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Abstract—Despite their proliferation, growing sustainable software ecosystems (SECOs) remains a substantial challenge. One
approach to mitigate this challenge is by collecting and integrating feedback from distributors (distros) and end-users of the SECO
releases into future SECO releases, tools, or policies. This paper performs a socio-technical analysis of cross-community collaboration
in the OpenStack SECO, which consists of the upstream OpenStack project and 21 distribution (distro) communities. First, we followed
Masood et al.’s adaptation of Strauss-Corbinian GT methodology for socio-technical contexts on data from an open-ended unstructured
interview, a survey, focus groups, and 384 mailing list threads to investigate how SECOs manage to sustain cross-community
collaboration. Our theory has 15 constructs divided into four categories: diverse feedback types and mechanisms (2), characteristics of
feedback (2), challenges (7), and the benefits (4) of cross-community collaboration. We then empirically study the salient aspects of the
theory, i.e., diversity and synchronization, among 21 OpenStack distros. We empirically mined feedback that distros contribute to
upstream, i.e., 140,261 mailing list threads, 142,914 bugs reported, 65,179 bugs resolved, and 4,349 new features. Then, we use
influence maximization social network analysis to model the synchronization of feedback in the OpenStack SECO. Our results suggest
that distros contribute substantially towards the sustainability of the SECO in the form of 25.6% of new features, 30.7% of emails,
44.3% of bug reports, and 30.7% of bug fixes. Finally, we found evidence of distros playing different roles in a SECO, with nine distros
contributing all four types of feedback in equal proportions, while 12 distros specialize in one type of feedback. Distros that are
influential in propagating a given type of feedback to the SECO community are not necessarily specialized in that feedback type.

Index Terms—Grounded theory, Software ecosystem, Cross-community, Feedback diversity, Sustainability, Influence maximization

✦

1 INTRODUCTION

Software ecosystems (SECOs) are groups of autonomous
yet inter-dependent projects working towards a common
goal [1], [2] through a complex choreography of socio-
technical collaborations and interactions among different
stakeholders [3]–[7]. Such SECOs can both involve pro-
prietary and open source components, as illustrated by
SECOs like Android, Linux kernel, Eclipse, GNOME, SAP,
OpenStack, Apache OpenOffice, Node.js/npm, Zephyr, etc.
Corporations involved in such SECOs span a wide range,
from Microsoft, Apple, and Google to open-source entities
like the Apache, Linux, and Eclipse foundations [8]. SECOs,
such as the Linux kernel, OpenStack, etc., produce one
final product, which distros can customize for end-users. In
contrast, other SECOs such as Maven or npm are involved
in a large set of products of which a subset has to be
chosen and installed by the end-user directly. An important
subset of SECOs, including those by organizations such as
Microsoft1, Apple2 and Google3, OpenStack, etc., have a so-
called closed-loop community for collecting and prop-
agating feedback, consisting of the following components
(see Figure 1):
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1) A governing board or a foundation overseeing the
policies and SECO culture [9].

2) A diverse community of contributors (paid or volun-
teering) who make contributions to the SECO repos-
itories and technical documentation for the upcom-
ing SECO release — upstream development (pre-
release) [4], [10], [11].

3) Companies/vendors who pick up a SECO release from
upstream, then customize, package, and integrate it ac-
cording to different use cases to satisfy their end-users
— downstream/distros (post-release) [4], [10], [11].

4) End-users, who either adopt SECO distros to enable
their daily work/business or who independently adopt
the upstream SECO release [10], [11].

5) A feedback/closed-loop4 mechanism that enables
distros/end-users to communicate changes (feedback)
to upstream in the form of bug fixes, new features,
bug reports, crash reports, emails (with complaints or
comments about a feature, request for help), end-user
survey, etc [11]–[13].

The latter feedback mechanism is essential in enabling
both open-source and proprietary communities to collabo-
rate in various ways. For instance, some SECO users require
stronger security measures than the general SECO release
provides, while others require better backward compatibil-
ity with older SECO releases. The socio-technical activities
performed by distros yield valuable feedback flowing back
to other distros and upstream to be integrated into future
upstream releases.

4. https://www.shopify.ca/enterprise/mastering-feedback-loops
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Fig. 1: Feedback Loop of OpenStack SECO enabling cross-
community collaboration between Upstream and Downstream.

Despite the importance of feedback, SECOs face ma-
jor challenges in coordinating/prioritizing such feedback
across their sub-communities of end-users and distros [14]–
[17]. For example, synchronization with upstream is still a
major concern that “requires rigorous book-keeping” [16],
while contributors in a SECO risk wasting valuable time
on fixing duplicate bugs, unless bug reporting is optimized
across the SECO [15]. The rapid growth of SECOs poses an
additional range of challenges. For example, distros need
to rapidly integrate upstream changes while also ensuring
that the changes do not break existing end-user applications.
At the same time, the number of communication channels
within a growing SECO, in the worst case, grows quadrat-
ically [18] unless explicit feedback platforms are provided
and enforced to support discussions between the different
distros and end-users. Therefore, for a SECO’s projects to be
sustainable and to grow healthily [19], distros and end-users
should be able to provide timely and meaningful feedback
to the SECO community.

This paper performs a mixed-methods empirical investi-
gation involving grounded theory and quantitative analysis
on the large OpenStack ecosystem to understand effective ,
cross-community [20] coordination in the closed-loop feed-
back mechanisms between OpenStack’s downstream dis-
tros and the upstream development community, working
towards a common goal. We initially address the question:
RQ1: How do SECOs sustain cross-community collaboration?
We address this RQ using the Socio-Technical grounded the-
ory (STGT) on unstructured interviews, surveys and focus
groups [21] study with 21 participants in four focus groups,
respectively, followed by a qualitative analysis of 378 email
threads. This yields a theory of cross-community SECO
feedback in terms of 15 constructs that explain the diverse
feedback mechanisms (2), characteristics (2), challenges (7),
and benefits (4) of cross-community collaboration.

Next, we aim to gather empirical insights about two less
studied, yet salient aspects of the theory, i.e., diversity and

synchronization, through the following research questions:
RQ2: How diverse are the feedback types contributed by distros
via various mechanisms?
RQ3: What roles do distros play in synchronizing SECO feed-
back? By quantitatively mining 140,361 mailing list archives
and 21 distros’ issue trackers (containing 142,914 reported
bugs, 65,179 resolved bugs, and 4,349 new features) over
ten years across 20 SECO releases, we observe:

• Distros are important producers of feedback within a
SECO, contributing 25.6% new features, 30.7% emails
on technical topics, 44.3%, and 30.7% bug reports and
resolutions, respectively.

• 80% of all distros’ feedback is contributed by 20% of the
distros, which follows a Pareto distribution.

• Using centrality algorithms, we found seven influential
distros in the email feedback community, two in the
new features community, one in the bugs reported
community, and one in the resolved bugs community.

• Influential distros have truck factors TF≥3 (minimum
number of distros to quit before a SECO loses 50% of
a given feedback type), which are higher than the com-
monly reported value (2) for open-source projects. [22]

• Influential distros are not specialized in their respective
feedback type communities; they play general-purpose
roles in synchronizing feedback.

2 BACKGROUND AND RELATED WORK

2.1 Subject system selection
This paper empirically investigates cross-community feed-
back mechanisms and their significance in the context of
a complex open-source SECO. Therefore, it is necessary to
have a SECO with the following characteristics:

• growing upstream community
• wide range of downstream/distros community
• open-source, allowing access to any data related to the

actual feedback mechanism
• archived communications between upstream and

downstream
• well-documented process of the SECOs’ internal and

external processes
Among several candidate SECOs such as Linux kernel,
Apache, OpenStack, Eclipse, etc., OpenStack satisfied the
above criteria, becoming our candidate of choice.

2.2 About OpenStack
OpenStack5 is an open-source SECO for private, public,
and hybrid cloud computing, founded jointly by NASA
and Rackspace in 2010 and licensed under Apache 2.0. It
follows a rapid 6-month release cycle. As of August 2022,
OpenStack is currently developing its 26th release, Zed6 ,
by a community of over 100K members dispersed across
182 countries, and featuring both volunteers and over 600+
companies [2]. The code base itself has over 20M lines of
code, with 60+ core projects, and over 500 development
(sub-project) teamsmaking changes to about 1,283 Git repos-
itories7 (one per sub-project).

5. https://openinfra.dev
6. https://releases.openstack.org
7. https://tinyurl.com/5xkdjwf5
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The OpenStack SECO constitutes an upstream and hy-
brid (open source (OSS) and vendor) downstream commu-
nities. Upstream development is managed by the Open-
Infrastructure Foundation (OIF) and follows a rapid six-
month release cycle [23]. OpenStack cloud end-users in-
clude government agencies (such as the military, and
civil services), financial institutions, research institutions,
the telecommunication industry, healthcare, space agencies,
manufacturing/industrial sectors, retail, media/entertain-
ment, information technology, etc.

Given the wide range of end-users and their different
use-cases, it is impossible for the OpenStack upstream com-
munity to create releases that can cater for all types of
end-users. Instead, an intermediary layer of distributions
(distros) has popped up that systematically track new up-
stream releases, then, integrate, customize and deliver high-
quality services to these end-users, similar to how different
mobile device vendors like Samsung or HTC customize new
releases of Android for their product teams [24]. Distros may
also want to provide/request changes to/from upstream or
another distro community.

Usually, the interaction of changes and feedback be-
tween upstream and distros (and their users) will have to go
through a dedicated channel or mechanism to their destina-
tion. The principal means of communication at OpenStack
are mailing lists (offline communication) and the Internet
Relay Chat (IRC —an online text-based chat system pro-
viding synchronous, simultaneous communication among
multiple users.).To nourish deeper interactions between the
various (sub-)communities, the OIF also coordinates activi-
ties and organizes events at various geo-locations through-
out the year, such as the OpenInfrastructure Summit/Fo-
rum, the Project Teams Gathering (PTG) events, OpenDev,
OpenStack (OpenInfra) Days, and Ops Meetups.

However, neither the scientific community nor industry
have a good grasp of which feedback mechanisms are
common between upstream and downstream, or of their
challenges and benefits to different OpenStack stakeholders.

2.3 Related work

Grounded theory methodology (GT):
Grounded theory (GT) is a methodology that aims to

generate a ‘theory’ entirely from data collected and analyzed
simultaneously until a theory grounded in data emerges
that reveals social phenomena such as relationships, social
processes, etc. GT comes in different variant depending on
the ontological or epistemological stance [25]. For exam-
ple, the Strauss-Corbinian variant (SCGT) (a purely social
variant of GT) has been used to address the social as-
pects of software engineering research [26]–[28]. Meanwhile,
other researchers have followed the Charmaz GT [29] and
the Glaserian GT [30]. However, a recent variant of GT
(Socio-Technical Grounded Theory – STGT), proposed by
Hoda [31], [32], is becoming popular in software engineer-
ing research due to its rich intersection of both social and
technical dimensions. We followed Masood et al.’s adap-
tation of Strauss-Corbinian GT for socio-technical contexts
[33]. Since conducting our study, we have become aware
of a Socio-Technical Grounded Theory (STGT) [31] that has
been developed specifically for socio-technical research in

software engineering and plan to use this for GT studies in
the future.

In particular, Masood et al. [33], Shastri et al. [30], [34],
and Hoda et al. [35] adapted traditional GT methods to
study agile software development. This was followed by
the formalisation of the adaptations into the STGT method
in 2021 [31].

Masood et al. collected data from three sources: inter-
views, participant observation, and scrum guide (by the
book) and found variations across three core categories
between Scrum theory and how it is practiced. Hoda et
al., use Glaserian GT to investigate how Agile teams self-
organize, with members repeatedly self-organizing them-
selves and functioning outside their boundaries, with one
person playing multiple (different) roles at different time
intervals as needed. The authors use interviews and partic-
ipant observation to collect data from 58 Agile practitioners
across 23 software organizations to generate a theory, which
identifies how informal, implicit, transient, and spontaneous
roles make Agile teams self-organized.

Palomba et al. [26] did a mixed-method study to un-
derstand developers’ concerns and how those affect their
decisions to eliminate or preserve code smells. The authors
use Straussian GT qualitatively with data from a survey
to study community smell and quantitatively mined nine
open source repositories to show that community smells can
influence code smells’ severity.

On the other hand, Rodrı́guez et al. [36] take a different
epistemological stand, by using a different variant of GT
(Glaserian version —positivist approach) to understand the
concept of value-based feature selection mainly when used
in the software development process to select and priori-
tize features based on their values. The authors collected
data from three large-scale software organizations prac-
ticing value-based decision-making using semi-structured
interviews with 21 decision-makers. Their resulting analysis
led to a theory “of value for value-based feature selection
(software features) in software/software-intensive product
release planning” explained by six constructs.

Since Glaserian GT is unsuitable for our socio-technical
activities because of its strong positivist stand, our mixed-
method study is greatly inspired by Masood et al.’s
STGT methodology, allowing us to explore how cross-
communities collaborate to drive feedback mechanisms in
a complex SECO and identify benefits and challenges.
Collaboration in open source software communities:

Prior works [5], [6], [37]–[39] have studied collabora-
tion and upstream companies’ participation in open source
communities such as OpenStack SECO, WebKit, etc., along
various dimensions and levels of abstraction. Our work
differs from these works in several aspects. In particular,
we focused on distros, which are downstream post-release
proprietary companies that collaborate with upstream pre-
release development.

Zhang et al. [39] empirically studied upstream commer-
cial participation in OpenStack projects by mining projects’
Git repositories and conducted a survey with OpenStack
developers. They found eight contribution models accord-
ing to which competing companies contribute to OpenStack.
They also argue that while competing companies contribute
over 90% of commits to upstream, they aim to balance the
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SECO’s long-term sustainability goals and maximize busi-
ness profit. The authors stated that most of these companies
are hardware manufacturers such as Dell, Intel, etc., and
other e-commerce platforms like Walmart, eBay, etc. Like
our work, Zhang et al. found that distros (“full-solution
providers”) are key players among the eight models. Both
Zhang et al. [39] and Teixeira [6] use social network analysis
to show collaborative patterns in OpenStack’s upstream,
and both lines of work agree that competitive companies
can still collaborate upstream in the same project.

Our work differs from Zhang et al. in a number of
major ways. Firstly, they mainly focused on upstream col-
laboration during the development cycle instead of consid-
ering distros’ significant role in contributing feedback to
upstream. We explore various data sources and venues to
draw our conclusions. We also found and studied different
types of collaborations (upstream-upstream [5], upstream-
downstream and downstream-downstream ), feedback pro-
vided by distros, and feedback mechanisms used to collab-
orate. That said, both works agree that dominating compa-
nies (in terms of feedback) threaten the sustainability of a
SECO, for example, in case of abandonment.

Cross-distribution/project bugs:
Cross-distribution SECOs [40], [41] such as the Linux [15],
Android [42], and OpenStack [41] distributions, are very
popular, yet face a number of unique challenges. Boisselle
et al. [15] quantitatively analyze duplicate cross-distribution
issue reports across the Ubuntu and Debian bug reposito-
ries. Their models are able to obtain an optimal precision
and recall of 43%. Furthermore, the authors estimate that a
median of 38-47 days is wasted waiting for a fix that already
exists elsewhere in a SECO.

Chen et al. [43] and Ding et al. [44] empirically an-
alyze the scientific Python ecosystem (upstream/down-
stream cross-project bugs). On the one hand, Ding et al.
aim to understand the distros’ workaround characteristics
of upstream fixes. The implications of their study guide
practitioners to understand cross-project bugs in software
ecosystems. Results show that workarounds have four pat-
terns, three categories of workarounds bugs exist, and up-
stream fixes significantly differ regarding LOC and code
structure. Chen et al., on the other hand, investigate how
members from different OSS projects collaborate by forming
a working group to fix cross-project bugs. They also found
the typical roles that upstream (decision-makers or gate-
keepers) and downstream (problem-finders) members play
when fixing cross-project bugs. Our study found evidence
of the extent of collaboration between distros, and that
wasted efforts are pain points to distros involved in cross-
community collaboration, as it takes an extra 13 days to
discover a redundant bug.

Developer mailing lists: Developer mailing lists [45] tra-
ditionally have been considered for studying the behav-
ior/evolution of OSS communities. Wiese et al. [46] em-
pirically studied the issue of identity disambiguation ac-
cording to which a user could be identified by multiple
email addresses in a mailing list, which is common in open-
source software communities. Empirical evaluation of six
disambiguation heuristics obtained from the literature on
150 mailing lists of Apache projects shows how a naı̈ve

heuristic, on average, performs the best in terms of F-
measure, depending on the considered time window and
the dataset size.
Yin et al. [47] conducted a mixed-methods study on OSS
project sustainability by mining mailing list archives and
historical commits from 263 Apache projects over a 16-year
period. The authors trained an interpretable LSTM model to
forecast a project becoming sustainable with 93% accuracy.
They also use the data to construct a social network analysis
to show relationships among developers per project and to
advise stakeholders proactively.
Rigby and Hassan [48] mined the Apache httpd developer
mailing list to perform a psycho-linguistic analysis to un-
derstand the complexities of OSS development. Amongst
others, the authors measure data related to the five major
personality traits to analyze the four most influential devel-
opers in the httpd community. The authors also investigate
why developers join and abandon projects by analyzing
emails of two top ex-developers. Results suggest similar per-
sonality traits among top-release developers and significant
differences among other developers.
Similar to these prior works, we also use mailing list
archives and commit data. Furthermore, we mined ad-
ditional data sources to study cross-community feedback
mechanisms. Complementary to the findings of Rigby and
Hassan [48] and Yin et al. [47], influential distros facilitate
the timely propagation of feedback across the entire com-
munity, specializing in diverse feedback types, and with
higher truck factors than previously reported. To disam-
biguate users with multiple addresses, we followed a similar
approach to Wiese et al. [46] and relied on OpenStack
community tools8 to access email data.
New features and changes: Code changes, such as new
features that add functionalities to the existing codebase or
bug fixes, are integral to software evolution [49]. Modern
software development is collaborative in nature [50] as con-
tributors depend on each other to build software [51], [52].
Schueller et al. [53] studied the large-scale decentralized
collaborative development in the Rust OSS SECO through
data harvested from traces of their developers’ contributions
and collaborations. The authors curated data on several
thousands of developers during a period of eight years of
developer contributions to Rust to reconstruct the SECO’s
development history. The authors use social network anal-
ysis to show developers’ growth in code changes, new
features, dependency, and collaboration networks.
Hinterreiter et al. [54] explore distributed feature-oriented
development and evolution in an industrial SECO compris-
ing sub-communities that customize and integrate solutions
as new features to satisfy end-users requirements. These
sub-communities push back changes to the main product
line to be merged. Hinterreiter et al. proposed an approach
that allows new or updated features to be transferred to
other product lines in the SECO. This practice benefits the
SECO when new features or updates from a sub-community
are transferred to another sub-community.
Similar to these works, our study explores OpenStack, a
globally distributed OSS SECO, and the distros around the
SECO, which themselves are not open source but propri-

8. https://opendev.org/x/stackalytics
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etary. We empirically study the extent of vertical collabora-
tion by distros and upstream to design new features, and
horizontal collaboration among distros.

3 QUALITATIVE ANALYSIS (RQ1)
We use qualitative and quantitative research methods to
investigate cross-community collaboration, feedback types,
and mechanisms in a typical open-source SECO. Using a
grounded theory (GT) approach, see Fig. 2, we address
RQ1 by exploring cross-community collaboration, feedback
types, and mechanisms both in the vertical (interaction
between distros and upstream communities) and horizontal
(amongst distros) dimensions. We use the STGT variant of
GT [31], [33], since it focuses on the rich socio-technical
intersection of software engineering, enabling researchers
to understand the significance of a diverse and inclusive
cohort of stakeholders and their interactions in a complex
cross-community SECO. These stakeholders include soft-
ware developers, teams, community/foundation members,
managers, customers/end-users, distros, etc.

Furthermore, it allows us to study how these stake-
holders’ socio-technical characteristics (motivations, needs,
preferences, strengths, limitations, skills, etc.) enable them to
collaborate and produce more ethical and human-centered
software artifacts. STGT makes no assumption on any prior
theory to test on data but generates new theories entirely
from data.

3.1 Data collection
3.1.1 Theoretical sampling and saturation
Step 1: To bootstrap our study, we reached out to an OIF
board member (indicated in Table 1 as Up5 with Role BM)
with expertise in OIF customer relations and community
services to get an understanding of how distros and the up-
stream community collaborate to form a complex SECO. As
suggested by this board member, the first author of this pa-
per then contacted the OIF vice-president for an exploratory
online unstructured interview (1. Interview, Fig. 2), which
lasted 48 min. Towards the end of this interview, the first
author asked the vice president to recommend potential
members of the SECO who could be resourceful to our study
(snowball sampling).

Four technical committee members (indicated in Table 1
with role TC) were suggested, which we contacted over
the IRC channel for an unstructured online interview. Dur-
ing these interviews, only audio recording was allowed
throughout the sessions, and we wrote down notes and used
the IRC chat logs. The audio recordings were transcribed au-
tomatically. An initial session lasted between 10–18 minutes,
and was aimed at getting to know these individuals and the
roles that they play within the SECO and the communities
around it. The second round of interviews lasted approx-
imately 32-40 minutes, providing a high-level overview of
various vendors/distros operating around the OpenStack
ecosystem, and how they collaborate with upstream.

We aimed to learn how the communities around Open-
Stack function, for example, if there are policies that govern
distros’ interactions with the upstream, who are the contact
persons for each distro, etc. We also asked the following
open-ended questions:

TABLE 1: Surveyed and focus group participants (D1-21),
Foundation members (Up1-5) and moderators (Mod1-3).

ID Community Role Yrs(Com) Yrs(Role)

Dn1 Downstream Mgmt 5 4
Dn2 Downstream Engr. 7 5
Dn3 Downstream Engr. 8 6
Dn4 Downstream Mgmt. 11 5
Dn5 Downstream Engr. 7 4
Dn6 Downstream Engr. 9 5
Dn7 Downstream Engr. 9 6
Dn8 Downstream Engr. 4 4
Dn9 Downstream Engr. 6 5
Dn10 Downstream Engr. 8 5
Dn11 Downstream Mgmt 9 5
Dn12 Downstream CustRel 7 5
Dn13 Downstream Engr. 8 5
Dn14 Downstream Engr. 6 5
Dn15 Downstream Engr. 7 5
Dn16 Downstream Engr. 9 5
Dn17 Downstream CustRel 11 7
Dn18 Downstream CustRel 9 5
Dn19 Downstream Engr. 7 5
Dn20 Downstream Engr. 6 5
Dn21 Downstream CustRel 7 5

Up1 Upstream TC 12 6
Up2 Upstream TC 11 5
Up3 Upstream TC 11 7
Up4 Upstream TC 12 8
Up5 Upstream BM 7 5
Mod1 Upstream FM 5 3
Mod2 Upstream Mgr. 10 6
Mod3 Upstream Mgr. 11 7

ML(1..120) Mailing list Labeling - -

Downstream/Upstream Participants (Dx/Upx) with #years of experi-
ence with their community Yrs(com) vs. in their various roles Yrs(Role).

1) How is the downstream community organized?
2) How do upstream and downstream collaborate?

Step 2: Next, the TC members gave us indications and re-
sources based on which we contacted 35 distros for a survey
study, 21 of which responded, yielding a response rate of
60%. For this survey study (2. Survey, Fig. 2), we contacted
each distro to understand their demographics, size, interac-
tions, and collaboration concerning the upstream in terms
of the kind of feedback provided and the mechanisms used.
The survey instrument contained both open- and closed-
ended questions. The survey instrument is available in our
replication package [55]. Examples of questions asked:

1) How do you proceed to integrate upstream changes?
2) How do you manage these type(s) of changes locally?

Step 3: While analyzing the survey data, we realized
that we needed more insights into cross-community collab-
oration, for example, who is collaborating with whom in
the community? What type of collaboration takes place?
Do distros associate with other distros to solve complex
problems, such as bug fixes, new features, and bug/crash
reports? Is there a mechanism to keep track of distros’
contributions? These sets of questions guided our choice
for using a focus group study [21], [56] with the surveyed
distros. Focus groups are moderated discussions typically
involving a limited number of participants, usually 5 to 10.
Such heterogeneous groups enable us to learn about distros’
perspectives, culture, desires, reactions, and feedback on
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5. Generate Theory 5'. Evidence
gathering 

8. New features

7. Bugs 

6. Mailing list 1. Interview

2. Survey

3. Focus groups

4. Mailing list

RQ1. Qualitative data (Grounded theory) RQ2-3. Quantitative data (over 10 years/ 20 release records)

21 Distros'
repos

We mined 1,283
OpenStack

projects repositories

140,361 emails

ReportedBugs: 142,914
ResolvedBugs: 65,179

New features: 4,349

21 respondents

Four groups
(N=21, =5.25)

Five participants

n=384, N=140.4K, CI=5%

Fig. 2: Methodology for mixed-method analysis showing multiple sources/steps of data collection. The qualitative analysis (RQ1)
enables the generation of a theory, while the quantitative analysis (RQ2/3) gathers empirical evidence of major aspects of the
theory, i.e., diversity and synchronization among 21 distros.

cross-community collaboration.
The focus groups were held during the virtual PTG

event on October 18-22, 2021, during the Covid-19 pan-
demic. To accommodate focus groups with all 21 surveyed
distros, we simultaneously collected and analyzed data in
four different stages [33] in four distinct groups (3. Focus
groups, Fig. 2) and at different times. Each such focus group
study involves participants with a high level of involvement
in the community and experts in cross-community collabo-
ration and OpenStack-related operations. The first author of
this paper was one of the moderators of the focus groups in
collaboration with OpenStack foundation members.

The questions for our focus groups had been pre-
approved by OpenStack and include:

1) Can you describe your recent experience when you
collaborate (upstream/downstream) on feedback?

2) How do you cope with the upstream release cycle?
We had an allocated time slot of 70 minutes per day

starting from Monday, Oct. 18 through Thursday, 21, 2021, a
total of 280 minutes. We randomly assigned participants to
a particular group with a median size of five participants.
To moderate the focus groups, OpenStack assigned two
members with managerial roles in the community to assist
the first author of this paper.

While conducting the focus groups, we continuously
refined our sets of discussion topics by narrowing them
to more specific topics on cross-community collaboration
and feedback types/mechanisms. This enabled us to decide
on the next group of people (distros) to talk to. Also, we
continuously observed the focus group participants and
did not notice any participant dominating the discussion
or lurking; they were all engaged and proactive in the dis-
cussions. OpenStack’s virtual communication environment
automatically generated a discussion transcript at the end
of each focus group discussion. Since this was imperfect,
we had to make minor corrections due to different speaker
accents. After finishing the fourth round of focus groups,
we realized that we were not learning any new concept/the-
me/category from the previous groups or data we analyzed.
As such, we recognized that we had reached a point of
saturation and stopped focus group activities.

Step 4: During the focus groups, about 90% of the partic-
ipants mentioned that they use the mailing lists the most to
discuss bug fixes, crash reports, new features, events, etc.,
with the upstream community. Hence, we considered the
mailing lists as an essential source for our study, and also
decided to mine the “openstack-dev” mailing list (4. Mailing
list, Fig. 2) archives from April 2012 (the first six-month
release of OpenStack, Essex, and around when OpenStack
established its foundation) to October 2021 (Xena release,
when we conducted the Survey and Focus group study).

Since there are 20 releases between Essex and Xena, we
assigned the mailing list threads in each release’s develop-
ment cycle to a separate bin. Then, from a population of
140,361 email threads, we randomly sampled 384 emails
with a 5% confidence interval [57]. However, since 384
cannot be equally spread across 20 bins, we rounded this
number to 400 samples, implying a sample of 20 email
threads per bin (release).

3.2 Data analysis
STGT emphasizes three methods for data analysis, ex-
plained in detail in the following subsections, i.e., open,
axial, and selective coding [58], [59]. For each of these,
all three authors of this paper did ten rounds of quali-
tative analysis before reaching a perfect agreement. Each
round started off with the individual coders independently
(re-)coding their sample of the qualitative data obtained
from the unstructured interviews, survey, focused groups,
mailing list data, and memos [31], [60] (to discover patterns
and relationships that exist among concepts, sub-categories, and
categories) based on our code book available online [55].

The results were then compared to each other and
discussed in online meetings, during which the emerg-
ing codes, concepts, sub-categories, categories, and theo-
ries were further refined. This process continuously in-
creased the level of abstraction until a theory emerged
from the data [27] based on the characteristics and types
of cross-communities collaboration, and the associated ad-
vantages/challenges of cross-community collaboration and
feedback. Fig. 3 (C) visualizes the resulting theory. To fa-
cilitate the authors in connecting and working on the same
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platform remotely and asynchronously, we used Miro9 to
organize and cluster codes into hierarchical structures.

3.2.1 Open coding
In open coding [58], we analyze the transcribed text of the
unstructured interviews, survey, focus group, and sample
emails by labeling (coding) occurrences of events, actions,
interactions, etc., relevant to cross-community collaboration.
We used four guidelines in this open coding phase: (i) we
asked specific and consistent questions to the data during
coding (for example: What is happening here? Under what
conditions is this happening? What is the study of this data
about?); (ii) we maintained a well-defined manner of label-
ing the text based on an inductively derived code book, (iii)
we actively reflected on the coding process, and we wrote
down notes (memos) to keep track of our reflections; (iv)
we minimized our assumptions by being as open-minded
as possible [58], [59]. Fig. 3 (A) shows a concrete example
of open coding of the interviews, survey, focus group, and
mailing list data that we continuously coded and compared
throughout this process. For example, we first extracted
key phrases from the transcribed text at the lowest level
of granularity and converted them into codes of two to
four words, e.g., ‘Distracting event’ and ‘Inconsistent feedback’
from the interviews with participants Up1 and Up5 (other
examples shown in Fig. 3 (A)). Next, we extracted codes
from the survey, focus group, and mailing list data, while
continuously comparing the code across data sources. The
codes from all four data sources form our codebook [55], a
collection of all codes that emerged during open coding that
we mapped/classified onto concepts.
These codes are then mapped to their associated concepts at
the right-hand side of Fig. 3 (A), e.g., in the interview cat-
egory, ‘Distracting events’ maps to ‘Distracting event feedback
mechanisms’, and ‘Inconsistent feedback’ maps to ‘Inconsistent
feedback spoils collaboration’. Due to the continuous compari-
son of codes across the data sources (interview, survey, focus
group, and mailing list), codes were mapped to concepts
leading to a final mapping of the above codes to the concept
“No dedicated communication channels to empower cross-
collaboration.” This links Fig. 3 (A) to Fig. 3 (B).

3.2.2 Axial coding
This coding builds on the concepts of open codes
by moving and re-arranging codes and concepts into
sub-categories, then establishing links (relationships) be-
tween sub-categories, grouping them into higher-level cate-
gories [61], as shown in Fig. 3 (B). The authors deliberated
profoundly as a team on each sub-category using the online
Miro platform to move and re-arrange sub-categories and
categories iteratively. In particular, axial coding enables
us to find links that best explain relationships between
(sub)categories. During these deliberations, the transcribed
data and mailing list served as a guide retrospectively to
contextualize any association between sub-categories and
categories.

To facilitate the linking process, we use four guidelines:
(i) we look at the condition(s) under which concepts occur,
(ii) we were aware that a label might fit under multiple

9. https://miro.com/app/board/o9J l95-rBo=/

themes/concepts/categories, although under different con-
text(s), hence we used this context (and domain knowledge)
to guide our linking of concepts and/or sub-categories;
(iii) we also consider the consequences if we link sub-
categories and categories; (iv) finally, we consider what
action and interaction strategies a link reveal. Eventually, 15
sub-categories were derived from the 188 concepts and were
linked to four categories established during axial coding,
as shown in Fig. 3 (B). These categories explain the types
of feedback mechanisms (T1 and T2), the characteristics
of feedback requests (X1 and X2), and the potential ben-
efits (B1, .., B4) and associated challenges (C1, ..., C7) of
doing cross-community collaboration. For example, “Cross-
community collaboration enables transparency in measur-
ing community-wide metrics” was mapped to the category
“Benefits of cross-community collaboration and feedback
mechanisms.”

3.2.3 Selective coding

The last coding phase in STGT is selective coding; see Fig. 3
(C). Here, we formalize the relationships among/between
(sub-)categories derived from the open and axial coding into
a core category, which becomes the theory of our study [58],
[59], i.e., a grounded theory of cross-community collabora-
tion. During selective coding, we use memo notes [35] to
advise our data analysis, which was instrumental in sup-
porting the relationships among sub-categories, categories,
and the core category with empirical evidence, grounding
our theory in the data, thus enabling us to detail the charac-
teristics of feedback and types of feedback mechanisms, the
challenges and benefits of cross-community collaboration.
GT also conceptualizes time, space, events, and people [59],
[61], [62] beyond its descriptive nature. Therefore, from the
collected data, we explore the needs and implications of
synchronization, diversity, communication, feedback mech-
anisms, and their characteristics in cross-community collab-
oration.
In Section 4, we detail the 15 constructs of our theory and
explain how they are interconnected in a higher level of
abstraction. Consequently, during the data analysis phase
of our GT, we observed that some constructs were more
predominant among distros’ discussions than others. In
particular, we categorize these constructs into four major
groups, each showing conceptualizations of diverse collab-
oration mechanisms, feedback characteristics, benefits, and
challenges of cross-community collaboration. The first and
the second author did several (about ten) iterations of dis-
cussion and deliberations on the diverse mechanisms in Sec-
tion 4.1, the feedback characteristics in Section 4.2, and the
benefits and challenges of cross-collaboration in Sections 4.3
and 4.4, with the third author reviewing and reconciling
any disagreement. Throughout the coding process, we used
Nvivo 12 and Miro tools to facilitate the collaborative data
analysis steps.
The results of our three data analysis steps clearly showed
that the obtained data from the interviews, surveys, focus
groups, and email threads allows our coding to reach satu-
ration [58].
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Fig. 3: Summary of the STGT data analysis, showing how (A) Open coding, (B) Axial coding, and (C) Selective coding generate
a theory of cross-community feedback mechanisms in SECOs.

4 QUALITATIVE ANALYSIS RESULTS

RQ1: How do SECOs sustain cross-community collabora-
tion? We answer this RQ via the following derived theory:

Cross-community collaboration requires synchronization,
communication, and diverse feedback types and mechanisms
to grow and sustain SECOs.

This section discusses all 15 sub-categories of Fig. 3 (B)
grouped by the four high-level categories they belong to.

4.1 Diverse feedback types and mechanisms for col-
laboration

Fig. 4: Feedback types and mechanisms used by distros. T1
comprises online platforms and social events, while T2 high-
lights feedback requests and responses.

Sub-category T1 comprises various mechanisms to pro-
vide diverse types of feedback between a SECO’s upstream
and downstream communities. The surveyed distros ac-
knowledged the resourcefulness of feedback mechanisms
(T1), enabling them to communicate with upstream devel-
opment teams. As shown in Fig. 4, these feedback mech-
anisms can either be online platforms or social events. The
former corresponds to issue trackers for code-base-related
discussions (launchpad, Storyboard, Gerrit, etc.), developer
mailing lists for discussions on events and the codebase,
and online collaboration tools such as user surveys and
Q&A sites (e.g., Ask.openstack.org, Serverfault, etc.) to
discuss technical questions and problems on a variety of

topics. “Some asynchronous communication mediums, such as
email and Gerrit, are heavily used, but at times these discussions
can be speed up by using more synchronous mediums such as IRC
conversations.”(Up1)

Social events refer to the OpenStack Summit, PTG,
Forums, or Meet-ups, which can either be in-person or
virtual (such as in 2020/2021 due to Covid-19). Distros
have different preferences for these feedback mechanisms.
For example, Dn1’s distro values PTGs, mailing list, and
Forum in that order, while Dn3’s distro would only prefer
PTGs and meet-ups, and for others (Dn17 and Dn21), social
events are of equal importance. “Some teams in the same
Project may prefer instant messaging over mailing lists. Other
teams may be more wiki-focused. There isn’t a one-size-fits-all
answer, so understanding the preferred communications model is
important.”(Up3)

Sub-category T2 consists of the diverse range of feedback
requests and responses provided by distros and their stake-
holders. “There’s a lot of bug fixes and improvements and features
that make part of all of these code changes that were accepted, and
we’ll learn more about a few projects that are me sharing their
stories today.”(ML61)

As shown in Fig. 4, feedback requests can refer to
problems, bugs, crashes, complaints, or suggestions for new
features. Ideally, these requests should be resolved through
a feedback response consisting of bug fixes, implementing
a new feature, or just forwarding a request to the proper
party for further processing. Surveyed distros reported that
the most common feedback responses and requests sent to
upstream OpenStack projects are Bug fixes, New features,
Emails with complaints/requesting help, and Bug reports.

4.2 Characteristics of feedback

Not all feedback is resolved successfully; hence, sub-
categories X1 and X2 focus on the characteristics of suc-
cessful and unsuccessful feedback, respectively (see Fig. 5).
Perhaps unsurprisingly, successful feedback (X1) involves
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Fig. 5: The constructs X1 and X2 show the characteristics of
(un)successful feedback across the different mechanisms of T1.

timely, important, high-quality, and relevant issue reports
and fixes. Although based on the surveyed distros, un-
successful feedback is vetted before being sent out, such
feedback typically meets one or more of the conditions of
X2 that reduce the chances of successful feedback.

“Belated changes” and “duplicate fixes” are the most
mentioned characteristics of rejected feedback in X2. An
upstream participant mentioned that “if we find Faults today
and report them tomorrow, I’m sure someone will fix them, but if
you find faults today and report them in a year, we might not be
able to get anyone to listen.” (Up3).

Dealing with duplicate fixes also is taxing since it corre-
sponds to wasted effort. This occurs when a distro invests
substantial resources to address an issue, only to realize
that another community had resolved the issue earlier. “We
have been working hard for that fix for the past two months,
and yesterday I was shocked after posting the fix to Nova when
Mirantis reported that they resolved the bug over a month; this is
frustrating.” (Dn3). “No one has yet offered a solution to avoid
duplicate fixes. It’s still an open problem that I wish perhaps the
scientific [community] may one day suggest a breakthrough to this
challenging problem.” (Up4).

The other reasons for rejection are related to the general
usefulness of feedback outside the distro providing it, as
well as to the timeliness of suggested feedback.

4.3 Benefits of cross-community collaboration

Fig. 6: Benefits associated with cross-community collabora-
tion. B3 is the most discussed benefit among distros.

Four out of 15 constructs in the emerged theory in
Fig. 3(B) address the benefits (B1, B2, B3, and B4 shown
in Fig. 6) of cross-community collaboration and feedback
mechanisms. Some benefits such as B3 (better diversity/in-
clusion) are observed to manifest sooner than later. One of
the focus group participants noticed: “The community is so
large, but everyone in it seems to value and respect one another.
This creates a safe place for anyone, client or vendor, to grow and
thrive”(Dn16), enabling a diverse and inclusive atmosphere
to quickly appear (and potentially remain for a long period
of time).

On the other hand, it takes a while for B1 and B2 to
have visible effects and observable benefits. Even though

cross-community collaboration (B1) becomes visible only
after multiple attempts, the effects are long-lasting and pay
off dividends. This is emphasized and highlighted by the
participants in this study and the mailing list discussions:
“Several successful calls for operations (Ops) and development
(Dev) to collaborate more closely to speed up upgrade time to
newer releases and deployment. Distros/end-users usually spend
several hours on technical know-how and staffing, making them
vulnerable to solo efforts.”(Up4).

Similarly, B2 ensures that metrics at all levels of contribu-
tion and collaboration are measured, enabling a transparent
SECO for all stakeholders. “When collecting statistics, we think
of transparency and deliver these metrics in an API format so
that projects can use them on demand. OpenStack is massive
and complex, and it’s tough to understand what’s happening
everywhere. Measure and report on key areas of community
contribution are vital for the community.”(Dn13).

Meanwhile, the ability to better synchronize operations
(B4) has mid-term effects benefiting end-users and oper-
ators, and easing deployment operations. One analyzed
distro suggested that cross-community collaboration has
increased their chances of getting a lasting solution as
they can learn and benefit from others’ rich experiences
(B4):“Deploying OpenStack with large clusters of more than 2000
servers in our case was a significant issue until we discussed
this problem and folks from other communities and some distros
brought in different solutions sets, and we now have a stable
solution to the problem.”(Dn15).

4.4 Challenges in cross-community collaboration

Fig. 7: Cross-community collaboration challenges.

Cross-community collaboration also brings 7 challenges
to the communities involved. These challenges, shown in
Fig. 7, are friction points that can slow down development
time if not properly managed. Five of the seven challenges
relate to purely technical activities, i.e., C3, C4, C5, C6, C7,
relating to T2 (Feedback response, Fig. 4) and both X1 and
X2 in Fig. 5. On the other hand, C1 and C2 refer to social
challenges or requirements and, as such, relate to T1 in Fig. 4
(i.e., Online platform and Social events, respectively).

Concerning C1, surveyed participants affirm that com-
munication through dedicated channels is challenging, mak-
ing it difficult to keep track of cross-community discus-
sions: “Upstream needs a dedicated system for feedback. With
uncontrolled traffic, channels quickly get noisy to focus on a
follow-up discussion” (Dn7). Also, another participant shared
concerns about the decentralized nature of the OpenStack
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codebase (C6), which comes with additional communica-
tion overhead: “Project segmentation with multiple channels to
support each sub-project or team...” (Dn15). Since OpenStack
community members are distributed across the globe with
different time zones, coordinating events to accommodate
everyone is challenging (C2): “For this brainstorming session,
we had the IBM team in Beijing and other guys on the east coast
of the US. In order to cover two time zones 13-hr apart, we chose 9
pm EST time for the convenience of the US” (Dn13). C2 became
even more prominent during the Covid-19 pandemic, as
lockdown rules pushed all meetings onto online platforms
running in different time zones.

The other challenges involve potential disconnects be-
tween distros and the upstream OpenStack project. For
example, concerning C3 and C5, distros’ changes usually
involve customizations made for their own needs: “we usu-
ally add our specifics to changes that are not needed upstream
or at least for everyone to use” (Dn6). While this is a good
thing for distros (customization gives distros a competitive
advantage), it is challenging for upstream to accept such
changes. Similarly, C7 relates to a disconnect between the
release cycles of upstream and distros. Upstream follows a
rapid six-month10 release cycle [23], with releases going end-
of-life (EOL) after 24 months. However, distros have longer
release cycles and support end-users for more extended
periods (between 48 to 60 months). Therefore, if distros
make changes on a release that has gone EOL and push
that change upstream, it will most likely be rejected (X2,
changes to a version no longer supported): “we found a bug
and reported it to OpenStack Mitaka [release] and they say ‘it’s
in Ocata we are now in Queens come and fix that in Queens’ but
that function is not there anymore we are already pretty late so we
kind of lose the essence of CI and we lose the value we can add to
this ecosystem ” (Dn9).

While participants were unanimous about the many
mechanisms and forms of feedback between distros and
upstream, as discussed earlier, the degree of horizontal
collaboration amongst distros was said to be limited. 85.7%
outright report that their distros do not collaborate with
other distros. Part of the reason for this is the lack of
automation between distros’ issue trackers (C4), as well as
the decentralized way in which inter-distro communication
and feedback are handled (C6).

While the decentralized nature of feedback may seem
good from a “divide and conquer” perspective, this doesn’t
seem to be a perceived advantage for distros since they have
to wait for all collaborators to be in synchronization, which
usually is not the case. “OpenStack has several projects that
we push feedback patches directly to, for example, Neutron and
all its sub-projects repos separately. We usually get delays when
collaborators from other communities are not in synch ” (Dn21).
“The status quo of communication among distros and upstream
on patches is icky, slowing down the iterative code review process,
especially in reported unresponsiveness to code reviewers’ com-
ments” (Up4). Keeping track of all communications around
code reviews for patches across different sub-projects is
challenging.

The STGT analysis has enabled us to uncover the diverse
nature of feedback mechanisms (T1) and how this influences

10. https://releases.openstack.org

the way in which the different types of feedback (T2) are
communicated amongst distros and between distros and
upstream. Even though vertical collaboration is effective,
collaboration is still weak horizontally; with only 14.3%,
and C4 is the most common challenge discussed among
distros to empower horizontal collaboration. T2 (especially
resolved bugs and reported bugs) have been shown to
depend on T1 (especially issue trackers and PTG) for the
feedback loop in cross-collaboration to be complete, and
this dependency can result in one of two possible outcomes,
which are either successful (X1) or not (X2). Therefore, by
exploring the social event and online platform mechanisms
of T1, distros could probably mitigate the likelihood of X2
occurring while trying to optimize X1.
Moreover, T1, T2, X1, and X2 enable distros and upstream
to engage in cross-community collaboration with observable
benefits (B1-B4). Furthermore, distros highlight that the
main mechanism for communicating feedback (T1) are issue
trackers and PTG. Meanwhile, resolved bugs and bugs re-
ported are the most common types of feedback (T2) that dis-
tros make. From the surveyed data and the focused group
discussions, distros highlighted the importance of feedback
diversity and inclusion (B3) as the most appreciated benefit.
Also, we observed that distros are widely dispersed globally
and provide diverse services to end users. SECOs should en-
gage more in synchronizing activities (i.e., event planning)
with distros across different time zones and geo-political
regions. For example, distros in the Asia Pacific region have
often reported internet censorship that usually affects online
platforms (T1) and slows down communication with up-
stream. Therefore, despite the benefits associated with cross-
community collaboration, there are crucial challenges (C1-
C7) that, if not properly addressed by SECOs and distros,
could disrupt the sustainability process of SECOs.

5 QUANTITATIVE STUDY APPROACH

In our derived theory (“Cross-community collaboration requires
synchronization, communication, and diverse feedback types
and mechanisms to grow and sustain SECOs.”), feedback
diversity and synchronization are the most novel constructs,
yet they lack sufficient attention in the SECO literature.

This followed from a thorough search for systematic
literature reviews/surveys, mapping studies, and tertiary
studies among seven popular bibliographic libraries, i.e.,
ACM Digital Library, IEEE Explore, SpringerLink, Elsevier
Scopus, Wiley Online Library, Web of Science from Thomson
Reuters, and Google Scholar. Our search query (see repli-
cation package [55]) resulted in 348 papers, which were
narrowed down to seven related to OSS and/or SECOs
after skimming the titles and abstracts [43], [63]–[68]. Feed-
back diversity (RQ2) and synchronization (RQ3) are only
touched upon by Imtiaz et al. [68] and Herbold et al. [67],
respectively, indicating high novelty. While Imtiaz et al. [68]
focus on SECO feedback, they only consider bug reports
compared to our focus on four types of feedback. The
notion of inter-company collaboration studied by Herbold
et al. [67] focuses on synchronization in individual projects
instead of amongst the companies (i.e., distros) of a SECO.
On the other hand, 5 of the 7 papers [43], [64], [66]–[68]
mention that SECO community structure and interaction are
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important directions of future work, both in the context of
SECOs [43], [64], [66] and of individual projects [67], [68].

As such, this section empirically investigates the feed-
back diversity and synchronization constructs in the Open-
Stack SECO, based on the following research questions:
RQ2: How diverse are the feedback types contributed by distros
via various mechanisms?
Motivation: Given that cross-community collaboration
brings together distinct socio-technical communities (up-
stream and downstream) to collaborate on customizing
and evolving a SECO release, we aim to understand what
proportion of feedback type(s) distros contribute upstream
and the types of mechanisms used. Understanding the
characteristics of feedback that are accepted and merged
upstream or rejected is equally important. Such findings
could inform SECO stakeholders, especially distros, to iden-
tify opportunities to minimize the required effort on unsuc-
cessful feedback and focus more on accepted and merged
feedback. Moreover, feedback mechanisms such as mailing
lists, issues trackers, etc., could become more dedicated to
specific feedback types and hence, less noisy channels.
RQ3: What roles do distros play in synchronizing SECO feed-

back?
Motivation: Synchronization is the most commonly dis-
cussed challenge that distros mentioned and the least stud-
ied challenge that SECOs face to make communities, includ-
ing SECO stakeholders, become aware of diverse types of
feedback in a timely manner. SECOs should understand and
have mechanisms that mitigate wasted efforts among dis-
tros, for instance, by working on resolving bugs for which
fixes already exist elsewhere. To the best of our knowledge,
no such understanding of horizontal and vertical collabo-
ration exists at the moment of writing this paper. Hence,
in the context of this paper, we use social network analysis
to detect various communities formed around a particular
feedback type and identify influencers in such feedback
communities, which we can use to understand the propa-
gation of feedback across the entire SECO communities.

5.1 Approach for RQ2
For RQ2, we first empirically analyze the surveyed distros’
feedback activities to understand the prevalence of New fea-
tures, Bugs reported, Resolved bugs, and Emails from April
2012 to October 2021 (spanning 20 OpenStack releases). For
this, we mined the following repositories:
Upstream codebase repositories: To quantitatively analyze
our RQ2 and RQ3, we use the open-source Stackalytics infras-
tructure11 hosted by OpenStack12. OpenStack uses this tool
to collect community-wide contributions from individual
volunteers and from contributors affiliated with a distro.
Stackalytics collects and processes commits, lines of code
changed, code reviews, new features, reported and resolved
bugs from the OpenStack codebase and project repositories.
It also provides the official mapping from each contribu-
tor to the project(s) they contribute to and provides their
affiliation (distro) and all the changes they make. Thus,
for reported/resolved bugs and newly accepted features,
we used Stackalytics to mine the OpenStack issue trackers

11. https://wiki.openstack.org/wiki/Stackalytics
12. https://opendev.org/x/stackalytics

(Launchpad and Storyboard) and 1,283 upstream codebase
repositories, comprising both the 63 core OpenStack projects
and all major sub-projects.
After Stackalytics collected all contributions from all repos-
itories, we filtered out contributions that were outside the
window of our study (April 2012 to October 2021). We then
organize contributions by affiliations and also by communi-
ties (upstream vs. downstream). For downstream, we keep
only contributions for the 21 distros that we analyze in this
paper.

Distros issues tracker/repositories: Next, we obtained
permission from the 21 studied distros to access their private
issue trackers and repositories. For each distro, we map the
Stackalytics results in terms of feedback received upstream
(such as bugs reported, resolved bugs, and new features) to
the distros responsible for it. For this, we used issue IDs,
email addresses, and usersID for contributors, as shown in
Fig. 2. Therefore, we ended up with a mapping of each distro
and the list of all feedback types (bugs reported, resolved
bugs, new features, and Emails)
The developers’ mailing list13: As shown in Fig. 4, SECOs
like OpenStack have email archives containing the vari-
ous kinds of feedback sent between distros and upstream
projects, such as emails requesting for help, bug/crash
reports, comments/discussions on new features, etc. Emails
on such developer mailing lists are moderated, and only
authorized authors can send messages. Emails have [tags]
between brackets in their subject with the involved (sub-
)project/module name and special keywords to indicate
targeted projects/distros and topics of discussion.
Just like we did before for bug reports, we requested access
to OpenStack’s Stackalytics community tool14, this time to
extract the developer mailing list archives, then process and
display the communication activities. Stackalytics searches
for special tags in the email as it reads each email’s body,
subject, and address fields. These tags correspond to Open-
Stack sub-projects/modules to which an email is related,
the reference links (HTTP[s]) to new features and bugs
in the message body, and the (sub)project/module name
in the subject field. Since OpenStack maintains a list of
tracked web pages with mail archives in a configuration
file (“default data.json”), Stackalytics scans the domain
of the author’s email address, and, if found, maps the
email domain to the configuration file to obtain an au-
thor’s affiliation. If not found, the email domain is either
an independent contributor or affiliated with a distro. In
those cases, Stackalytics uses the email address to search the
author’s profile in LaunchPad15 (an issue tracker), where all
contributors in the community need to register to become
members/contributors.
Furthermore, we also noticed users with multiple email
accounts, which is a common problem in OSS developer
mailing lists [5], [46], [69], [70]. To deal with such email
aliases, We used a similar technique for identity (account)
merging as in our earlier study [51]. We first merge email
addresses attached to the same first and last name, e.g.,
the identities John Doe ⟨john.doe@domain.com⟩ and Doe

13. https://tinyurl.com/2p9ezk7u
14. https://wiki.openstack.org/wiki/Stackalytics
15. https://launchpad.net/openstack
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John ⟨doe@john.com⟩. A second merging criterion checks
the contribution statistics, i.e., the identity’s frequency of
contribution using the identity timezone and the number
of modified files. Then, we compute and merge the most
similar identities based on normalized Levenshtein similar-
ity [70]. Finally, a third criterion checks a person’s identity
against OpenStack’s internal database to verify and maps
identities to contributors.
Furthermore, we follow a similar regular expression-based
approach to group emails per feedback type as in our
earlier work [2]. First, we manually examined patterns in the
email discussions to identify feedback types. Each feedback
type is mapped to specific keywords, which we used for
the identification. For example, “New feature”, “Blueprint”,
“enhancement”, or “templates” are keywords used often
for the New feature feedback type. We identified similar
keywords for the other feedback types, then applied the
(case-insensitive) patterns to the OpenStack mailing list
data. Eventually, out of the 166,101 extracted emails with
threads, 140,361 (84.5%) emails were retained, while the
other 25,740 (15.5%) emails were discarded either because
they were unrelated to distros’ feedback or because they
were generated by bots in the CI/CD pipeline.

We then aggregated our analysis at the project level,
similar to how prior works have studied the OpenStack
codebase and organizational structure in terms of core
projects and sub-projects/modules [2], [23]. For example,
Nova (a core project) [23] has about 20 sub-projects(e.g.,
nova − spec and nova − powervm) to which feedback can
be submitted. Therefore, we aggregated all changes that
belong to these sub-projects under their core project. To
determine the relationship between core and sub-projects,
we parsed the projects’ YAML configuration file hosted at
the governance repository. Then, we extract core projects
at the root level of the YAML file. Next, we extract the
deliverables for each core project organized by their sub-
projects and -repositories.

As such, we mined activities for New features (44 ag-
gregated projects), bugs reported (44 projects), Resolved
Bugs (44 projects), and Emails (49 projects) that each distro
authored from the Essex (2012) up to the Xena (2021) release,
a period of about ten years and 20 OpenStack release activi-
ties. As of October 30th, 2021, the OpenStack upstream code-
base comprises #LOC: 60,301,408 and #Commits: 423,973.
Concerning Crash reports, we did not have data to analyze.
Hence we consider this analysis as future work.

Next, we measure how feedback is dispersed for all
four feedback types to understand the patterns of feedback
distribution in the studied period. We expect one of two
outcomes, i.e., either feedback is equally distributed or some
distros may provide a disproportionate amount of feedback
as compared to others. In this respect, we calculate if a
distro “specializes” in a given feedback type, i.e., whether
a given feedback type is dominating [38], [71] in a distro or
not.

To ensure fairness with our dominance measure, we
measure two types of feedback dominance, i.e., relative
and absolute domination. We use the majority criterion
from game theory [72]–[74] to rank the feedback and set
a threshold for feedback specialization to > 50% of the total
feedback for a distro. For a given distro, we first determine

the relative proportion of feedback |Fn| that it provides for
each feedback type, such that F1 > F2 > F3 > F4 (and∑4

i=1 Fi = 1). We then calculate the relative gap between
the top two feedback types provided by the distro, i.e., F1

and F2, as follows: 100 ∗ (F1 − F2)/F2. If this relative gap
is greater than 50%, we argue that the feedback type of F1

is dominating amongst the feedback provided by the distro,
i.e., that the distro specializes in this feedback type. Next,
we calculate absolute dominance, i.e., whether a distro’s top
feedback type F1 > 50%, then that particular feedback has
absolute dominance in that distro.

Finally, we also calculate, for each feedback type, the
normalized entropy across all distros [75], [76]. An entropy
value of 1 means that all distros contribute equally to a
specific feedback type, while an entropy value of 0 means
that one distro dominates (specializing in) all produced
feedback of a given feedback type. In addition, we calculate
the cumulative distribution function (CDF) to visualize how
feedback is spread across/specialized by distros.

Concerning Bugs reported and resolved, it is important
to note that distros are commercial enterprises that aim to
provide high-quality and high-availability services to end
users to retain them in business. For this reason, resolv-
ing bugs is of utmost importance to distros. “Fixing bugs
and resolving issues are our top priorities as a distro when it
comes to customer satisfaction. I believe that speeding up cross-
collaboration with other distros can help to improve our resolution
times” (Dn19). Therefore, we also measure the median time
it takes for distros to resolve a bug, i.e., the time from a bug
being reported until the closing of that bug, which is the
time a customer has to wait for their issues to be resolved.

5.2 Approach for RQ3

Secondly, we aim to understand how (well) feedback is
synchronized across communities. For this, we use social
network analysis [77] to measure the coverage of feedback
broadcast by distros to the upstream projects’ repositories.
For example, if a particular distro has a fix or a solution
to a problem, ideally, it would like to propagate this across
the entire network such that other distros (and upstream)
become aware, trying to reduce wasted effort and resources
for distros. We perform this analysis for the network struc-
tures of the four types of feedback studied in this paper.

For each network structure, the nodes represent distros
or the upstream project. We use an edge list to construct
social network communities [78] that represent the rela-
tionships between distros and projects in a weighted and
undirected graph using the data mined in the previous
subsection. As edge weights, we use the number of feedback
contributions of a particular category (e.g., fixes) made by a
particular distro and sent to a given node. Full details of the
network structure and analysis are available online in our
replication package [55].

To measure how feedback is communicated and syn-
chronized across the four social network communities, we
use several algorithms (such as independent cascading,
influence maximization, and nine centrality algorithms ex-
plained below). First, we adopt an independent cascad-
ing [79] model, where a node (distro or project) becomes
aware of feedback based on the connections to each of its
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neighbors independently, and on some probability propor-
tional to the weight of the corresponding edge. So, if a node
is aware of, say, a fix, that node will be assigned a probability
to spread that information about the fix to its neighbors in
the community.

Moreover, given the many possible paths between po-
tential network influencers (i.e., the most centrally located
nodes/distros with a large impact on the network struc-
ture and on its ability to spread feedback across various
communities) and influential nodes (i.e., nodes with more
connections among connected distros and projects) [77],
[80], [81], we also use a seeding approach [82], which is an
influence maximization strategy that searches the best nodes
to “intentionally activate” in other to spread information
(feedback) across the network community. Since finding an
optimal seeding is an NP-hard problem [80], [83], we ex-
perimented with nine centrality algorithms commonly used
in the literature [84]–[88], implemented in the NetworkX
library [78] in Python.

The centrality algorithms enabled us to obtain 4,268
different seeding options to identify top influencers (dis-
tros/projects) in the cross-community social networks. The
latter enables to spread of feedback (Resolved bugs (fixes),
Bugs reported, new features, and emails) further into the
network community, to inform other distros that initially
would not have been aware of the feedback. Among the
nine centrality algorithms, the following three outperformed
the others in several communities in terms of centrality
measures: Load centrality in the Reported bugs community,
Betweenness centrality in the Resolved bugs community,
and Katz centrality in the Email/New feature communities.

However, since our network communities involve com-
plex network structures, we also decided to use a strategy
that could identify hidden communities within our social
networks, to simplify them before running the centrality
algorithms. We performed community detection [89] using
the common Girvan-Newman [90] and Louvain [91] algo-
rithms, with the Louvain algorithm performing better than
Girvan-Newman. It detected one community in the Bugs re-
ported and resolved networks, two communities in the New
feature network, and seven in the Email networks. Next,
we then apply the three successful centrality algorithms
discussed earlier in each of the detected communities.

Finally, to understand the vulnerability of a detected
community in case a key distro should abandon the SECO,
we adopt the truck factor (TF) [22] metric. In our context,
“TF measures for each type of feedback the minimum number of
distros to quit before the SECO loses 50% of a given feedback
type” [22], [92].

6 QUANTITATIVE ANALYSIS RESULTS

6.1 RQ2: How diverse are the feedback types con-
tributed by distros via various mechanisms?
Distros are essential and productive in cross-community
feedback, contributing 25.6% of all new features in the
OpenStack ecosystem, authoring 30.7% emails relating to
technical topics, reporting and resolving 44.3% and 30.7%
bugs respectively.
According to the observed feedback types (see T2), distros
turn out to be productive in terms of all feedback types. Yet,

one issue identified in our qualitative studies (i.e., lack of
traceability between different aspects of a given feedback
contribution) became apparent. For example, the Mailing-
list feedback channel is noisy, with many distractions that
can prevent other distros from becoming aware of what is
happening. “Because conversations can be spread around multi-
ple places, it can be helpful to link all of these conversations with
little breadcrumbs. A mailing list thread might reference a [Gerrit]
review, which might reference a log of an IRC conversation, which
might reference a blog post, which might reference a bug, which
might reference a previous commit message which referenced a
previous mailing list thread.”(Dn17).

The feedback contributions from distros follow a Pareto
distribution (power-law) [93] with 80% of all downstream
changes coming from 20% of the distros. This distribution
is similar for all categories of feedback that distros make, as
shown in Fig. 8[R].

Our Pareto results confirm the upstream policy to regu-
late upstream companies’ contributions in each release/de-
velopment cycle: “One of the things that we really believe in
and encourage upstream is the diversity of contributions. So,
most contributions to projects hosted by the OpenStack foundation
shouldn’t just come from one company.”(Up5).

About five distros contribute 80% of feedback on aver-
age. Furthermore, the feedback entropy for all four cate-
gories is close to 0. In particular, the entropy for Reported
Bugs is 0.227, while the other three entropy values (Emails,
New Features, Bug Resolved) = 0.222. This low entropy
further confirms that contributions to all feedback types are
not diverse (some distros are dominating, i.e., about five
distros contribute 80% of feedback on average) in terms of
participating distros.
While 9 distros provide the four types of feedback in equal
proportions, 12 distros specialize in one type of feedback.
Fig. 8[L] shows the proportion of feedback types contributed
by distros. When considering the absolute interpretation
of feedback type dominance, we note that only 6 distros
specialize in one feedback type. Notably, Dn4 CAN spe-
cializes in Resolved Bug feedback, Dn21 VIO in New fea-
tures, and Dn2 AWC, Dn3 CTC, Dn5 CDB and Dn8 H3C
in Reported Bugs. In contrast, when considering the rel-
ative interpretation of feedback type dominance, 6 addi-
tional distros specialize in one feedback type. In particular,
three distros (Dn1 99C, Dn4 CAN, and Dn6 ESK) special-
ize in Resolved Bug feedback, six (Dn2 AWC, Dn3 CTC,
Dn5 CDB, Dn8 H3C, Dn18 SUE, Dn20 UTM) in Reported
Bugs, one (Dn21 VIO) in New features, and two (Dn7 ERN,
Dn9 HPC) in Emails. The other 9 distros , from Dn10 HWI
to Dn17 RDH, and Dn19 TES) have two or more of their
feedback types almost evenly distributed.

Fig. 9[R] summarizes the feedback productivity of the
distros in terms of all four types of feedback, i.e., Emails on
the x − axis, Resolved bugs on the y − axis, New features
on the z − axis, and Bugs reported represented by color
intensity. Fig. 9[L] projects this plot onto the dimensions of
reported and Resolved bugs.

These plots show that only a tiny subset of distros
specializes in a given feedback category. These specialized
distros differ across feedback types. For example, fewer than
five of the 21 distros in the Reported Bugs community are
not colored yellow in the 4th dimension in Fig. 8[R], while
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in the New Feature category, 85.2% of the traffic comes from
distro Dn21 VIO. Similar observations hold for the other
feedback types.
A median of 25% of reports are duplicates, affecting a
median of three distros. Fig. 9[L] indeed shows how all
distros have reported a total of 89,713 bugs, with a median
of 1,755 bugs reported, 75% of which are unique, i.e., not
a duplicate of an earlier reported bug. Among the total
number of uniquely reported bugs, 43.8% (a median of 518)
were resolved as useful feedback by distros, while 56.2%
(median of 862) are missed opportunities (reported without
any response).
Wasted effort is a pain point for distros since they spend
an extra fix time of 12 days to resolve wasted effort.
We observed how 54.2% (39,286) of the bug fixes were
propagated upstream, while 29% remained locally (local
customizations), and 16.8% were wasted effort (resolved
redundant bugs), i.e., bugs that were fixed in parallel by
at least two distros, without coordination.

Distros spend a median of 13 days to fix unique bugs
(useful feedback) compared to an extra median of 12 days to
fix redundant bugs (wasted efforts) or to discover whether
an existing fix exists. Both activities together amount to a
total median of 25 days.

6.2 RQ3: What roles do distros play in synchronizing
SECO feedback?

Surprisingly, influential distros in a given feedback type
community are not necessarily specialized in that type but
play general-purpose roles.

Each of the four plots in Figure 10 (a), (b), (c), and
(d) shows the role of distros in the network community
for one feedback type. These plots were obtained by the
influence maximization algorithms that identified the most
influential distros as shown in Table 2. Then, based on

our community detection algorithm, two communities were
detected in the New features community, one in both the
Bugs reported and resolved communities and seven in the
Email community. An x − axis position more to the right
in Figure 10 indicates lower influence, while the nodes are
colored according to their feedback type specialization (or
grey for no dominating feedback type, i.e., distros are not
specializing in feedback types). The size of each distro in a
particular feedback category in Figure 10 (a), (b), (c), and
(d) indicates the size of that particular distro’s feedback. For
example, in Figure 10 (d), (#21) has the largest size of new
features.

In Fig. 10a, we notice that specialized distros are more
spread out horizontally, while the distros without feedback
type specialization (grey) are clustered right below the
most productive (and at the same time most influential)
distro (#17). This observation indicates that the Reported
bugs community is the most computationally demanding
community to synchronize feedback, i.e., distros that are
closer to the most influential distro become influenced
more quickly than distant ones (see Table 2). In contrast,
Fig. 10b (the resolved bug community) requires less effort to
synchronize feedback. It shows clusters of non-specialized
distros rallying under the influential distros (#17), with little
spread on specializing distros. The Email community in
Fig. 10c spreads more along the horizontal axis but stays
almost constant on the vertical axis. This is the only com-
munity where we have two influential distros (close to the
y − axis), i.e., the specialized distros (#4) and (#9).

Finally, Fig. 10d has the widest spread in terms of
feedback and it is the only community where a specialized
distro produces the largest amount of feedback (#21). Based
on Table 2, we notice that the new feature community
has two detected communities, which simplifies feedback
synchronization according to the Katz centrality algorithm.

Influential distros are associated with a higher TF (≥3)
in terms of produced feedback, which is unusually higher
than for regular open-source projects. Besides the Email
community with a TF of six, all other communities have a
TF of three as shown in Table 3. In particular, prior work [92]
has shown that regular open-source projects have a TF of 2,
which in this study is less than the TF of influential distros.
Therefore, influential distros could drive/enable the SECO
to be sustainable with such TF (≥3).

Furthermore, we observed in Table 2 and Table 3 that
influential distros turn out to have a more consistent
and regular flow (see Fig. 8) in contributing feedback to
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upstream projects and are more central to reach all other
projects and distros based on the centrality algorithms.

In general, SECOs can run a significant risk of sustain-
ability degradation if influential distros become specialized
in a feedback type for that community, and their TF < 2,
(see Table 3). Such a context may indicate that the SECO is
homogeneous, therefore, not diverse, or that other distros
are abandoning at a faster rate. However, our qualitative
study did not find any such case. Moreover, OpenStack has
an upstream policy that regulates a potential monopoly by
a single company.

TABLE 2: Influential distros in detected communities (DC).
Community Most influential distros/nodes #DC

New features Dn17 RDH, Dn13 MRT 2
Reported bugs Dn17 RDH 1
Resolved bugs Dn17 RDH 1
Emails† Dn1, Dn4, Dn9, Dn11, Dn13, Dn16, Dn17 7
Suffix of influential Emails† distros removed for space purposes.

TABLE 3: Truck factor for each detected community (DC): New
features (NF), Reported bugs (FB); Resolved bugs (RB); Emails
(EM).
DC TF Value ≥ 50-PCT TF Distros†

NF 3 3.7K 3.1K {Dn13, Dn17, Dn21}
FB 3 51.4K 44.8K {Dn11, Dn13, Dn17}
RB 3 22.1K 44.8K {Dn11, Dn13, Dn17}
EM 6 72.4K 67.4K {Dn9, Dn10, Dn11, Dn13, Dn16, Dn17}

Suffix of all influential distros removed for space purposes.

7 DISCUSSION AND IMPLICATIONS

Below, we discuss and analyze the implications of our
findings on different software engineering stakeholders.
7.1 Implications for SECOs, Distros, and Academics
Researchers should explore classification, recommendation,
and filtering approaches for feedback mechanisms (T1)
to ensure higher chances of feedback being accepted and
merged upstream (X1) while keeping the noise level in the
feedback channels as low as possible. The distro stakehold-
ers who participated in our study have expressed dismay
at noisy feedback channels. Therefore, dedicated channels
could increase the opportunities for distros to become more
aware and easily retrieve feedback.
Similarly, it is important to explore ways to monitor the
SECO community for influential distros and contributors to
predict which ones are more likely to succeed or abandon.
This could help mitigate the current problem of stagna-
tion of development or abandoning feedback. For future
research, academics and tool builders are called upon to
investigate novel machine learning-based models, visualiza-
tions, and monitoring approaches that can exploit various
SECO health metrics (B2), not only at the top SECO-level
or individual distro-level but also at the granularity of
distro network communities (cf. our results in RQ3). This
would allow, for instance, to find ways to increase the truck
factor of the distro community. Metrics like the latter should
be closely monitored by a SECO to control for abandon-
ment/retention, especially on influential distros, which, if
suddenly abandoned, could render the entire community
less sustainable.
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Fig. 10: Centrality algorithms’ detected communities for each
feedback type. Color shows the dominating feedback type of a
distro (blue for email, orange for new features, green for bugs
reported, red for resolved bugs), or gray if no dominant type.



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH YYYY 16

Academics should mine data regarding the various types
of feedback (T2) to understand the main factors behind
the success or failure of each type, as well as to build
approaches to identify feedback that has been already con-
tributed and/or accepted to avoid redundant work. This
could lead to higher SECO feedback velocity and more effec-
tive feedback synchronization across communities. Further-
more, the role of diversity/inclusion in feedback (B3) should
be explored in more depth. Based on the essential role
distros play, SECOs should be more proactive in ensuring
that upstream (including OSS projects) integrates distros’
feedback from prior releases in the upcoming release, trans-
parent to distros. Up1 mentioned how “From the foundation
standpoint, distros play a vital role in OpenStack operations.
Most importantly, our end-users prefer a more stable and long-
maintained system/platform that their businesses can depend on.
Therefore, we make much effort to harvest feedback from distros
to better inform upstream development and ensure our releases
are as compatible with end-users’ expectations.” Thus, further
research on novel ways for SECOs and distros to actively
and transparently collaborate (C2) should be explored.
A different spin on this was mentioned by a focus group
participant, who stressed the importance of contributing
feedback upstream in response to another distro’s skepti-
cism about sharing “privileged” feedback with competitors,
since that would lose part of its competitive edge. Dn19
warned “Don’t limit yourself to maintaining downstream-only
changes because a downstream-only focus can result in costly
refactoring of code to consume new upstream changes. Ensure
to maintain changes upstream and keep your downstream (propri-
etary) work aligned with upstream releases.” Hence, this is a call
to action for distros, SECOs, and academics to collaborate
in building a more robust and intelligent mechanism to
reduce the effort for distros to synchronize upstream. Such a
mechanism would lower the threshold for sharing feedback
to the SECO, and reduce the risk of redundant work due
to duplicate feedback or feedback with a low likelihood of
being rejected upstream. Also, academics should investigate
and propose a model of how competitive distros/projects
could share privileged feedback without compromising
their market shares. This could provide empirical evidence
for distros to make an informed decision on horizontal
collaboration.
Concerning Social events (T1) and event planning and
management (C2), SECOs should encourage frequent tech-
nical in-person events to build the essential amount of
shared understanding and trust that is necessary for distros
to cooperate successfully. Distros claim that “Our partici-
pation in these in-person events is much more productive and
efficient the rest of the year trying to reach out to folks on our own
contacts” (Dn7). The advent of Covid-19 witnessed a decline
in in-person events, which distros describe as difficult mo-
ments to collaborate. Early works have shown a relationship
between trust and collaboration among distributed software
teams [94].

7.2 Implications for Tool Builders & OSS communities
Since the end users’ demands, and hence feedback, for
distros’ services are growing rapidly, tool builders and OSS
communities should design high-bandwidth communica-
tion tools (C1) between end users, distros, and upstream.

They should learn from the current heterogeneous com-
munication tool belt (B1; wicked problem), gathering re-
quirements from all stakeholders (end users, distros, and
upstream) to design such a high-bandwidth tool. Further-
more, those communication tools should be robust towards
distros’ geo-location.
For example, findings from our survey show that OpenStack
distros are globally distributed, providing dissimilar cloud
services (i.e., private, public, or hybrid cloud) to end users. Eu-
rope and the Americas cover 60% of the market shares, with
the remaining 40% distributed across the Asia Pacific (23%),
the Middle East (15%), and Africa (2%). Moreover, distros
in the Asia Pacific region have claimed that certain regions
impose various forms of internet censorship [95] on vari-
ous communication mechanisms, which slows down SECO
development. Therefore, tool builders and OSS should look
for alternative ways to make communication channels more
robust in the presence of censorship and other communica-
tion challenges, enabling global transparency and visibility
of feedback. Based on the different roles played by distros
(RQ2/3), horizontal collaboration across distros might even
be more beneficial than maintaining a perfect vertical col-
laboration between upstream and distros. Dn13 mentioned
that “Only a few companies can manage complex, distributed,
fast-moving software such as OpenStack, which is why most
customers and end-users operate extensive and well-coordinated
services from distros.” Therefore, we call on tool builders and
OSS to continue automating infrastructure such as cross-
distro issue trackers to enable better integration of distros,
and hence increase collaboration with each other (C4), while
maintaining a healthy collaboration with upstream. Given
the crucial role distros play in cross-community collabo-
ration, our results can benefit SECOs with downstream
communities such as the Linux Kernel, etc., and can also
be generalized to globally distributed SECOs, such as the
Linux Kernel, GNOME, Eclipse, Zephyr, etc., that produce
coordinated SECO releases.

8 THREATS TO VALIDITY

Our study might have been affected by various threats that
we discuss below.
Construct validity: Relying on the OpenStack events and
allotted time for the focus group study could jeopardize our
design constructs. However, OpenStack events are the only
venue where we could reach out simultaneously to all the
distros and interact with them on shared objectives.

Using the Stackalytics community tool to obtain our
quantitative data about the upstream community could
introduce bias. However, Stackalytics is not locked to a
particular distro. It uses common git commands/functional-
ities similar to custom scripting, but with the unique excep-
tion that while querying confidential repos, it automatically
reads confidential data containing permission tokens map-
ping each change to its authors and their affiliations/distro.
This is essential for our study.

We use regular expressions to extract themes in the
mailing list archived, which could be noisy and subject
to false positives. To mitigate this threat, we strictly used
the queries of our earlier work [2] on the same dataset.
Similarly, to ensure that synchronization and diversity are
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less investigated, we searched seven widely used/known
databases for software engineering research. Our query [55]
was designed to capture various terms relating to feedback
diversity and synchronization at the SECO level. As themes
began to emerge during GT analysis, we ran our query
continually to enhance the likelihood of recognizing related
topics in the literature.

Also, to ensure that distros are equally represented in the
mailing list discussions, we relied on a random sampling of
140,361 emails with a 5% confidence interval yielding a 384
sample size. Then, we rounded up our sample to 400 emails
to fit equally into 20 bins. On average, each release had 18
emails per bin, and we had a balanced representation of
distros in the mailing list discussions.

Internal validity: These threats relate to alternative explana-
tions of our findings. Our study may suffer from subjectivity
in qualitative analysis. To mitigate this, we did multiple (10)
rounds of iterations in our GT following rigorous method-
ologies for open/axial/selective coding. All authors were
deeply involved in several rounds of negotiated agreements
and deliberations to reach a consensus. We also searched the
literature in each given step to guide our decisions.

Moreover, the first author is a foundation member of
OpenStack, which could bring potential bias to this study.
However, to mitigate this threat, his involvement with
OpenStack was limited to facilitating access to resources
that would not have been possible otherwise, i.e., distros are
vendor locks. The other authors actively participated in this
study, and each step of the STGT analysis was intensively
deliberated, mitigating any bias from the first author.

External validity: OpenStack is a complex open-source
SECO, so our results may only generalize to specific types
of SECOs. To mitigate this threat, our survey, focus groups,
GT, and quantitative studies were designed to be as much
ecosystem-agnostic as possible and hence should be ap-
plicable to other SECOs. Hence, SECOs, practitioners, and
researchers could benefit from our study design to analyze
cross-community collaboration.

In calculating the time taken to resolve a bug, we use
the gap between the filed time and the fixed time of a
bug. Our rationale is that distros are competitive vendors
aiming to provide their users with high availability and
quality services. They try to resolve bugs quickly to meet
their users’ expectations. Hence, the resolved time is more a
measure of the time users/distro contributors have to wait
for a resolution rather than a measure of the amount of work
spent on resolving. We acknowledge that this assumption
may not hold in the context of other open-source projects
where contributors could be working as volunteers or with-
out any compelling pressure. In this case, we cannot account
for the gap between the filed time and the fixed time of a
bug. Also, the Covid-19 pandemic has introduced a culture
of online collaboration that could disrupt cross-communities
collaboration or potentially change existing practices. More
research is needed to understand the impact of this threat.

Reliability/Conclusive validity: We make our datasets and
tools available online [55] for replication and transparency,
with the exception of confidential participant information.

9 CONCLUSION

The sustainability of SECOs remains a substantial challenge
despite their proliferation. To mitigate this challenge, this
paper studies a mechanism that collects feedback from dis-
tros and end-users of the SECO releases and integrates those
changes to improve upstream releases, tools, or policies.
This paper performs a socio-technical analysis of cross-
community collaboration in the OpenStack SECO, involv-
ing the upstream and 21 distros communities. First, we
use the STGT methodology with an open-ended, unstruc-
tured interview, survey, focus groups, and 120 mailing lists
with threads. Our theory with 15 constructs divided into
four categories (feedback mechanisms (2), characteristics of
feedback(2), challenges (7), and the benefits (4) of cross-
community collaboration) explains how SECOs manage to
sustain cross-community collaboration. Then, we imple-
ment the most popular constructs of our theory by empir-
ically analyzing changes that distros contribute upstream
as feedback by quantitatively mining 140,261 mailing list
archives, 142,914 Reported bugs, 65,179 Resolved bugs, and
4,349 new features. We further use influence maximization
in social network analysis to synchronize/broadcast feed-
back on a solution to a problem.

The STGT analysis suggests that T1, T2, X1, and X2
enable cross-community collaboration with observable ben-
efits (B1-B4). The main mechanism for communicating feed-
back (T1) are issue trackers and PTG. Meanwhile, resolved
bugs and bugs reported are the most common types of feed-
back (T2). Still, there are crucial challenges (C1-C7) that, if
not properly addressed, could disrupt the sustainability pro-
cess of SECOs. Our results suggest that distros are important
producers of feedback within a SECO. They contribute
25.6% of new features, 30.7% emails on technical topics,
44.3%, and 30.7% bug reports and resolutions, respectively.
Distros’ feedback follows a Pareto distribution, with 80% of
all distros’ feedback being contributed by 20% of distros. We
detected four feedback communities in the SECO using so-
cial network analysis. Using centrality algorithms, we found
seven influential distros in the email feedback community,
two in the new features community, one in the reported
bugs community, and one in the resolved bugs community.
Influential distros have higher truck factors (≥3), which are
greater than common open-source truck factors. Surpris-
ingly, influential distros are not the most dominant in their
respective feedback-type communities; they play general-
purpose roles in synchronizing feedback. Among others, our
empirical study has the following relevant implications for
academics, distros, and SECOs:

1) The identified theory of SECO feedback mechanisms
calls on both SECOs and researchers to further explore
these notions and to build tools for sustainable SECOs.

2) By leveraging our theory and quantitative findings on
diversity and synchronization of feedback, SECOs and
distros can benefit from our findings to promote a more
sustainable community.

3) Finally, the quantitative findings, and our methodology
to gather and analyze these, allow distros to actively
measure and promote horizontal collaboration among
distros and upstream.
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