fixing encountered
error symptoms, practitioners may benefit from automated suggestions of
common fix patterns for encountered errors. Unfortunately, the answer ac-

4 Yihao Chen et al.

ceptance rate of 40.6% on Stack Overflow suggests a lack of expertise in
the domain, which may be mitigated over the years with the increasing
popularity of the service mesh frameworks.

– Service mesh, while aiming to be a dedicated layer to reduce operational
overhead [44,48], seems challenging to deploy and manage. We find that
most (27.4%) of the questions in the service mesh domain relate to the
underlying infrastructure layer based on container orchestration platforms
such as Kubernetes2, similar to the traditional microservices domain (22.8%).
On the other hand, traffic-related features unique to service mesh frame-
works also attract significant concerns, while traditional microservices prac-
titioners benefit from more mature technologies such as API gateways and
load balancers, leading to less concern.

– We discover a significant decline in the prevalence of service mesh traffic-
related topics representing the technology’s core functionalities, such as
“Traffic and Gateway” and “Routing and Services” regarding handling and
directing microservices traffic. Topics on infrastructure rebounded after an
initial decline and rose along with the rapid growth of studied service mesh
frameworks and underlying modern container orchestration platforms. On
the other hand, we discovered and verified with the interviewed service
mesh expert that the rising concerns regarding service mesh security and
observability could be underestimated, which should draw more research
attention.

– A majority of knowledge-transfer questions (58%) in the service mesh do-
main are about understanding the availability of functionalities. Carried-
over knowledge from traditional microservices does not necessarily trans-
late to a good understanding of service mesh features. While both studied
frameworks are feature-rich and highly configurable, there are specific areas
in each framework such as external system integration, customized routing
and installation/upgrading that raise most concerns and thus should draw
research attention. Providing more documentation and support in these
areas could help service mesh practitioners overcome frequent concerns.

– Service mesh practitioners face diverse yet hard-to-pinpoint error symp-
toms and unintuitive error messages. Among the 54 error symptoms we
mine from Istio and Consul, we find that 39 of the symptoms appear across
the frameworks and even within different areas of concern for each frame-
work separately. Additionally, in 29 cases, we encounter complex error-to-
fix relationships, such as multiple fixes being recorded for a single error
symptom, while in 15 cases, a single fix could also fix many different symp-
toms. It is challenging for typical practitioners to follow a systematic ap-
proach to find common fix patterns to a problem due to a general lack of
consistent one-on-one relationship between an error symptom and a com-
mon fix. We encourage framework designers to enhance the error messages
to facilitate smoother adoption.

2 https://kubernetes.io/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 5

– Minimal modifications in configuration manifests could fix considerable er-
ror symptoms that service mesh practitioners face. For example, modifying
a simple port name according to the naming convention of Istio could fix
a symptom of a defective security policy, which does not provide any error
message that links to a port naming problem. We encourage researchers
to explore approaches that could recommend proper configurations and
examples based on unique user requirements.

– We found abundant knowledge resources in question answers that could
serve as hints for fixing or preventing the analyzed error symptoms. Yet
overall, we observed (I): a lack of reliable and well-documented practices in
configuring service mesh systems linked to user requirements; (II): a lack of
effective error diagnosis mechanisms, which render the knowledge resources
less useful since practitioners cannot effectively use the knowledge within
such resources to solve unclear problems.

– We provide the replication package of our study with the main study ar-
tifacts, including the data collection scripts, data processing and filtering
scripts, topic models and data spreadsheets [15].

We organize the remainder of this work as follows. Section 2 introduces
the core concepts that form and differentiate a service mesh network from
traditional microservices architecture. Section 3 motivates our study with spe-
cific research questions to be answered. We also follow each detailed step with
analysis protocols and data collection techniques. Sections 4 to 6 discuss the
evaluation and results discussions for each research question. Section 7 sum-
marizes our key findings and further gives actionable results to researchers
and practitioners in the field. Section 8 acknowledges and presents the poten-
tial threats to our work and justifies the methodologies we adopted to best
complement some of the shortcomings. Section 9 goes through previous works
that relate to ours and discusses further insights with understandings from
our study. Finally, Section 10 concludes our findings and looks into promising
research focuses in the future.

2 Background

Microservices are designed for large-scale deployments with complex network
conditions, involving the distribution of heterogeneous services across networks
with numerous interactions between said services [2]. However, with the ever-
increasing requirement for user experience, large organizations face increased
costs to support millions of service instances deployed around the globe3. Since
each service is managed by an individual team, any decision to release a new
version of one service could have a ripple effect throughout the ecosystem of
deployed microservices.

As a variant of the microservices architecture, service mesh implements the
network infrastructure used by microservices to communicate with each other

3 https://www.youtube.com/watch?v=CZ3wIuvmHeM

6 Yihao Chen et al.

Fig. 1 Architectural Differences between Traditional Microservices and Service Mesh

differently. Previous works [24,30,43] define service mesh as a dedicated layer
of infrastructure that manages the communication of microservices over het-
erogeneous networks. Essentially, service mesh separates microservices devel-
opment from operational tasks such as deployment and monitoring, no longer
required to physically alter the source code of a service just to enable debug-
ging or other observability tasks.

Figure 1 presents an architectural comparison between a traditional mi-
croservices architecture based on shared Software Development Kits (SDKs)
for inter-service communication and a typical service mesh architecture based
on Istio. The left figure shows a tight relationship between individual services
with a shared SDK that implements the inter-service communication features,
for example, traffic monitoring. The service and the SDK are packaged within
the same container, meaning minor modifications to either part would in-
evitably lead to a rebuild and redeployment, even if they were not meant to
impact each other. Furthermore, once a service uses a given SDK, its imple-
mentation is locked into that SDK, complicating the reuse of the microservices
in different settings.

On the other hand, microservices with service mesh address the above
problem by adopting the “Sidecar Pattern”. A sidecar container is considered
a reusable unit that enhances the functionalities provided by the microservices’
containers4. At the same time, they can be developed, maintained and deployed
individually by the DevOps team. As shown in the figure, we observe a sidecar
container deployed against each service, forcing all communication between
microservices to pass between their respective sidecars, forming a mesh of
nodes (“service mesh architecture”). Such sidecar containers serve as network

4 https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-

patterns/#example-1-sidecar-containers

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 7

Fig. 2 Overview of a Service Mesh Architecture

proxies, intercepting and further processing communication based on rules set
by system admins.

Figure 2 presents a typical service mesh-based microservices architecture
consisting of two major components: a control plane and a data plane. Ac-
cording to the architecture definition of Istio5, the control plane is a set of
services that manages and monitors the service mesh proxies according to
service mesh configurations provided by DevOps engineers. The data plane
accepts the aforementioned configurations and enforces the configurations by
forcing communication through the microservices’ proxies.

In other words, the service mesh proxies serve as a dedicated mechanism to
perform advanced features, including but not limited to monitoring, routing
and load balancing. Monitoring often covers the so-called “three pillars of
observability data” [34], including (I): “Traces” - the distributed call graph
of the monitored services, which helps to understand the topology and detect
abnormal behaviour. (II): “Metrics” - the numerical measurement of specific
aspects of the health of services. (III): “Logs” - the system logs gathered from
distributed services, which record the detailed system events at each time.
Routing serves the system to direct the traffic from outside the network to
internal services based on user strategies and system logic. On the other hand,
load balancers usually follow fixed strategies to distribute workload evenly
among identical instances of each service [13].

5 https://istio.io/latest/docs/ops/deployment/architecture/

8 Yihao Chen et al.

3 Methodology

3.1 Goal and Research Questions

We rely on the Goal/Question/Metric template [5] to define our study goal
as follows: to analyze the questions and answers software practitioners posted
online; for the purpose of revealing the recurrent concerns practitioners face
while adopting service mesh in industry settings, and comparing these concerns
with those observed in the traditional microservices domain; with respect to
understanding service-mesh-related discussion topics, adoption goals, symp-
toms, fixes and the remaining concerns for practitioners and researchers to
address; from the point of view of service mesh and traditional microservices
practitioners and software engineering researchers; in the context of common
open-source service mesh frameworks and their related questions and knowl-
edge resources on Stack Overflow and dedicated Q&A fora hosted by the open-
source frameworks.

We introduce the three research questions (RQs) below to achieve the
above-mentioned goal.

RQ1: What types of questions about service mesh are practitioners asking?
– Throughout the rapid emergence of service mesh frameworks and products,
the adoption process has not been trivial for practitioners and companies.
Consequentially, many questions regarding the deployment, configuration and
operation of a service mesh network exist in today’s questions and answers
platforms. To the best of our knowledge, such questions generated from prac-
titioners’ experiences have yet to be explored, since empirical evidence on
service mesh adoption concerns is scarce. We aim to shed light on the main
concerns that pose obstacles to adopting the service mesh frameworks.

In RQ1, we focus on understanding the question types and topics in the
service mesh domain by gathering and analyzing concerns embedded in ques-
tion post titles and bodies. We define question types to represent the nature of
the inquiry. For example, the “error-related” type represents a practitioner’s
question on an explicit error or implicit failure while using a service mesh
framework. On the other hand, topics are the top keywords expressing the
central concern of a group of questions. We derive topics with the help of
topic models. We aim to provide an exploratory understanding and definition
for each such topic. We also compare these to the top operational concerns
of the traditional microservices domain. In the end, we summarize and shed
initial insights into the overall state of the service mesh domain by analyzing
the question type, acceptance rate and topic definitions.

RQ2: How did the questions of concern evolve since the emergence of ser-
vice mesh? – The earliest service mesh frameworks date to around 2016 and
are still under rapid development. To understand how the topics of concern
derived from RQ1 have evolved over recent years, we choose to apply a finer-
grained topic analysis over time. We do this by analyzing topics across time
frames and observing topic persistence, emergence and disappearance. This
step allows us to depict critical insights into the characteristics of evolution

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 9

and identify potential problems. Ultimately, we aim to find actionable sugges-
tions for focuses and concerns on which to base our future work.

RQ3: What are the question intentions, adoption goals, error symptoms,
and fix patterns of service mesh problems? – In order to extract insights from
the questions and answers practitioners seed while using each service mesh
framework, we use qualitative methodologies on the question posts and ac-
cepted answers for studied open-source service mesh frameworks. In order to
cross-reference our findings with previous RQs, we sample questions for each
question type and extract practical insights based on the characteristics of
the question types. We extract question intentions for the knowledge-transfer
questions to understand what conceptual knowledge practitioners expect to
gain. We extract adoption goals for the 352 studied how-to questions. Finally,
we analyze the error symptoms from the 475 studied error-related questions
and uncover the common fixes to symptoms. We define an error symptom as
the explicit failure situation a service mesh framework users face. At the same
time, we enumerate possible fixes to such symptoms and define a process of
fixing as a common fix if it can cure more than 50% of the particular symptom.

Inspired by previous studies [16,31,54] that systematically derived tax-
onomies to capture problems in their domain, RQ3 conducts an explorative
qualitative analysis in the domain of service mesh networks by building tax-
onomy trees on sampled questions of each target service mesh framework and
evaluate the differences and similarities. We also extract common fix patterns
from the qualified answers and construct an error-to-fix mapping table. We in-
clude additional manual analysis to explore the embedded knowledge resources
practitioners used in the discussions and reveal complexities that require ur-
gent attention in the service mesh domain.

3.2 Service Mesh Frameworks Explored in This Work

To our knowledge, there are more than ten service mesh frameworks in today’s
market. Since commercial product teams provide comprehensive customer sup-
port for their products, users are less likely to ask questions on public plat-
forms. Hence we exclude commercial frameworks during our analysis because
of the potential difference in question nature and the shortage of data. Fur-
thermore, we only collect and analyze service mesh frameworks with more than
100 posts combined on Stack Overflow and their own fora. Table 1 depicts the
resulting four open-source service mesh frameworks that this study explores,
and we briefly introduce each framework.

Envoy: Envoy6, first developed and open-sourced by Lyft, is designed to
provide high-performance process isolation to enhance the transparency of
service networks. As Lyft claimed a complete transformation from a monolithic
architecture to a service mesh architecture with the help of Envoy in 2017,
the project was quickly adopted by service mesh frameworks covered in this

6 https://github.com/envoyproxy/envoy

10 Yihao Chen et al.

Table 1 Project Metrics of Open-Source Service Mesh Frameworks

Name Feature
Focus

#Stars #Open
Issues

#Closed
Issues

#Past
Commits

#Past
Releases

Envoy DP* 20,691 1,223 6,582 12,064 91
Istio CP/DP* 31,675 573 15,654 18,619 262
Consul CP/DP* 25,531 991 3,910 18,260 239
Linkerd CP/DP* 8,960 134 925 1,433 83

*CP: Control Plane, DP: Data Plane

work as a base implementation of their data plane proxies/agents [28]. We
do not consider Envoy as a full-service mesh framework because it often only
serves as a data plane. Yet, since both Istio and Consul fully support Envoy,
and questions usually involve Envoy-related discussions, we include it in our
quantitative study of RQ1 and RQ2.

Istio: Istio7 is an open-source service mesh framework backed by the com-
munity. It uses Envoy as its data plane proxy and owns a custom control plane
with dashboards. Istio is considered flexible and has gained over 47% market
share according to a user survey in 20208. To our knowledge, Istio is the most
dominant framework in the market and owns most closed issues, commits and
releases over time (see Table 1).

Consul: Consul9 is an open-source service mesh framework developed by
HashiCorp. Unlike Istio, Consul started its evolution in 2014 (version 0.1) as
a framework for complex service communications. However, the service mesh
components were not formally developed and defined until late 2017. In our
study, we discard any data before the framework designer of Consul redefined
it as a service mesh framework in 2017. As shown in Table 1, Consul owns
3,910 closed issues with 18,619 commits and 239 historical releases.

Linkerd: Linkerd10 is an open-source service mesh that graduated from
the Cloud Native Computing Foundation and has since gained popularity.
However, we only consider and analyze Linkerd for the first two research ques-
tions as it has gone through a complete rewrite and framework renaming (the
original Linkerd implementation is deprecated). As a result, during the data
collection phase, we extracted only 81 questions with accepted answers on
Stack Overflow from the Linkerd dataset. Nonetheless, the questions are fur-
ther divided into two Linkerd implementations (Linkerd and Linkerd2). We
could not gather sufficient data for a meaningful manual analysis to generalize
practical insights. Thus, we exclude the Linkerd dataset from the qualitative
analysis.

Other open-source service mesh frameworks: Our study cannot cover
all open-source service mesh frameworks mainly due to the scarcity of pub-
lic discussion data (fewer than 100 discussion posts after initial filtering de-
scribed in Section 3.4). Apart from the dominant status of Istio and Con-

7 https://github.com/istio/istio
8 https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
9 https://github.com/hashicorp/consul

10 https://github.com/linkerd/linkerd2

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 11

sul in the industry, both frameworks provide advanced features that other
lightweight service meshes do not offer out-of-the-box. Specifically, Istio and
Consul offer advanced ability to customize traffic management, security and
integration features. On the other hand, Kuma11 and Traefik Mesh12 are con-
sidered lightweight service mesh solutions, where limited features are offered in
comparison to Istio and Consul. For example, secure service-to-service commu-
nication is not readily achievable in other frameworks without compromising
security constraints.

On the other hand, we aim to focus on directly comparable service mesh
frameworks based on similar technologies and architectures. For example, as
a newcomer in the open-source world, Cilium mesh13 relies heavily on eBPF
mechanisms that were not involved in other popular service mesh frameworks
such as Istio and Consul. Due to its service mesh functionality not appearing
until late 2022, we excluded Cilium mesh from the data collection process.

3.3 Data Sources

Previous studies in software engineering [1,3,14,49,50] have used Stack Over-
flow and/or public fora as a source of mining practitioner concerns and percep-
tions. We choose to combine Stack Overflow with public fora, since a previous
study [45] suggests that particular question types could be discouraged at
Stack Overflow, leading some projects to prefer maintaining hybrid support
channels, in our case, public Q&A fora.

Table 2 presents a general view of the available data on Stack Overflow and
the project-specific fora of the commonly studied [22,24,37,30] open-source
service mesh frameworks of Table 1. As mentioned earlier, these frameworks
have more than 100 posts combined on Stack Overflow and their own fora.
The second column shows the question count on Stack Overflow, and the third
column shows the question count on the official Q&A fora of the particular
framework. Since practitioners post more questions in the official, project-
specific fora than on Stack Overflow, our study uses questions from both types
of venues. One complication is that forum discussions lack answer acceptance
mechanisms such as voting. Hence in RQ3, we have to manually process the
discussion posts based on domain knowledge and the state of discussions within
a question thread to determine concluding answers. We exclude the forum data
when analyzing answer acceptance in RQ1 due to the aforementioned reason.
In summary, Table 2 presents a sufficiently large body of questions applicable
to our analysis’ data input.

11 https://kuma.io/
12 https://traefik.io/traefik-mesh/
13 https://cilium.io/

12 Yihao Chen et al.

Table 2 Count of Relevant Question Posts

Name # Questions
Stack Overflow

Questions
Official Forum

Link to Forum

Istio 2,283 4,054 discuss.istio.io

Consul 1,092 1,489 discuss.hashicorp.com/c/consul

Envoy 645 N/A N/A
Linkerd 81 189 discourse.linkerd.io

Fig. 3 Data Collection Steps

3.4 Data Collection

Figure 3 depicts the steps we follow to collect data from Stack Overflow, and
project-specific discussion fora. 14:

Step 1: BigQuery Extraction – We retrieve the Stack Overflow dataset
(4,101 questions) between 2017 and 2022 from the Google Big Query plat-
form15, which covers the earliest emergence of Service Mesh technology to the
recent year. We utilize regular expressions that match the name of open-source
service mesh frameworks and closely related terms “service mesh” or “mesh”
in question tags, title or body. In order to enable comparison against an es-
tablished domain, we also collect a separate dataset (7,498 questions) for the
broader traditional microservices domain by filtering for the tag “microser-
vices” and excluding the posts related to service mesh, covering data from its
emergence in 2015 [47] to 2022.

Step 2: Data Filtering – Solely filtering based on regular expression is
prone to false positives, especially in cases where irrelevant tags are attached
to questions on Stack Overflow [31]. Therefore, we iteratively add conditions to
exclude specific keywords from question tags, titles and bodies. For example,
we exclude “laravel” since it owns a tool named “Laravel Envoy” unrelated to
service mesh.

Step 3: Customized Forum Scraper – All public fora of interest use the
Discourse open-source forum software16. Over the course of several days, we
collected public forum data (5,543 posts) starting the creation date of Istio

14 The scripts to collect, process, filter and analyze data are available in the replication
package [15]
15 https://cloud.google.com/bigquery
16 https://www.discourse.org/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 13

and Consul until January 2022, the latest available data hosted on BigQuery
for Stack Overflow, avoiding any interruptions of the normal operations of the
websites.

Step 4: Data Filtering – We first apply a filtering technique similar to
the Stack Overflow filtering process of Step 2. Collected data is also filtered
based on labels strictly related to service mesh to exclude irrelevant posts
regarding other software products covered by the forum. We also manually
remove threads that are considered announcements or casual discussions.

Step 5: Data Formatting – The raw text goes through common text pre-
processing steps, including converting to lower-case, removing non-words, re-
moving stop-words and stemming [4]. To enrich the later topic modelling pro-
cess with more context, we further generate trigrams, which gather every three
consecutive words into a group (e.g., “traffic routing issue”) instead of consid-
ering only individual terms (e.g., “issue”). In RQ2, the posts are additionally
divided based on their creation timestamps into timeframes 3 months apart.

Step 6: Data Sampling – As the input of our qualitative study in RQ3,
we filter out the forum posts that do not have concluding answers, i.e., we
exclude post threads that leave a question open or receive objections from
other users. We also remove down-voted questions, since such questions are
often considered malformed or lower quality. We discard 758 questions (13.8%)
that do not belong to a specific question type by applying a keyword-based
classifier introduced in Section 4.1. We sample the remaining question posts
based on a 95% confidence level to conduct manual analysis. We split the
sample size between the Stack Overflow and official fora data sources based on
the ratio of available data after filtering. Table 3 shows the count of questions
available for RQ3’s analysis after filtering. Since knowledge-transfer questions
are scarce after filtering, we evaluate every post instead of focusing on a sample,
to provide complete insights.

Table 3 Count of Filtered Question Posts

Framework
Name

Questions
Stack Overflow

Questions
Official Forum

Questions
Sampled

Istio (Error) 280 559 264
Consul (Error) 201 257 210

Istio (How-to) 201 351 197
Consul (How-to) 110 164 155

Istio (Knowledge) 18 28 46 (all)
Consul (Knowledge) 7 9 16 (all)

14 Yihao Chen et al.

3.5 Analysis Steps

This section introduces the study protocol we follow to conduct our analyses,
which is illustrated in Figure 4 (along with the specific output artifacts from
each step).

Fig. 4 Study Protocol

Step 1.1: Classify Questions – Before analyzing the question semantics,
we first identify the high-level question types via a keyword filtering process
based on heuristics, which sorts questions into four types - “How-to,” “Error-
related,” “Knowledge-transfer,” and “Misc” questions. The classification is
based on conditional filtering for specific keywords that we derive through
iterative assessments of the questions in the domain and how practitioners
form their questions. For example, we classify a question with both title and
body containing “fatal” or “exception” into “Error-related” questions. The
full list of keywords is available in the replication package. We only assign one
question type to each question in our analysis. Step 1.1 produces the “Question
Statistics” artifact, as shown in the figure. We also calculate the acceptance
percentage of question posts on Stack Overflow to understand the expertise in
the domain.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 15

Step 1.2: Model Topics – With the understanding of differences in ques-
tion types from the previous step, we extract topics from question posts across
all question types combined. We apply an enhanced topic understanding tech-
nique called Dynamic Topic Modeling (DTM), which specializes in generating
consistent topics across time intervals [8] and has been used by previous stud-
ies [3,14,41] to understand the adoption and concerns of new technologies. The
choice of DTM is due to our intention to keep topics consistent throughout the
study without needing manual topic merging, which could potentially bias our
study. For fair comparisons, we apply DTM on the entire set of questions irre-
spective of time in RQ1 for both the service mesh domain and the traditional
microservices domain.

To produce better accuracy and lower the interference from unrelated infor-
mation, we implemented a threshold to filter out additional words that appear
only within less than ten documents or more than 50% of the entire dataset.
This step, which essentially expands the stop-word list, helps to eliminate
many natural language words that do not present significant meanings.

We tune the hyper-parameters for DTM, aiming for coherent topic clusters.
Since the optimal value for hyper-parameters can vary across different datasets,
we follow for each domain the so-called “Elbow method” [46]. Through itera-
tive experiments [35], we minimize the marginal returns of the topic coherence
c v score, which is empirically shown to be an effective coherence metric for
topic modelling.

We use the top keywords produced by the topic modelling process to un-
derstand the focus, and label a given topic cluster, which is a common practice
used by previous studies [4,26]. In order to best depict the topic in a repre-
sentative way, we collaborate with a service mesh expert to help labelling the
topics based on the mined keywords and analyze representative questions. We
give a concrete example for each topic and provide its definition, and provide
links to all quoted examples in the Appendix 9. Step 1.2 produces the “Topic
Clusters” artifact, as shown in the figure.

Step 2.1: Derive Time-windows – In RQ2, we apply a time-framed analysis
to both domains to understand topic evolution and trends. Previous studies
take different approaches to understanding the evolution of topics over time.
For example, studies commonly [1,26] train individual topic models for each
interval and involve manual inferences to depict continuous trends. With the
time-aware capability of DTM, we map the topic occurrences to each time
interval by retraining the models with additional information on the question
creation time. Thus, we conduct trials at different time intervals ranging from
1 month to 12 months. We select 3 months since it best depicts trends over
time while suppressing month-to-month fluctuations.

Step 2.2: Train DTM Model – We retrain the DTM models produced
in Step 1.2 with additional time intervals derived in Step 2.1. We utilize the
DTM model’s prediction function to assign a topic to each document and plot
their prevalence over time [49]. In our case, the DTM model would provide
consistent, framework-agnostic topics across time intervals and thus allow us
to depict evolution traits explicitly.

16 Yihao Chen et al.

Step 2.3: Aggregate Topics – The application of topic modelling over
timestamps yields a trend for each topic over time. In order to depict clear
evolution trends considering topic semantics and functionality, we further ag-
gregate similar topics to “macro-topics” according to their definitions from
Step 1.2. We sum the aggregated topic prevalence over time and visualize the
shifting prevalence of concerns via a moving average trend line. Step 2.3 pro-
duces the “Macro-Topics” and the “Topic Trends” artifacts shown in Figure 4.

Step 3.1: Identify Question Intentions, Adoption Goals and Error Symp-
toms – During the qualitative analysis in RQ3, we start from our understand-
ing of question types in RQ1 and perform detailed analysis to compare and
extract user concerns in today’s dominant open-source frameworks: Istio and
Consul. We conduct our analysis separately on the three major question types
(knowledge-transfer, how-to and error-related questions) since they embed dif-
ferent levels of concerns. For knowledge-transfer questions, we focus on under-
standing the intention to gain certain knowledge in the service mesh domain.
For how-to questions, we focus on understanding practitioners’ adoption goals,
such as customization and performance tuning. For error-related questions, we
focus on understanding their symptoms and deriving common fixes.

Since we aim to extract information from a complex domain, we utilize the
open card sorting technique [53], which does not rely on pre-determined labels
to understand domain knowledge and to identify sampled data. We involve
two researchers (a master’s student and a postdoctoral researcher), each with
over three years of experience in software engineering, to assign macro-topics
and to identify intentions, adoption goals, error symptoms and their fixes. We
invited an additional domain expert to look at our analysis results to validate
and ensure the findings are relevant according to industry experience.

Specifically, we adopt an iterative approach during card sorting to extend
our understanding of the service mesh domain and minimize analytical biases
by researchers. We start our analysis by using domain-specific knowledge of
service meshes and individually assigning labels to each post. Throughout later
iterations, we incorporate new understandings of how practitioners form their
discussions and refine our knowledge. Finally, we merge and reassign labels
when both researchers can achieve a strong agreement to reduce personal bi-
ases. Furthermore, if multiple non-related goals/symptoms exist in a question
post, we separate them into multiple entries in the final tree. We generalize
and combine similar goals/symptoms derived during the first run into fewer
and more uniform formats.

Step 3.2: Build Trees – The resulting trees represent and consist of the
identified adoption goals and error symptoms from Step 3.1. We assign each
goal and symptom node to a parent node denoting a “macro-topic”, indicating
the main area of concern. We finalize the list of goals/symptoms obtained
from the third open card sorting iteration in Step 3.1 to form one tree for
each open-source framework to discover the differences and commonalities of
goals/symptoms across service mesh frameworks. We visualize each entry with
a short descriptive text. Step 3.2 produces the “Tree by Framework” artifact,
as shown in the figure.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 17

Step 3.3: Map Fixes to Symptoms – Since practitioners provide useful
fixes to errors in the collected dataset, we map the fixes to symptoms by sys-
tematically analyzing the question answers. We record the specific approaches
to fix each symptom and generalize them into descriptive texts. While some
symptoms have diverse fixes, others could have a “common fix” if a particular
symptom appears more than once and could be fixed in a common way. We
treat a suggested and accepted fix in over 50% of the question posts with the
same symptom derived in Step 3.2 as a “common fix pattern” [31]. By the end
of Step 3.3, we produce the “Table of Common Fixes” artifact, as shown in
the figure.

Step 3.4: Extract Knowledge Resources – Among the posted answers,
we identified abundant URLs directing to external documentation websites,
blogs and posts. We additionally sample 360 questions out of 5,497 service
mesh-related questions (across all question types) from the unfiltered dataset
to analyze the knowledge resources practitioners used to answer the questions.
We record and examine the content of the sampled knowledge resources and
investigate if they serve as direct hints for answering the questions. Based on
the results, Section 7 presents additional implications of our study, which hint
at future research opportunities.

3.6 Validation of Findings

To validate our findings in the service mesh domain, we contacted an expert
with over five years of experience in cloud computing who has contributed
significantly to a service mesh startup and the Apache Software Foundation.
We provided the expert with the latest draft of our study that included our
findings for each research question. We requested the service mesh expert to
provide feedback about our findings and possible confounding factors based on
their real-world experience. Furthermore, based on the service mesh expert’s
feedback, we adjusted some of the textual representations of the mined topics
(topic names) and of the qualitative analysis results (symptom and fix names)
to provide better consistency and clarity.

To avoid bias, we first asked the expert to give insights about our RQ
findings without discussing with the paper authors or co-workers. The service
mesh expert took time to read our paper and write down the feedback for each
major finding. We next conducted an online interview with the expert, where
we discussed the practical implications of the service mesh development and
adoption process. We exchanged ideas for practical automation and unified
implementation standards based on recent developments and trends in related
technology.

In this paper, we will refer to the expert as “the service mesh expert.”
We will discuss the service mesh expert’s opinions about our findings in each
research question and provide implications backed by practical experience on
service mesh technology in Section 7.

18 Yihao Chen et al.

4 Topic Analysis on Questions (RQ1 Results)

4.1 Question Types and Acceptance Ratio of Answers

Almost half of the questions in the service mesh domain are error-
related, compared to 30% for the traditional microservices domain.
On the other hand, conceptual questions are rare in the service mesh
domain.

Table 4 summarizes the 4 question types classified by our heuristic-based
approach. We conduct a Chi-Squared test on the question type distributions
of both domains [32], which yields a low p-value (0.008374) compared to a
threshold of 0.05. Therefore we reject the null hypothesis that the two groups
have the same distribution of question types, accepting the alternative hy-
pothesis of a significant difference in question type distribution. Within the
service mesh domain, the percentage of error-related questions at 48.3% is sig-
nificantly higher than that of how-to questions (31.6%) and eight times higher
than that of knowledge-transfer questions (6.3%).

Table 4 Question Types of Service Mesh and Traditional Microservices

Question
Type

Service
Mesh

Acceptance
Rate

Traditional
Microservices

Acceptance
Rate

How-to 31.6% 40.4% 36.9% 40.3%
Error-related 48.3% 40.6% 29.9% 37.2%
Knowledge-transfer 6.3% 39.1% 19.8% 43.4%
Misc 13.8% 40.4% 13.4% 41.6%
Total* 5,497 1,297 7,168 2,559

*Total accepted answers only cover Stack Overflow data

Surprisingly, only a minority of questions are concerned with general con-
cepts and design choices. We assume that many service mesh practitioners
already know basic conceptual knowledge when adopting service mesh, there-
fore, producing fewer questions on concepts. In comparison, the traditional
microservices domain appears more evenly distributed in terms of question
types. How-to questions (36.9%) in the traditional microservices domain mod-
erately outnumber error-related questions (29.9%), while knowledge-transfer
questions also take up a significant percentage of the total at 19.8%.

Below, we define the four types of questions in the context of service mesh.

How-to questions indicate the user’s confusion on the way to solve a prob-
lem within the technology involved. Example P01 demonstrates a typical how-
to question on integrating a commercial monitoring tool into Istio.

[P01] I am new to Istio service mesh. I have to integrate/configure
AppDynamics in Istio. I have no clue how to do that. Anything related to

this would help. Any example or related links or video...anything.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 19

Error-related questions either indicate an explicit error or implicit failure
in the service mesh. Example P02 demonstrates a typical error-related question
on overcoming an error thrown by Istio.

[P02] Following blog post [URL] I am trying to deploy this sample service on
my AWS k8s through Istio gives me “error: no objects passed to apply”

Knowledge-transfer questions indicate the intention to understand the
meaning or existence of a general concept/practice while not digging deep
into technical details. Example P03 demonstrates a typical knowledge-transfer
question where the user tries to understand why Istio provides an mTLS fea-
ture.

[P03] I try to understand why Istio has the mTLS feature? It enables mutual
TLS authentication between all the services in a cluster via automatically

issued certificates.

Misc questions indicate either a combination of previous question types
due to a mixture of keywords or questions that do not fit any type. The
indications are likely implicit and indirect, meaning our heuristics failed to
classify these questions into a specific type. While it is hard to provide a
typical example for this question type, any question that does not belong to
the above three categories is automatically resolved to this type.

For each question type, we also calculate the percentage of questions on
Stack Overflow with accepted answers. This analysis does not consider forum
posts because they do not explicitly indicate acceptance status. As shown in
Table 4, we arrive at a similar and relatively low acceptance rate of around 40%
for both domains, independent from question types, meaning most questions
lack a satisfying answer. We presume the service mesh domain in general suffers
from a lack of expertise amongst the Q&A platform participants.

Feedback from service mesh expert The service mesh expert men-
tioned that they are not very surprised that service mesh practitioners ask few
questions regarding the conceptual and high-level information of service mesh
frameworks, “Service mesh is a new technology but is derived from and extends
the solution to traditional microservices architecture, many of the concepts are
similar to those in traditional microservices.” In terms of the high number of
error-related questions and low acceptance rate, the expert pointed out that
the increasing prevalence of error-related concerns among service mesh users
could be partially attributed to the fact that many cloud vendors build their
own products on top of open-source implementations, which often introduce
various optimizations, limitations, and tightly integrates with their own com-
mercial products, “This can cause the examples on the internet to work on
one vendor but not work on the other, leading to confusion and frustration for
practitioners.”

20 Yihao Chen et al.

4.2 Topics, Macro-Topics and Definitions

We identified 18 topics in the studied service mesh questions across
all types, belonging to 5 macro-topics.

Table 5 depicts the topic clusters and top ten keywords that form a par-
ticular topic derived from the combined dataset across all question types. We
rank the topic clusters in terms of the count of documents categorized into the
topic, as obtained via the prediction method of the DTM topic model. With
the help of the service mesh expert, we assign one short phrase as the name
of each topic based on top keywords and by analyzing typical examples in the
dataset.

We manually aggregate the topics into “macro-topics” based on topic defi-
nitions (semantics) to provide deeper insights into service mesh adoption con-
cerns. These “macro-topics” reflect a more general area of concerns that are
agnostic of framework and technology. The last column of Tables 5 and 6 show
the macro-topics that each topic belongs to given their definitions and sam-
ples. A topic could be assigned with two macro-topics if the topic consists of
questions that relate to multiple concerns.

In the following, we illustrate each topic with a real-life example question
from our dataset. We utilize the inference method of the trained dynamic topic
model to pick the question samples programmatically by assigning a topic of
highest probability for each question post in the dataset. Some question quotes
are slightly modified to hide lengthy code snippets and URLs.

Traffic and Gateway: The Traffic and Gateway topic comprises issues
regarding “ingress” gateways, which describe a component on the edge of
a service mesh that handles incoming traffic. Example P04 demonstrates a
typical how-to question about a newcomer to the service mesh domain, asking
about ingress gateway concepts and basic usages in the context of service mesh.

[P04] I have recently got into Istio and trying to wrap my head around the
gateway concept.

so fundamentally, I get what it is: an entryway into the service-mesh.
However, I do not understand how best to use the gateways.

Routing and Services: The Routing and Services topic comprises issues
regarding directing and orchestrating service traffic flow through the microser-
vices architecture. As discussed in Section 2, a modern microservices architec-
ture involves many frequently interacting services. Therefore, guiding traffic
within the network is essential to serve complete services to external users.
Example P05 demonstrates a typical how-to question on routing traffic to an
external website.

[P05] I am trying to set up a Virtual Service such that any traffic on “/” gets
routed to google.com. I can get Virtual Services to work with any in-cluster

pods/services, but I cannot seem to configure Istio to route to anything
outside the cluster.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 21

Table 5 The Topic Distribution of the Service Mesh Domain

ID Prev. Topic Top Keywords Macro-Topic

1 9.8%
Traffic
and Gateway

access, deploy, ingress, namespace,
kubernete, yaml, install,
apply, ingressgateway, operator

Traffic

2 8.0%
Routing
and Services

route, traffic, request, virtualservice,
rule, host, limit,
destination, match, version

Traffic

3 7.8%
Kubernetes and
Deployment

helm, kubernete, version, install,
chart, installation, deploy,
setup, enable

Infrastructure

4 7.6%
Networking and
Sidecar

sidecar, traffic, namespace,
proxy, egress, enable,
inject, container, injection, kubernete

Infrastructure

5 6.5%
Machine
Management

client, agent, node, register,
address, nod, connect, machine,
instance, configuration

Infrastructure

6 6.4%
Configuration
Management

value, file, template, command,
configuration, store, update,
config, pass, parameter

Infrastructure

7 6.3%
Access
Control

policy, authentication, authorization,
user, access, jwt, request,
deny, rbac, rule

Security

8 6.1%
Request
Monitoring

request, header, call, trace,
dns, grpc, http, com, domain, query

Observability,
Traffic

9 5.5%
Docker
and Containers

container, docker, host, image,
machine, compose, swarm,
traefik, instance, command

Infrastructure

10 5.2%
TLS
Certificates

certificate, tls, cert, client,
enable, https, configure,
manager, sign, ingress

Security

11 5.2%
Application
Deployment

app, proxy, connect, nginx, log, com,
web, frontend, kubernete, container

Application,
Infrastructure

12 5.1%
Spring and
Service Discovery

spring, boot, property, cloud,
register, configuration, bootstrap,
class, yml, discovery

Application,
Traffic

13 4.0%
Infrastructure
Monitoring

metric, upgrade, plane, control,
istiod, version, endpoint,
component, configuration, monitor

Observability,
Infrastructure

14 3.8%
Health
Check

health, fail, log, agent, status,
leader, info, message, state, watch

Observability

15 3.2%
Envoy
Filters

envoy, filter, source, connection,
debug, proxy, info, pilot, http, tcp

Traffic

16 3.2%
Node
Ports

port, ingressgateway, tcp, system,
default, nodeport, connection,
listen, expose, host

Traffic

17 3.1%
Load
Balancing

load, balancer, balance, release,
support, test, ingress, cpu,
documentation, configure

Traffic

18 2.5%
Secret
Management

vault, connect, reset, connection,
datum, disconnect, secret,
storage, token, failure

Security

Kubernetes and Deployment: The Kubernetes and Deployment topic
comprises issues regarding installing and deploying the service mesh frame-
works in a Kubernetes [12] container environment. Example P06 demonstrates
a typical error-related question on installing Istio into a container cluster.

[P06] I am trying to install istio using helm. I get an error “forbidden:
attempt to grant extra privileges.” I am using Azure AKS cluster..

22 Yihao Chen et al.

Networking and Sidecar: The Networking and Sidecar topic comprises
issues regarding sidecar containers, which involve the proxies in service mesh
frameworks. Example P07 demonstrates a typical error-related question on
adding a sidecar to an existing Kubernetes pod.

[P07] I am trying to manually inject istio sidecar into an existing deployment
according to the instructions here: [Istio website url] I am getting the

following error, [Error trace-back]

Machine Management: The Machine Management topic comprises is-
sues regarding the registration of service nodes (clients) in a service mesh
framework and relates to the overall infrastructure. Example P08 demonstrates
a typical how-to question on connecting clients to service mesh server nodes.

[P08] I’m testing a consul server cluster. I am using the go client for this.
How do I enter multiple servers for the client to connect to?

Configuration Management: The Configuration Management topic com-
prises issues regarding the value of specific configuration options to set up a
service mesh, for instance, setting up routing rules through YAML manifests.
Example P09 demonstrates a typical how-to question on configuring Istio after
installation.

[P09] Every document I found only tells you how to enable/disable a feature
while installing a new Istio instance. But I think in a lot of cases, people need

to update the Istio configuration. Accessing External Services, in this
instance, it says I need to provide “flags-you-used-to-install-Istio”, but what
if I don’t know how the instance was installed? Address auto allocation, in
this instance, it doesn’t mention a way to update the configuration. Does it

imply this feature has to be enabled in a fresh installation?

Access Control: The Access Control topic comprises issues regarding ser-
vice mesh policy-related features that control the network’s security policies.
Example P10 demonstrates a typical error-related question on setting up JWT
auth for their service backend in Istio.

[P10] I have implemented an istio policy so that users will need a JWT token
to access my backend and admin-backend services. However, it is not letting

me through with a valid token. I am running istio-demo on Minikube and
have done nothing with my deployment but configure an egress for auth0.

Then when I go to apply my policy, I can no longer access these services with
my requests.

Request Monitoring: The Request Monitoring topic comprises various
issues regarding requests and request header interception. Though this topic
is closely related to service traffic management, it also comprises questions on
traffic monitoring. Therefore, we assign both macro-topics to this topic. Ex-
ample P11 demonstrates a typical knowledge-transfer question on the header
used for tracing in Istio and Envoy.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 23

[P11] I was trying to understand the tracing in istio. According to istio
documentation, x-request-id can be used for tracing

purposes.(https://istio.io/latest/docs/tasks/observability/distributed-
tracing/overview/) I see different behaviour in Istio vs pure envoy proxy.

Docker and Containers: The Docker and Container topic comprises
issues regarding container orchestration outside of Kubernetes. Example P12
demonstrates a typical question on controlling the startup order of service
mesh containers.

[P12] I am trying to implement a service mesh to a service with Kubernetes
using Istio and Envoy. I was able to set up the service and istio-proxy, but I
am not able to control the order in which the container and istio-proxy are

started.

TLS Certificates: The TLS Certificates topic comprises issues regarding
the use of encrypted communication inside a service mesh network. Example
P13 demonstrates a typical how-to question on setting up end-to-end TLS in
the Consul service mesh.

[P13] I’m having some difficulty understanding Consul end-to-end TLS. For
reference, I’m using Consul in Kubernetes (via the hashicorp/consul Helm

chart). Only one data center and Kubernetes cluster - no external parties or
concerns.

Application Deployment: The Application Deployment topic comprises
issues regarding the applications deployed to a service mesh. Since this topic
covers both the application side and infrastructure (Kubernetes deployment),
we assign both macro-topics. Example P14 demonstrates a typical error-related
question on deploying Istio’s BookInfo example application.

[P14] I am trying to evaluate istio and trying to deploy the bookinfo example
app provided with the istio installation. While doing that, I am facing the

following issue.

Spring and Service Discovery: The Spring and Service Discovery topic
comprises issues regarding Spring-based applications deployed to a service
mesh and the discovery of services. To our knowledge, Spring is a dominant
microservices framework that frequently integrates with service mesh while
providing service discovery functionalities. Since this topic covers both the
application side and traffic (service discovery), we assign both macro-topics.
Example P15 demonstrates a typical error-related question on setting up a
SpringBoot application in Istio.

[P15] I have an application running in Minikube that works with the
ingress-gateway as expected. A spring boot app is called, the view is displayed,

and a protected resource is called via a link. The call is forwarded to
Keycloak and is authorized via the login mask, and the protected resource is

displayed as expected. With Istio, the redirecting fails with the message:
“Invalid parameter: redirect-uri.”

24 Yihao Chen et al.

Infrastructure Monitoring: The Infrastructure Monitoring topic com-
prises issues regarding service mesh observability that do not concern the ob-
servability of actual user applications. Infrastructure monitoring often relies
on monitoring metrics such as CPU utilization and memory, which are the
performance indicators of a system. This topic includes questions related to
the infrastructure of the service mesh frameworks. Therefore, we assign both
macro-topics to this topic. Example P16 demonstrates a typical knowledge-
transfer question on the possibility of replacing an out-of-box metric in Istio
with the desired metric.

[P16] Is there any way to replace istio-tcp-connections-closed-total metric
with

istio-requests-total for outbound traffic going through egress gateway?

Health Check: The Health Check topic comprises issues regarding the
health-checking mechanisms commonly used to determine if a service is pre-
pared to accept traffic. Example P17 demonstrates a typical error-related
question on unexpected behaviour when querying the Consul health-check
endpoint.

[P17] I have a consul agent server on localhost:8500. Then I have a simple
HTTP server, which first registers in Consul [snippet], And it answers on

getting a request for “healthCheck” [Code Snippet] But Consul’s health
checker still says that Check is now critical for my service.

Envoy Filters: The Envoy Filters topic comprises Envoy proxies and
proxy filtering issues. Example P18 demonstrates a typical error-related ques-
tion on the connection to a database hosted behind Envoy proxy in Consul.

[P18] I have a MariaDB database installed directly on a host and a Nomad
cluster hosting a phpMyAdmin. Both hosts are inside the same Consul

cluster. I’m having some issues trying to connect the phpMyAdmin to my
database. phpMyAdmin returns the error:

Node Ports: The Node Ports topic comprises port number-related net-
working issues in a service mesh regarding inter-communicating components.
In the case of Consul and Istio, a node port defines a static port every node in
a cluster listens on. Example P19 demonstrates a typical knowledge-transfer
question on why Istio opened random ports.

[P19] Who/what assigns these port numbers? It seems so magical, and I don’t
like Istio to open up random ports on my nodes; this is a security concern to

me!

Load Balancing: The Load Balancing topic comprises issues regarding
traffic load distribution in a service mesh architecture. Example P20 demon-
strates a typical how-to question on intercepting load balancer traffic using
Istio.

[P20] I want to control/intercept the load balancer traffic using Istio. Istio
gives you the ability to add a mixer on a service level, but I want to add some

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 25

code on a higher level just before the request traffic rules get executed. Thus
instead of adding actions per service, I want to have some actions executed

just after the request was received from the load balancer.

Secret Management: The Secret Management topic comprises issues re-
garding the storage of secrets in service mesh networks since the large number
of microservices and the infrastructure itself require credentials to communi-
cate with each other. Example P21 demonstrates a typical error-related ques-
tion on integrating HashiCorp Vault with Istio.

[P21] The first issue I had is Vault, and Istio sidecar is not running properly,
and the application can not be able to init as below. I tried to use the below

annotations to init the first vault, but it did not solve the below issue.

In order to put the service mesh topics in perspective, Table 6 presents
the topics for the traditional microservices architecture, where practitioners
dominantly use a hybrid development framework such as SpringCloud17 to
create and deploy applications. While the microservices topic clusters contain
a combination of operational and application-side concerns, the latter generally
do not apply to service mesh environments because service mesh is intended
to solve operational complexities rather than development complexities. As a
result, we focus on understanding the prevalence of similar operational con-
cerns (Security, Infrastructure, Traffic and Observability) in the microservices
domain and do not discuss in detail the strictly application-related topics
(Topic 2,3,4,6,9,10,11,12,13,15,16). We highlight the comparable topics (Topic
1,5,7,8,14) in bold.

Next, we discuss the subset of traditional microservices topics that are
closely related to operational concerns, i.e., macro-topics “Traffic,” “Security”
and “Infrastructure”.

Access Control (ID 1): The Access Control topic comprises issues re-
garding the authentication and authorization features within a microservices
system. This topic overlaps with the service mesh topic “Access Control”.
Example P22 demonstrates a typical knowledge-transfer question on the best
practices of introducing authentication into microservices.

[P22] Is it a best practice to have auth as a separate service in micro-service
architecture application? I saw in some microservices app, the authentication

is part of each micro-services as inbuilt Thanks

Kubernetes and Deployment (ID 5): The Kubernetes and Deployment
topic comprises issues regarding the overall containerization problems involv-
ing Kubernetes. This topic overlaps with the service mesh topic “Kubernetes
and Deployment” due to a common focus on Kubernetes container orches-
tration and underlying infrastructure. Example P23 demonstrates a typical
how-to question on deploying pods in Kubernetes.

[P23] I use RPC protocol app as a micro-service and an API Gateway in
front of them as a proxy. My question is how could I directly access k8s’s pod,

17 https://spring.io/projects/spring-cloud

26 Yihao Chen et al.

Table 6 The Topic Distribution of the Traditional Microservices Domain

ID Prev. Topic Top Keywords Macro-Topic

1 10.2% Access Control
authentication, access, authorization,
token, jwt, security,
oauth, session, resource, auth

Security

2 10%
Method and
Error Handling

method, error, code, response,
exception, class, rest,
controller, endpoint, value

Application

3 8.3%
Message
Queue

communication, consumer, queue,
kafka, topic, rabbitmq,
connection, consume, publish, bus

Application

4 7.2%
RESTful
Design

pattern, design, read, understand,
example, implement, resource,
book, rest, document

Application

5 6.5%
Kubernetes and
Deployment

kubernete, cluster, pod,
deploy, azure, route,
fabric, node, nginx, expose

Infrastructure

6 6%
Spring
Framework

module, boot, property, dependency,
class, configuration, package,
build, repository, error

Application

7 5.9%
Docker and
Container

docker, container, image,
compose, machine, host, error,
build, deploy, port

Infrastructure

8 5.9%
Service
Discovery and
Load Balancing

instance, eureka, load,
register, discovery, boot, cloud,
registry, configuration, balancer

Application,
Traffic

9 5.8%
Account
Management

customer, store, transaction,
account, source, state,
command, update, example, system

Application

10 5.7%
Database
Transactions

product, table, update, query,
information, store, record,
data, fetch, item

Application

11 5.5%
Testing and
Integration

test, process, job, thread,
response, memory, testing,
worker, status, integration

Application

12 5.4%
Entity and
Domain Logic

entity, model, domain, layer,
object, function, business,
cache, logic, validation

Application

13 5.1%
Web
Development

app, web, frontend,
component, page, core,
build, backend, react, asp

Application

14 4.5%
Version and
Pipeline

version, deploy, environment,
team, development, deployment,
build, production, pipeline, manage

Infrastructure

15 4.2%
Shared
Libraries

share, approach, system,
code, schema, option,
library, dependency, graphql, practice

Application

16 3.6%
Logging and
Debugging

log, com, jar, http, error,
localhost, port, web,
springframework, core

Application

because I must build a connection pool to hold these connections, for example,
I have three RPC micro-service pod.

Docker and Containers (ID 7): The Docker and Containers topic com-
prises issues regarding similar concerns with Kubernetes. Unlike service mesh
frameworks that rely heavily on Kubernetes, early microservices adopters
heavily used Docker to deploy applications, which is also reflected in the
“Docker and Container” topic of service mesh. Example P24 demonstrates
a typical error-related question on migrating services from localhost to docker
swarm.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 27

[P24] I have spring-cloud app with 3 services: eureka-server + gateway(Zuul)
+ user-service (2 instances). In localhost, everything is working, and I can

access and get a simple string response, but when I deploy the app in docker
swarm, I get an exception when accessing this endpoint.

Service Discovery and Load Balancing (ID 8): The Service Discovery
and Balancing topic comprises issues regarding traffic-related problems such
as service discovery and load balancing strategies. This topic could map to
the “Load Balancing” topic in the service mesh domain due to the fact that
service mesh frameworks typically rely on existing service discovery solutions
that can be used independently. Example P25 demonstrates a typical error-
related question on service discovery and load balancers.

[P25] Now, the issue is that once I give Eureka URL as [URL] in the
microservice, it registers only on one instance depending on which Eureka

instance the load-balancer has redirected the request. But even though
peer-to-peer awareness is setup, microservice is not getting registered on the

other eureka instance.

Version and Pipeline (ID 14): The Version and Pipeline topic com-
prises issues regarding the versioning, isolation and deployment of services
so that it does not impact user experience. Although it does not map to a
specific topic in the service mesh domain, such capabilities are greatly en-
hanced when service mesh routing components offer advanced deployment
models such as Canary Deployment and Blue-Green Deployment18. Exam-
ple P26 demonstrates a typical knowledge-transfer question on best practices
regarding service versioning in a traditional microservices architecture.

[P26] I go into microservices architecture based on docker, and I have three
microservices, which together create one product, for example, “CRM

system.” Now, I want my client to be able to upgrade his product whenever
he wants to. I have 3 different versions of my microservices; which one

should the client see? I guess the product version should be independent of
microservices because copying one of the microservices versions would make

me go into more trouble than having no version at all. So is there any
pattern, idea to handle such a situation?

4.3 Macro-Topic Prevalence and Comparison with Traditional Microservices

Infrastructure-related questions are dominating both in the domain
of service mesh and traditional microservices.

The “Traffic” macro-topic in Table 5 taking up to 24.1% topic prevalence
is closely related to various aspects of traffic management functionalities in-
volving gateways, routing rules and load balancers [30]. Such high prevalence
reflects that traffic management is at the core of service mesh design, since

18 https://istio.io/latest/docs/ops/deployment

28 Yihao Chen et al.

rerouting traffic is essentially what a service mesh network is supposed to do.
Understandably, users generate many questions regarding such core features.

While the traffic-related macro-topic concerns the core abstractions and
functionalities provided by the service mesh technology [44,48], to our sur-
prise, the “Infrastructure” macro-topic has the highest prevalence of 27.4%.
This macro-topic is agnostic to specific service mesh frameworks, mainly con-
cerning container orchestration platforms that serve as the underlying infras-
tructure of service mesh frameworks. Although it is known that service mesh
frameworks heavily rely on containerization to provide flexibility and extensi-
bility [19,30], our findings suggest that such dependency on container orches-
tration platforms involves a much higher degree of complexity than the actual
service mesh technology itself. This suggests that service mesh and related
emerging technologies would benefit from more research efforts to ease the use
of related deployment and containerization technologies as, apparently, they
often are problematic for out-of-the-box usage [48].

The “Security” macro-topic relates to access control, TLS certificates and
secret management, which covers 15.3% of the total questions, indicating a
considerable focus on safeguarding service mesh networks and deployed ser-
vices. Among the topics concerning security, “Secret Management” related
concerns show less prevalence than other topics. In reality, secret storage is
often deployed as an external service, such as Hashicorp Vault19, meaning that
part of the questions could be directed to their dedicated platforms without
mentioning service mesh, causing an underestimation of the actual importance
of this concern.

The “Observability” macro-topic covers questions on monitoring system
telemetries as introduced in Section 3.2. Since observability is a software sys-
tem property that could apply to either application traffic or service mesh in-
ternal components, we find that the “Request Monitoring” topic (ID=8) and
“Infrastructure Monitoring” topic (ID=14) each relate to the macro-topics of
traffic and infrastructure, respectively. We keep both macro-topics in the table
to distinguish different focuses of observability in the domain.

The “Application” macro-topic considers the software projects hosted by
the service mesh network rather than the service mesh functionalities. The
macro-topic adds up to 10.3% of the total questions, indicating a minor con-
cern. Since issues related to application development are not amongst the
design goals of the service mesh technology, we do not further investigate this
macro-topic in the study.

While service mesh frameworks are deployed as a dedicated layer to solve
operations-related complexities, traditional microservices frameworks are in-
tended as a hybrid of development and operations. As suggested in previous
discussions, we only compare to the relevant macro-topics, namely “Infras-
tructure,” “Security,” and “Traffic”.

The ”infrastructure” macro-topic covers 22.8% of all questions in the tra-
ditional microservices domain, with a focus on containerization technologies

19 https://www.vaultproject.io/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 29

such as Kubernetes and Docker. This macro-topic has significant prevalence
compared to other possible aggregations. Infrastructure issues, including con-
tainerization and deployment versioning, are presumed to be some of the core
operational complexities that concern microservices adoption.

We only observe one security-related topic in the traditional microservices
domain, yet “Access Control” ranks as the most prevalent individual topic
(10.2%). On the other hand, service mesh security topics are more diverse,
including topics on “TLS Certificates” and “Secret Management”. Such a dif-
ference can be explained by service mesh frameworks’ ability to adopt the
“zero-trust architecture” pattern, which is a popular emerging security model
to counter the surge of cyberattacks and assumes all communication chan-
nels between all entities should not be trusted and therefore should enforce
encryption [36]. However, implementing a zero-trust architecture requires the
ability to intercept the traffic between each service and component, which is
only available in the service mesh domain.

Surprisingly, traffic-related concerns are scarce in the microservices do-
main (5.9%) relative to its application-related questions. To the best of our
knowledge, traditional microservices rely on API gateways and load balancers
to handle traffic management, yet they do not offer the detailed service-to-
service level features brought by sidecar proxies. The maturity around API
gateways and load balancers could result in such a low prevalence. Conversely,
service mesh traffic management features are more complex and cloud expose
more problems as a new technology.

Summary of RQ1: A high percentage at 48.3% of error-related posts
in the service mesh domain indicates that most questions are related to
unexpected problems. Despite the core concerns around traffic, service
mesh still faces major infrastructure concerns involving containerization.

5 Evolution Analysis of Question Topics (RQ2 Results)

5.1 Evolution of Service Mesh Topics

The evolution of service mesh domain topics indicates gradually
fewer questions on core (traffic-related) functionalities, while con-
cerns regarding security and infrastructure persist, and observabil-
ity became an emerging concern.

Figure 5 shows the resulting trends of the traffic-related macro-topic (and
its constituent topics). We represent each topic with a solid line with different
colours, and the green dots represent their summed values. In addition, we
calculate the moving average of summed prevalence values to suppress short
term fluctuations in the trends. As a result, we observe in the traffic macro-
topic a gradual decrease from 35% to 15% in moving average over the last
five years. The impactful topics “Traffic and Gateway” and “Routing and

30 Yihao Chen et al.

Services” have significantly shrunk in 2019 and 2020. On the other hand, the
“Node Port” and “Load Balancing” topics have persisted steadily over time.

Fig. 5 Evolution of the “Traffic”Macro-Topic for Service Mesh: Aggregated Moving Average
(Blue Dashed Line over Green Dots) and Individual Topics (Other Lines)

To support our findings, we calculate the mean time to question accep-
tance from the creation of the question post to question acceptance on Stack
Overflow of the topics, resulting in 274 hours for the port-related questions,
compared to 353 hours over the entire domain. In our understanding, ques-
tions related to ports are more straightforward regarding error messages, thus,
easier to fix in a service mesh network. Similarly, load-related questions own
a mean acceptance time of 272 hours. Load balancers are often considered a
mature technology with well-known strategies [13], possibly contributing to a
more limited number of new questions. From Figure 5, we can confirm that,
despite a bump in 2020, traffic-related questions diminish over time and pose
less concern to practitioners as the service mesh frameworks gradually mature.

Figure 6 reveals the trends within the security-related macro-topic. We ob-
serve a spiking outlier of policy-related questions in the second quarter of 2021
(21-2), which seems to coincide with the publication of the first security audit
report of the Istio project by the NCC Group20. The report reveals several
sensitive vulnerabilities regarding Istio and indicates the absence of security-

20 https://istio.io/latest/blog/2021/ncc-security-assessment/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 31

related documentation. In response to the report, Istio issued multiple security
patches and published official blogs on enhancing concerns about safety in a
service mesh architecture, which could explain the sudden focus of discussions
over security policies in this quarter.

Fig. 6 Evolution of the “Security” Macro-Topic for Service Mesh: Aggregated Moving Av-
erage (Blue Dashed Line over Green Dots) and Individual Topics (Other Lines)

When considering the trends beyond the outlier, we observe that the se-
curity macro-topic started at 10% prevalence overall and has considerably
increased over time to surpass the prevalence of the traffic macro-topic. As
a result, we can identify security-related concerns as a rising trend that at-
tracts a significant percentage of questions from service mesh practitioners.
One previous work [22] points out that the security-related capabilities of ser-
vice mesh enable a safer network without introducing additional complexities.
Yet, another previous work [24] points out that security features in service
mesh are fundamentally vulnerable to attacks. Based on the rising trend of se-
curity concerns and perceived importance in adoption, we suggest framework
maintainers and software engineering researchers pay more attention to service
mesh’s security concerns to enable practitioners to secure their applications
effectively.

Figure 7 reveals the growing trends within the observability-related macro-
topic. We want to point out that, as described in Section 4.3, two of the plotted

32 Yihao Chen et al.

topics belong to mixed macro-topics, which consists of the observability of ser-
vice mesh infrastructure (Infrastructure monitoring) and the user applications
(Requests monitoring). Overall, we observe a steady and slightly increasing
moving average on topic prevalence, matching the growing technical hype on
observability solutions21. To our knowledge, service mesh-based observability
drastically differs from traditional microservices that rely on SDKs and auto-
matic instrumentation agents [29]. Since the service mesh sidecar proxies can
only intercept network-level traffic, it is difficult for developers to gain insight
into code-level problems at runtime without compromising the non-intrusive
nature of sidecars. The difficulty of utilizing such tools in service mesh leads to
the requirement for truly non-intrusive ways to monitor system performance,
which could be implemented with Extended Berkeley Packet Filter (eBPF), a
novel technology to intercept and monitor Linux kernel operations [33].

Fig. 7 Evolution of the “Observability” Macro-Topic for Service Mesh: Aggregated Moving
Average (Blue Dashed Line over Green Dots) and Individual Topics (Other Lines)

Figure 8 reveals the trends within the aggregated infrastructure-related
macro-topic. At the early emergence of service mesh frameworks in 2017, prac-
titioners served microservices from hybrid network infrastructures, including
virtual machines (VMs), Docker, and Kubernetes [12]. Practitioner preferences

21 https://blogs.gartner.com/andrew-lerner/2021/10/11/networking-hype-cycle-

2021/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 33

gradually shifted focus to Kubernetes-like clusters in today’s large-scale sys-
tems. We observe a gradual decline in the prevalence of infrastructure-related
questions until 2018, when service mesh frameworks with underlying container-
ization platforms rapidly evolved at the earliest adoption stage. Surprisingly,

Fig. 8 Evolution of the “Infrastructure” Macro-Topic for Service Mesh: Aggregated Moving
Average (Blue Dashed Line over Green Dots) and Individual Topics (Other Lines)

with the rapid growth of common service mesh frameworks, the prevalence
of infrastructure-related questions rebounded and increased again. The model
output shows outliers during 2019 and 2020 as the two topics have swapped
prevalence. Despite the outlier period, we observe that the overall prevalence
of infrastructure-related questions has increased compared to 2017. The high
prevalence of infrastructure-related topics persists even though dominant mesh
frameworks release new versions monthly, as shown in Table 1. Next, we com-
pare this trend to the corresponding trend for infrastructure-related questions
of traditional service mesh frameworks.

Figure 9 depicts the trend of application-related topics in the service mesh
domain. We observe a significant drop of “Spring and Service Discovery” topic
prevalence from 20% to less than 5%. We cross-reference this finding with
RQ1’s analysis of the corresponding service discovery topic in traditional mi-
croservices, which represents a minimal prevalence (5.9%). As a result, we

34 Yihao Chen et al.

confirm that such topics in both domains, after years of evolution, now cause
minimal practitioner concerns.

Fig. 9 Evolution of the “Application” Macro-Topic for Service Mesh: Aggregated Moving
Average (Blue Dashed Line over Green Dots) and Individual Topics (Other Lines)

5.2 Comparison to the Traditional Microservices Infrastructure Domain

The evolution of the infrastructure-related topics in the traditional
microservices domain persists, while the service mesh domain sees
a minor increase in prevalence over time.

Using a similar time-related analysis as for the service mesh data, and fo-
cusing exclusively on the infrastructure-related macro-topic, Figure 10 presents
the evolution of the prevalence of aggregated infrastructure topics for tradi-
tional microservices. To our surprise, in the relatively mature domain of tra-
ditional microservices, where well-known frameworks like Spring Cloud have
been dominating for years, infrastructure-related concerns have not reduced in
prevalence. Hence, infrastructure-related concerns remain relevant over time
for the overall microservices landscape, regardless of the adoption of newer
mesh architecture or the evolution of frameworks.

In our topic analysis, keywords including “install,” “configuration” and
“compose” frequently appear at the top along with those related to container-

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 35

Fig. 10 Evolution of the “Infrastructure” Macro-Topic for Traditional Microservices: Ag-
gregated Moving Average (Blue Dashed Line over Green Dots) and Individual Topics (Other
Lines)

ization such as “kubernete” and “container” as presented in Table 5. The top
keywords suggest most of the infrastructure-related topics relate closely to the
usability issues of the installation, update and configuration process in a con-
tainerized scenario. We define usability as the easiness of understanding the
system setup and correctly configuring the system to work according to user re-
quirements [7]. Given our insights on the evolution of containerization-related
topics across time, the persisting infrastructure-related concerns in both do-
mains indicate a pressing need for more empirical understanding to improve
the usability of such containerization platforms and ease the adoption of ser-
vice mesh. To our knowledge, empirical studies on enhancing the usability of
modern container orchestration platforms are scarce. An early study on the
infrastructure-as-code ecosystem puppet [17] has proposed methods of iden-
tifying bad configuration smells. Future research could adopt such methods
to modern container orchestration platforms such as Kubernetes, which have
quickly evolved into the de facto standard [21].

Feedback from service mesh expert The service mesh expert adds a
new perspective on the security trend in the service mesh domain. While sup-
porting our finding that security is an area of increasing importance, the expert
indicates the analysis in this research question is likely only the “tip of the
iceberg”, as many security-related inquiries are likely being conducted through

36 Yihao Chen et al.

enterprise support channels and were not discussed in the public domain, even
if the practitioners use open-source frameworks. When talking about the spe-
cific area to focus on, the expert notes that achieving a zero-trust architecture
as explained in RQ1 has become a common goal among service mesh vendors
in recent years, and they believe that this direction should draw more research
attention as it is challenging to implement and a successful adoption will bring
the most out of the service mesh paradigm.

When asked about more insights on the observability domain of service
mesh, the expert notes that “Nearly every cloud vendor has its monitor-
ing/logging product that behaves differently, and some like OpenShift have more
strict security policies that can further complicate the adoption and usage of
such monitoring technology.”

Summary of RQ2: Traffic-related topic prevalence fades as service mesh
core functionalities mature over time. However, persisting topics in infras-
tructure indicate remaining concerns that require extra attention. The
rise of security and observability concerns indicates future opportunities
for novel ideas. Infrastructure-related topics are prevalent in both service
mesh and traditional microservices domains.

6 Question Intentions, Adoption Goals, Symptoms and Their Fixes
(RQ3 Results)

6.1 Understanding Knowledge Intentions of Istio and Consul from
Knowledge-transfer Questions

The intention distribution of the 62 studied knowledge-transfer ques-
tions effectively reflects a gap between the carried-over experience
from traditional microservices and corresponding service mesh fea-
tures.

Figure 11 shows the distribution of question intentions among the 62
knowledge-transfer question posts manually labelled based on the question
title and body context. Our analysis identified four types of intentions of
knowledge-transfer questions:

– Available functionality: We identified 36 questions in this category.
These questions are intended to understand the features and capabilities
of the service mesh frameworks, such as traffic management, security, and
telemetry.

– Best practice: We identified 11 questions in this category. These questions
aim at learning the recommended practices and configurations for using the
frameworks effectively and correctly.

– Architectural decision: We identified 9 questions in this category. These
questions involve the architecture of a service mesh network, such as which

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 37

Fig. 11 Question Intentions of Knowledge-transfer questions

components to use and how to structure the mesh to optimize for certain
use cases.

– High-level concept: We identified 6 questions in this category. Such ques-
tions seek to understand the fundamental concepts and principles within
the service mesh domain.

We find a dominating 58% occurrence of questions trying to understand
the availability of functionalities. In RQ1, we find a low number of knowledge-
transfer questions in the service mesh domain in contrast to traditional mi-
croservices. During the interview, the service expert indicates that service
mesh practitioners benefit from carried-over knowledge from the traditional
microservices domain. Nevertheless, the high ratio of inquiries on available
functionalities indicates that carried-over knowledge does not necessarily im-
ply a good understanding of service mesh features.

On the other hand, questions regarding best practices and architectural
decisions often require a high level of expertise to resolve. Although less dom-
inant than the inquiry for functionality, together they form over 32% of the
distribution together. Only 10% of questions ask a high-level concept, confirm-
ing our RQ1 findings. In the end, service mesh frameworks own many flexible
components, and they can be assembled in many ways in various use cases.
Our findings suggest a need for automating the suggestion of the best com-
bination of such components to inform practitioners of available features and
their best practices.

38 Yihao Chen et al.

6.2 Understanding Adoption Goals of Istio and Consul from How-to
Questions

352 studied how-to questions embed 66 unique adoption goals, focus-
ing on integration, customization, and installation. Specifically, Istio
practitioners face significant installation and upgrading concerns.

Figures 12 and 13 show the adoption goals for the 197 and 155 analyzed
how-to question posts from the open-source Istio and Consul frameworks. Since
each service mesh framework involves many adoption goals, here we selectively
highlight the frequently co-occurring goals in each macro topic and frequent
framework-specific goals. We present the key findings of each macro-topic be-
low:

Fig. 12 Adoption Goals of the 197 Studied Istio How-to Questions (Number of Occurrences
Between Parentheses), Across the 5 Macro-Topics of RQ1

– Security: The ACL (Access Control List) system is unique to the Consul
service mesh; Istio implements the RBAC (Role-based Access Control) sys-
tem instead. While both systems work towards securing service-to-service
communication, we observe a slightly higher (4%) ratio of security-related
how-to questions in Istio. When cross-referencing our findings with RQ1,
we find that although the prevalence of security-related topics is consid-
erably lower than traffic-related topics, both questions present an equal
number of adoption goals.

– Traffic: Interestingly, the traffic topic’s adoption goals are highly skewed in
Istio, with 24 questions on customized routing based on specific use cases,
indicating that practitioner goals cannot be easily achieved with the default
settings and configurations provided by Istio. On the other hand, Consul
provides out-of-the-box support of “service discovery” features, while Istio
relies on external integration to accomplish the goal. As a result, Consul
users have the most concerns with this functionality (10 cases).

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 39

Fig. 13 Adoption Goals of the 155 Studied Consul How-to Questions (Number of Occur-
rences Between Parentheses), Across the 5 Macro-Topics of RQ1

– Infrastructure (Integration): In both Istio and Consul (19/28 cases), we ob-
serve open inquiries regarding the ability to integrate service mesh frame-
works with third-party projects such as cloud object storage and legacy
applications.

– Infrastructure (Installation): Apart from integration, practitioners of both
frameworks raise frequent (12/14 cases) concerns about customization of
framework installation spanning various installation methods. Interestingly,
only Istio practitioners raise significant number of migration inquiries (14
cases), indicating confusion while attempting to upgrade the Istio version
seamlessly. On the side of Consul, we additionally observe significantly
more diverse adoption goals (20 of 48 cases) than for Istio (12 out of 41
cases), even though the Consul question samples are smaller, which could
indicate more customization needs in the Consul domain.

– Infrastructure (Scaling): The high number of questions related to scaling,
such as cross-cluster communication and high availability in Consul (20
cases), suggests that it could be a challenging aspect of using Consul. Sur-
prisingly, cross-cluster questions do not represent a visible distribution in
the sampled Istio questions, even though rich multi-cluster functionalities
are available according to Istio’s documentation.

– Observability: Both Istio and Consul practitioners express customization
goals regarding tracing, logging and metrics data. By observing the ques-
tion content, we find that practitioners generally ask for various telemetry
customization that reflects their requirements. In several cases, the users
are concerned about the performance impact of collecting telemetry from
service mesh, which requires advanced sampling techniques to limit the
data size.

40 Yihao Chen et al.

6.3 Understanding Error Symptoms of Istio and Consul from Error-related
Questions

Construction of symptom trees from the 474 studied error-related
posts for Istio and Consul service mesh yields 54 unique symptoms,
among them 39 affect both frameworks. On the other hand, both
frameworks show frequent unique symptoms that rarely occur in
their counterparts.

Figures 14 and 15 show the error symptom trees for the 264 and 210
error-related posts from the open-source Istio and Consul framework. The
trees contain error symptoms from the posts that are either explicitly stated
as an error or considered misbehaviour of the framework. The left nodes in
blue represent the macro-topics whose questions were manually labelled given
the actual context of each question and domain knowledge. Each child node
represents a generalized symptom directly observed from the question body.
Within each symptom tree, we underline symptoms that reappear across mul-
tiple macro-topics. To enable a clear comparison between the two service mesh
frameworks, we mark symptoms shared by both frameworks in grey, along with
the frequency of each symptom.

Fig. 14 Error Symptom Tree of the 264 Studied Istio Error-related Questions (Number of
Occurrences Between Parentheses), Across the 5 Macro-Topics of RQ1

Within the Istio symptom tree, we generalize 41 error symptoms dis-
tributed among four macro-topics of concerns. Similarly, we generalize 43 er-
ror symptoms in the Consul case across five macro-topics. Table 7 defines
each error symptom. We cross-reference the number of symptoms and their
frequencies with RQ1 data to understand whether the most frequent macro-
topics found in RQ1 have been significantly discussed in terms of symptoms/fix
patterns. In particular, security-related how-to questions account for a lower

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 41

Fig. 15 Error Symptom Tree of the 210 Studied Consul Error-related Questions (Number
of Occurrences Between Parentheses), Across the 5 Macro-Topics of RQ1

prevalence in the sampled data (16.7% and 12.9% for Istio and Consul, re-
spectively) and are not comparable with the traffic and infrastructure macro-
topic. Yet, security-related error symptoms take significant prevalence (29.9%
and 24.3%) in the error symptom analysis. Such imbalance indicates security-
related concerns appear more in the form of failures and unexpected behaviour,
which is worth further investigation by security researchers.

Specifically, we observe the most appearances of “connection failure”, “per-
mission denied,” and “Configuration not applied” symptoms. “Connection fail-
ure” symptoms account for 54 and 34 cases in Istio and Consul, respectively,
meaning the only direct symptom that service mesh practitioners receive in
the error log points to a failed network request. “Permission-denied” symp-
toms occur in 15 and 16 cases in Istio and Consul, respectively, indicating a
frequent error on failed attempts to access service mesh network components
due to lack of access. Finally, the “Configuration not applied” symptom oc-
curs in 17 cases for both frameworks and dominantly in the infrastructure
macro-topic.

Since both frameworks are considered feature-rich and cover common use
cases in the microservices domain, the two service mesh frameworks share
39 common symptoms among their union of 54 symptoms across five macro-
topics. Most interestingly, the error symptoms also exhibit duplication within
different macro-topics of each framework. For instance, the underlined “con-
nection failure” symptoms occur repetitively across three macro-topics in both
frameworks. Based on our understanding of the question answers and service
mesh frameworks, an erroneous configuration on either traffic routing or un-
derlying deployment infrastructure could cause the same apparent symptom
of connection failure. Installation errors, container-related errors and connec-
tion failures occur regardless of the framework, supporting our insights from

42 Yihao Chen et al.

RQ2 on framework-agnostic infrastructure-related concerns. Previous work on
Kubernetes [48] points out that applying default configurations in such dis-
tributed systems does not automatically grant error-free environments. Unfor-
tunately, finding suitable configurations in a highly configurable system like
service mesh is a non-trivial task [55].

We also observe drastically different dominant error symptoms over macro-
topics; we present the key findings of each macro-topic below:

– Security:With both frameworks facing diverse error symptoms, Istio prac-
titioners face unique errors that could negatively impact adoption. Al-
though rare (1 case), Istio practitioners report a potential leak of sensitive
information by sidecar proxy when intercepting request headers on a de-
fault configuration. Such a problem could indicate a potential security flaw.
According to the accepted answer, users cannot easily fix the problem by
adjusting any configuration, and it is still pending fixing after one year.
Additionally, we notice 8 cases where Istio practitioners report backwards-
incompatible behaviour when upgrading Istio to a newer version. Specifi-
cally, 2 cases break the security-related functionalities, while 6 cases break
the proper function of the underlying infrastructure. We do not observe
similar error symptoms in the sampled Consul framework posts.

– Traffic: Practitioners using the Istio framework dominantly face connec-
tion failure symptoms (28), yet Consul practitioners face more failures that
relate to service lookup (15), registration (2) and deregistration (5). Istio
does not provide comprehensive service discovery and registration features
as Consul does. It is possible that such a difference is introduced due to the
feature difference between the two frameworks. However, the connection
failures representing 32% of Istio traffic-related error symptoms indicate a
dominant concern that prevents normal service-to-service communication.

– Infrastructure (Cross-Cluster): Practitioners using both frameworks
face the most diverse symptoms regarding infrastructure among all five
macro-topics. With fewer samples (210 vs 264), Consul practitioners face
25 different infrastructure-related symptoms, which accounts for 58% of
all the symptoms in Consul. Apart from connection failures originating
from various root causes, we observe unique symptoms such as “No cluster
leader”, “Replication error, ” and “Data center communication failure”
related to high availability and cross-cluster communication. When cross-
referencing the unique set of cross-cluster adoption goals in Consul, we
observe such topics attract major concerns since they cannot be achieved
without errors.

– Infrastructure (Installation): Surprisingly, while infrastructure-related
symptoms are less diverse in Istio, practitioners mostly face installation
errors (21 cases) that do not generally occur in the Consul framework (6
cases). Apart from the backwards incompatibility symptoms, Istio practi-
tioners are likely to face errors even in new installations. For example, a
user faces an error when installing Istio in WSL2 (Windows Subsystem for
Linux):

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 43

[P27] I managed to create a cluster successfully. Then I try to install Istio
using helm following the documentation. Everything looks fine till I check

the status of Istio pods using for which I get the response [status] The
pods continue to stay in ContainerCreating status...

– Observability: While practitioners from both Istio and Consul face errors
related to missing telemetry, it is significantly more frequent in the Istio
framework (17 cases). Given that Istio provides out-of-the-box distributed
tracing for applications while Consul relies on third-party integration, Istio
practitioners may face more errors in return for native support for observ-
ability.

6.4 Constructing Fix Patterns for Error Symptoms

Less than 50% of the error symptoms have a common fix pattern,
and we observe many-to-many error-fix relationships created by un-
intuitive error messages, causing extra difficulties in root cause un-
derstanding.

Table 7 defines each symptom from the above symptom trees within their
specific contexts. In the final column of the table, we provide the identifier of a
common fix pattern if a given method could resolve over 50% of the questions
of the same symptom. Previous work [31] has used 50% as the threshold to
define a common fix pattern. We consider a fix as a common fix pattern only if
the fixed error symptom appears more than two times and it could be resolved
by a particular fix pattern in over 50% of the cases. In other words, only a fix
occurring more than once is considered a “common fix pattern”.

We briefly explain each fix pattern based on service mesh domain knowl-
edge:

– Recreate CA: Although the root cause of an invalid Certificate Authority
(CA) can vary, this fix pattern recreates/reloads the certificate authority
to ensure it can be properly recognized by both client and server side. This
fix pattern can effectively resolve unknown and wrong certificate authority
symptoms.

– Correct certificate signing: Correcting certificate signing to ensure ser-
vice mesh components can recognize it. Such fixes can often resolve certifi-
cate mismatch errors since the symptom directly hints at the root cause.

– Check permission policies: Verifying the access permissions for re-
sources to ensure permissions are not too restrictive. Permission-denied
symptoms often hint at restrictive policies.

– Complete missing policy rules/scopes: Missing policy rules can im-
pact security measures in the service mesh network, allowing unauthorized
access. Adding missing policy rules or flags ensures that security policies
are enforced as intended.

– Check service routing rules: Correct service discovery/routing to make
sure lookup can proceed to resolve service. A wrong destination/missing

44 Yihao Chen et al.

Table 7 Symptoms and Their Fix Patterns

Macro-
topic

Symptom Definition Ref

Security

Permission denied Permission is not granted for access S04
Certificate mismatch The certificates cannot be used S08
Encryption/Decryption error Failure in end-to-end encryption
Unknown CA provider The certificate authority (CA) is unknown S01
No root certificate No root certificate can be found
Connection failure Access should be granted but denied
Handshake error SSL failure with handshake error
Key value error Failure in key-value secret store
UI not accessible UI related to security not available
Auth failure Authentication failed to work S03
Wrong CA provider The framework indicates wrong CA is used S01
Policy not in effect Security policy not enforced
Cors failure Blocked by cross-origin request policy
Sensitive info leaked Request header leaks sensitive info
Syntax error Configuration syntax not recognized S07
Validation error Fail to validate configuration manifest S07
Backwards incompatibility Security components fail after upgrading
Incompatible auth provider External authentication not working

Traffic

Connection failure Connection rejected in traffic routing
Filter not working Envoy filter not working as expected
Routing error Routing is not working at all
Lookup failure Service lookup failure S05
Permission denied Cannot access service due to permission S04
Header wrongly set Wrong manipulation of request header
Proxy failure Proxy container failed
Configuration not applied Config regarding traffic not in effect
Request timeout Request timed out reaching limit
Invalid character Invalid character in RPC communication
Proxy delay Proxy experiencing delays
Validation error Fail to validate configuration manifest S07
Circuit breaker failure Fail to break traffic when triggered
Fail to load balance Load balancer is not working as expected
Unneeded ports Service mesh exposing unnecessary ports
Service register error Service cannot properly register
Service deregister error Service cannot properly deregister

Infra.

Connection failure Connection rejected regarding infrastructure
Configuration not applied Configuration provided but not in effect
Lookup failure DNS lookup failure
Installation error Service mesh component installation failure S06
Key value error Failure in key-value secret store
Invalid character Invalid character in RPC communication
Cannot find IP Cannot find Ip address of service
No cluster leader Cannot reach cluster leader
Fail to save snapshot Cannot backup snapshot
Validation error Fail to validate configuration manifest S07
Pod failure Kubernetes Pod failure
Permission denied Cannot access service due to permission S04
UI not accessible UI components not accessible
Fail to bind port Cannot bind to port in system
Sync failure Fail to sync status between nodes
Request timeout HTTP request timeout
Pod unhealthy Container not in healthy status
Unneeded ports Service mesh exposing unnecessary ports
Cyclic prerequisites Cyclic requirements between data centres
Replication error Cross data center replication error
Fail to build image Fail to build container images of component
Performance degradation Component become slower overtime
Fail to inject proxy Fail to inject proxy into the pod
Dependency not found Framework building dependency not found
Datacenter comm. failure Data centre cannot reach each other
Backwards incompatibility Infra components fail after upgrading
Fail to apply manifest Fail to apply configuration manifest S06
ConfigMap not found ConfigMap cannot be found or reached S09
Incompatible integration Integration with third party not working
Autoscaling error Failure in auto-scaling components
Syntax error Configuration syntax not recognized S07

Obs.

Missing Telemetry Telemetry is not properly reported S02
Configuration not applied Configuration provided but not in effect
Wrong health check Health check return unexpected result
UI not accessible UI related to telemetry not available

App.
Invalid character Invalid character in RPC communication
Syntax error Configuration syntax not recognized S07
Configuration not applied Configuration provided but not in effect
Class not defied Cannot find Java class definition

Legend: S05: Check service routing rules
S01: Recreate CA S06: Use proper commands and scripts
S02: Correct monitoring configuration S07: Fix configuration syntax
S03: Complete missing policy rules/scopes S08: Correct certificate signing
S04: Check permission policies S09: Create ConfigMap

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 45

route often leads to various error symptoms, including an apparent con-
nection failure.

– Use proper commands and scripts: When practitioners face unex-
pected results while installing/upgrading service mesh components, cor-
recting the commands/flags in the command line interface (CLI) can usu-
ally avoid unexpected results.

– Fix configuration syntax: Although configuration validation tools exist
for Istio, they cannot verify all scenarios, given their rule-based nature,
leading to runtime failures. The fix includes but is not limited to fixing
YAML indentation and specific malformed fields. Fixing configuration syn-
tax can avoid validation errors and syntax errors.

– Correct monitoring configuration: This error symptom is caused by
using default telemetry settings that report incorrect telemetry data and
by wrong interpretation of monitoring settings. Fixing the monitoring con-
figuration can often ensure that correct telemetry is reported.

– Create ConfigMap: Although this symptom only appears once in Consul,
we find this error obvious error symptom exists in service mesh and the
overall Kubernetes domain. This problem can always be fixed by recreating
the ConfigMap object in the correct place. However, the root cause can vary
due to multiple reasons, such as the namespace causing the ConfigMap to
be created in the wrong context.

As a result, we could only derive 9 common fix patterns for 12 out of 54
unique symptoms, indicating that most error symptoms, although resolved,
do not share a clear connection with their root causes. Additionally, several
question authors directly point out their frustrations that framework error
messages or current documentation are hard to interpret and do not contribute
to direct error resolution. The following quote demonstrates a typical case
of user confusion while encountering multiple layers of errors during Consul
installation.

[P28] I can get clients started that don’t have docker installed, however on the
docker nodes I am unable to get them to start. The first error I got was there
are multiple private networks. . . blah blah. . . So I edited the config to use the

interface name as suggested in discussions. Now I get this error.

Despite the difficulties in deriving common fix patterns, only a few fix
patterns we identified form a one-to-one relationship with an identified error
symptom. We observe 29 cases where multiple fix patterns can fix a single
error symptom. That is, if the error symptom occurs more than once in our
sample, practitioners have provided different ways to fix them. We also find
15 cases where a fix pattern applies to two error symptoms.

These two observations combined form a many-to-many relationship. For
example, in the security symptoms of Istio, both “permission denied” and
“policy not in effect” can be fixed by “correcting the port mapping naming
convention.” We can also find symptoms such as “missing telemetry,” which
can be solved by two fixes. The most extreme example is the “connection

46 Yihao Chen et al.

failure” symptom that occurs in multiple places in both symptom trees, which
can be fixed in more than 17 ways by observing our limited samples.

Feedback from service mesh expert When asked about our finding
on error symptoms, the service mesh expert noted, “This is really an inter-
esting finding. Service mesh deployments employ the “eventual consistency”
paradigm, failing deployments may or may not recover after restarted, depend-
ing on the error types, and errors in service mesh frameworks look like Domino
Blocks, one error in an upstream node can cause another in a downstream, if
the root cause of the errors is not found and fixed, users have to look all errors
for possible answers, and if the root cause is found and fixed, all other types of
errors disappeared too, this is one of the reasons why the error-fix relationship
is not one-to-one exactly.” With such observations, the service mesh expert
emphasized the importance of enhancing error diagnosis mechanisms to help
practitioners diagnose and fix complex problems more effectively.

6.5 Analyzing Configuration Changes to Fix Error Symptoms

Finally, we find that in 70% of the cases, minimal changes to the
configuration manifest of a specific service mesh functionality could
fix the error symptoms.

Service mesh configuration files are written in the YAML format [6], a
compact language commonly serving as the orchestration language of modern
containerization platforms. Such configuration manifests provide a high-level
abstraction of complex operations hidden by service mesh frameworks. There-
fore, changing a single line could introduce an impact throughout the service
mesh system. We observe that most error symptom fixes (70%) require only
minimal changes of fields or lines in the configuration files. In some cases,
modifying one configuration line was able to fix a complex error symptom
with over 100 lines of error messages. For example, changing a simple port
name to ”http” of a user’s service definition could fix an error symptom of a
defective security rule for a question that took 24 follow-up discussions over
13 months before obtaining a viable fix22.

Previous work [38] has systematically identified the main challenges and
activities regarding configuration engineering in practice and provided prac-
tical recommendations to address such challenges. However, in the context
of service mesh and similar modern containerization technologies, a practi-
tioner could orchestrate and scale hundreds of heterogeneous services to form
a large-scale system through simple configurations. Although service mesh
and its underlying container orchestration platform have exposed configura-
tion through simple APIs, it also allows the impact of simple configuration
changes to propagate beyond the traditional software/hardware environments
towards heterogeneous environments across clusters, data centers, and even
clouds.

22 https://discuss.istio.io/t/jwt-policy-does-not-take-affect/141/25

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 47

Previous work [25] suggests using crowd knowledge to build adaptive con-
figuration suggestions for users of complex software systems. However, in the
case of the service mesh domain, users seek the flexibility to customize and
extend system capacity to fulfill higher non-functional and functional require-
ments in today’s large-scale systems. Based on our findings in Section 4.1, a
crowd-based solution can be challenging to adopt since expertise is likely scarce
in the domain. Furthermore, minor modifications in a YAML manifest could
lead to significant architectural differences in container topology and software
states at runtime23, producing new challenges beyond applications with pre-
determined topology. We believe a further understanding of such compact
configuration manifests and the adoption of novel ways to recommend suit-
able configurations that follow best principles [42] (perhaps inspired by those
proposed for monolithic systems [56,57]) will be essential for today’s popular
container orchestration platforms.

Feedback from service mesh expert During the interview, the service
mesh expert notes that “Although many cloud-native engineers jokingly call
themselves “YAML engineers”, YAML is just a markup language and not a
programming language after all. It can define the configuration structures and
data types, but it doesn’t verify the correctness by itself, leaving the verification
to runtime components.” When asked about the difficulty of coming up with
simple configuration changes given the observed symptoms, the service mesh
expert adds, “Sometimes it’s even hard to find the corresponding runtime com-
ponent that consumes a YAML by looking at the symptom and its logs, not to
say fixing the error symptoms.” When talking about the diversity of adoption
goals mined, the expert emphasized the need for advanced automation that
generates configuration/fixes based on customized scenarios since practition-
ers of service mesh frameworks tend to aim at a wide range of customization
goals. Any valid reference configuration could significantly reduce the risk of
errors.

Summary of RQ3: Diverse intentions, goals and symptoms exist in
the service mesh domain, exposing concerns of service mesh practition-
ers around specific topics. We find that service mesh error symptoms do
not often have common fixes, since error messages generally do not relate
one-to-one to root causes. In many cases, the same error symptom could
occur across service mesh macro-topics and receive multiple possible fixes.
We also find that container orchestration platforms and configuration en-
gineering play a significant role in error fixing.

23 https://kubernetes.io/docs/concepts/overview/working-with-objects/

kubernetes-objects/

48 Yihao Chen et al.

7 Study Implications

7.1 For Researchers and Framework Designers

Researchers should investigate service mesh security feature impacts
and their adoption complexities: In RQ1 and RQ2, we find that observ-
ability and security topics in the service mesh domain attract increasingly more
concerns. During the interview with the service mesh expert, we also collected
insight from the industry that security concerns could be greatly underesti-
mated due to their nature. The expert adds that zero-trust architectures are
prevalent in the service mesh domain amid increasing cyberattacks. Previous
work [11] has suggested the superiority of zero-trust architectures. However,
the authors suggest that strict security features introduce a non-negligible
impact on their users that needs to be explored in academia. In our study,
we indeed observe many inquiries regarding the customization of security fea-
tures of service mesh frameworks. On the other hand, errors frequently occur
when practitioners try to apply such features. Future researchers could con-
duct studies to evaluate the usability of service mesh security-related features,
investigate potential usability issues, and understand the source of complex-
ity. This could help identify potential barriers to service mesh adoption and
inform the design of more user-friendly security features.

Researchers should investigate novel service mesh observability
approaches: The expert also indicates that current service mesh observability
features often vary when choosing different vendors and frameworks, leading
to adoption complexity and concerns. Given current service mesh features in
Istio and Consul, practitioners of both frameworks face observability-related
concerns that target application (request monitoring) and service mesh frame-
work themselves (infrastructure monitoring). Practitioners raise a high num-
ber of inquiries on customization of telemetry data and face error symptoms
in missing telemetry, especially in the Istio framework.

When asked about the observability features, the service mesh expert adds
that current service mesh solutions rely on different frameworks that enable
tracing, logging, metrics and event telemetry. Since there is no standard to
define a healthy service, practitioners are forced to customize the configura-
tion to keep service impact minimal while enabling a complete view of their
applications. It is valuable for future observability domain researchers to fo-
cus on accurate modelling of system conditions according to industry needs.
In this way, practitioners could easily investigate best practices for adjusting
observability features given clear requirements.

Researchers should find effective methodologies in configuring
complex distributed systems like service mesh: As a highly configurable
system that relies on flexible orchestration of software components, service
mesh, like machine learning systems [42], comes with high maintenance costs
if its configuration problems are not well understood. Service mesh systems
rely on compact configuration manifests to define, orchestrate and manage
many components. However, when cross-referencing our RQ1 and RQ3 results

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 49

on error rates, symptoms and fixes, we find that such high-level abstraction
of configurations currently leads to diverse error symptoms that inexperienced
practitioners could not quickly fix. Given the service mesh expert feedback in
RQ3, configuration validation is hard to achieve and often leads to implicit
errors that require expertise currently lacking in the service mesh domain.
Our study findings in RQ1 and RQ3 confirm a need for better methodologies
and automation to help suggest practical configuration principles linked to
practitioners’ adoption goals. Future research should focus on understanding
the unique challenges that complex distributed systems face in configuration
to prevent introducing configuration debts while benefiting from a high-level
and compact format.

During the interview with the service mesh expert, we discussed the topic
of “What automation is needed and is practical to address the practitioner’s
diverse concerns given the observation of errors and diverse fixes”. Given the
recent advances of machine learning techniques, the service mesh expert noted
that they believe more work could be done in this area. “For me, the main
culprit of this issue is that errors and fixes are not a one-to-one relationship.
And because many users who ask the questions have described their require-
ments in detail, and the answers have fixes for those errors, I have imagined
there were tools that can generate complete and runnable examples for the user
requirements, with the errors fixed. With the emerging Large Language Models
(LLM), I think these kinds of tools are feasible and would be very helpful for
practitioners.” We conclude the existence of a pressing need for automation
that can provide multiple service mesh implementation/configuration options
with their advantages, disadvantages, and caveats. Such tool should help prac-
titioners choose the most appropriate service mesh features and usage based
on their needs.

Service mesh framework designers should focus on enhancing the
framework’s error diagnosis capabilities:We identified individual fix pat-
terns that can cure multiple service mesh framework error symptoms due to
unintuitive error messages. We also identified various fixes that could cure a
single symptom. Therefore, we could not generalize a common fix pattern for
most symptoms. We suggest that framework designers systematically identify
and better hint at the root causes of error symptoms, eventually enhancing the
error messages and eliminating implicit failures (i.e., failures without obvious
errors). This way, typical service mesh practitioners could quickly troubleshoot
independently or provide precise diagnostic details while asking for help on
Q&A platforms. It will also be easier for researchers to generalize common fix
patterns and empirically verify best practices that could lead to faster incident
recovery.

Another common technique the industry adopts is implementing a unified
standard for a range of similar products. For example, OpenTelemetry24 aims
to provide a unified standard for observability data. Nonetheless, when dis-
cussing such feasibility in the overall service mesh domain, the service mesh

24 https://opentelemetry.io/

50 Yihao Chen et al.

expert points out that unified standards would require collaboration among
many experts to exhaust as many usage scenarios as possible. This task is not
trivial as service mesh cannot be defined as observability data formats can.
When asked what is the best solution to this problem, the expert adds that “It
can be challenging for a single enterprise or organization to gather all the nec-
essary expertise for such implementations, unless they are open-sourced”. The
expert believes an open-source standard would benefit practitioners by reduc-
ing the need for comparison and decision-making processes. It can also attract
more developers to work on the same implementation, ultimately improving
service mesh technology’s overall adoption and usage.

Service mesh framework designers should practice documenta-
tion prioritization: We additionally take a sample of 360 question posts fol-
lowing Step 3.4 in our study protocol of Section 4 to understand more about
the available resources that could help with practitioners’ concerns. We find
158 external knowledge resources embedded in the question answers, which
are essential sources of information to understand the state of the practice
regarding specific service mesh frameworks and related technologies. Most in-
terestingly, among 158 external resources, 68 pieces are directly hosted from
the official documentation of corresponding service mesh frameworks, meaning
that service mesh practitioners who posted the questions could not effectively
locate them as helpful information. We speculate that this is due to the highly
configurable nature of service mesh systems, resembling a “Too many knobs”
scenario [55] that confuses new adopters.

According to our observation of the 158 extracted knowledge resource con-
tents, explicit links between possible symptoms and their fixes (or practices
to follow) are scarce, meaning such knowledge is hard to comprehend fully
by inexperienced practitioners. Unfortunately, our results on the low answer
acceptance rate of the service mesh questions (40%) and a long mean time
to acceptance (353 hours) indicate that expertise is generally lacking for the
service mesh domain.

Hence, we suggest that service mesh framework designers propose and prac-
tice better documentation prioritization techniques to assist new adopters in
complex configuration scenarios. For example, one could gather the most fre-
quently asked questions and answers into a FAQ and extract explanations
of advanced features into secondary documentation as they can confuse new
adopters [24]. We also suggest a review of existing configurable knobs as sug-
gested by previous literature [55] to prevent over-configurable systems.

7.2 For Practitioners Interested in Adopting Service Mesh

New service mesh adopters should take extra caution while explor-
ing advanced capabilities: As the 2021 Gartner report on enterprise net-
working25 shows, service mesh has left its “Peak of Inflated Expectations”

25 https://blogs.gartner.com/andrew-lerner/2021/10/11/networking-hype-cycle-

2021/

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 51

and entered the “Trough of disillusionment” phase, where it could be chal-
lenging for early adopters to determine use cases and put service mesh into
production environments. Our qualitative analysis suggests that typical prac-
titioners could face complex error symptoms that lead to frustration, which
also reflects in the low answer acceptance rate and long mean time to answer
acceptance. Practitioners could also face unclear error messages and confusion
from available technical resources.

Specifically, based on our analysis in RQ3, Istio adopters tend to face di-
verse traffic-related and observability-related errors. At the same time, errors
related to infrastructure spanning the installation, configuration and connec-
tion of service mesh networks occur in both Istio and Consul. Practitioners
should familiarize themselves with the error symptoms and common fixes of
open-source service mesh frameworks to avoid pitfalls in adoption.

When asked about suggestions to practitioners, the service mesh expert
highlights that sometimes a seemingly simple solution to complex problems
may involve a higher cost or even lead to building new projects around the
solution. Therefore, practitioners should be cautious in adopting advanced
features they do not fully understand, as this may lead to technical debt in the
long term. The expert also emphasizes the importance of carefully evaluating
different implementation options and selecting those that best fit the team’s
expertise to further reduce the possibility of technical debt.

8 Threats to Validity

Below, we discuss threats to the study validity and the strategies we applied
to mitigate these threats, based on literature guidelines [51].

Construct Validity: The heuristic-based classification technique used in
Section 4.1 could misclassify some question posts because it is not possible to
compose a comprehensive set of filtering keywords. However, the classification
process is applied to both the service mesh domain and the traditional mi-
croservices to produce an unbiased comparison. Our filtering conditions only
used natural language words that do not involve technical details. The poten-
tial bias is expected to be minimal and does not contribute to the significant
differences in resulting metrics that we discuss in section 4.1.

Another threat is that our topic model is tuned based on the common prac-
tices of previous works using an iterative method and evaluation metric [35].
We acknowledge that using other possible hyperparameters could reveal addi-
tional information not elaborated in this study. We extensively tested hyper-
parameters according to the DTM model package documentation and previous
literature. It is also possible that using a more advanced clustering model that
considers question semantics would yield results that we have yet to discover.
However, to our best knowledge, such models require massive data sizes and
are hard to implement. We choose to utilize the DTM model as it has been
widely applied in recent studies for various topic modelling purposes and is

52 Yihao Chen et al.

proposed as an alternative to the original Latent Dirichlet Allocation (LDA)
algorithm [8,9].

Internal Validity: One threat to our study is that qualitative analysis can
be biased due to its subjective nature. To further enhance our study’s valid-
ity, we carefully conducted multiple iterations of analysis to refine previously
classified questions using newly-learnt domain knowledge. It was not feasible
to conduct a full-scale manual analysis of the collected question dataset. As
described in the study steps 3.5, we applied sampling with 95% confidence
to best preserve its representations. We admit that, by sampling, we could
not exhaust every possible fix pattern because of the highly diverse failure
symptoms. Yet, the richness of the symptoms and fix patterns that we iden-
tified, as well as the fact that towards the end of analyzing our sample no
new symptoms/fixes were encountered, provide confidence about the degree
of completeness of the qualitative analysis.

Another potential threat to the validity of our study is that we only con-
sulted one service mesh domain expert. While the expert has extensive ex-
perience in the domain and has contributed significantly to the community,
their opinions and insights may not represent the broader service mesh com-
munity. This could lead to biased feedback and limit the generalizability of our
study’s findings. To mitigate this threat, we conducted an in-depth discussion
with the expert. We exchanged our ideas from the perspectives of researchers
and practitioners for each implication regarding their practicalness and fea-
sibility. To provide better consistency and clarity, we optimized the textual
representation of the topic names and the qualitative labels (without altering
the topics’ meanings) by incorporating the service mesh expert’s feedback. Fu-
ture research may benefit from soliciting feedback from multiple experts with
diverse perspectives.

Conclusion Validity: In the qualitative analysis, we identified the many-
to-many relationships between multiple error symptoms and multiple possible
fixes. However, it is possible that one can generalize more common fix patterns
given a comprehensive knowledge of the framework and eliminate the many-
to-many relationship by understanding the root causes of each symptom. Our
findings do not necessarily suggest that a common fix pattern cannot be gener-
alized from a given complex error symptom. Still, with the domain knowledge
of a typical service mesh practitioner or researcher, they cannot effectively
pinpoint a fix pattern in case a root problem can cause multiple errors and
lead to confusing error messages.

External Validity: During the RQ3 analysis, we only considered the top
two open-source service mesh frameworks because the other frameworks tend
to involve minimal discussions. According to market share reports26 and jus-
tifications from Section 3.5, the analyzed frameworks correspond to the top
two open-source solutions in the service mesh domain. Due to the nature of
commercial service mesh frameworks and paid support services, our findings
possibly may not generalize to them.

26 https://youtu.be/Du8ImGRd2TI

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 53

Another threat is that we base our study on Stack Overflow and ded-
icated fora data. We admit that user discussion could happen in alternate
sources, such as mail lists and IRC channels. However, such data sources are
less structured, making it difficult to determine the “accepted” answer for a
given question. Therefore, we choose Stack Overflow and use dedicated fora as
supplemental data, since both include sufficient data and are among common
practitioner preferences while establishing online support channels [45].

9 Related Work

Table 8 summarizes the main contributions of 11 related papers on service
mesh. Next, we briefly go over the relevant publications and focus on an in-
depth discussion of the three empirical studies that relate the most to our
paper.

A recent study [30] surveyed the emerging service mesh technology and
the developing frameworks, including Istio and Linkerd covered in our work.
They inspected service mesh capabilities and identified three high-level chal-
lenges regarding the quality attributes of a service mesh technology: perfor-
mance, adaptability, and robustness. The authors suggested the direction of
researching service mesh’s capabilities regarding edge computation and data
analysis. Previous studies in the software engineering domain have covered
these aspects, focusing on the adoption of service mesh in edge computation
scenarios [18,23,27] and on discovering the automatic operation of service
mesh frameworks with machine learning technologies [39,40,43,52]. However,
as shown in Table 8, empirical evidence and studies are lacking to prove and
pinpoint such challenges and adoption concerns of service mesh. Our work
is the first empirical study to systematically elicit and understand real-world
concerns faced by service mesh practitioners by analyzing user-seeded posts
on Q&A platforms. Next, we cover the three empirical studies most closely
related to our study.

Service mesh traffic management: A previous work [37] proposes an
empirical study exploring the effects of traffic management-related function-
alities in Istio. The authors manually searched and identified a comprehensive
set of parameters related to network communication and collected performance
metrics in controlled experiments by pinning a single parameter while tuning
the remaining. The authors concluded that system administrators should take
extra care when configuring the traffic policies because such features could
visibly affect each other even with carefully adjusted parameters, leading to
degraded performance. The authors also advise against using such mechanisms
when traffic overload is not likely to persist since they will inevitably intro-
duce adverse side effects like the connection failure symptoms we discovered
in RQ3’s Table 7. Similar to our findings, the authors remarked on the diffi-
culty of getting the configuration values right based on actual needs and traffic
characteristics, leading to a requirement for concrete suggestions and a reliable
source of information.

54 Yihao Chen et al.

Table 8 Previous Research on Service Mesh

Publication Year Methodology Contributions

[30] 2019 Survey
Three challenges of service
mesh features and future
research directions.

[18] 2020 Novel Architecture
A service mesh architecture
for Internet of Things (IoT).

[27] 2020 Novel Architecture
A data driven approach to
service mesh for IoT.

[23] 2020 Novel Algorithm
A service mesh management
algorithm for IoT.

[40] 2020 Novel Algorithm
New algorithms for service
coordination.

[39] 2021 Novel Algorithm
Deep learning algorithm for
service coordination.

[43] 2021 Novel Algorithm
Adaptive service mesh circuit
breaker.

[52] 2021 Novel Algorithm
Adaptive Kubernetes scheduler
powered by service mesh.

[24] 2020
Empirical Study
(Controlled Experiments)

Assessed the impact of flawed
security features in service mesh
frameworks and proposed a new
threat model.

[22] 2021
Empirical Study
(Controlled Experiments)

Identified the challenges to
enforce performance constraints
in service mesh and the need for
reliable benchmark.

[37] 2022
Empirical Study
(Controlled Experiments)

Identified effective configurations
for Istio circuit breaking
mechanisms.

This paper 2023
Empirical Study
(Quantitative and
Qualitative Case Study)

A systematic study of existing
practitioner questions, identifying
rising concerns around service
mesh security, infrastructure, and
observability. Suggesting the need
for enhanced methodologies and
automation in areas of concern.

Our study’s findings on diverse service mesh error symptoms and fix pat-
terns support some claims regarding recurrent configuration challenges. While
the general trends of traffic-related work drastically declined over the last two
years (see Figure 5), we believe that managing traffic remains a concern as
the aggregated category still takes up around 20% of the total topic preva-
lence. Although previous work [37] derived insights from numerous controlled
experiments, an exhaustive search for the best parameters could be unfea-
sible for practitioners as they cannot deploy their projects into production
environments and experiment with the best traffic management policies on
a trial-and-error basis. On the other hand, deployment into testing environ-
ments requires an accurate understanding of the ever-changing traffic volume
and system specification, which is also challenging to provide valuable hints
on configuring traffic policies and handling traffic overload. The conclusion

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 55

supports our call for empirically verified best practices and indicative error
messages whenever an unexpected behaviour occurs in the system.

Service mesh security: Another previous work [24] proposes a controlled
experiment focused on service mesh security. The authors indicate that a heavy
burden of security overhead was introduced by adopting service mesh frame-
works that might offset the benefits of additional workload for system admins.
The study tested the service mesh frameworks against adversarial scenarios
and discovered design flaws that current service mesh frameworks have. Fur-
thermore, the authors found that even experienced experts could not prevent
security issues from happening in over half of the cases. The authors call for
future studies to focus on security and amend the security flaws in today’s
state-of-the-art service mesh frameworks.

Part of our taxonomy regarding security concerns in Table 7 supports the
previous work’s claims [24] on the pressing need for more attention in this
area. Our topic evolution findings within RQ2 (Figure 6) reinforce the authors’
conclusions, as we have discovered that the security concern has maintained
prevalence over the years. In RQ3, our process to derive the symptoms and
fix patterns suggests that such problems in service mesh are hard to pinpoint.
Practitioners without deep domain knowledge can only observe the apparent
symptoms and understand the root causes from a diverse but scattered selec-
tion of knowledge resources (i.e., blogs, books and documentation). Therefore,
we support the claim presented by the previous work [24] stating that expert
engineers could still face difficulty dealing with mission-critical configurations
(i.e., deployment, routing, security) due to inherent software flaws and a lack
of reliable best practices.

Service mesh performance: A previous work [22] proposes a study fo-
cused on performance (traffic management-related topics) in a context where
high-performance networking is essential for microservices to operate normally.
Therefore, the researchers conduct controlled experiments to understand com-
puting resource utilization and performance impacts, such as latency, when
adopting service mesh in specialized computation domains. The authors con-
cluded that service mesh frameworks face performance challenges when high
network performance is one of the top development priorities and call for more
action. However, the challenges elicited are derived from the author’s experi-
ence as a practitioner in the field rather than empirical evidence derived from
a systematic study.

Our study derived a list of 18 topics for the service mesh domain. Interest-
ingly, performance was considered an implicit requirement that embeds many
of the symptoms that could link to performance problems, such as cross-data-
center service mesh, load balancing and proxy delays, which span across three
major categories that we aggregated. We realize that service mesh frameworks
require more work to optimize when serving fundamental purposes in areas
with unique software requirements. As more practitioners adopt the technol-
ogy, more work should be done to better understand the difficulty of trans-
forming general-purpose service mesh frameworks into specialized solutions for

56 Yihao Chen et al.

those areas, given practical suggestions on practices and the correct configu-
rations to use.

10 Conclusions

This work presents an in-depth study of 5,497 service mesh questions on pop-
ular question-and-answer platforms, including Stack Overflow and two public
fora of open-source service mesh frameworks. While previous works focused
on exploring and addressing technical security and traffic-related challenges
through controlled experimentation, our study has systematically evaluated
existing practitioner question topics, intentions, adoption goals, error symp-
toms and fixes in the service mesh domain. We provided backgrounds that
verify the presence of rising concerns around service mesh security, infrastruc-
ture and observability.

We first identified the current state of question types, acceptance and topics
via topic modelling. We then explored the evolution of aggregated macro-topics
over time and discovered the persisting infrastructure and security-related con-
cerns. We conducted a systematic qualitative analysis, inspecting more than
800 question posts to cross-validate previous research question findings. We
compared two popular service mesh frameworks to uncover practitioner knowl-
edge intentions, adoption goals and error symptoms. We reviewed accepted an-
swers and knowledge resources to derive common fix patterns and understand
the difficulties in solving the symptoms from a practitioner’s perspective. We
also uncovered insights on many-to-many error-fix relationships and the im-
pact of minimal configuration manifest changes in highly configurable systems
like service mesh.

We suggest researchers to explore the usability and adoption complexities
of security-related features to implement secure software architectures. We also
identified a need for more user-friendly observability features, which should be
modelled accurately according to industry needs. Additionally, we highlight
the need for enhanced methodologies and automation to assist practitioners
in configuring service mesh infrastructure through configuration engineering.
Academia and industry should invest more effort to drive such advances, which
could significantly improve the adoption of heterogeneous systems such as
service mesh.

11 Conflict of Interest

All authors declare that they have no conflicts of interest.

12 Data Availability Statement

The datasets generated and analysed during the current study are available
from the corresponding author on reasonable request.

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 57

13 Acknowledgements

We would like to thank the service mesh expert who provided feedback on our
findings. Their statements are accounts of personal experience and opinion,
and are in no means relate to their current or past affiliations.

References

1. Allamanis, M., Sutton, C.: Why, when, and what: analyzing stack overflow questions
by topic, type, and code. In: Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR), pp. 53–56 (2013)

2. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice ar-
chitecture. In: Proceedings of the 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 44–51 (2016)

3. Aly, M., Khomh, F., Yacout, S.: What do practitioners discuss about iot and indus-
try 4.0 related technologies? characterization and identification of iot and industry 4.0
categories in stack overflow discussions. Internet of Things 14, 100364 (2021)

4. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? an analysis
of topics and trends in stack overflow. Empirical Software Engineering 19(3), 619–654
(2014)

5. Basili, V., Rombach, H.: The TAME project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)

6. Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml™) version 1.1.
Working Draft 2008 5, 11 (2009)

7. Bevana, N., Kirakowskib, J., Maissela, J.: What is usability? In: Proceedings of the 4th
International Conference on Human-Computer Interaction (HCI International), pp. 1–5
(1991)

8. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), pp. 113–120 (2006)

9. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine
Learning Research 3, 993–1022 (2003)

10. Bourne, V.: Annual apis and integration report - 2022. Tech. rep., Software AG (2022).
URL https://www.softwareag.com/en_corporate/resources/asset/ar/integration-

api/apis-integration-microservices-report.html
11. Buck, C., Olenberger, C., Schweizer, A., Völter, F., Eymann, T.: Never trust, always

verify: A multivocal literature review on current knowledge and research gaps of zero-
trust. Computers & Security 110, 102436 (2021)

12. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and ku-
bernetes. Communications of the ACM 59(5), 50–57 (2016)

13. Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic load balancing on web-server systems.
IEEE Internet Computing 3(3), 28–39 (1999)

14. Chakraborty, P., Shahriyar, R., Iqbal, A., Uddin, G.: How do developers discuss and
support new programming languages in technical q&a site? an empirical study of go,
swift, and rust in stack overflow. Information and Software Technology 137, 106603
(2021)

15. Chen, Y., Fernandes, E., Adams, B., Hassan, A.E.: Replication package of the pa-
per ’on practitioners’ concerns when adopting service mesh frameworks’ (2022).
URL https://www.dropbox.com/scl/fo/qrwbg9w9941xoowaoxyb0/h?dl=0&rlkey=

lkumrmmc4eez4onu5lnodmz4x
16. Chen, Z., Cao, Y., Liu, Y., Wang, H., Xie, T., Liu, X.: A comprehensive study on chal-

lenges in deploying deep learning based software. In: Proceedings of the 28th Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (FSE), pp. 750–762 (2020)

17. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An empirical
analysis of the docker container ecosystem on github. In: Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), pp. 323–333 (2017)

58 Yihao Chen et al.

18. De Sanctis, M., Muccini, H., Vaidhyanathan, K.: Data-driven adaptation in
microservice-based iot architectures. In: Proceedings of the 3rd International Conference
on Software Architecture Companion (ICSA-C), pp. 59–62 (2020)

19. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.,
Safina, L.: Microservices: yesterday, today, and tomorrow. Present and Ulterior Software
Engineering pp. 195–216 (2017)

20. Esposito, C., Castiglione, A., Choo, K.K.R.: Challenges in delivering software in the
cloud as microservices. IEEE Cloud Computing 3(5), 10–14 (2016)

21. Ferreira, A.P., Sinnott, R.: A performance evaluation of containers running on managed
kubernetes services. In: Proceedings of the 11th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208 (2019)

22. Ganguli, M., Ranganath, S., Ravisundar, S., Layek, A., Ilangovan, D., Verplanke, E.:
Challenges and opportunities in performance benchmarking of service mesh for the edge.
In: Proceedings of the 5th International Conference on Edge Computing (EDGE), pp.
78–85 (2021)

23. Goethals, T., Volckaert, B., De Turck, F.: Adaptive fog service placement for real-time
topology changes in kubernetes clusters. In: Proceedings of the 10th International
Conference on Cloud Computing and Services Science (CLOSER), pp. 161–170 (2020)

24. Hahn, D.A., Davidson, D., Bardas, A.G.: Mismesh: Security issues and challenges in
service meshes. In: Proceedings of the 13th International Conference on Security and
Privacy in Communication Systems (SecureComm), pp. 140–151 (2020)

25. Hamidi, S., Andritsos, P., Liaskos, S.: Constructing adaptive configuration dialogs using
crowd data. In: Proceedings of the 29th international conference on Automated software
engineering (ASE), pp. 485–490 (2014)

26. Hindle, A., Godfrey, M.W., Holt, R.C.: What’s hot and what’s not: Windowed devel-
oper topic analysis. In: Proceedings of the 25th International Conference on Software
Maintenance (ICSM), pp. 339–348 (2009)

27. Houmani, Z., Balouek-Thomert, D., Caron, E., Parashar, M.: Enhancing microservices
architectures using data-driven service discovery and qos guarantees. In: Proceedings
of the 20th International Symposium on Cluster, Cloud and Internet Computing (CC-
GRID), pp. 290–299 (2020)

28. Klein, M.: Lyft’s envoy: Experiences operating a large service mesh (2017). URL https:

//www.usenix.org/conference/srecon17americas/program/presentation/klein

29. Li, B., Peng, X., Xiang, Q., Wang, H., Xie, T., Sun, J., Liu, X.: Enjoy your observ-
ability: an industrial survey of microservice tracing and analysis. Empirical Software
Engineering 27(1), 1–28 (2022)

30. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: Challenges, state of
the art, and future research opportunities. In: Proceedings of the 13th International
Conference on Service-Oriented System Engineering (SOSE), pp. 122–1225 (2019)

31. Lou, Y., Chen, Z., Cao, Y., Hao, D., Zhang, L.: Understanding build issue resolution
in practice: symptoms and fix patterns. In: Proceedings of the 28th Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE), pp. 617–628 (2020)

32. McHugh, M.L.: The chi-square test of independence. Biochemia Medica 23(2), 143–149
(2013)

33. Miano, S., Bertrone, M., Risso, F., Tumolo, M., Bernal, M.V.: Creating complex net-
work services with ebpf: Experience and lessons learned. In: Proceedings of the 19th
International Conference on High Performance Switching and Routing (HPSR), pp. 1–8
(2018)

34. Picoreti, R., do Carmo, A.P., de Queiroz, F.M., Garcia, A.S., Vassallo, R.F., Sime-
onidou, D.: Multilevel observability in cloud orchestration. In: Proceedings of the 16th
International Conference on Dependable, Autonomic and Secure Computing, 16th Inter-
national Conference on Pervasive Intelligence and Computing, 4th International Con-
ference on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 776–784 (2018)

35. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures.
In: Proceedings of the 9th International Conference on Web Search and Data Mining
(WSDM), pp. 399–408 (2015)

On Practitioners’ Concerns when Adopting Service Mesh Frameworks 59

36. Rose, S., Borchert, O., Mitchell, S., Connelly, S.: Zero trust architecture. Tech. rep.,
National Institute of Standards and Technology (2020)

37. Saleh Sedghpour, M.R., Klein, C., Tordsson, J.: An empirical study of service mesh
traffic management policies for microservices. In: Proceedings of the 38th International
Conference on Performance Engineering (ICPE), pp. 17–27 (2022)

38. Sayagh, M., Kerzazi, N., Adams, B., Petrillo, F.: Software configuration engineering
in practice interviews, survey, and systematic literature review. IEEE Transactions on
Software Engineering 46(6), 646–673 (2018)

39. Schneider, S., Khalili, R., Manzoor, A., Qarawlus, H., Schellenberg, R., Karl, H., Hecker,
A.: Self-learning multi-objective service coordination using deep reinforcement learning.
IEEE Transactions on Network and Service Management 18(3), 3829–3842 (2021)

40. Schneider, S., Klenner, L.D., Karl, H.: Every node for itself: Fully distributed service
coordination. In: Proceedings of the 16th International Conference on Network and
Service Management (CNSM), pp. 1–9 (2020)

41. Scoccia, G.L., Migliarini, P., Autili, M.: Challenges in developing desktop web apps: a
study of stack overflow and github. In: Proceedings of the 18th International Conference
on Mining Software Repositories (MSR), pp. 271–282 (2021)

42. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,
V., Young, M., Crespo, J.F., Dennison, D.: Hidden technical debt in machine learning
systems. Advances in Neural Information Processing Systems 28 (2015)

43. Sedghpour, M.R.S., Klein, C., Tordsson, J.: Service mesh circuit breaker: From panic
button to performance management tool. In: Proceedings of the 1st Workshop on High
Availability and Observability of Cloud Systems (HAOC), pp. 4–10 (2021)

44. Shadija, D., Rezai, M., Hill, R.: Towards an understanding of microservices. In: Pro-
ceedings of the 23rd International Conference on Automation and Computing (ICAC),
pp. 1–6 (2017)

45. Squire, M.: “Should we move to stack overflow?” measuring the utility of social media
for developer support. In: Proceedings of the 37th International Conference on Software
Engineering (ICSE), vol. 2, pp. 219–228 (2015)

46. Syed, S., Spruit, M.: Full-text or abstract? examining topic coherence scores using la-
tent dirichlet allocation. In: 2017 IEEE International conference on data science and
advanced analytics (DSAA), pp. 165–174. IEEE (2017)

47. Thönes, J.: Microservices. IEEE Software 32(1), 116–116 (2015)
48. Vayghan, L.A., Saied, M.A., Toeroe, M., Khendek, F.: Deploying microservice based

applications with kubernetes: Experiments and lessons learned. In: Proceedings of the
11th International Conference on Cloud Computing (CLOUD), pp. 970–973 (2018)

49. Venkatesh, P.K., Wang, S., Zhang, F., Zou, Y., Hassan, A.E.: What do client developers
concern when using web apis? an empirical study on developer forums and stack over-
flow. In: Proceedings of the 13th International Conference on Web Services (ICWS),
pp. 131–138 (2016)

50. Wang, W., Godfrey, M.W.: Detecting api usage obstacles: A study of ios and android
developer questions. In: Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR), pp. 61–64 (2013)

51. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering, 1st edn. Springer Science & Business Media (2012)

52. Wojciechowski, L., Opasiak, K., Latusek, J., Wereski, M., Morales, V., Kim, T., Hong,
M.: Netmarks: Network metrics-aware kubernetes scheduler powered by service mesh.
In: Proceedings of the 40th Conference on Computer Communications (INFOCOM),
pp. 1–9 (2021)

53. Wood, J.R., Wood, L.E.: Card sorting: current practices and beyond. Journal of Us-
ability Studies 4(1), 1–6 (2008)

54. Wu, M., Zhang, Y., Liu, J., Wang, S., Zhang, Z., Xia, X., Mao, X.: On the way to mi-
croservices: Exploring problems and solutions from online q&a community. In: Proceed-
ings of the 29th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 432–443 (2022)

55. Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.: Hey, you have given
me too many knobs!: Understanding and dealing with over-designed configuration in
system software. In: Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 307–319 (2015)

60 Yihao Chen et al.

56. Zhang, S., Ernst, M.D.: Automated diagnosis of software configuration errors. In: Pro-
ceedings of the 35th International Conference on Software Engineering (ICSE), pp.
312–321 (2013)

57. Zhang, S., Ernst, M.D.: Which configuration option should i change? In: Proceedings of
the 36th International Conference on Software Engineering (ICSE), pp. 152–163 (2014)

A Index of Q&A Posts

Table 9 Selected Sample Post URLs

ID URL
P01 https://stackoverflow.com/questions/66872969/how-to-integrate-appdynamics-in-

with-istio
P02 https://stackoverflow.com/questions/48567474/istio-error-no-objects-passed-to-apply
P03 https://stackoverflow.com/questions/55453117/what-are-the-benefits-of-enabling-

mtls-in-istio
P04 https://stackoverflow.com/questions/62585045/how-to-enable-https-on-istio-ingress-

gateway-with-kind-service
P05 https://stackoverflow.com/questions/54659041/route-to-external-site-via-istio-virtual-

service
P06 https://stackoverflow.com/questions/53095970/helm-install-istio-returns-forbidden-

error
P07 https://stackoverflow.com/questions/57488845/istio-manual-sidecar-injection-gives-

an-error
P08 https://stackoverflow.com/questions/52183540/consul-go-client-redundant-server-

connection
P09 https://stackoverflow.com/questions/70076326/how-to-update-istio-configuration-

after-installation
P10 https://stackoverflow.com/questions/55159292/istio-policy-not-authenticating-jwt
P11 https://stackoverflow.com/questions/67386438/override-x-request-id-header-in-istio
P12 https://stackoverflow.com/questions/52936524/starting-a-container-pod-after-

running-the-istio-proxy
P13 https://stackoverflow.com/questions/62023421/hashicorp-consul-how-to-do-verified-

tls- from-pods-int-kubernetes-cluster
P14 https://stackoverflow.com/questions/48753297/bookinfo-example-app-crashes-on-istio
P15 https://stackoverflow.com/questions/59251833/spring-boot-minikube-istio-and-

keycloak-invalid-parameter-redirect-uri
P16 https://stackoverflow.com/questions/65896941/istio-egress-gateway-use-istio-requests-

total-metric
P17 https://stackoverflow.com/questions/62173549/consul-health-checker
P18 https://stackoverflow.com/questions/71479142/consul-connect-envoy-can
P19 https://stackoverflow.com/questions/59303619/how-do-i-install-istio-with-fixed-static-

nodeport-assignments
P20 https://stackoverflow.com/questions/53152217/control-intercept-load-balancer-traffic-

using-istio
P21 https://stackoverflow.com/questions/65735493/istio-and-hashicorpt-vault-agent-

sidecar-not-working-properly
P22 https://stackoverflow.com/questions/69326155/microservice-with-auth-as-separate-

service
P23 https://stackoverflow.com/questions/47096064/kubernetes-rpc-micro-service-with-api-

gateway
P24 https://stackoverflow.com/questions/52230457/spring-microservices-timeout-docker-

swarm
P25 https://stackoverflow.com/questions/59489749/microservices-not-registering-on-all-

eureka-instances
P26 https://stackoverflow.com/questions/33202053/product-versioning-microservices
P27 https://stackoverflow.com/questions/66527165/installing-istio-on-wsl2-fails-with-

failedmount-for-pods
P28 https://discuss.hashicorp.com/t/consul-client-and-docker-wont-start-due-to-ip-config

