
Noname manuscript No.
(will be inserted by the editor)

Towards Graph-Anonymization of Software
Analytics Data

Empirical Study on JIT Defect Prediction

Akshat Malik · Bram Adams · Ahmed
E. Hassan

Received: date / Accepted: date

Abstract As the usage of software analytics for understanding different orga-
nizational practices becomes prevalent, it is important that data for these prac-
tices is shared across different organizations to build a common understanding
of software systems and processes. Yet, organizations are hesitant to share this
data and trained models with one another due to concerns around privacy, e.g.,
because of the risk of reverse engineering the training data of the models. To
facilitate data sharing, tabular anonymization techniques like MORPH, LACE
and LACE2 have been proposed to provide privacy to defect prediction data.
However, said techniques treat data points as individual elements, and lose the
context between different features when performing anonymization. We study
the effect of four anonymization techniques, i.e., Random Add/Delete, Ran-
dom Switch, k-DA and Generalization, on the privacy score and performance
in six large, long-lived projects. To measure privacy, we use the IPR metric,
which is a measure of the inability of an attacker to extract information about
sensitive attributes from the anonymized data. We find that all four graph
anonymization techniques are able to provide privacy scores higher than 65%
in all the datasets, while Random Add/ Delete and Random Switch are even
able to achieve privacy scores of 80% and greater in all datasets. For techniques
achieving privacy scores of 65%, the AUC and Recall decreased by a median
of 1.45% and 5.35%, respectively. For techniques with privacy scores 80% or
greater, the AUC and Recall of privatized models decreased by a median of
6.44% and 20.29%, respectively. The state-of-the-art tabular techniques like
MORPH, LACE and LACE2 provide high privacy scores (89%-99%); how-

Akshat Malik
MCIS/SAIL, Queen’s University, Kingston, ON, Canada
E-mail: akshat.ndun@gmail.com

Bram Adams
MCIS, Queen’s University, Kingston, ON, Canada

Ahmed E. Hassan
SAIL, Queen’s University, Kingston, ON, Canada

2 Akshat Malik et al.

ever, they have a higher impact on performance with a median decrease of
21.15% in AUC and 80.34% in Recall. Furthermore, since privacy scores 65%
or greater are adequate for sharing, the graph anonymization techniques are
able to provide more configurable results where one can make trade-offs be-
tween privacy and performance. When compared to unsupervised techniques
like a JIT variant of ManualDown, the GA techniques perform comparable
or significantly better for AUC, G-Mean and FPR metrics. Our work shows
that graph anonymization can be an effective way of providing privacy while
preserving model performance.

Keywords Graph Anonymization · Privacy · Software Defect Prediction ·
Knowledge Graphs

1 Introduction

Software analytics has become an essential part of any organization’s software
development process, where organizations use machine learning models to help
teams to (amongst others) analyze the probability of bugs in code [9], the time
required to fix them [52] and the causes of build failures [53]. Such models are
trained on defect metrics, development effort metrics and build artifacts using
a variety of machine learning (ML) algorithms.

However, in an increasing number of cases, organizations are unwilling to
share their data and models with each other, even within their organizations
and across different teams. This unwillingness is primarily due to privacy con-
cerns organizations have about the possibility of extracting underlying data
from a trained machine-learning model, as demonstrated in recent academic
studies [56, 43]. These works demonstrate how, from a trained model, it is
possible to reconstruct the properties of the data used to train the model. To
achieve this, attackers train a “shadow model” to imitate the behaviour of a
trained model on a dataset. Using this, they can determine whether a data
point belongs to the training set. Leakage of such knowledge could be highly
detrimental to an organization’s security and reputation. For example, reveal-
ing that a company fixes a hundred bugs a day while its competitors only fix
ten could cause distress among its user base.

One of the most recently studied ways to deal with this threat is to
anonymize ML models. There are multiple families of techniques to anonymize
ML models, ranging from perturbing the models’ data input, where random
noise is added into the training data so that the output is private, to perturbing
the actual model training process (e.g., the intermediate values of an iterative
ML algorithm using federated learning), or adding noise to the model outputs
[18, 41]. Each of these families comprises a variety of specific techniques. This
paper focuses on the first family, i.e., anonymizing the training data, since
anonymized data does not limit the ML algorithms that can be used on it,
enabling data to be used with any training algorithm, making our approach
flexible.

Towards Graph-Anonymization of Software Analytics Data 3

In terms of preserving privacy in data, several general-purpose anonymiza-
tion techniques such as k-anonymity, l-diversity, t-closeness, personalized pri-
vacy and differential privacy have been proposed [29]. To measure how ef-
fectively an anonymization technique provides resistance to the data against
attacks by nefarious users, privacy scores can be used to estimate how differ-
ent the anonymized data is from the non-anonymized data or how effectively
information is hidden in the anonymized data. As pointed out by a recent sur-
vey [51], over time, several privacy measures have been proposed. For instance,
a popular metric for privacy is the Increased Privacy Ratio (IPR) [35]. Based
on some background information about the data, it measures what percentage
of data has changed after anonymization, measuring how much information
is being leaked about the sensitive attributes of the data. An IPR score of,
for instance, 80% means that the anonymized dataset in 80% of the cases (or
attacks) will result in different, i.e., safer, values for the sensitive attributes
than the unanonymized data.

In the world of software analytics, Peters et al. propose the MORPH, LACE
and LACE2 [35, 37, 36] algorithms, while Li et al. propose SRDO [26] for
anonymization. They empirically validated that it is possible to provide pri-
vacy to defect prediction data without affecting its performance. In our repli-
cation using JIT defect prediction metrics, we indeed found that the MORPH,
LACE and LACE2 algorithms provided high privacy, with scores in the range
of 89% to 99%, which exceeds the threshold for adequate data sharing of 65%
[36]. However, this high privacy came at the cost of decreased performance
of the model, where, across all datasets, the AUC decreased by a median of
21.2%, 17.15% and 21.45%, and Recall by a median of 64.79%, 58.79% and
96.43%, respectively.

In essence, the existing tabular anonymization techniques just treat the
software analytics data as a list of metrics, ignoring any logical connection
between them. For example, in the case of JIT defect prediction, the number
of lines modified by a commit should depend on the number of files modified
by that commit. If the number of files modified by the commit changes, it will
have a proportional change in the number of lines changed by the commit. The
tabular anonymization techniques mostly ignore such dependencies between
the various data features, thereby losing context during anonymization.

A promising direction to address this lack of context is the use of graph
anonymization techniques, which perform anonymization on a graph represen-
tation of the data. Assuming that the latter graph representation can be used
to calculate the metrics of interest, graph anonymization promises to not only
retain the structural knowledge of the graph better, but also to yield propor-
tional changes to all metrics derived from the graph, preserving the graph’s
overall utility [23].

While tabular data anonymization for software analytics has been eval-
uated in the context of traditional defect prediction, graph anonymization
techniques have not been considered thus far. Hence, our empirical study eval-
uates the use of graph anonymization techniques on Just-In-Time (JIT) Defect
Prediction data. This popular software analytics task focuses on predicting de-

4 Akshat Malik et al.

fective commits using only commit-level information like the number of lines
added, number of files changed and author experience. JIT defect prediction
data is versatile and can be used for different software analytics tasks, like
within-project and cross-project settings. We aim to evaluate to what extent
graph anonymization can provide privacy to the JIT data while preserving
the predictive power of the models trained on it. This would help us establish
whether graph anonymization techniques retain the predictive capability of
JIT data to be further used in different analytics tasks.

To evaluate the effect graph anonymization techniques have on the privacy
and performance of the data, we adapt four anonymization techniques (Ran-
dom Add/Delete, Random Switch, k-DA anonymity and Generalization) to
be applied to the knowledge graph of the software analytics data collected for
six large, long-lived projects in a within-project JIT defect prediction setting:
OpenStack, Qt, Apache Flink, Apache Ignite, Apache Groovy and Apache
Cassandra. We answer the following research questions:

1. RQ1: How do different graph anonymization techniques affect the
privacy of the JIT defect prediction data?
This question evaluates how effectively different graph anonymization tech-
niques provide privacy to the JIT metrics generated from the anonymized
knowledge graphs. Using the privacy metric Increased Privacy Ratio (IPR),
it was found that all the techniques are able to provide privacy scores
greater than 65% (adequate for sharing data) with minimal effort. Fur-
thermore, Random Add/Delete and Random Switch are able to provide
privacy scores greater than 80% to all the datasets, while k-DA and Gen-
eralization were able to do so for 3 and 4 datasets, respectively. Random
Add/Delete is able to provide privacy scores close to 90% to all the datasets.
All techniques change different amounts of links in the graph to reach the
same privacy levels, with Generalization doing so with the least changes
for 7 out of the 12 combinations of 2 privacy levels (Privacy Level I and II)
and 6 datasets, followed by Random Add/Delete (3/12) and k-DA (2/12).
Hence, graph anonymization techniques are effective in providing privacy
to the JIT metrics.

2. RQ2: How do different graph anonymization techniques affect the
performance of JIT defect prediction models?
As the graph anonymization techniques change the graph representing soft-
ware analytics data to provide privacy, it is likely that these changes cause
the performance of the metrics generated to degrade. With this second RQ,
we want to quantify these techniques’ impact on the model performance.
Our case study shows that privacy does not come at the cost of perfor-
mance. All techniques provide privacy scores greater than 65% with a me-
dian decrease of 1.45% and 5.35% in AUC and Recall, across all datasets.
For 80% and greater privacy scores, the median loss in AUC is 6.44%
and in Recall is 20.29%, across all datasets. Generalization performs sig-
nificantly better than the other techniques in preserving the performance
of the model. Graph anonymization techniques are able to preserve the

Towards Graph-Anonymization of Software Analytics Data 5

model’s performance while providing enough privacy to share the defect
prediction data.

3. RQ3: How do the graph anonymization techniques compare to
the state-of-the-art anonymization techniques?
Since using graph anonymization techniques in software analytics is a novel
approach, we want to compare how our attempt to graph-anonymize JIT
defect prediction metrics compares to the state-of-the-art techniques that
aim to provide privacy for JIT metrics. Across all projects, we find that
MORPH, LACE and LACE2 were able to provide privacy scores greater
than 89%; however, their AUC and Recall fell by a median of 21.15% and
80.35%, respectively, compared to the median loss in AUC of 6.44% and
Recall of 20.29% for graph anonymization techniques. Furthermore, graph
anonymization techniques provide greater control, where scores of 65% and
greater (adequate for sharing) can be achieved with a 1.45% decrease in
AUC, scores of 80% and greater (higher privacy threshold) can be achieved
with 6.4% decrease in AUC and scores of 88% (with Random Add/Delete)
can be achieved with AUC reduced by 7.75%. Lastly, when compared to
Manual Down (MD50), the GA techniques perform significantly better or
similar in the majority of the cases for the AUC, G-Mean and FPR metrics.

Our study shows that it is possible to use graph anonymization techniques
to provide privacy while maintaining performance. These techniques offer fine
control over the trade-offs between privacy and performance. When compared
to state-of-the-art techniques, MORPH, LACE and LACE2 provide more pri-
vacy than required for adequate sharing [36], with graph anonymization tech-
niques having a lesser impact on the performance of the metrics.

Our paper makes the following contributions:

1. Proposing a novel way to represent the software analytics data, in this
case, JIT defect prediction data, as a knowledge graph of interconnected
entities.

2. Proposing a methodology to generate JIT defect prediction metrics from
the knowledge graph.

3. Empirically evaluating 56 configurations of 4 graph anonymization tech-
niques to provide privacy to defect prediction data and measuring how they
can be applied to provide privacy to the JIT defect prediction metrics.

4. Empirically comparing to tabular anonymization techniques (MORPH,
LACE and LACE2) and unsupervised learning methods (Manual Down)
to evaluate the effectiveness of graph anonymization techniques.

2 Background and Related Work

In this section, we give an overview of how different graph anonymization
techniques work and discuss existing works for anonymizing defect prediction
data. We also discuss JIT defect prediction and how literature has shown that
ML models can leak information.

6 Akshat Malik et al.

2.1 Reverse Engineering Information from ML Models

Fredrikson et al. [31] demonstrate a way of reconstructing the data on which
a model is trained based on the confidence score that is assigned to every
prediction. Using limited information about the training data and access to
the ML model, the authors were able to extract sensitive information about
the data used in training decisions. The authors demonstrate the attacks on
image and feature classification problems.

A similar possibility of attack was shown by Shokri et al. [44], who demon-
strate how it is possible to extract information about the training data from
a black box machine learning model. To do this, the authors use a machine
learning model that aims to distinguish differences in model behaviour de-
pending on whether the input was encountered by a model in its training or
not. The paper treats the ML model as a black box, only interacting with its
API. It was able to perform a membership inference attack on classification
models provided by machine learning service providers like Google and Ama-
zon, with an accuracy of 94% and 74%. This highlights the significant privacy
implications that ML models can have.

These papers form the basis for our motivation to anonymize the data ML
models are trained on to prevent attackers from learning about the sensitive
attributes of the underlying software analytics data.

2.2 Existing Anonymisation Methods

Our work extends the work of Peters et al. with MORPH [35], LACE [37] and
LACE2 [36] and the works by Li et al. on SRDO [26]. MORPH is an instance
mutator algorithm that modifies all data points by a small random amount.
The authors further extend this work in LACE, adding an instance pruner
algorithm called CLIFF that removes instances based on how frequently an
attribute occurs in a class (in defect prediction data, a class would be “defec-
tive” or “not defective”). To further enable sharing of data among different
projects, they propose LACE2, a multi-party privacy policy. It allows differ-
ent data owners to work together to create a privatized cache where each
owner can add data based on what has already been added. Finally, SRDO
is a privacy-preserving algorithm that uses a sparse representation based on
double obfuscation to improve the techniques underlying MORPH’s data mu-
tation.

The fundamental difference between the above works and ours is that the
former view data mostly as rows of attributes. However, we represent the
data as a graph of interconnected entities, retaining the structural dependen-
cies between the entities. When performing graph anonymization, the metrics
derived from the graph should gain privacy without sacrificing their perfor-
mance, because we believe that the graph anonymization techniques preserve
context and information in the graph when altering it. Furthermore, we are
evaluating the existing and proven graph anonymization techniques’ ability to

Towards Graph-Anonymization of Software Analytics Data 7

provide privacy to the graph of software analytics data. To our knowledge,
this is the first instance of using graph anonymization on software analytics
data to provide privacy.

The prior work [35, 37, 36, 26] also conduct their study on file-based bug
prediction, i.e., using CK metrics on the PROMISE dataset. The CK metrics
are used to evaluate various aspects of the complexity and quality of object-
oriented software systems [12], whereas we use JIT change metrics collected
from the GitHub repositories of the projects. Lastly, these state-of-the-art tech-
niques use the data elements’ class labels, i.e., buggy or not, when performing
anonymization operations to provide privacy, while the graph anonymization
techniques do not use class labels, i.e., they are unsupervised.

Another approach is ManualDown [16], an unsupervised learning model
that considers the top x% largest files that have been changed in a current
time period as buggy files. An interpretation of ManualDown in the context of
JIT (inspired by other unsupervised JIT approaches [21, 55]) would consider
the top x% commits with the most lines added as buggy. Basically, such a
JIT variant of ManualDown would sort all commits in a studied time period
by the “number of lines added” feature, then mark the top x% instances as
buggy commits and the remaining ones as not buggy. ManualDown models do
not require actual commit data other than the “number of lines added”.

Yamamoto et al. [54] propose using federated learning to build a JIT defect
prediction model. The study shows that building models using a federated
learning approach is possible, not requiring any data to be shared among
projects. However, recent works have shown that federated learning models
are still open to ML model leaks [39, 34, 10] according to which researchers
have been able to perform a membership inference attack. Basically, exploiting
the cyclic nature of model learning and the exchange of weights between the
different learners and central aggregation nodes. This would expose the un-
anonymized training data to malicious users. Essentially, the repeated sharing
of model weights via a central node that needs to be trusted by all parties
is also the weak point of federated learning approaches from a privacy point
of view. It does make attacks harder, but it does not remove the requirement
for privatizing the models’ input data. We believe that future work can use
graph anonymized data on each learner node in a federated learning setting
to provide even more privacy to the trained model.

2.3 Overview of Graph Anonymisation Techniques

A graph [1] is a set of nodes (vertices) connected via edges (links). Graphs
can be directed, where the relationship goes from one edge to another, or
undirected, where the relationship is bidirectional. They provide a unique way
to represent interconnected information between different entities. Information
in a graph can be extracted by querying the nodes and their links. For example,
a graph could link commit information (git information) to the pull request

8 Akshat Malik et al.

(code review) and, in turn, the report data (bug information) that led to the
commit, providing the context for that commit.

Graph anonymization can be performed in two ways, i.e. online or offline.
Online techniques anonymize data in real-time, where data is anonymized
while querying it. Offline techniques anonymize all of the data together before
releasing it for further use. This causes the offline techniques to be slower and
computationally more intensive than the online techniques. However, offline
techniques are better able to provide privacy and preserve utility as they con-
sider the entire graph, allowing them to consider the overall properties of the
underlying analytics data. For this reason, we focus on the offline method,
anonymizing all the data at once.

Graph anonymization techniques are considered to be effective in provid-
ing privacy to the different entities of a graph while preserving the knowledge
and context embedded in the graph [32, 17]. Many graph anonymization tech-
niques have been researched, and they can be divided into the following broad
classification [23]:

1. Naive ID Removal: This technique removes the ID of all the graph
entities. This is easy to apply; however, it does not provide much security
to the graph entities as they can be easily re-identified [33, 45]. We do not
consider these techniques.

2. Edge Editing (EE) based techniques: These techniques operate on a
graph by changing its edges. The two ways these techniques can be imple-
mented are Add/Delete and Switch. With Add/Delete, x random links are
deleted from the graph and randomly added to other nodes. With Switch,
the links of two randomly chosen nodes are swapped [57].

3. k-Anonymity-based techniques: k-Anonymity [14] techniques are most
commonly used for anonymizing graphs. In this technique, a number k is
selected, then the graph is modified until there are at least k − 1 sim-
ilar entities in the graph. k-anonymity techniques have various variants,
which include: k-Neighborhood Anonymity [59], k-Degree Anonymity [27],
k-Automorphic [60] and k-Isomorphic technique [11].

4. Aggregation/Class/Cluster-based techniques: These techniques
group entities with similar structures into clusters, then modify the nodes
in the clusters to achieve the same structure to provide them anonymity
[49].

5. Differential Privacy (DP) based techniques: Differential privacy
techniques guarantee the amount of privacy provided to a graph. It does
so by capturing the graph structure in terms of certain statistics, then
accurately regenerating the graph by adding a certain amount of noise in
the statistics [42].

6. Random Walk (RW): This technique changes the edges between two
nodes in the graph, which are a random i distance apart [30].

Towards Graph-Anonymization of Software Analytics Data 9

3 Graph Anonymization for JIT Defect Prediction

In this section, we provide a detailed overview of the different graph
anonymization techniques introduced previously in the specific context of JIT
defect prediction.

Similar to other software analytics data, JIT defect prediction metrics are
linked to one another, wherein a change in the number of files changed by a
commit will have a proportional change in the number of lines modified by the
commit and the commit author’s experience. Hence, instead of anonymizing
individual metric values, we propose representing the underlying software an-
alytics data as a graph and anonymizing the graph before calculating the JIT
metrics. A change in any entity of the graph will have a proportional change
in all the related entities. Therefore, we believe using graph anonymization
techniques would preserve the structural knowledge between different graph
entities while providing sufficient privacy.

To derive graph-anonymized change metrics for JIT defect prediction, we
perform the following steps:

1. Creation of a knowledge graph of the involved repositories.
2. Anonymization of the graph using different algorithms.
3. Calculation of the change metrics from the anonymized graph.

3.1 Step 1: Knowledge Graph Creation

Fig. 1: Example of a Knowledge Graph. The purple nodes are commits, the
beige nodes are files and the green node is a person.

A knowledge graph refers to a graph of data that represents information
about different nodes representing real-world entities, and links that define
how those entities are related to one another [20]. A knowledge graph can be

10 Akshat Malik et al.

Entity Node Properties
Links to other entities

(Linked Entity - Link Name - Link Properties)

Commit

ID - The hash of the commit
Author-Date - The date the commit
was created
Bugcount - The number of bugs introduced by the commit
Fixcount - The number of bugs fixed by the commit

Files - MODIFIED - Lines Added, Lines Deleted
Commit - PARENT
Commit - CHILD

File

ID - The complete path of the file
File Name - The name of the the file
Directory - The directory in which the file is stored
Subsystem - The top level directory of a file

Person ID - The unique identifier for a person Commit - AUTHORED

Table 1: Entities and their properties and links

made for different domains like web search, social media, risk assessment and
more. In the context of JIT defect prediction, we focus on a knowledge graph
made from the information available in the git repository of the datasets to
create a graph that we call “git-graph”, as shown in Figure 1. The knowledge
graph contains the minimum set of entities needed to calculate the change
metrics needed for JIT defect prediction. The graph’s nodes and links help us
understand the relationship between various entities and allow us to derive the
JIT defect metrics (see Step-3 in Section 3.3). The various entities and their
links are listed below:

1. Commit: This represents a commit in the git repository. This entity is
linked to the File nodes, representing the files changed by the commit.
The commit is also linked to the Person node that authored the specific
commit.

2. File: This represents a file present in the code base. Each file is unique
to the graph database, i.e., there cannot be duplicate nodes representing
the same file. Multiple commits in the graph can modify the same file.
The changes a commit makes to a file are represented by the Lines Added
and Lines Deleted properties of the link, representing the number of lines
added and the number of lines deleted.

3. Person: A Person node represents a developer who worked on the repos-
itory. A person can be the one who authored a particular commit. In a
graph, there is always one unique node for each person.

Table 1 lists all the node entities along with their properties and the links
they have. The entities used to create a git-graph are sufficient to compute
all the change metrics needed for our study, as highlighted in Table 2. It is
possible to create more complex knowledge graphs that utilize bug reports,
reviewer experience, review comments, etc. However, we limit our empirical
study to the data needed to calculate the most commonly studied features for
JIT models [25, 46, 24].

Towards Graph-Anonymization of Software Analytics Data 11

3.2 Step 2: Graph-Anonymization Algorithms

The graph anonymization techniques detailed below work on the Commit
and/or Person nodes of a git-graph. We do not operate on File nodes, as
they do not have any entity dependent on them, i.e., they are leaf nodes.

3.2.1 Selected Techniques

Out of the six categories for graph anonymization techniques mentioned in
Section 2.3, we have selected the following four techniques (out of three cate-
gories) for our study:

1. Edge Editing (EE) based techniques [57] : The paper proposes two
variants of Edge Editing techniques, i.e., Add/Delete and Switch. We are
selecting the Random Add/Delete (RAD) and the Random Switch (RS)
variant, because the latter is similar to the Random Walk technique and
would also cover the Random Walk category.

2. k-Anonymity [27]: For k-anonymity, we have chosen k-Degree
Anonymity (k-DA) as it represents a more modern variant that protects
against the re-identification of nodes from attackers that have prior knowl-
edge about the graph.

3. Aggregation/Class/Cluster-based techniques [49]: We selected
Generalization (Gen) from this category as it was the only listed variant.

As the “Naive ID Removal” category offers no privacy to the nodes, there-
fore, we do not implement it [33]. “Differential privacy” offers mathematical
guarantees of privacy, but it has only been recently adopted to graphs. The
algorithm proposed by Sala et al. [42] converts the graph to a set of struc-
tural statistics, which are converted back into a graph after adding a random
amount of noise. However, when the graph is converted to a set of statistics,
details like author date, directory, and subsystem are lost. These details are
essential in computing the JIT defect metrics, leading us to not select tech-
niques from this category. We leave the adaptation of Differential Privacy for
JIT prediction for future work.

In the next section, we describe in detail how each of the four selected
anonymization techniques - Random Add/Delete, Random Switch, k-Degree
Anonymity and Generalization operate and how they are applied to the soft-
ware analytics data’s knowledge graph.

3.2.2 Random Add/Delete

In Random Add/Delete, we anonymize x percent of the nodes of a particular
type by modifying the node’s links to another entity. The algorithm used is
specified in Algorithm 1. We run the algorithm for each Commit node, where
we modify the link it has to the modified File nodes (via the MODIFIED
link), and for each Person node, for which we modify its Commit nodes (via
the AUTHORED link).

12 Akshat Malik et al.

(a) Original graph

(b) After Delete Operation (c) After Add Operation

Fig. 2: Random Add/Delete operation. The nodes in red (Commit) are the
ones on which the operation is being carried out.

From the x percent of nodes, the algorithm each time selects two
nodes randomly to perform the anonymization. In Figure 2a, we see
the unaltered graph to which the algorithm will be applied. Using the
randomlyDeleteAndGetNodes function, it first randomly deletes nodes of the
dependNodeType (e.g., File nodes of a Commit node) linked to the selected
node and stores them in nodeStore. After randomly deleting the File nodes
from the Commit nodes, we get Figure 2b.

As seen in Figure 2c, all the deleted nodes from the nodeStore are then
randomly linked back to the two nodes using the randomlyAddNodes function,
leaving no node in the nodeStore. This operation is repeated until x percent
of the nodes in the graph are anonymized. We select two nodes at a time to
ensure that the structure of the nodes after the change is not dramatically
different.

Towards Graph-Anonymization of Software Analytics Data 13

Algorithm 1 Algorithm for Random Add/Delete Technique

1: procedure Main(percentToAnon)
2: randomAddDelete(CommitNodeType, F ileNodeType, percentToAnon)
3: randomAddDelete(PersonNodeType, CommitNodeType, percentToAnon)
4: end procedure
5: procedure randomAddDelete(mainNodeType, dependNodeType, percentToAnon)
6: modifyCount← count(mainNodeType)× percentToAnon
7: for i← 0 to modifyCount; i← i+ 2 do
8: // Select two random node of mainNodeType from the graph
9: firstNode← getRandomNode(mainNodeType)
10: secondNode← getRandomNode(mainNodeType)
11: // Randomly delete linked nodes and return them
12: nodeStore.add(randomlyDeleteAndGetNodes(firstNode, dependNodeType))
13: nodeStore.add(randomlyDeleteAndGetNodes(secondNode, dependNodeType))
14: // Randomly select nodes from the store and link them to the mainNodeType
15: randomlyAddNodes(firstNode, nodeStore)
16: randomlyAddNodes(secondNode, nodeStore)
17: end for
18: end procedure

(a) Original (b) After Switch Operation

Fig. 3: Random Switch operation. The nodes in red (Commit) are the ones
on which the operation is being carried out.

3.2.3 Random Switch

The Random Switch algorithm (Algorithm-2) works similarly to the Ran-
dom Add/Delete algorithm. The algorithm selects two nodes randomly and
switches all the links between them, unlike Random Add/Delete, which ran-
domly changes some links. Figure 3 shows an example of the algorithm when
applied to the Commit node and the File nodes they have modified. After
randomly selecting two nodes, in Figure 3a, all the links have been switched
around, as seen in Figure 3b. This algorithm is also applied to the Person
nodes and the links that they have authored.

3.2.4 k-Degree Anonymity

This technique requires that for every node, there are at least k−1 other nodes
(excluding the current node) that have the same degree, yielding k nodes in

14 Akshat Malik et al.

Algorithm 2 Algorithm for Random Switch technique

1: procedure Main(percentToAnon)
2: randomSwitch(CommitNodeType, F ileNodeType, percentToAnon)
3: randomSwitch(PersonNodeType, CommitNodeType, percentToAnon)
4: end procedure
5: procedure randomSwitch(mainNodeType, dependNodeType, percentToAnon)
6: modifyCount← count(mainNodeType)× percentToAnon
7: for i← 0 to modifyCount; i← i+ 2 do
8: // Randomly select node from graph
9: firstNode← getRandomNode(mainNodeType)
10: secondNode← getRandomNode(mainNodeType)
11: // Delete all dependentNode linked to the node
12: firstNodeStore← deleteAndGetNodes(firstNode, dependNodeType)
13: secondNodeStore← deleteAndGetNodes(secondNode, dependNodeType)
14: // Switch the links, first to second node, and vice versa
15: addNodes(firstNode, secondNodeStore)
16: addNodes(secondNode, firstNodeStore)
17: end for
18: end procedure

total with that degree. Degree refers to the number of nodes a particular node
is linked to. In our context, when operating on a Commit node, the degree
is the number of File nodes it is linked to and for a Person node, it is the
number of Commit nodes it is linked to. For example, when operating on the
Commit nodes, in Figure 3a, the Commit in red on the left has a degree of 3,
while the right one in red has a degree of 2.

In this case, if the value of k is chosen to be 3, then the graph should
have at least 2 more commits that modify 3 files. If this requirement is met,
then the graph satisfies the condition of k-Degree anonymity, making data
3-degree anonymous. k-DA anonymity yields a 1/k probability of identifying
which commit is modifying which file. It is important to note that it is not
necessary that there should be k nodes for all the degrees from 1 to the max
degree present in the graph, but rather that each degree that is present should
have at least k nodes. For example, if a graph has degrees 2 and 4, k-DA
ensures that degrees 2 and 4 have at least k nodes in them.

The algorithm for this technique is highlighted in Algorithm 3. It is applied
on all Commit nodes and their linked File nodes, and on all Person nodes and
their authored Commit nodes. The first step of the algorithm is to group the
nodes based on the degree they have using the GetDegree function, which
is stored in the degreeStore variable. The degreeStore variable has all the
degrees that are present in the graph as keys (e.g., 2, 4, 10, etc.), and the value
corresponding to a key is the list of nodes with that corresponding degree. The
number of values that a corresponding key has helps us determine whether a
key has k nodes in it or not.

Using the GetDegreeBelowK, we get all the degrees that do not have the
required k number of nodes in them. Let’s call a degree from this set that does
not have the required k nodes, asm, with a difference of x from k. Then for each
such degree m, we find another degree l that has more than k+ x nodes in it.

Towards Graph-Anonymization of Software Analytics Data 15

This ensures that the degree l should still have at least more than k nodes in it
after the operation so that it still meets the condition of k-DA anonymity. From
this selected degree l, we remove x nodes randomly and change their degree
to match the degree m. This is carried out by the changeDegree function,
which either randomly adds or deletes links to other nodes from the selected
x nodes. By doing this operation, the nodes being modified will now belong to
degreem, increasing the number of nodes in the degreem to k. Unlike Random
Add/Delete and Random Switch, this technique works for all the nodes of a
type in the graph until each node satisfies the k-degree constraint.

Algorithm 3 Algorithm for K-Degree Anonymous

1: procedure Main(k)
2: KDegreeAnon(k,CommitNodeType, F ileNodeType)
3: KDegreeAnon(k, PersonNodeType, CommitNodeType)
4: end procedure
5:
6: procedure KDegreeAnon(k, nodeType, linkedNodeType)
7: // degreeStore is a mapping of the degree to the list of nodes of that degree
8: degreeStore← GetDegree(nodeType, linkedNodeType)
9: degreeBelowK ← GetDegreeBelowK(k, degreeStore)
10: for i← degreeBelowK do
11: numNodesToAdd← k − count(degreeStore[i])
12: surplusDegree←
13: degreeWithCountGreaterThan(k + numNodesToAdd, degreeStore)
14: for m← 0 to numNodesToAdd do
15: randomNode← getRandomNode(degreeStore[surplusDegree])
16: changeDegree(randomNode, i)
17: end for
18: end for
19: end procedure
20:
21: procedure GetDegree(nodeType, linkedNodeType)
22: allNodes← getAllNodes(nodeType)
23: for node← allNode do
24: linkedNodes← getLinks(node, linkedNodeType)
25: degreeStore[count(linkedNodes)].add(node)
26: end for
27: return degreeStore
28: end procedure
29:
30: procedure GetDegreeBelowK(k, degreeStore)
31: for i← keys(degreeStore) do
32: if count(degreeStore[i]) < k then
33: lessThanKDegreeStore.add(i)
34: end if
35: end for
36: return lessThanKDegreeStore
37: end procedure

16 Akshat Malik et al.

3.2.5 Generalization

The generalization technique requires us to capture the structure of the graph
and group nodes into clusters based on their structure. To capture the struc-
ture of the graph, we use the Commit node as a reference. The structure of
a commit is represented by the number of File nodes it is linked to and the
number of commits the author of the commit has created. Nodes with the
same structure are grouped together into cluster. If a cluster has n nodes in
it, it is called a full cluster; else, it is called an under-filled cluster.

The algorithm for capturing the structure of the graph and ensuring that
there are enough elements in each cluster is specified in Algorithm 4. Using
the GetStructure function, we capture the structure of each commit in the
graph. We now attempt to create m clusters with at least n nodes in them,
i.e., the graph should now have m new full clusters. The structure that is being
targeted to have n nodes is found using the GetStructWithLessThanKElem
function that finds the clusters that do not have n nodes in them, let’s call
this set z. Using the countMoreThan function, we find all the clusters that
have more than n nodes in them. Then, for the nodes above n, we call the
modifyStructure, which ensures that the node nodeToModify is changed to
match the cluster structure z that is currently being targeted by randomly
adding links or deleting links to nodes.

Algorithm 4 Algorithm for Generalisation Technique

1: procedure Main(targetCount)
2: structStore← GetStructure()
3: underF illedStruct← GetStructWithLessThanKElem(targetCount, structStore)
4: for underF illStruct i← keys(underF illedStruct) do
5: currCount← count(underF illedStruct[underF illStruct i])
6: overF illStructKey ← countMoreThan(currCount+ targetCount, structStore)
7: for j ← 0 to targetCount− currCount do
8: nodeToModify ← structureStore[overF illStructKey]
9: modifyStructure(nodeToModify, underF illStructi)
10: end for
11: end for
12: end procedure
13: procedure GetStructure
14: for node← getAllNode(CommitNodes) do
15: countF ileNodes← count(getLinkedNodes(node, F ileNodes))
16: author ← getAuthor(node)
17: countCommitNodes← count(getLinkedNodes(author, CommitNodes))
18: structureKey ← countF ileNodes + ”,” + countCommitNodes
19: nodeStructure[structureKey].add(node)
20: end for
21: end procedure

Towards Graph-Anonymization of Software Analytics Data 17

Attribute Description Calculation based on anonymized graph
la Number of lines

added by a com-
mit

For all the File nodes modified by a Commit node,
we add the ‘la link’ property

ld Number of lines
deleted by a com-
mit

For all the File nodes modified by a Commit, we add
the ‘ld link’ property

ent Entropy or the
spread of changes
across file

This is calculated by taking the log of the proportion
of change to a file as compared to all the files

nf Number of files This is the number of unique files changed by a com-
mit. This is calculated by counting the number of
File nodes a commit node has modified

nd Number of directo-
ries

For all the files found in the ‘nf’, we make a unique
set of the directory of each file

ns Number of subsys-
tem

For all the files found in the ‘nf’, we make a unique
set of subsystems for each file. The subsystem is the
root directory for a file

nuc Number of unique
changes

For each modified file for the current Commit node,
we find the number of commits that have previously
modified those File nodes

ndev Number of unique
developers that
changed the file

For all the commits found in the ‘nuc’ attribute, we
find all the unique authors for all the unique modify-
ing authors

age Average time in-
terval between
current changes
and the last
changes made to
the file

For all the commits found in the ‘nuc’ attribute,
we then find the latest commit for each file. After
that, we take the average of the time that commit
happened and the current commit

aexp Experience of the
author

The number of nodes the author of the commit has
modified before this commit

asexp Subsystem experi-
ence of the author

For all the commits found in ‘aexp’, we find the
unique subsystems (which are same as the subsys-
tems modified by the current commit) those commits
have modified

arexp Relative experi-
ence of the author

This is calculated by taking the ‘aexp’ commits, and
then dividing them by their age [28]

Table 2: Description and the method to derive the JIT defect prediction
metrics (used by Kamei et al. [24]) calculated from the git-graph.

3.3 Step 3: Generation of JIT metrics

The knowledge graph for the git repository has all the information needed
to generate the typical change metrics needed for JIT defect predictions [25,
46, 24]. In Table 2, we show all JIT defect prediction metrics used for model
training and how we calculate them from the git-graph generated for each
project. The calculation of the metrics for each commit is done as defined
in the last column of Table 2. For example, to calculate the la attribute for
a commit, we take the sum of the la link link property for each File node
attached to the commit. Similarly, we generate all other metrics for a commit
using this approach and repeat it for all commits in the graph.

18 Akshat Malik et al.

4 Empirical Study Design

In this section, we give details about the design of the empirical study aiming
to address the RQs of the introduction, i.e., the datasets used for our case
study, the configuration of the various graph anonymization techniques, and
our approach to answering the three research questions.

4.1 Subject System Selection

As our study focuses on graph anonymizing JIT metrics and on evaluating
the impact on their privacy and performance, we use datasets that were made
available by other JIT defect prediction research. One of the most common
JIT defect prediction datasets was shared by McIntosh et al. [28], and has
been used in later research [38, 40, 19]. It features JIT data for OpenStack
and Qt. The other dataset we have used is ApacheJIT [25], which makes data
available for popular 14 Apache projects.

In Table 3, we have listed all the projects selected for our study. As graph
anonymization changes the structure of the code, we need projects whose
trained models have high AUC and have a sizeable number of commits. To
calculate the AUC of the models, we split the data into a chronological 80/20
train/test split. We perform out-of-sample bootstrapping training 100 mod-
els by randomly selecting 500 elements from the training split and testing on
500 randomly selected testing elements. We then take the average of these
scores to find the average AUC. Because of this, we place two conditions on
the datasets: a) have an average AUC greater than 60%, and b) the number
of commits should be greater than 5,000. We want average AUC to be above
60% so that when anonymization is applied a model does not immediately
become random (AUC 50%) but will retain some predictive power. Having
more than 5,000 commits helps us ensure the graph has enough data points
to be anonymized.

Based on this, we select the top 6 projects with the most commits. How-
ever, two selected Apache Hadoop projects recently went through a refactoring
change that led the Hadoop repository to have 0 buggy commits, while the
Hadoop-HDFS only had a total of only 603 commits (as opposed to 10,000).
As such, we excluded these repositories. Although our criteria exclude the Qt
dataset (the model has an AUC of less than 60%) we did include it in our
study because of the massive size of this dataset and its important role as a
benchmark in prior work [38, 40, 19].

4.2 Data Collection

The original datasets [25, 28] provide labels indicating which commits are
buggy or not and the change metrics used for training the model. To deter-
mine the bug labels, both papers follow a similar methodology. The Apache

Towards Graph-Anonymization of Software Analytics Data 19

Dataset Time Period No. of Commits Buggy Commits Language
Qt 6/2011 - 3/2014 25,150 2002 (8%) C++
OpenStack 11/2011 - 2/2014 12,374 1616 (13%) Python
Cassandra 2003 - 2019 8,159 3,117 (38%) Java
Flink 2003 - 2019 11,691 2,811 (24%) Java
Groovy 2003 - 2019 8,059 1,614 (20%) Java/Groovy
Ignite 2003 - 2019 12,036 2,439 (20%) Java

Table 3: Summary of projects selected for the study.

dataset selects 14 popular Apache projects, based on stars on GitHub, while
the OpenStack and Qt datasets were selected where at least 90% of the com-
mits were part of a code review process. The respective authors then extract
all the resolved or closed bugs filed in the projects’ respective issue-tracking
platforms, i.e., Gerrit for OpenStack/Qt and GitHub for Apache projects.

For these resolved bug reports, they obtain all commits referring to the cor-
responding bug report identifier, then consider the most recent such commit as
the report’s bug-fixing commit. On these bug-fixing commits, they apply filters
to remove any erroneously detected commit, for example, commits changing
trivial code (modifying only comments or removing white space) or changing
over 100 files and/or 10,000 lines of code. Utilizing SZZ [50] on the bug-fixing
commits, they were able to pinpoint the bug-inducing commits, which corre-
spond to the labelled data points in our study.

However, the datasets did not provide the information needed by us to
create the File and Person entities in the git-graph. To fetch those entities,
we had to use the respective Gerrit (OpenStack [2] and Qt [3]) and PyDriller
(Apache projects) APIs of the studied projects to extract the data needed to
create the git-graph specified in Section 3.1. For each commit, we had to mine
the number of files and the number of lines changed in them, as well as the
identifier of the person who authored that commit.

Gerrit API: We call the Gerrit API for all the commits in the OpenStack
and Qt datasets to obtain the details needed to form the git graph. After the
knowledge graph has been created, we then label the Commit nodes as buggy
or not according to the labels provided [28].

Git repository: Using the py-driller library [4], we mine each selected
Apache repository and collect all the details needed for creating the git-graph.
Using the labels provided by the ApacheJIT dataset, we mark the data as
buggy or not.

4.3 Measuring privacy

4.3.1 Defining Privacy

Privacy refers to how much information can be disclosed about the members
of the data. Ideally, we do not want information about sensitive attributes
data to leak. However, it is hard to avoid any leak 100%, hence, we want to

20 Akshat Malik et al.

commit id la nf nd ns
commit-1 [1-10] [0-3] [0-2] [0-1]
commit-2 [11-20] [4-6] [3-5] [2-3]
commit-3 [1-10] [0-3] [0-2] [2-3]
commit-4 [1-10] [7-9] [0-2] [0-1]
commit-5 [21-30] [4-6] [6-8] [0-1]
commit-6 [11-20] [4-6] [6-8] [4-5]
commit-7 [11-20] [7-9] [6-8] [2-3]

Table 4: Example for Query Generation with Equal Frequency Binning

measure the amount of information that is leaking. We use the la feature as
the sensitive feature because it has been observed that for defect prediction,
the number-of-lines-modified attribute of a commit is closely related to bugs
[24]. Furthermore, earlier work by Peters et al. on MORPH, LACE and LACE2
also used the number of source code lines feature as the main sensitive feature.
We, therefore, use the lines added (la) and lines deleted (ld) attributes of a
commit as the sensitive attributes in our study.

To measure privacy, we use the metric Increased Privacy Ratio (IPR) as
used by Peters et al. [36, 26], similar to Adversarial Accuracy Gain [8]. This
measure defines the ability of the attacker to extract information about sensi-
tive attributes of the data, comparing the information gained by the attacker
in the anonymized version to the non-anonymized version of the data. IPR can
also be represented as a query made on the data before and after anonymiza-
tion and whether this gives the same results or not.

A few other important definitions before defining IPR:

1. Sensitive Attributes: Attributes that we do not want attackers to identify
in our dataset. These attributes can reveal sensitive information about
the data. For our dataset, they are la and ld. When data is shared, it is
assumed that the attacker does not have access to the sensitive attributes
and is attempting to guess them.

2. Quasi-identifier (QID’s): They, by themselves or along with other at-
tributes from a dataset, can be used to identify entities in a dataset. For
our dataset, it would be all the attributes except la and ld, therefore, ns,
nf, nd, etc.

To calculate IPR in the dataset, we assume that the attacker has some
knowledge about the value of the quasi-identifier of the entities they want to
identify in the dataset. This knowledge becomes a query that we will perform
on the data to calculate IPR.

4.3.2 Query generation

Similar to Peters et al. [36], before generating the queries to model an at-
tacker’s knowledge (created for IPR), we apply Equal Frequency Binning to

Towards Graph-Anonymization of Software Analytics Data 21

all attributes of the dataset under consideration. To explain the steps taken
to create the query, we use Table 4 as an illustration. In this table, we take a
small subset of all features and a few rows to explain how the queries used to
calculate the IPR scores are constructred. Given this, we perform the following
steps:

1. Select the query size to create queries. In this paper, we construct
queries of sizes 1,2 and 4. For this example, we only show results for size
2. This means that this query will use 2 QIDs to query the data.

2. Randomly select the quasi-identifiers for query generation from all the
available QIDs. In Table 2, we can see all the attributes available for se-
lection. For this illustrative example, we use the sample shown in Table 4,
from which we choose the attributes nf and nd as the two attributes.

3. For all selected attributes, select one random sub-value range from
the possible ranges. In the sample Table 4, we randomly choose the range
[0− 3] for the nf attribute and [0− 2] for the nd attribute.

In the example mentioned before, we hence generate a query with the
conditions: nf = [0 − 3] and nd = [0 − 2]. For each query, we ensure that
the query at least returns one element and that the attribute value pairs are
unique, i.e., there are no duplicate queries. If the query does not satisfy this
condition, it is removed.

We generate queries with 1, 2 and 4 quasi-identifiers, and for each size,
the number of queries is limited until all unique queries are exhausted or the
number of queries generated reaches 1000 [36]. When generating queries, we
only use the quasi-identifiers because the sensitive attributes are the ones the
attacker is trying to identify.

4.3.3 Calculating IPR:

For each query generated previously, we calculate if the query resulted in a
breach. A query causes a breach if the most common value of the sensitive
attributes (S∗

max) for the rows returned from the privatized dataset (G∗
i)

matches that of the non-privatized dataset (returning rows Gi with the most
common value as Smax). If this condition is met, the query is said to cause a
breach.

Breach(G∗
i) =

{
1, if smax(Gi) = s∗max(G∗

i)

0, otherwise.

To calculate IPR, for all the queries, we find the percentage of queries that
do not cause a breach. Using this, IPR is then calculated as:

IPR = (1− (Total number of breaches/Total number of queries run) ∗ 100)

22 Akshat Malik et al.

4.4 Empirical Evaluation

4.4.1 Overall Approach

Fig. 4: Approach for answering the research questions

Tan et al. [47] highlighted that training/testing splits should be done
chronologically. They highlighted that in a realistic scenario, at a time t, in-
formation will be available only about the commits that were created before
it. Therefore, only previous commits should be used to predict whether a new
commit is defective. The authors further highlighted how techniques like cross-
validation use information from future data to determine if the current commit
is buggy, which yields abnormally high precision. To combat these problems,
we sort each project’s data into a chronological 80/20 train/test split.

Figure 4 shows the general approach taken to answer the different research
questions. As highlighted before, the first 80% of the training data is used to
construct the git-graph (Step 1 in Section 3.1). The graph generated from the

Towards Graph-Anonymization of Software Analytics Data 23

training data is then anonymized using one of the graph anonymization tech-
niques (Step 2 in Section 3.2). Using this graph, we generate the anonymized
JIT defect metrics (Step 3 in Section 3.3), which are used to train the mod-
els and calculate the privacy gained. We train a large number of models on
the subsets of the data using the out-of-sample bootstrapping technique [48],
which produces more robust models with less bias and variance. Each boot-
strap iteration randomly samples 500 items with replacement from the training
and testing dataset to evaluate the model’s accuracy. We repeat this 100 times
to ensure robustness and take the average of all the performance scores. This
would ensure that the technique obtains consistent results.

4.4.2 Baseline Techniques

Similar to Li et at., [26] and Yamamoto et al.,[54] to evaluate how our graph
anonymization techniques compare with state-of-the-art privacy-preserving
techniques, we use the different techniques provided by Peters et al., i.e., the
MORPH, LACE and LACE2 algorithms [35, 37, 36]. We were unable to find
the replication package for SRDO [26], therefore are not able to compare to it.

Similar to the approach for graph anonymization evaluation, we divide the
baseline approach’s data into chronologically sorted 80/20 train/test sets, then
anonymize 80% of the training data. This anonymized data is used to calculate
privacy and train models using out-of-sample bootstrapping. We train the
model using 500 samples from the train data and use 500 samples from the
test data to evaluate its performance. This process is repeated 100 times to get
models with fewer biases and variance. To ensure a fair comparison, the test
bootstraps used are the same across the graph anonymization and baseline
techniques. To tune the performance of the baseline techniques we perform
parameter optimization by testing all value combinations between 0 to 1 with
0.2-point increments. For the LACE and LACE2 experiments, we keep the
CLIFF prune rate parameter as 0.4, which is the default value in the replication
package. We also add the default values provided by the package for all the
baseline techniques. Based on this, we report the baseline techniques’ privacy
and performance.

Inspired by other unsupervised learning approaches for JIT [21, 55], in
order to adopt the ManualDown technique of Fan et al. [16] for JIT, we mark
the top 50% of commits in the test set as buggy, referring to this as “MD50”.
For a fair comparison, we use the same test split as used for the GA and NGA
techniques to measure the performance of the MD50 model.

4.5 Graph Anonymization Configuration

Each graph anonymization technique can be applied in different amounts
(levels) or configurations, allowing finer-grained control of the trade-off be-
tween privacy and utility. In this section, we will define how different graph
anonymization techniques will be applied in terms of configuration levels.

24 Akshat Malik et al.

Random Add/Delete: In our initial experiments, we observed that Ran-
dom Add/Delete was able to provide a high amount of anonymization when
applied in increments of 20% (20, 40, 60, 80, 100). However, this did not al-
low us to observe how small amounts of anonymization changed the privacy
and AUC metrics. Therefore, to see fine-grained changes in privacy, we apply
anonymizations in increments of 2% up to 20%, then in increments of 10%.

Therefore, the configuration levels are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30,
40, 50, 60, 70, 80, 90, and 100. When anonymization is applied, we select x% of
the Commit nodes (x represents the level chosen) and perform the technique
on the File nodes to which they are linked. We then select the Person nodes
and change the Commit nodes for which they are the authors.

Random Switch: Similar to Random Add/Delete, we apply random
switch at levels: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90,
and 100. This is also applied to the Commit nodes and the Person nodes in a
configuration similar to Random Add/Delete.

k-DA Anonymization: In k-DA, we specify a number k, which becomes
the minimum number of nodes each degree in the graph should have. For this,
we specify k to have values of 2, 3, 5, 7, 10, 13, 15, 18, 21 and 24 [27]. The
k-DA anonymity operations are applied to each Commit node and the File
nodes to which it is connected, and for the Person nodes, the Commit nodes
they have authored.

Generalization: Generalization creates clusters based on the graph struc-
ture. When analyzing the structure of a Commit node, we use the File node it
is connected to and the author’s experience, which is the number of nodes that
the author has authored. Based on this structure, we ensure that each cluster
has at least 10 commits. The number of clusters that need to be created are
+10, +15, +20, +25, +30, +40, +50, +65, +80 and +100. This means that,
for example, for a value of +20, the algorithm will ensure that it creates 20
new full clusters, each cluster containing at least 10 nodes. The clustering op-
eration is performed on the Commit nodes alone. However, to make a cluster
of a particular structure, we have to modify the File nodes that a Commit is
connected to and the Commit nodes that its author has worked on.

4.6 Methodology for the Research Questions

In this section, we outline our approach to address the individual research
questions we have posed.

4.6.1 RQ1: How do different graph anonymization techniques affect
the privacy of the JIT defect prediction data?

Motivation: The main aim of our work is to evaluate the extent to which
graph anonymization techniques can provide privacy to the JIT metrics gen-
erated from the git-graph. As the anonymization techniques change the graph
data, we want to evaluate if they are effective in providing privacy to the data.

Towards Graph-Anonymization of Software Analytics Data 25

What amount of graph anonymization needs to be applied to gain a sufficient
amount of privacy? Does applying more anonymization always result in more
privacy for the metrics?

Approach: To assess how different graph anonymization techniques pro-
vide anonymity to the git-graph, we first create the graph for each dataset
in Neo4j. After the graph has been created, we make a backup of the graph.
Then, for each dataset, we perform the following steps:

1. Restore: Using the backup created earlier, we recreate the database from
the backup. This ensures that the graph is unaltered.

2. Graph anonymize: Depending on the anonymization technique currently
being applied, we select the level (amount) of anonymization that needs to
be applied to the graph. We then apply the anonymization techniques on
the graph with the selected configuration value.

3. Compute JIT metrics: After anonymization, we compute the JIT met-
rics for each commit that is present in the graph. We repeat this and the
above two steps for all the configuration levels of the anonymization tech-
nique before moving to the next step.

4. Non-anonymized baseline: As the non-anonymized version acts as the
baseline to calculate the performance and measure privacy, we compute
the JIT metrics from a graph where no anonymization has been applied.

5. Measure privacy: Using the various files generated in the previous steps,
we compute the privacy metrics for each file using the non-anonymized
version as the baseline.

The above steps are repeated for each technique and dataset. After col-
lecting all the files, we run scripts to analyze the privacy provided by each
technique. All the privacy measures for different datasets are aggregated per
technique to understand how different techniques provide privacy to different
datasets.

For the IPR metric, we divide the privacy attained into different levels.
We found that Peters et al. [36] called any privacy score above 65% adequate,
while Li et al. [26] used an adequacy limit of 80%. Therefore, our privacy levels
are as follows:

1. Privacy Level I: 65 - 80%
2. Privacy Level II: 80 - 100%

If any technique provides Privacy Level I to a dataset, it is deemed to be
adequate for sharing and the technique is feasible to use. In case data owners
may wish to anonymize data further, we discuss Privacy Level II.

Each anonymization technique alters the dataset differently for its config-
uration values. This makes it hard to compare the effect different values have
on the dataset since a configuration level of 20 for, say, k-DA does not reflect
the same amount of graph anonymization as configuration level 20 of Random
Switch. To allow for better comparison, we also calculate the number of graph
links that were changed by each technique at each level when anonymizing
the data. This helps to understand the number of links that were changed

26 Akshat Malik et al.

by each configuration value of a technique and how many link changes were
needed to reach a particular privacy level. The number of links changed acts
as a normalized scale to compare different techniques, instead of using their
values.

4.6.2 RQ2: How do different graph anonymization techniques affect
the performance of the JIT defect prediction model?

Motivation: Graph anonymization techniques augment the graph to add
privacy. With this research question, we want to quantify how augmentation
changes the performance of the metrics. Are the changes the graph anonymiza-
tion techniques make to the graph always destructive, or do they, in any case,
improve performance as well? This will also help us understand if the per-
formance loss and privacy gains can be balanced. Do different performance
measures degrade at the same rate with increasing anonymization levels?

Approach: Using the anonymized JIT metrics generated in the previous
research question, we bootstrap the training of multiple Random Forest Clas-
sifiers [5]. The details of how the model is trained are highlighted in Section 4.4
above. Once the model has been trained, we calculate the AUC, Recall, FPR
and G-Mean metrics of the model to evaluate the impact graph anonymization
has on these metrics [28, 24].

The Area Under the Curve (AUC) has been used in many JIT studies to
describe a model’s predictive power and is useful when there is an imbalanced
training dataset. The value typically ranges from 0.5, equivalent to random
guessing, to 1, which is perfect prediction power. The ROC curve, whose area
is measured by AUC, plots a model’s recall (Y axis) vs false positive rate
(FPR), across different configurations of a model. Recall is the measure of the
model’s ability to correctly predict if a commit is buggy or not. It is important
to understand how anonymization techniques change the ability of the data to
detect bugs correctly. FPR is the measure of how many bugs are incorrectly
identified as buggy. It is calculated as FP

FP+TN . The lower this measure, the
better the model performance, as that would signify fewer commits are getting
incorrectly classified as buggy, thereby wasting less time in fixing the wrong
commits. Finally, we also use the G-Mean as it is useful in the evaluation
of imbalanced datasets. It is the geometric mean of sensitivity (recall) and
specificity (TN

FP+TN) of the model. The higher this metric, the better the model
performance.

It is important to study the changes that anonymization brings to the
models’ performance as any anonymization applied without any utility func-
tion, i.e., model performance metric, can be harmful, as there would be no
way to detect the effect of privacy. Privacy and utility cannot be considered
in isolation [13].

As explained above in RQ1 design, the number of graph links changed acts
as a normalized way to compare different configuration values for different
techniques. Therefore, here too, we study the effect of graph link changes on

Towards Graph-Anonymization of Software Analytics Data 27

the performance of the datasets. This is important as it will help us under-
stand how destructive particular anonymization techniques are and establish
a relation between the number of graph links changed and changes in the AUC
and Recall.

We conduct a Kruskall-Wallis test (α = 0.05) with Dunn’s posthoc test
to find the best-performing technique in terms of preserving AUC, Recall, G-
Mean and FPR. For each dataset, we take all the configuration values for each
technique that are able to provide privacy scores greater than 65%. These
filtered values are then compared to one another to find the best-performing
technique in terms of AUC and Recall. We also perform the Spearman cor-
relation between increasing configuration values and the performance metrics
to quantify the possible relation between how the performance changes with
increasing anonymization levels.

4.6.3 RQ3: How do the graph anonymization techniques compare to
the state-of-the-art anonymization techniques?

Motivation: We want to compare how the graph anonymization techniques
work in comparison to the state-of-the-art anonymization techniques for JIT
models. Do the graph anonymization techniques achieve privacy scores that
are comparable to the state-of-the-art techniques? Furthermore, we want to
compare the difference in performance that comes with using these techniques
when compared to graph anonymization techniques.

Approach: As highlighted in 4.4.2, to evaluate how the state-of-the-art
techniques compare to graph anonymization techniques, we were able to find
the replication packages for MORPH, LACE and LACE2 [6] (collectively re-
ferred to as non-graph anonymization (NGA) techniques) for evaluation on the
JIT defect prediction metrics. As fine-tuning the NGA techniques results in
different models, we compare the data points that are able to provide Privacy
Level I and Privacy Level II and their median AUC, Recall, FPR and G-Mean
scores for different datasets.

Furthermore, to understand the statistical difference between the AUC,
Recall and IPR scores of the NGA and GA (graph anonymization) techniques,
we compare them in two different ways. All the comparisons are performed
per dataset, and for each comparison, we consider the configuration values
that have an IPR score greater than 65%. First, for the AUC, Recall, and IPR
scores separately, we combine all of the different NGA techniques’ values into
one distribution (for one metric at a time, e.g., AUC) and compare that with
all the GA technique values combined into one distribution (for one metric
at a time, e.g., AUC) to understand, overall which group performs better
using the Mann-Whitney U test. Second, we compare all of the techniques
(NGA+GA) among themselves to evaluate how they compare to one another
using the Kruskall-Wallis test with Dunn’s posthoc test. This is to identify the
technique that works best among all. For all tests, we use the α = 0.05.

We compare the performance of the model trained using GA-anonymized
data with the MD50 Manual Down model as well. For this MD50 model, as

28 Akshat Malik et al.

it requires no training, we only need the test data set [21, 55], then mark the
top 50% of the test set commits with the highest “number of lines added”
feature values as buggy, before comparing with the oracle for that test set.
This process is repeated 100 times for each bootstrap iteration to obtain the
performance distribution for the MD50 model.

The graph techniques have multiple configurations, each with its own boot-
strapped model performance. Hence, for each dataset anonymized with a GA
technique, we find the best performing configuration value (at least Privacy
Level I) out of all the configurations. We do this by statistically comparing
the bootstrap performance distributions across each configuration, giving us
the best performing configuration for each GA technique and dataset combina-
tion. The performance of each such combination is then compared to the AUC,
G-Mean, Recall and FPR performance metrics of MD50 using the Wilcoxon
signed-rank test (α = 0.05) with Bonferroni correction.

5 Empirical Study Results

In this section, we discuss the results of the research questions we set out to
answer.

5.1 RQ1: How do different graph anonymization techniques affect
the privacy of the JIT defect prediction data?

Overall, our results show that graph anonymization techniques are
effective in providing privacy to the JIT metrics. Each technique is able
to provide Privacy Level I (IPR scores of 65% or greater) to all the datasets.
Furthermore, for every dataset, there is more than one technique that is able
to provide Privacy Level II (IPR scores of 80% or greater).

Figure 5 shows that the Random Switch and Random Ad-
d/Delete techniques are able to provide both Privacy Levels I
and II to all the datasets. We see that both techniques have a similar
effect, where with increasing levels of anonymization, the privacy scores
keep increasing. At 100% anonymized nodes, Random Add/Delete is able to
provide privacy scores of almost 90%.

However, for both techniques, we see an elbow-shaped curve in the amount
of privacy gained with increasing levels, indicating diminishing returns in pri-
vacy gains with increasing anonymization levels. This is because even when
increasingly more nodes are changing, the anonymization may affect nodes
that have already been altered and therefore do not dramatically increase the
privacy scores anymore. We see this similar trend for all techniques, where
with increasing anonymization levels, they gain lesser amounts of privacy.

With little effort spent on anonymization, both Random Switch
and Random Add/Delete techniques are able to achieve high pri-
vacy scores. To gain Privacy Level I, less than 20% of the nodes are to be

Towards Graph-Anonymization of Software Analytics Data 29

(a) Random Add/Delete

(b) Random Switch

Fig. 5: IPR scores of all the datasets for Random Add/Delete and Random
Switch. The vertical-dotted lines are the two privacy levels.

anonymized for both. However, there is a difference in the number of nodes
to be anonymized to gain Privacy Level II, where Random Switch requires
anonymization levels of 60/70% as compared to Random Add/Delete, which
does for 40/50%, i.e., with lesser nodes anonymized. This difference is because
Random Add/Delete causes more change in the graph as it destroys and redis-
tributes the links for the various nodes. This is in contrast to Random Switch,
which simply switches the nodes around, keeping the same distribution of
links.

30 Akshat Malik et al.

(a) k-DA

(b) Generalisation

Fig. 6: IPR scores of all the datasets for k-DA and Generalization. The
vertical-dotted lines are the two privacy levels.

While k-DA only reaches Privacy Level II for half of the datasets,
it is able to provide Privacy Level I to all the datasets at the low-
est configuration level (k = 2). Figure 6a shows how all projects quickly
increase their IPR above 65%, yet taper off relatively quickly. This is because,
unlike Random Add/Delete and Random Switch, k-DA operates on all the
nodes in the graph that do not satisfy the k-DA anonymity condition. As all
the nodes in the graph are modified, it leads the graph to gain privacy quicker
than Random Add/Delete or Random Switch, which only operates on x% of
the nodes at a time.

Towards Graph-Anonymization of Software Analytics Data 31

Random Add Delete Random Switch k-DA Generalization
Level I Level II Level I Level II Level I Level II Level I Level II

Cassandra 16/10492 50/24136 16 /18048 80 /83594 2 /6081 NA 15 /9424 NA
Flink 14 /11904 40 /36966 12 /27840 50 /113154 2 /8060 10 /40255 15 /6813 65 /32996

Groovy 14 /5140 40 /11610 12 /7120 60 /41296 2 /5757 NA 10 /3218 40 /13082
Ignite 12 /7996 50 /36306 12 /22762 70 /129756 2 /9449 NA 20 /5668 65 /41083

OpenStack 16 /14712 50 /48366 12 /36540 60 /171220 2 /9725 7 /74104 20 /12155 100 /47938
Qt 8 /46936 30 /144314 6 /82972 40 /491580 2 /119411 5 /514410 20 /12912 NA

Table 5: “x/y” represents a configuration value x and its corresponding
number of link changes y, for different IPR Privacy Levels. The cells in green
represent the technique achieving that Privacy Level with the least number

of links changed for a given project.

With increasing values of k, the gains in privacy of k-DA are
limited. One of the possible reasons is that at higher values of k, the same
characteristics of the graph are further amplified, causing a limited change
in the metrics. For example, at k = 5, there are 5 commits that modify 10
files, making the nf attribute of those commits 10. At k = 21, there are
now 21 commits that modify 10 files. While according to the IPR metrics,
some query results still do change as there is an increase in privacy measures.
However, overall the benefits from higher values of k are limited as the same
characteristics of the graph are retained. This is the reason why only 3/6
datasets gain Privacy Level II.

Similar to k-DA, in Figure 6b, we see that Generalization pro-
vides higher privacy scores than Random Add/Delete and Random
Switch at the lowest configuration level. At configuration level 20, it is
able to provide Privacy Level I to all the datasets. Furthermore, at configu-
ration level 100, it provides privacy scores greater than 80% to 4 out of the 6
datasets.

Across all techniques, Generalization requires changing the least
amount of links to achieve Privacy Level I (4/6), followed by k-DA
(2/6). In Table 5, we can see the number of links changed by each technique
for each dataset to achieve a particular Privacy Level. For Privacy Level II,
it is able to provide privacy with the least link changes for 3 out of the 6
datasets, with Random Add/Delete doing so for the remaining three datasets.
For Privacy Level II, we see that Generalization and Random Add/Delete
perform equally well, providing privacy with the least links changed to three
datasets each. Every technique changes a different number of links to reach
a particular privacy level. Across all the datasets, Random Switch changes
the most links to achieve Privacy Level I (Table 5). For instance, in Figure 7,
we see the number of links changed to achieve different privacy levels for the
Apache Ignite dataset. Generalization is able to provide almost Privacy Level I
for 4,285 links changed in the Apache Ignite datasets. At that same number of
links changed, privacy provided by Random Add/Delete (59%), and Random
Switch (51%) is lower.

To understand how invasively graph anonymization changes the distri-
bution of values of a given feature between the non-anonymized data and

32 Akshat Malik et al.

Fig. 7: The number of links changed in Apache Ignite to reach different pri-
vacy levels

anonymization configuration level 1, we compare, for each feature, its non-
anonymized distribution of feature values to the anonymized distribution of
feature values. For example, we compare OpenStack’s k-DA anonymized la fea-
ture’s distribution (k = 2) with the non-anonymized distribution. Wilcoxon
tests (with α = 0.01) on each dataset and for each feature show that each
technique at its lowest configuration level changes at least 3 features’ distri-
bution in a significant manner. This shows that anonymization causes either
the quasi-identifiers or the sensitive feature distribution to change, leading the
query to give different results and an increase in IPR scores.

Summary of Research Question 1

Graph anonymization techniques are effective in providing privacy
to the JIT metrics. All techniques are able to provide privacy scores
greater than 65% to all the datasets. For each dataset, there is one
technique that achieves a privacy score greater than 80%. Random
Switch and Random Add/Delete are able to provide Privacy Level
II to all the datasets, with only Random Add/Delete being able to
provide privacy scores close to 90% to all datasets. Generalization
is able to provide both privacy levels with the least number of links
changed in (7/12) cases, followed by Random Add/Delete (3/12) and
k-DA (2/12).

Towards Graph-Anonymization of Software Analytics Data 33

Random Add Delete Random Switch k-DA Generalization
Level I Level II Level I Level II Level I Level II Level I Level II

Cassandra 65.85 (-2.53) 64.78 (-4.11) 63.1 (-6.67) 57.98 (-14.24) 67.6 (0.13) NA 67.52 (0.01) NA
Flink 70.68 (-1.92) 69.24 (-3.93) 68.68 (-4.7) 64.54 (-10.46) 71.04 (-1.45) 70.26 (-2.52) 72.19 (0.36) 71.81 (-0.17)

Groovy 60.63 (-5.06) 59.89 (-6.22) 60.34 (-5.63) 57.65 (-9.84) 61.54 (-3.36) NA 62.8 (-1.73) 62.26 (-2.56)
Ignite 72.0 (-2.94) 68.38 (-7.82) 67.5 (-8.88) 59.76 (-19.32) 73.46 (-0.61) NA 73.73 (-0.51) 71.5 (-3.52)

OpenStack 61.19 (-3.85) 60.23 (-5.36) 59.72 (-6.28) 56.18 (-11.84) 59.6 (-6.41) 58.62 (-7.95) 63.95 (0.39) 62.76 (-1.48)
Qt 55.42 (-3.37) 53.77 (-6.24) 54.62 (-5.0) 51.8 (-9.89) 54.69 (-4.84) 54.58 (-5.02) 56.42 (-1.46) NA

Table 6: Median AUC score with the relative change in AUC from the
non-anonymized baseline in parentheses at different Privacy Levels.

Random Add Delete Random Switch k-DA Generalization
Level I Level II Level I Level II Level I Level II Level I Level II

Cassandra 85.39 (-1.43) 83.49 (-3.62) 85.88 (-1.17) 78.06 (-10.17) 85.18 (-2.02) NA 84.45 (-2.65) NA
Flink 66.26 (-6.31) 65.72 (-7.07) 67.2 (-5.41) 66.08 (-6.98) 61.84 (-11.88) 59.78 (-14.82) 66.43 (-6.2) 66.4 (-6.24)

Groovy 32.82 (-16.9) 30.49 (-22.81) 35.56 (-9.7) 32.77 (-16.79) 33.72 (-13.04) NA 37.27 (-6.12) 36.94 (-6.96)
Ignite 72.8 (-4.24) 66.14 (-13.0) 71.65 (-5.38) 59.61 (-21.28) 68.06 (-9.76) NA 64.95 (-14.38) 57.79 (-23.82)

OpenStack 45.42 (-10.78) 42.98 (-15.58) 44.93 (-11.83) 39.1 (-23.28) 32.72 (-35.73) 30.3 (-40.48) 52.06 (1.96) 46.36 (-9.2)
Qt 20.32 (-21.85) 16.96 (-34.75) 18.97 (-27.82) 13.75 (-47.68) 13.21 (-49.64) 12.72 (-51.49) 21.4 (-17.29) NA

Table 7: Median Recall score with the relative change in Recall from the
non-anonymized baseline in parentheses at different Privacy Levels.

5.2 RQ2: How do different graph anonymization techniques affect
the performance of the JIT defect prediction model?

Across all projects, graph anonymization techniques that reach Pri-
vacy Level I, see a median decrease in AUC of 1.45% and in Recall
of 5.35% (average of 1.98% AUC and 7.71% Recall). Furthermore,
reaching Privacy Level II involves a median drop in AUC of 6.44%
and in Recall of 20.29% (average of 7.28% AUC and of 22.42% Re-
call). In Table 6 and Table 7, we can see the effect of the median AUC
and Recall to achieve a particular privacy level for all the datasets. The best-
performing techniques at their best-performing configuration are able to reach
Privacy Level I, on average, with a 1.3% increase in AUC and a 4.45% in-
crease in Recall across all datasets. The best-performing techniques at their
best-performing configuration reach Privacy Level II across all datasets with
an average decrease of 1.37% in AUC and 5.51% in Recall.

Random Add/Delete is able to provide Privacy Level I with a
median decrease of 1.35% and 3.93% in AUC and Recall (on average
1.63% AUC and 6.05% Recall), and Privacy Level II with a median
decrease of 5.36% and 15.58% in AUC and Recall (average 5.54%
AUC and 16.65% Recall). As seen in Figure 8, Random Add/Delete
provides an IPR score of almost 90% for all the datasets at 100% anonymized
nodes. However, across projects, at this privacy score (near 90%), on average,
the AUC and Recall decrease by 7.59% and 20.45%, respectively. Since any
dataset with privacy scores of 65% or greater can be further shared, the graph
anonymization techniques provide users with the ability to tweak the amount
of anonymization performed to find a good trade-off between performance and
privacy.

34 Akshat Malik et al.

(a) AUC Score and Privacy

(b) Recall and Privacy

Fig. 8: AUC/Recall vs IPR with Random Add/Delete applied. The horizon-
tal, coloured solid line is the performance of the non-anonymized (baseline)
model. The vertical-dotted lines are the different privacy levels.

Random Switch has a higher impact on the performance than
Random Add/Delete for all the datasets, where AUC and Recall
decrease by a median value of 3.25% and 5.06% for Privacy Level I
and 11.25% and 20.12% for Privacy Level II across all datasets1. One
reason for this difference could be that Random Add/Delete is able to provide

1 To save space, we do not show the corresponding plots for Random Switch. They can
be found in the online replication package [7].

Towards Graph-Anonymization of Software Analytics Data 35

privacy with fewer link changes (as seen in Table 5) than Random Switch. This
implies that Random Add/Delete causes less change to the graph structure
and therefore does not degrade performance as severely as Random Switch.

For Random Add/Delete and Random Switch, we find that there
is always a strong negative linear correlation (Spearman correlation
≥ 0.8) between the anonymization level and the AUC and Recall.
As seen in Figure 8 for Random Add/Delete, we see that with increasing
privacy scores, the AUC and Recall keep on falling. At 100% anonymized
nodes, on average, the AUC is reduced by 7.59%, and Recall by 20.45% across
all datasets. We observe similar trends for Random Switch as well, where,
at 100% anonymization level, on average, the AUC decreases by 15.18% and
Recall decreases by 27.54%. Random Switch has a more dramatic drop in
AUC and Recall with an increase in privacy. The k-DA and Generalization
techniques show either a weak or moderate negative correlation (with the
exception of k-DA for OpenStack and Flink, which show a strong correlation).

We believe that the AUC and Recall keep falling with increasing
anonymization because, as Random Add/Delete and Random Switch ran-
domly changes the structure of the data, they break the context that is
present in the graph. Changes to this context progressively cause the model
to be confused and lead to poor performance. At lower configuration levels, as
the changes are less invasive, the performance of the model is not significantly
impacted. As the amount of anonymization increases, more changes are made
to the graph, which comes at the cost of performance.

The k-DA technique’s impact on Recall (Figure 9b) is the highest
of all the techniques, with a median decrease in Recall of 9.78% and
42.83% for the two privacy levels across all datasets. For Privacy Level
II, even the best-performing configuration for k-DA decreases Recall by up to
25% on average for OpenStack, QT and Flink. At the same privacy level, other
techniques incur less loss in Recall; for example, Random Add/Delete drops
recall by 12% on average for the same three datasets. However, k-DA’s impact
on AUC (Figure 9a) is not the highest, with AUC decreasing by a median of
0.9% and 5.49% across the two privacy levels. k-DA is only able to provide
Privacy Level II to 3 datasets (Flink, OpenStack and QT), with a median
AUC loss in the range of 2.52 - 7.95%.

Similar to k-DA, Generalization is able to provide Privacy Level I
with a median increase of 0.1% AUC and a median decrease of 5.15%
Recall. For Privacy Level II, it sees a median decrease of 1.89% in
AUC and 8.57% in Recall. As seen in Figure 10, Generalization is unable
to provide Privacy Level II to Cassandra and Qt projects even at configuration
level 100. However, the privacy scores reach about 77%, with the AUC being
impacted by 0.19% and -2.03%, respectively.

Generalization preserves significantly more AUC and Recall than
other techniques. For a particular project, when Generalization is used for
anonymization, there is a statistical difference in the AUC when compared to
the other anonymization techniques, with AUC being higher for Generaliza-
tion in 4/6 projects, followed by k-DA, which performs better in 2/6 projects.

36 Akshat Malik et al.

(a) AUC Score and Privacy

(b) Recall and Privacy

Fig. 9: AUC/Recall vs IPR with k-DA applied. The horizontal, coloured
solid line is the performance of the non-anonymized (baseline) model. The
vertical-dotted lines are the different privacy levels.

For Recall, Generalization’s scores are statistically significantly higher when
compared to other techniques in 3/6 projects, with Random Add/Delete be-
ing in 1/6 projects. In the remaining two projects, we observe insignificant
differences. One reason why Generalization is able to provide privacy with the
least change in performance is that it provides the different Privacy Levels
with the least number of changes (Table 5). Therefore, the data derived from

Towards Graph-Anonymization of Software Analytics Data 37

the anonymized graph undergoes fewer changes compared to others and loses
its predictive power.

The graph anonymization techniques across all projects and configuration
points decrease the G-Mean by a median of 2.29% and 11.76% for Privacy
Level I and Level II. G-Mean shows similar trends as AUC and Recall, where
with increasing anonymization levels, the model’s performance G-Mean score
decreases. Generalization and k-DA perform the best in terms of preserving
G-Mean, being significantly better in 4 and 2 out of 6 cases, respectively. The
FPR decreases (i.e., improves) by a median of 4.42% and 3.13% for Privacy
Level I and Level II. However, we should keep in mind that at the same time,
the Recall score decreases by 5.31% and 20.29% for Privacy Level I and Privacy
Level II, reducing the performance of the model as a whole. For example, we see
that k-DA statistically performs the best for FPR, reducing it (i.e., improving
it) by a median of 11% and 52% for Privacy Level I and Privacy Level II.
Yet, simultaneously, the Recall decreases by a median of 9.78% and 42.83%,
negating the benefits. We see similar behaviour of the FPR metric for other
techniques. The graphs and tables for these two metrics can be found in our
online appendix [7].

In Figure 11, we can see how many links are changed by the techniques for
the Apache Groovy dataset and the effect on the AUC and Recall of the model.
For a value of 12k changed links in Figure 11, Generalization and Random
Switch have less impact on the AUC as compared to Random Add/Delete and
k-DA. Both Generalization (0.52%) and Random Switch (1.06%) change the
AUC negligibly. However, the IPR score provided by Generalization at the
same level is 80% compared to 71% for Random Switch. Furthermore, at 12k
changed links, Random Add/Delete is able to provide IPR scores of 80%, but
the loss in AUC is almost 6%. We see similar trends for the other datasets,
where for a similar number of changed links, Generalization is able to provide
high privacy scores with the least impact on performance, followed by Random
Add/Delete. The graphs for the remaining datasets can be found in our online
replication package [7].

We note that the recall metric observes a higher impact in certain cases,
especially Qt. To calculate how much the recall metric changes with chang-
ing anonymization level, for each technique, we calculate the effect size of
each configuration point when compared to the non-anonymized baseline. To
calculate this for each dataset, we compare the distribution of the 100 boot-
strapped models for each configuration point (for example, RAD 30) to the
non-anonymized performance and calculate the effect size. We find that the
change in Qt’s recall is not significantly different than for the other projects.
For example, in Table 7 we see that Random Add/Delete decreases the Qt
project’s Recall more when compared to the other projects (-21% for Privacy
Level II). Yet, for Qt, when statistically comparing the 18 configuration points
with Random Add/Delete to the non-anonymized baseline, the effect size for
the recall is insignificant, negligible or small for 13 configurations. This is
similar to OpenStack’s 12, Flink’s 13, Groovy’s 14 and Ignite’s 12 configura-
tion points. We see similar behaviour for other techniques, where the relative

38 Akshat Malik et al.

(a) AUC

(b) Recall

Fig. 10: AUC/Recall with IPR with Generalization. The horizontal, coloured
solid line is the baseline (non-anonymized). The vertical-dotted lines are the
different privacy levels.

change in Qt’s recall score is similar to other projects. For example, for k-DA it
is small in 1/10 cases same as Flink and OpenStack. Only for Random Switch
the change in recall is higher compared to others, being small in 9/18 cases
compared to the others being small in 12 or more. To conclude, even though
the effect on Qt’s recall may seem higher, the change is not substantially dif-
ferent from what other projects observe and depends on the technique being
used.

Towards Graph-Anonymization of Software Analytics Data 39

(a) AUC Score

(b) Recall

Fig. 11: AUC/Recall versus the number of links changed for Apache Groovy,
for all the techniques.

40 Akshat Malik et al.

Summary of Research Question 2

The graph anonymization techniques, across all datasets, are able
to provide Privacy Level I with a median drop in AUC of less than
2% and Recall of less than 6%, and Privacy Level II median drop in
AUC of less than 7% and Recall of 21%. Random Add/Delete and
Random Switch see a linear decrease in performance with increasing
anonymization. k-DA sees the largest drop in Recall out of all the
techniques. Generalization is able to provide all privacy levels with
the least significant drop in AUC and Recall.

5.3 RQ3: How do the graph anonymization techniques compare to
the state-of-the-art anonymization techniques?

For each project, with statistical significance, the MORPH, LACE
and LACE2 (NGA) techniques provide higher privacy scores when
compared to the graph anonymization techniques, with the NGA
privacy scores in the range of 89% - 99% (Privacy Level II). As
seen in Figure 12 for Apache Ignite, the NGA techniques are able to provide
privacy scores in the range of 91% to 94% for all configurations. The graphs
for other projects are available in the online replication package [7].

In Table 10, we see the aggregated results for the different GA techniques
when compared to the three NGA techniques across the six datasets. The
results are reported as win/tie/loss with respect to the row header technique,
where win indicates that the distribution was statistically significantly higher
for the row header technique (e.g., Random Add Delete), tie indicates that
there was no statistical difference, and loss means that there was a statistically
significant drop for the row header technique (e.g., Random Add Delete).

GA techniques provide significantly less privacy than MORPH, LACE and
LACE2, with the latter techniques having significantly higher privacy scores
in more than 16/18 cases. Only Random Add/Delete has comparable privacy
results to MORPH, where the privacy results are statistically insignificant to
MORPH in 5/6 cases.

On the other hand, the impact of NGA techniques on the AUC
(Table 8), and Recall (Table 9), is significantly higher than that
of the GA techniques. As seen in Table 10, for AUC, the results are ei-
ther insignificant or favour GA techniques, with Generalization performing
better than NGA techniques in 17/18 cases. For Recall, we see similar results
where each GA technique performs better in at least 14/18 cases, except k-DA,
which does so in 10/18 cases. Interestingly, only for the Qt dataset, MORPH
(NGA) performs better for Recall than k-DA, Random Add/Delete and Ran-
dom Switch (GA techniques), however, it still does not perform better than
Generalization in that case.

Towards Graph-Anonymization of Software Analytics Data 41

Across all datasets, the NGA techniques provide Privacy Level II
with AUC and Recall dropping by a median of 21.15% and 80.34%
(on average 19.81% and 66.63%). In contrast, for the same privacy
level, the GA techniques suffer only a median loss of 6.44% and
20.29% for AUC and Recall, respectively. As NGA techniques always
provide Privacy Level II, they have the same impact on performance for the
lower privacy levels. The GA techniques provide Privacy Level I with a 1.45%
and 5.35% median decrease in AUC and Recall. For example, as seen in Fig-
ure 12, the best-performing GA technique for Apache Ignite provides Privacy
Level II with a 5% decrease in AUC and a 9% decrease in Recall. In contrast,
the best-performing NGA techniques do so with a 24% and 73% decrease in
AUC and Recall. Furthermore, for Privacy Level I, the impact of the best-
performing GA technique on both performance metrics is less than 1%, for
instance, Random Add/Delete.

The NGA techniques decrease the G-Mean by a median of 70.07% across
all projects and configuration points. For the FPR metric, the NGA tech-
niques decrease it by 82.43% (i.e., improving it). However, as highlighted in
RQ2, FPR needs to be considered along with Recall, where the gains in FPR
are negated by a corresponding decrease in Recall, making the model’s per-
formance degrade as a whole. As seen in Table 10, statistical tests show that
for both G-Mean and FPR metrics, the GA techniques perform significantly
better than the NGA techniques in the majority of cases (80% and higher).
The plots for each dataset can be found in our online replication package [7].

The NGA techniques do not offer any choice over the amount of
anonymization and privacy. They provide high privacy with severe perfor-
mance degradation and do not offer any control over either. In contrast, GA
techniques offer choices where the end users can choose Privacy Level I with
almost no change in performance or Privacy Level II with slight changes in per-
formance, simply by varying the configuration level values. Graph anonymiza-
tion techniques are able to provide privacy scores close to 90%, with a lower
impact on performance. For example, the Random Add/Delete technique is
able to provide the Apache Groovy dataset with an IPR score of 88% and an
AUC score of 60% (-5.7% from the baseline). This is in contrast to non-graph
anonymization techniques where the best performing NGA technique provides
a privacy score of 97.5% but the AUC is reduced to 52% (-17.7% decrease from
baseline).

It is important to highlight that even though GA techniques provide statis-
tically lower privacy, they are still able to provide Privacy Level I and Privacy
Level II to all the datasets, which is private enough to be shared with others
[36]. GA techniques achieve the same privacy levels as NGA techniques, with
significantly higher AUC, Recall and G-Mean scores.

In Table 11, we show the comparison of the graph techniques to MD50.
The results are reported as the aggregation of #win/tie/loss for the six stud-
ied projects, where a win means that a best-performing GA configuration
performed significantly better than MD50 for a project, a tie means that a
best-performing GA configuration and MD50 technique performed equally well

42 Akshat Malik et al.

(a) AUC Score

(b) Recall

Fig. 12: AUC/Recall versus IPR score of Apache Ignite with graph and non-
graph anonymization techniques.

RAD RS K-DA Gen MORPH LACE LACE2
Cassandra 64.785 (-4.11) 57.98 (-14.24) NA NA 53.87 (-20.32) 64.89 (-4.02) 54.5 (-19.39)

Flink 69.24 (-3.93) 64.535 (-10.46) 70.26 (-2.52) 71.81 (-0.17) 51.46 (-28.46) 55.69 (-22.58) 52.26 (-27.33)
Groovy 59.89 (-6.22) 57.65 (-9.84) NA 62.265 (-2.56) 49.66 (-22.28) 51.155 (-19.95) 50.00 (-21.74)
Ignite 68.38 (-7.82) 59.765 (-19.32) NA 71.505 (-3.52) 51.4 (-30.64) 51.465 (-30.56) 52.76 (-28.81)

OpenStack 60.23 (-5.36) 56.175 (-11.84) 58.62 (-7.95) 62.76 (-1.48) 52.73 (-17.14) 58.06 (-8.77) 50.0 (-21.43)
Qt 53.78 (-6.24) 51.80 (-9.89) 54.58(-5.02) NA 50.32 (-12.47) 52.11 (-9.35) 50.00 (-13.02)

Table 8: Median AUC score at Privacy Level II with the relative change
compared to the non-anonymized baseline in parentheses.

Towards Graph-Anonymization of Software Analytics Data 43

RAD RS K-DA Gen MORPH LACE LACE2
Cassandra 83.49 (-3.62) 78.06 (-10.17) NA NA 27.57 (-68.27) 57.75 (-33.54) 14.665 (-83.12)

Flink 65.72 (-7.07) 66.08 (-6.98) 59.78 (-14.82) 66.4 (-6.24) 6.66 (-90.6) 17.14 (-75.8) 7.735 (-89.08)
Groovy 30.49 (-22.81) 32.77 (-16.79) NA 36.935 (-6.96) 18.32 (-53.85) 9.87 (-75.14) 0.255 (-99.36)
Ignite 66.14 (-13.0) 59.61 (-21.28) NA 57.79 (-23.82) 10.11 (-86.67) 3.755 (-95.05) 7.92 (-89.56)

OpenStack 42.98 (-15.58) 39.095 (-23.28) 30.3 (-40.48) 46.36 (-9.2) 37.69 (-25.97) 36.32 (-28.66) 0.025 (-99.95)
Qt 16.965 (-34.75) 13.75 (-47.68) 12.725 (-51.49) NA 31.66 (20.47) 19.16 (-27.09) 0.035 (-99.87)

Table 9: Median Recall score at Privacy Level II with the relative change
compared to the non-anonymized baseline in parentheses.

Overall AUC Overall Recall Overall G-Mean Overall FPR Overall Privacy
Random Add Delete 15/3/0 14/3/1 17/1/0 3/3/12 0/5/13

Random Switch 12/6/0 14/3/1 17/1/0 2/4/12 0/1/17
k-DA 16/2/0 10/7/1 15/3/0 3/7/8 0/2/16
Gen 17/1/0 14/4/0 18/0/0 2/6/10 0/1/17

Table 10: Overall statistical test results for each GA technique on 6
datasets compared to all three NGA techniques with at least Privacy Level I

(i.e., 18 cases). They are presented as win/tie/loss.

for a project, and a loss means that a best-performing GA configuration per-
formed significantly worse than the MD50 technique for a project. The last
row in Table 11 shows the results of the MD50 model when compared to a
JIT model trained on non-anonymized data.

For the AUC metric, we find that all the GA-anonymized metrics perform
equally well when compared to the MD50 model, being significantly better in
2/6 cases and comparable in 3/6 cases. For the G-Mean metric, all the GA
techniques perform better in at least 4/6 cases, being insignificant in the other
two cases (except Random Switch). The performance for AUC and G-Mean
is similar to the performance achieved for models trained on non-anonymized
data. For recall, we observe that the graph techniques perform better in just
1 or 2 cases, being worse in others. However, the FPR metric shows that
even though MD50 has a better recall, its FPR rate is very high, with all the
GA techniques performing at least as good in terms of FPR as MD50 for 5
cases, with k-DA and Gen even outperforming MD50 in 4 or more cases. This
difference is due to the MD50 model marking 50% of the commits as buggy,
which ends up marking a substantial number of commits as buggy while they
are not actually buggy. For MD, the benefits of recall are counteracted by the
increase in FPR.

Table 11 also shows that the performance of a model trained on graph
anonymized metrics relative to MD50 is similar to that of models trained
using non-anonymized data, i.e., the best performing GA anonymized model
for a dataset and technique performs similar to the non-anonymized JIT defect
prediction models, incurring no additional performance penalty (except FPR),
while providing an IPR score of more than 65%. Overall, the models trained
on graph anonymized data outperform the MD50 models in terms of FPR and
G-Mean, while in more than 50% of the cases performing better or similar to
MD50 models in terms of AUC.

44 Akshat Malik et al.

Overall AUC Overall Recall Overall G-Mean Overall FPR
Random Add Delete 2 / 3 / 1 1 / 1 / 4 4 / 2 / 0 2 / 3 / 1

Random Switch 2 / 3 / 1 2 / 0 / 4 4 / 1 / 1 2 / 3 / 1
k-DA 2 / 3 / 1 0 / 2 / 4 4 / 2 / 0 4 / 1 / 1
Gen 2 / 3 / 1 1 / 1 / 4 4 / 2 / 0 5 / 0 / 1

Non-anonymized data 2 / 3 / 1 1 / 1 / 4 4 / 2 / 0 4 / 1 / 1

Table 11: Overall statistical test results for each GA technique compared to
the Manual Down technique on the 6 datasets (i.e., 6 cases). They are

presented as win/tie/loss.

Summary of Research Question 3

NGA techniques are able to provide significantly higher IPR scores
when compared to GA techniques, with scores ranging between
89% to 98% for all datasets. However, this privacy (Privacy Level
II) comes at the cost of a significant performance decrease, where
NGA techniques, reduce AUC and Recall by a median of 19.82%
and 66.64%, compared to 7.28% and 22.43% for GA techniques, re-
spectively. Furthermore, NGA offers no ability to control the trade-
offs between privacy and performance. When compared to MD50,
GA techniques perform better or similar for at least 5/6 datasets for
AUC, G-Mean and FPR.

6 Discussion

Implications for Researchers: Our work shows that graph anonymiza-
tion techniques are able to provide increased privacy to JIT defect prediction
data without impacting the trained models’ performance. Unlike tabular tech-
niques, the graph anonymization techniques are able to maintain performance,
because, upon a change to the graph, they do not randomly alter the values of
other features, but retain their logical context. Future research should explore
the use of graph anonymization techniques to provide privacy for other types
of software analytics data and models, for example, build status prediction
[53], effort estimation [52], and more.

We would also recommend future work to combine multiple anonymiza-
tion techniques together, for example, combining Random Add/Delete and
Generalization techniques to observe how they change the performance of the
models when applied one after the other on the data. Further exploration of
whether techniques from the same graph anonymization category exhibit sim-
ilar results would be useful in understanding how differently the techniques of
the same category help data gain privacy.

Implications for Developers: Developers can use graph anonymization
to provide privacy without sacrificing performance. For IPR scores greater

Towards Graph-Anonymization of Software Analytics Data 45

than 65%, any of the graph anonymization techniques can be used without
significant change in performance. In our case studies, we observed that ap-
plying the Random Add/Delete and Random Switch techniques to 20% of the
nodes and for k-DA and Gen the configuration values 3 and 20, respectively,
can be chosen to provide IPR scores 65% and greater.

For higher privacy requirements, we would recommend applying Random
Add/Delete and Random Switch to 50% and 80% of the nodes, with Random
Add/Delete having a lesser impact on performance. There is no consistent
configuration value for k-DA and Gen that provides IPR scores of 80% or
greater. We would recommend evaluating with higher values, k¿10 and Gen¿50.
If the task is performance-sensitive, we suggest using Generalization, as our
study shows that it provides significantly more performance as compared to
the other techniques. Future work can explore if there are values where the
behaviour of the Gen and k-DA techniques becomes consistent.

We also observe that privacy and performance have an almost inverse re-
lation, since when privacy scores increase the performance stays constant for
some time before decreasing, and vice versa. Higher privacy levels provided
by RAD and RS are always accompanied by higher performance degradation.
Trade-offs need to be made between both, where projects that have higher
performance can be anonymized to a higher degree without the models be-
coming unusable. However, the same should not be done for projects with
lower performance, where anonymization can make the models unusable.

Challenges: The main challenge of GA techniques is the additional setup
required to create the underlying data graph and generate the metrics. Since
drift might require retraining models on future versions of the underlying git
data, future work should look into a way to incrementally update the graph,
allowing more swift re-training or fine-tuning of models. This would ease the
use and adoption of graph anonymization techniques for providing privacy.
Finally, we believe that future research should explore the integration of the
three families of anonymizing ML models, i.e., (1) graph anonymizing input
data (our focus), (2) adopting specialized learning algorithms like federated
learning [54], and (3) anonymizing the output of model predictions [18].

7 Threats to Validity

In this section, we highlight the threats to the validity of our paper are:

7.1 Construct Validity

Git-Graph specific results: It is possible that if the graph anonymization
techniques are used on a different knowledge graph, the result of our study
would be different. However, as graph anonymization techniques have been
able to provide privacy to knowledge graphs of different domains, we believe
that they would be able to provide privacy to knowledge graphs for different

46 Akshat Malik et al.

software analytics tasks made up of different entities (Reviewers, Comments,
etc.). Verification of such applicability has been left for future work.

7.2 Internal Validity

Input threat: The process of graph anonymization and generating the JIT
defect prediction metrics is time-consuming. Therefore, we do not repeat the
graph anonymization at the same configuration level multiple times. However,
we mitigate this threat by repeating the anonymization for multiple different
configuration levels of the anonymization techniques. In doing so, we are able
to establish that the results of anonymization are not an anomaly, as we see
similar behaviour trends across different datasets.

Dependent metric selection: Similar to previous work for anonymiza-
tion of defect prediction metrics by Peters et al. [35, 37, 36], we only used
bug-proneness as the target-dependent variable for the model. The results
might change if a different dependent variable is used, for example, effort-
aware bug-proneness [22]. However, we hypothesize that the results will not
dramatically change by graph anonymization of the metrics, based on findings
like the fact that anonymization improves the FPR of the JIT model by about
3%. This indicates that graph anonymized metrics do not dramatically change
the models’ ability to avoid classifying non-buggy commits as buggy, thereby
avoiding wasting developers’ effort. We propose future work to evaluate the
performance of the models with effort-aware (and other) dependent variables.

Hyperparameter tuning: It is possible that tuning the hyperparameters
of the model would result in different performance metrics. Falessi et al., [15],
in their work for understanding the effect of dormant defects, do not perform
hyperparameter turning. This is because their aim is not to produce the most
optimal models, but instead to highlight the fact that dormant defects de-
crease the recall of defect prediction. Similarly, the aim of our study is not to
produce the most optimal models but rather to assess the change that comes
with privatizing the datasets. We measure the change in model performance
anonymization brings compared to the non-anonymized baseline. A model that
has been tuned can be expected to show a better performance, albeit with a
similar trend of change in performance metrics as our current results.

Testing/training split: We use an 80/20 chronologically sorted train-
ing/testing split to train the models.[47]. We then use out-of-sample boot-
strapping to ensure that the models have less bias and variance [48]. It would
also ensure that the model’s performance is good or bad based on the random
draw of elements but rather consistent overall.

7.3 External Validity

Privacy metrics: We only use IPR for measuring privacy results, which has
been used in multiple previous works [36, 37, 35, 26]. However, it is possible

Towards Graph-Anonymization of Software Analytics Data 47

that a different privacy metric may produce different results. We leave the
evaluation of privacy with different metrics to future work.

Project-specific: It is possible that our results might change if differ-
ent projects were studied or projects in languages other than Java, C++ and
Python. However, the graph anonymization techniques and the git-graph gen-
erated are language-independent. They only operate on the knowledge graph
generated from the repositories, regardless of the underlying programming lan-
guage used. We used projects of different sizes and use cases to ensure wider
applicability. Therefore, we believe that the findings should be valid even for
different projects.

Random Forest Classifier: It is possible that the results might change
if a different classifier is used. However, Random Forest is commonly used for
JIT defect prediction models and has been found to perform at least as good
as deep learning models [58].

8 Conclusion

Our case study on 6 large, long-lived projects with 4 graph anonymization
techniques shows that they are an effective way to provide privacy to the data
while maintaining performance. All 6 datasets under study were able to gain
privacy scores greater than 65% with no significant loss in performance and
greater than 80% with slight changes in performance. Out of the four graph-
anonymization techniques, Generalization was the best performing in terms of
preserving AUC and Recall, followed by Random Add/Delete. All techniques
were able to provide Privacy Level II at lower configuration levels without
significant anonymization effort.

When compared to state-of-the-art anonymization techniques like
MORPH, LACE and LACE2, the graph-anonymization techniques were able
to provide privacy scores greater than 80% with significantly lesser change
in performance metrics. Compared to MD50, all the GA techniques perform
better in at least 4/6 cases for G-Mean and FPR, (except RS and RAD, which
perform better in 2/6 cases for FPR) while performing similar or better for
AUC in 5/6 cases. This shows that graph-anonymization techniques are an
effective way to provide privacy to data.

As of now, we have been able to demonstrate that graph-anonymization
techniques are effective in preserving the data’s within-project predictive ca-
pabilities; however, in future work, we would like to test this in a cross-
project defect prediction setting where we can verify that even after graph-
anonymization, the data is able to retain its predictive power in a cross-
project setting. We would also like to extend our work by applying graph-
anonymization techniques to other software analytics tasks than JIT predic-
tion.

48 Akshat Malik et al.

9 Conflict of Interests

All authors declare that they have no conflicts of interest.

10 Data Availability Statement

The replication package for this project which contains the code and data used
can be found here [7].

11 Acknowledgements

We want to thank Filipe Côgo for the initial discussions regarding the topic
of this paper.

References

[1] en. Page Version ID: 1131061188. Jan. 2023. url: https : / / en .

wikipedia.org/w/index.php?title=Graph_(abstract_data_type)

&oldid=1131061188.
[2] url: https://review.opendev.org/q/status:open+-is:wip.
[3] url: https://codereview.qt-project.org/.
[4] url: https://pydriller.readthedocs.io/en/latest/.
[5] url: https://scikit-learn/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html.
[6] url: http://lace.readthedocs.io/en/latest/readme.html.
[7] url: https://github.com/SAILResearch/replication-24-akshat-

towards-graph-anonymization.
[8] Justin Brickell and Vitaly Shmatikov. “The cost of privacy: destruction

of data-mining utility in anonymized data publishing”. In: Proceedings
of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. 2008, pp. 70–78.

[9] Saikat Chakraborty et al. “Deep Learning Based Vulnerability Detection:
Are We There Yet?” In: IEEE Transactions on Software Engineering
48.9 (2022), pp. 3280–3296.

[10] Jiale Chen et al. “Beyond Model-Level Membership Privacy Leakage:
an Adversarial Approach in Federated Learning”. In: 2020 29th Inter-
national Conference on Computer Communications and Networks (IC-
CCN). 2020, pp. 1–9.

[11] James Cheng, Ada Wai-chee Fu, and Jia Liu. “K-isomorphism: privacy
preserving network publication against structural attacks”. In: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Manage-
ment of data. 2010, pp. 459–470.

Towards Graph-Anonymization of Software Analytics Data 49

[12] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object oriented
design”. In: IEEE Transactions on Software Engineering 20.6 (1994),
pp. 476–493.

[13] Aritra Dasgupta, Min Chen, and Robert Kosara. “Measuring Privacy
and Utility in Privacy-Preserving Visualization”. In: Computer Graphics
Forum. Vol. 32. 8. Wiley Online Library. 2013, pp. 35–47.

[14] Khaled El Emam and Fida Kamal Dankar. “Protecting privacy using
k-anonymity”. In: Journal of the American Medical Informatics Associ-
ation 15.5 (2008), pp. 627–637.

[15] Davide Falessi, Aalok Ahluwalia, and Massimiliano DI Penta. “The Im-
pact of Dormant Defects on Defect Prediction: A Study of 19 Apache
Projects”. In: ACM Trans. Softw. Eng. Methodol. 31.1 (Sept. 2021). issn:
1049-331X. url: https://doi.org/10.1145/3467895.

[16] Yi Fan et al. “The Utility Challenge of Privacy-Preserving Data-Sharing
in Cross-Company Defect Prediction: An Empirical Study of the CLIFF-
MORPH Algorithm”. In: 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). 2017, pp. 80–90.

[17] Tomas Feder, Shubha U. Nabar, and Evimaria Terzi. Anonymizing
Graphs. ADS Bibcode: 2008arXiv0810.5578F type: article. Oct. 2008.
url: https://ui.adsabs.harvard.edu/abs/2008arXiv0810.5578F.

[18] Moritz Hardt and Eric Price. “The noisy power method: A meta algo-
rithm with applications”. In: Advances in neural information processing
systems 27 (2014).

[19] Thong Hoang et al. “CC2Vec: Distributed representations of code
changes”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 2020, pp. 518–529.

[20] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Comput. Surv. 54.4
(July 2021). issn: 0360-0300. url: https : / / doi . org / 10 . 1145 /

3447772.
[21] Qiao Huang, Xin Xia, and David Lo. “Revisiting supervised and un-

supervised models for effort-aware just-in-time defect prediction”. In:
Empirical Software Engineering 24 (2019), pp. 2823–2862.

[22] Qiao Huang, Xin Xia, and David Lo. “Revisiting supervised and un-
supervised models for effort-aware just-in-time defect prediction”. In:
Empirical Software Engineering 24 (2019), pp. 2823–2862.

[23] Shouling Ji, Prateek Mittal, and Raheem Beyah. “Graph Data
Anonymization, De-Anonymization Attacks, and De-Anonymizability
Quantification: A Survey”. In: IEEE Communications Surveys Tutorials
19.2 (2017), pp. 1305–1326.

[24] Yasutaka Kamei et al. “A large-scale empirical study of just-in-time
quality assurance”. In: IEEE Transactions on Software Engineering 39.6
(2012), pp. 757–773.

[25] Hossein Keshavarz and Meiyappan Nagappan. “ApacheJIT: A Large
Dataset for Just-in-Time Defect Prediction”. In: Proceedings of the 19th
International Conference on Mining Software Repositories. MSR ’22.
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022,

50 Akshat Malik et al.

pp. 191–195. isbn: 9781450393034. url: https://doi.org/10.1145/
3524842.3527996.

[26] Zhiqiang Li et al. “On the Multiple Sources and Privacy Preservation
Issues for Heterogeneous Defect Prediction”. In: IEEE Transactions on
Software Engineering 45.4 (2019), pp. 391–411.

[27] Kun Liu and Evimaria Terzi. “Towards identity anonymization on
graphs”. In: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. 2008, pp. 93–106.

[28] Shane McIntosh and Yasutaka Kamei. “Are Fix-Inducing Changes a
Moving Target? A Longitudinal Case Study of Just-In-Time Defect Pre-
diction”. In: IEEE Transactions on Software Engineering 44.5 (2018),
pp. 412–428.

[29] Ricardo Mendes and João P. Vilela. “Privacy-Preserving Data Min-
ing: Methods, Metrics, and Applications”. In: IEEE Access 5 (2017),
pp. 10562–10582.

[30] Prateek Mittal, Charalampos Papamanthou, and Dawn Song. “Preserv-
ing link privacy in social network based systems”. In: arXiv preprint
arXiv:1208.6189 (2012).

[31] “Model Inversion Attacks that Exploit Confidence Information and Basic
Countermeasures”. In: CCS ’15 (2015), pp. 1322–1333. url: https :
//doi.org/10.1145/2810103.2813677.

[32] R. Mortazavi and S. H. Erfani. “GRAM: An efficient (k, l) graph
anonymization method”. en. In: Expert Systems with Applications 153
(Sept. 2020), p. 113454. issn: 0957-4174.

[33] Arvind Narayanan and Vitaly Shmatikov. “De-anonymizing social net-
works”. In: 2009 30th IEEE symposium on security and privacy. IEEE.
2009, pp. 173–187.

[34] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive Pri-
vacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning”. In: 2019 IEEE
Symposium on Security and Privacy (SP). 2019, pp. 739–753.

[35] Fayola Peters and Tim Menzies. “Privacy and utility for defect predic-
tion: Experiments with MORPH”. In: 2012 34th International Confer-
ence on Software Engineering (ICSE). 2012, pp. 189–199.

[36] Fayola Peters, Tim Menzies, and Lucas Layman. “LACE2: Better
Privacy-Preserving Data Sharing for Cross Project Defect Prediction”.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Vol. 1. 2015, pp. 801–811.

[37] Fayola Peters et al. “Balancing Privacy and Utility in Cross-Company
Defect Prediction”. In: IEEE Transactions on Software Engineering 39.8
(2013), pp. 1054–1068.

[38] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. “JITLine: A
Simpler, Better, Faster, Finer-grained Just-In-Time Defect Prediction”.
English. In: IEEE Computer Society, May 2021, pp. 369–379. isbn: 978-
1-72818-710-5. url: https://www.computer.org/csdl/proceedings-
article/msr/2021/871000a369/1tB7jJnFTi0.

Towards Graph-Anonymization of Software Analytics Data 51

[39] Anastasia Pustozerova and Rudolf Mayer. “Information leaks in feder-
ated learning”. In: Proceedings of the Network and Distributed System
Security Symposium. Vol. 10. 2020.

[40] Gema Rodŕıguez-Pérez, Meiyappan Nagappan, and Gregorio Robles.
“Watch Out for Extrinsic Bugs! A Case Study of Their Impact in Just-
In-Time Bug Prediction Models on the OpenStack Project”. In: IEEE
Transactions on Software Engineering 48.4 (2022), pp. 1400–1416.

[41] Mohammad Al-Rubaie and J. Morris Chang. “Privacy-Preserving Ma-
chine Learning: Threats and Solutions”. In: IEEE Security Privacy 17.2
(2019), pp. 49–58.

[42] Alessandra Sala et al. “Sharing graphs using differentially private graph
models”. In: Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference. 2011, pp. 81–98.

[43] Reza Shokri et al. “Membership Inference Attacks Against Machine
Learning Models”. In: 2017 IEEE Symposium on Security and Privacy
(SP). 2017, pp. 3–18.

[44] Reza Shokri et al. “Membership Inference Attacks Against Machine
Learning Models”. In: 2017 IEEE Symposium on Security and Privacy
(SP). 2017, pp. 3–18.

[45] Mudhakar Srivatsa and Mike Hicks. “Deanonymizing mobility traces:
Using social network as a side-channel”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. 2012, pp. 628–
637.

[46] Sadia Tabassum, Leandro L. Minku, and Danyi Feng. “Cross-Project
Online Just-In-Time Software Defect Prediction”. In: IEEE Transactions
on Software Engineering 49.1 (2023), pp. 268–287.

[47] Ming Tan et al. “Online Defect Prediction for Imbalanced Data”. In:
2015 IEEE/ACM 37th IEEE International Conference on Software En-
gineering. Vol. 2. 2015, pp. 99–108.

[48] Chakkrit Tantithamthavorn et al. “An empirical comparison of model
validation techniques for defect prediction models”. In: IEEE Transac-
tions on Software Engineering 43.1 (2016), pp. 1–18.

[49] Brian Thompson and Danfeng Yao. “The union-split algorithm and
cluster-based anonymization of social networks”. In: Proceedings of the
4th International Symposium on Information, Computer, and Commu-
nications Security. 2009, pp. 218–227.

[50] Jacek undefinedliwerski, Thomas Zimmermann, and Andreas Zeller.
“When Do Changes Induce Fixes?” In: Proceedings of the 2005 Interna-
tional Workshop on Mining Software Repositories. MSR ’05. St. Louis,
Missouri: Association for Computing Machinery, 2005, pp. 1–5. isbn:
1595931236. url: https://doi.org/10.1145/1083142.1083147.

[51] Isabel Wagner and David Eckhoff. “Technical Privacy Metrics: A Sys-
tematic Survey”. In: ACM Comput. Surv. 51.3 (June 2018). issn: 0360-
0300. url: https://doi.org/10.1145/3168389.

52 Akshat Malik et al.

[52] Peter A Whigham, Caitlin A Owen, and Stephen G Macdonell. “A base-
line model for software effort estimation”. In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 24.3 (2015), pp. 1–11.

[53] Timo Wolf et al. “Predicting build failures using social network analysis
on developer communication”. In: 2009 IEEE 31st International Con-
ference on Software Engineering. 2009, pp. 1–11.

[54] Hiroki Yamamoto et al. “Towards Privacy Preserving Cross Project
Defect Prediction with Federated Learning”. In: 2023 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). 2023, pp. 485–496.

[55] Yibiao Yang et al. “Effort-Aware Just-in-Time Defect Prediction: Sim-
ple Unsupervised Models Could Be Better than Supervised Models”.
In: Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. FSE 2016. Seattle, WA,
USA: Association for Computing Machinery, 2016, pp. 157–168. isbn:
9781450342186. url: https://doi.org/10.1145/2950290.2950353.

[56] Samuel Yeom et al. “Privacy Risk in Machine Learning: Analyzing the
Connection to Overfitting”. In: 2018 IEEE 31st Computer Security
Foundations Symposium (CSF). 2018, pp. 268–282.

[57] Xiaowei Ying and Xintao Wu. “Randomizing social networks: a spectrum
preserving approach”. In: proceedings of the 2008 SIAM International
Conference on Data Mining. SIAM. 2008, pp. 739–750.

[58] Zhengran Zeng et al. “Deep Just-in-Time Defect Prediction: How Far
Are We?” In: Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2021. Virtual, Den-
mark: Association for Computing Machinery, 2021, pp. 427–438. isbn:
9781450384599. url: https://doi.org/10.1145/3460319.3464819.

[59] Bin Zhou and Jian Pei. “Preserving privacy in social networks against
neighborhood attacks”. In: 2008 IEEE 24th International Conference on
Data Engineering. IEEE. 2008, pp. 506–515.

[60] Lei Zou, Lei Chen, and M Tamer Özsu. “K-automorphism: A general
framework for privacy preserving network publication”. In: Proceedings
of the VLDB Endowment 2.1 (2009), pp. 946–957.

