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Abstract Continuous Integration (CI) is a widely adopted process in software
engineering that virtually merges developers’ pull requests with the code base to
perform builds and tests essential for quality assurance. CI, however, is also an
expensive process, due to the large number of pull requests that are pushed by
developers on a daily basis. To reduce the cost of CI, many companies adopt
batching algorithms that combine several commits into a single build, either with
a fixed or a dynamically evolving batch size. While a successful, dynamic batching
technique has been proposed by earlier work, we propose a fully online, more
flexible dynamic batching technique that can be configured on-the-fly and updates
batch sizes only based on the outcome of the previous batch build. Empirical
evaluation on 286,848 commits from 50 open-source projects using TravisCI shows
that our lightweight batching technique can perform equally well to the more
complex state-of-the-art batching techniques, and save a median of 4.75% more
builds than static batching techniques.

Keywords Software build · Build avoidance heuristic · Software analysis ·
Empirical study

1 Introduction

Continuous Integration (CI) [8] is a popular quality assurance process used by
countless software organizations according to which a pull request made by a
developer is integrated virtually with the current snapshot of a code base in order
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to build (i.e., compile and test) the changed code. This is typically done before
or during the code review process, when any issues identified during CI can still
easily be fixed. To support this process, countless CI automation servers (e.g.,
GitHub Actions, Azure DevOps Server) have been built and are widely available
to software organizations.

However, CI is a costly process in terms of time, energy and computing re-
sources. An individual build can take hours to complete [31], thereby affecting de-
veloper productivity. Furthermore, for a given code change one often needs to run
multiple builds in parallel, for instance to support different platforms or to evalu-
ate the quality of different configurations of a given product. Even large companies
like Google and Mozilla report their CI costs in millions of dollars annually [14].

Hence, attempts have been made to reduce the cost of CI builds, both in terms
of scheduling less builds [2,5,14] and in terms of making scheduled builds faster [9].
We focus on the former line of research, where researchers have worked on (1) AI-
based approaches that decide whether to schedule a build by predicting whether
it will fail, and on (2) less complex rule-based approaches. While the former AI-
based techniques have shown to be effective, they also bring additional costs and
disadvantages to the table, such as the cost of gathering data and training a model,
coupled with the cost of retraining the model due to data drift and the potential
cost of prediction errors.

Hence, in this study, we focus particularly on rule-based heuristics, i.e., CI-Skip
and Batching. CI-Skip is a rule-based technique that defines the characteristics of
commits that can be CI-Skipped, i.e., can be integrated without scheduling any
build. This technique focuses on eliminating builds for simple commits that would
trigger the CI process unnecessarily. Those include commits that touch documenta-
tion, source code and meta files, commits that only modify source code comments
or format the source code by adding newlines and/or spaces, and commits that
are related to version preparation.

Batching is the processing of building multiple incoming commits together
in a single build. Although it was first studied empirically by Najafi et al. [24],
they indicate that the technique was in use long before by a variety of companies
and open-source organizations. Initial batching techniques used a fixed number
of commits as batch size. If the batch build was unsuccessful, diverse fallback
algorithms like BatchBisect, Batch4, BatchDivide4 and BatchStop4 were used to
identify the individual commits responsible for the batch failure.

While effective and lightweight, static batching is not recommended to use
in projects that have many failing commits, since it is likely that many failing
commits could be grouped into a single batch (or worse, all failing commits in the
batch) in such projects, leading to a high build overhead in detecting each failing
commit. Instead, if failing commits are anticipated, reducing the batch size can
help to reduce the build overhead. Bavand et al. [4] used this principle to introduce
the dynamic batching technique, which adapts to different batch sizes to be used
in the same project. This technique uses a mathematical model that uses weighted
smoothing and failure rate to suggest the most optimal batch size to be used for
the next batch. If a batch build failed, the same fallback algorithms as for static
batching are then used to identify each failing commit.

However, the dynamic batching algorithm is based on a fixed lookup table
generated offline. It stores the value of ideal (project-independent) batch sizes to
be used for a range of weighted failure rate values. To modify the current batch
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behaviour, or customize it to a new project, engineers would have to compute or
simulate specialized statistical values replacing the current lookup table, which is
not a trivial endeavour.

In this work, we present a technique based upon dynamic batching that can
provide at least similar build savings to Bavand et al.’s technique [4], while also
providing build engineers with the capability to modify batching practices on-
the-fly, only based on the previous batch’s failure rate. Our Lightweight dynamic
batching (LWD) algorithm is based on simple, lightweight (including random)
techniques run after every build to decide the batch size of the next build. We
also perform the first empirical study that combines batching with CI-Skip rules,
comparing the performance with the individual batching techniques.

Our large-scale empirical study on 286,848 commits from 50 open-source projects
collected from the TravisTorrent data repository measures the percentage of builds
saved by applying each of the existing and new heuristics (static batching, state-
of-the-art dynamic batching, LWD and CI-Skip) to address the following three
research questions:

– RQ1: What is the best LWD approach to dynamically update the batch size? –
We evaluate all our lightweight batch updating LWD techniques against each
other to identify the most effective techniques amongst them.

– RQ2: How does LWD perform in comparison to state-of-the-art static and dy-
namic batching techniques? – We compare the performance of our new heuristic
against existing batching techniques to identify the most effective heuristic for
build scheduling reduction.

– RQ3: Does the addition of CI-Skip rules make batching more effective? – We
combine the studied batching techniques with CI-Skip to evaluate the potential
reduction in build scheduling when combining the two rule-based heuristics.

We summarize below our major study contributions:

– Our LWD algorithms can save a median of 7.75% more builds than state-of-
the-art static batching algorithms.

– The performance of the LWD algorithms is equally high as that of state-of-
the-art dynamic batching.

– Although CI-Skip is effective in pruning out harmless commits from CI builds,
it does not significantly improve on the performance of dynamic batching al-
gorithms.

– Our study’s replication package1 is available online.

We organized the remainder of this paper as follows. Section 2 discusses back-
ground information and related work. Section 3 defines the existing and new heuris-
tics discussed in this study. Section 4 introduces our study methodology, including
the study goal, research questions, and study steps. Sections 5, 6, and 7 present
our study results per research question. Section 8 discusses threats to the validity
of our empirical study. Finally, Section 9 concludes this paper and suggests future
work.

1 https://github.com/divyamadhav/dynamic batching
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2 Background and Related Work

2.1 Related Work

2.1.1 Reducing CI Costs

Large software companies like Google and Facebook have a massive number of
commits to compile everyday. As stated by Najafi et al. [24], software testing
hence becomes one of the costliest stages of software development. To reduce CI
costs, researchers introduced techniques that tackle this problem from different
angles, such as reducing the number of builds to be scheduled, speeding up sched-
uled builds using faster build systems and architectures, and reducing the number
of test cases to be run. These techniques include the widely popular Test Case
Prioritization (TCP), Regression Test Selection (RTS), build priorization, commit
skipping and commit batching.

Various authors have explored approaches for Test Case Prioritization (TCP)
and Regression Test Selection (RTS), aiming to reduce test duration in CI [6,9,10,
13,21,27]. Kazmi et al. [20] presented a literature survey of 47 empirical studies of
RTS techniques like learning-based regression and mining, their study design and
the cost models of studied RTS techniques. Elbaum et al. present cost-effective
techniques that use time windows to track executed test suites and apply RTS
and/or TCP during CI testing. Jin et al. [15, 16] also evaluated 10 selection and
prioritization strategies on build and test level granularities to understand de-
sign decisions that could help to save the cost of CI. In parallel, companies like
Microsoft, Facebook and Google have also introduced distributed build tools like
Buck, CloudBuild [11], Bazel [22] that reduce build duration by performing in-
cremental builds. Approaches involving prioritization, test case reduction or build
tool optimization tackle the CI costs once the CI builds are scheduled. On the
other hand, approaches like commit batching and commit skipping studied by this
paper aim to reduce the number of builds actually scheduled.

At the level of build scheduling, batch testing and bisection are employed when
resources for expensive build and test operations are scarce. The basic principle
combines together a finite number of individual commits into a single build/test.
Only if the build/test fails, the commit(s) responsible for the failure must be
identified through additional builds based on a so-called fallback algorithm. Hence,
commit batching requires choosing a batch size (i.e., finite number of commits)
and a fallback algorithm (to identify culprit commits). Najafi et al. [24] presented
a study on identifying patterns of commit grouping and bisection. They identified
that batching and bisection are effective when performed in batch sizes of up to 9
builds. Beheshtian et al. [5] presented and examined 4 commit bisection techniques
and 2 risk modeling techniques to perform batching in CI. Furthermore, Bavand
et al. [4] presented a study on dynamic commit batching, which uses a non-trivial
mathematical model to determine and evolve the ideal batch size to be used during
CI. In our study, we explore and evaluate the use of simpler, arithmetic and random
operations to dynamically determine batch sizes to be used during CI. We compare
our study results against the above works to provide build engineers with an in-
depth insight into commit batching and bisection.

Commit skipping is a build scheduling technique trying to determine which
builds are useful to schedule, and which ones are redundant (i.e., should not be
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scheduled) during CI testing. After identifying 1,813 commits that were manually
labeled by developers to be skipped from CI testing, Abdalkareem et al. [2] pre-
sented CI-Skip rules able to identify commits for which a build is redundant, then
presented a rule-based technique to automatically detect and label CI-Skip com-
mits. Furthering their study, Abdalkareem et al. [1] presented a machine learning
approach to improve the detection of CI-Skip commits. This study identified that
the number of developers, content of commit messages along with the CI-Skip rules
are important factors for detecting CI-Skip commits. They extracted 23 features
from the historical data of 10 software repositories and built a decision tree classi-
fier to detect these commits. Jin et al. [17] further studied the cost-saving ability
and the safety of CI-Skip rules with respect to the proportion of failing builds that
they can identify and determined that the rules are not completely safe to use, as
they skip some failing builds too. They further presented a safer, complementary
collection of CI-Run rules that are used in their novel PreciseBuildSkip technique
to predict build failures.

Another approach to skip commits involves training machine learning algo-
rithms to predict the outcome of a CI build. If a commit is predicted to build
successfully, it is merged into the code base directly, without an actual build. In
contrast, if the build of a commit is predicted to fail, the build is scheduled in
order to identify the error. Jin et al. [14] introduced SmartBuildSkip, a random
forest classifier for build skipping able to save between 30%-61% builds. Later on,
they combined their work on SmartBuildSkip and PreciseBuildSkip to aggregate
the predictions of both techniques to provide build/skip predictions with more
confidence [18]. In our study, we avoid the use of machine learning models in our
study, and instead apply the CI-Skip rules along with our studied batching tech-
niques to examine if the two lighterweight rule-based techniques can be combined
to achieve better build savings.

2.1.2 Local vs. Global Models in Software Analytics

The Occam’s razor philosophy states that, given a choice between two compet-
ing hypotheses, the simpler theory should be selected [29]. The principle has been
widely employed in previous work in Computer Science, in the contexts of machine
learning, project management, big data and service oriented architectures among
others. As an obvious example, Fan et al. [12] compared the CLIFF&MORPH
models (privacy preserving, data-sharing algorithms) with the simple, unsuper-
vised ManualDown model, which considers a file to be defect-prone if it is amongst
the top N largest files that were changed in a given time period. Their empirical
study showed that this simple model could perform at least as good, often even
better cross-company defect prediction than the more complex CLIFF&MORPH.

Another take on Occam’s Razor is provided by the use of local vs. global models
for various software engineering tasks, where local models only consider limited
knowledge known locally, while global models require a global view of a given
system. For instance, Pinciroli et al. [25] presented Buzz, a programming language
for robot swarms. The language allowed to define swarm robot behaviours with
respect to either a single robot (local) or the overall swarm (global). Using their
Buzz domain specific language, the authors show that a variety of global swarm
behaviours can be obtained solely by defining a given type of robot’s individual
interactions with its immediate neighbourhood. Using a global, centralized view
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of the swarm for programming the swarm’s behaviour often is not required, and
might even lead to more brittle, complex algorithms.

Similarly, Menzies et al. [23] found, with respect to effort estimation and de-
fect prediction, that localized learning of data across a population can provide
important findings that differ in comparison to lessons learnt from global data.
In particular, since they can specialize to more homogeneous groups of files, local
models tend to be more simple, while also performing better.

Finally, Zaha et al. [30] also discussed the tradeoffs between the use of local and
global knowledge in service-oriented architecture (SOA). While a global picture of
service interactions is useful for larger service oriented systems, these systems can
not properly replicate local behaviour. Hence they define an algorithm to generate
more simple, local models of system interactions from a global model to gain local
knowledge on system interactions.

Similar to the above work, we also focus on simple, local algorithms to dy-
namically update the size of a batch during CI, relying solely on (1) the previous
batch’s failure rate and (2) simple arithmetic.

2.2 Background

This section revisits the static and dynamic algorithms proposed in prior work,
which we use as baselines in this paper.

2.2.1 TestAll Baseline

TestAll is a performance measuring baseline used by Bavand et al. [4] and Behesh-
tian et al. [5] that we follow in this work as well. In TestAll, all incoming commits
are compiled individually during CI, without any batching. Since TestAll does not
save any build at all, we measure the percentage of builds saved by the studied
heuristics with reference to TestAll - i.e., Heuristic A saves X% of builds w.r.t
TestAll.

2.2.2 Static Batching

During static batching, a finite number of incoming commits are combined into
a single batch for build execution [5], see Algorithm 1. If a batch of ‘N’ com-
mits compiles successfully, it saves N-1 builds from being executed. However, if
the batch build is unsuccessful, fallback algorithms like BatchBisect, BatchStop4,
BatchDivide4, etc. are used to identify the culprit commit(s). In pre-merge test-
ing, batching can be applied by grouping together changes submitted in parallel
by different developers. As the changes of each commit typically are independent
of other commits in the batch, the entire batch would fail if a single commit in the
batch fails. On the other hand, during post-merge testing, changes from developer
commits have been integrated and tested already, hence are more likely to pass
the build. If the batch consists of a (few) failing commit followed by a successful
commit, the entire batch is likely to build successfully.

Figure 1 shows the BatchBisect algorithm for a batch size 4. The commits are
grouped according to their chronological order, batching together every 4 commits.
Since the entire batch build would fail if it consists of at least one failing commit,
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the batch is bisected into two sub-batches for further examination. As shown, we
see a total of 8 builds required for building 8 commits, making a savings of 0
builds. Algorithms 2-4 summarize the steps of these studied fallback algorithms.

In BatchBisect, culprit commits are identified by halving the batch size (bisec-
tion) until a batch size of 1 commit is reached for failing sub-batches. However, with
BatchStop4 and BatchDivide4, bisection is performed only until the batch size of 4
is reached, after which all 4 commits of a failing sub-batch are built individually to
reveal any failing commits. BatchDivide4 further generalizes BatchStop4, by first
grouping one batch into 4 groups of similar sizes, then implementing BatchStop4
on each batch to reveal any culprit commit(s).

Algorithm 1 Batch* Driver

1: procedure fillbatch(batchSize, incomingCommit)
2: i = 0
3: batch = []
4: fails = []
5: while i < batchSize do
6: batch.append(incomingCommit)
7: i← i+ 1
8: end while
9: outcome← BatchBisect(batch, fails) ▷ or BatchStop4 or BatchDivide4
10: end procedure

Fig. 1: This figure illustrates the number of builds required by the BatchBisect
commit grouping algorithm (batch size 4). In the figure, red boxes signify failing
builds, while green boxes signify successful builds. Across the 8 commits, Batch-
Bisect will require a total of 8 builds (2+2+4) to be scheduled due to the bisection
used for the failed second batch build.
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Algorithm 2 BatchStop4 (Beheshtian et al. [5])

1: procedure batchstop4(batch,fails)
2: if len(batch) <= 4 then
3: i← 0
4: while i < batch size do
5: build outcome = Build(batch[i])
6: if build outcome == False then
7: fails.extend(batch[i])
8: end if
9: end while
10: return
11: end if
12: outcome← Build(batch)
13: if outcome == False then
14: half = len(batch)/2
15: BatchStop4(batch[: half ], fails)
16: BatchStop4(batch[half :], fails)
17: end if
18: end procedure

Algorithm 3 BatchBisect (Beheshtian et al. [5])

1: procedure batchbisect(batch, fails)
2: if len(batch) == 1 then
3: build outcome = Build(batch)
4: if build outcome == False then
5: fails.extend(batch)
6: end if
7: return
8: end if
9: outcome← Build(batch)
10: if outcome == False then
11: half = len(batch)/2
12: BatchBisect(batch[: half ], fails)
13: BatchBisect(batch[half :], fails)
14: end if
15: end procedure

Algorithm 4 BatchDivide4 (Bavand et al. [4])

1: procedure batchdivide4(batch,fails)
2: if len(batch) <= 10 then
3: return BatchStop4(batch)
4: else
5: limit← len(batch)÷ 4
6: batch 1← batch[: limit]
7: outcome← BatchStop4(batch 1, fails)
8: batch 2← batch[limit : 2 ∗ limit]
9: outcome← outcome & BatchStop4(batch 2, fails)
10: batch 3← batch[2 ∗ limit : 3 ∗ limit]
11: outcome← outcome & BatchStop4(batch 3, fails)
12: batch 4← batch[3 ∗ limit :]
13: outcome← outcome & BatchStop4(batch 4, fails)
14: end if
15: end procedure
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The largest drawback with static batching is the bisection overhead when a
compiled batch consists of many failing commits. Since build failures are expected
to occur consecutively in CI, intuitively, a stream of failing commits are better
compiled individually to avoid the overhead of bisection builds. For instance, let’s
assume a worst case scenario involving a batch of 8 failing commits. To identify
that all commits in the batch are failing, BatchBisect would require to make 15
build executions (see Figure 1). BatchDivide4 and BatchStop4 would require 11
builds each. This is an overhead of 15− 8 = 7 and 11− 8 = 3 builds, respectively.

2.2.3 Dynamic Batching

Dynamic Batching, introduced by Bavand et al. [4] uses a weighted moving average
of build failures to dynamically estimate an optimal batch size that could be used
to perform commit batching during CI. The WeightedFailureRate of the last ‘C’
commits is computed using:

WeightedFailureRate =

∑C

c=1
Smoothing(c)∗IsFailure(c)∑C

c=1
Smoothing(c)

[4]

Here, ‘c’ is the position of a commit relative to the current commit, while Smoothing
is a function that smoothes the weights for each commit. Examples of such a func-
tion are 1, log(c), ec or 1

c , most of which ensure that newer commits have a higher
weight than older commits. IsFailure is a predicate indicating whether commit
‘c’ is a failing build.

Algorithm 5 describes the steps of the state-of-the-art dynamic batching tech-
nique. The technique uses an offline simulation of 100k randomly generated pass/fail
occurrences for a range of failure rates between (0, 1) and for varying batch sizes in
order to identify the expected number of build executions for each measured com-
bination of build failure rate and batch size. Using this data, the LookupBatchSize
function is able to return the batch size that expects the minimum number of exe-
cutions (according to the simulation), for a provided build failure rate. Hence, once
the CI and batching process begin, the function WeightedFailureRate first com-
putes the build failure rate for a finished batch, using the formula provided above,
after which the optimal batch size can then be determined using LookupBatchSize.

Once the dynamic batching algorithm forms batches and schedules a build, it
relies on the basic fallback algorithms BatchBisect, BatchStop4 or BatchDivide4 to
identify culprit commits (if any). Hence, there exist three variants of this technique,
each using one of the three fallback algorithms.

This state-of-the-art dynamic technique, while an excellent heuristic saving a
median of 43.26% builds, relies on the build outcomes of the last N (i.e., 100,
200, ..., commits) historical commits and allows little flexibility for build engineers
to tweak the parameters of the algorithm on-the-fly. In fact, the Monte Carlo
simulation determining the ideal weights for historical build failure rates does not
depend on a project’s specific context. As such, we aim to provide more flexibility
and present lightweight techniques that can provide similar build saving outcomes
while also using only the most recent build data (i.e., a more local approach).

2.2.4 CI-Skip Rules

The concept of CI-Skip rules is based on the premise that not every commit needs
to trigger the CI process [2]. Examples of such commits include commits that only
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Algorithm 5 State-of-the-art Dynamic Batching, (Bavand et al. [4])

1: procedure fillbatch
2: commit outcomes = []
3: while incomingCommit do
4: while i < batchSize do
5: batch.append(incomingCommit)
6: i← i+ 1
7: end while
8: BatchBisect(batch, fails) ▷ or BatchStop4 or BatchDivide4
9: commit outcomes.extend(fails)
10: failure rate←WeightedFailureRate(Smoothing, commit outcomes)
11: batchSize← LookupBatchSize(failure rate)
12: i = 0 ▷ Resetting for next batch
13: batch = []
14: fails = []
15: end while
16: end procedure

Fig. 2: This figure illustrates the Baseline Dynamic Batching algorithm. After
each batch build, the algorithm consults the lookup table produced by the offline
simulator, which uses the weighted failure rate to output the batch size most
suitable for the next batch build.

modify source code comments or commits that only modify the documentation of
a project. Abdalkareem et al. introduced CI-Skip rules after examining 1,813 Java
commits that developers explicitly marked to be skipped from the CI processes.
These commits are hence named CI-Skip commits. The rule-based technique has
5 rules to detect CI-Skip commits [2]:

– Changes that touch only documentation and non-source code files
– Changes related to preparing releases (version preparation) such as commits

modifying version numbers in build configuration files
– Changes that only modify source code comments
– Changes that touch meta files such as .ignore files or image/media files like

.png, .mp3
– Changes that format source code
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Abdalkareem et al. [1] later presented a machine learning approach to detect
CI-Skip commits, which remains outside the scope of this study as we are dedicated
to the evaluation of rule-based techniques.

3 Lightweight Dynamic Batching Algorithm and Variants (LWD)

Lightweight Dynamic Batching (LWD) is a simple rule-based batching heuristic
that can dynamically update batch sizes of traditional batching techniques during
CI operations based on local knowledge. It only uses information about the failure
rate, i.e., number of failing builds in the most recent batch, to decide the batch
size for building upcoming commits. If the majority of commits in the previous
batch are failing, then a smaller batch size is used for the current batch, given the
high risk of future build failures [26]. Conversely, if the majority of commits in the
previous batch are successful, then a larger batch size is used, as the risk of future
build failures has been reduced.

The main challenge of an LWD technique is to try to increase or decrease batch
sizes at the right moment, such that the batch size can be as large as possible (i.e.,
minimal number of builds to be run) in between build failures, while as small as
possible during a build failure streak (i.e., minimizing the bisection overhead of
traditional batching). As such, a variety of LWD variants can be designed differing
mainly in the way in which the new batch size is estimated.

This paper presents 5 main LWD variants covering a wide range of techniques
for incrementing/decrementing batch sizes. All of these share a few basic principles:

– Fallback Rule: If the failure rate of the most recent batch is greater than a
given X%, the next batch size defaults to 1. – This rule helps to account for a
continuous stream of failing incoming commits. In order to avoid unnecessary
bisection builds to identify the failing commits in a batch, we build one com-
mit at a time, influenced by SmartBuildSkip [14], until a successful build is
encountered. Once a successful build is encountered, the batch size is increased
again based on the LWD variant’s batch size updating rules.

– Retention Rule: Retain batch size if the most recent batch has a successful final
commit and failure rate less than Y%. – This rule helps to account for scattered
failing incoming commits. If there were very few failing commits in a batch,
eventually succeeded by successful commits, we do not anticipate more failing
commits in the next batch.

– Factor Rule: Every batch size update occurs with respect to a factor. – Funda-
mentally, a new batch size is obtained by adding, subtracting, multiplying, or
dividing the most recent batch size with a factor to obtain a new batch size.
With the exception of Random batch updating, where the next batch size is
chosen randomly, all our batch updating techniques have non-zero factors.

– Customizability Rule: Every batch size updating technique can be customized
according to the needs of a project. – In every LWD technique, there exist cus-
tomizable elements, such as maximum and minimum batch size, factor, reten-
tion limit and fallback limit to be used, to allow the build engineers flexibility
to control batching in CI according to their current requirements.

These design decisions add to the LWD approaches’ explainability, making
it easier for build engineers to understand why the given batch size is the most
optimal one to use for the next batch.
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3.1 Lightweight Batch Size Updating Variants

This subsection details our five LWD techniques incorporating the 4 principles
presented previously, yielding Linear, Exponential, Random, Mixed and Most Fre-
quently Used (MFU) variants. Of these five, the Linear, Exponential and Random
techniques are atomic, i.e., they comprise only one condition to decide the next
batch size. The Mixed and MFU variants are composite techniques that go through
a series of if-else conditions to decide the next batch size.

Similar to the state-of-the-art dynamic batching technique, the LWD technique
also relies on the three fallback algorithms BatchBisect, BatchStop4 and Batch-
Divide4 to identify culprit commits in a failing batch. Once a batch is formed and
build is executed, any culprits of the batch are identified using one of the 3 fallback
algorithms. Once culprits are identified (if any), we update the batch size using
our five LWD batch updating variants.

Algorithm 6 calls the Failure Case and Success Case procedures depending
on the outcome of the previous batch build. If the previous batch consists of all
successful commits and the batch were compiled with a single build, the Success
Case procedure is called. Otherwise, the algorithm calls the Failure Case procedure.

Algorithm 6 Batching Function

1: procedure FillBatch: (incomingCommitFlag)
2: i← 0
3: batch← []
4: fails← []
5: batchSize← 16 ▷ Default starting batch size
6: if incomingCommitFlag == True then
7: incomingCommit← new commit received
8: while i < batchSize do
9: batch.append(incomingCommit)
10: i← i+ 1
11: end while
12: BatchBisect(batch, fails) ▷ or BatchStop4 or BatchDivide4
13: FR ← Length(fails) ÷ batchSize ▷ Measuring Failure Rate
14: if FR > 0 then
15: batchSize← Failure Case(FR)
16: else
17: batchSize← Success Case()
18: end if
19: end if
20: end procedure

In this study, we identify 39 sub-variants of the LWD batching technique. I.e.,
the five batch updating techniques form 13 sub-variants, each of which can be used
in combination with one of three fallback algorithms. These sub-variants are listed
in Table 1.

3.1.1 Atomic Batch Size Updating: Linear, Exponential, Random

Algorithms 7, 8, 9 details the steps of the atomic batch size updating techniques.
In these algorithms, the elements fallback limit (implements the Fallback Rule),
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Table 1: Batch size update rules for 3 atomic and 2 composite LWD variants

Variant New Batch Size
Base Sub-

Variant

Factors
Success Case Failure Case

Linear 1,2,3,4 current+factor current-factor
Exponential 2,3 current*factor current ÷ factor
Random Linear current + F

F = random(current,
maximum)

current - F
F = random(minimum,
current)

Exponential current * F
F = random(2, 4)

current ÷ F
F = random(minimum,
current)

Jump random(current, maxi-
mum)

random(minimum,
current)

Mixed 2,3 current*factor current-factor
or
current÷factor
or
minimum

MFU 2,3 current*factor current-factor
or
current÷factor
or
MFU batchSize

retention limit (implements the Retention Rule), factor (implements the Factor
Rule), minimum and maximum can be customized according to the needs of the
project. As depicted in lines 2, 4 and 6, these techniques use the failure rate of
the previous batch to decide whether to retain the previous batch size, fall back
to minimum batch size or update the batch size. To update the batch size in lines
9 and 17, they add, subtract, multiply or divide the current batch size by ‘factor’
(which is either constant or randomly chosen) as shown in Algorithms 7, 8 and 9.

The atomic batch updating techniques are designed to allow either aggressive
or more lenient updates to batch sizes. For example, if the current batch size used
is 4 builds, the linear variant with factors of 1, 2, 3, 4 can increment/decrement a
batch by the specified amount, making smaller and more lenient changes in batch
size. On the other hand, in projects with a high velocity of incoming commits, the
batch size could more quickly expand the batch size from 16 to 48 by using an
Exponential LWD with a factor of 3. If build engineers do not have a concrete idea
of the factor values needed or LWD technique to use, they could use the random
batch updation technique as it uses random factors and batch sizes. Additionally,
by choosing different sub-variants of random batching such as Jump, Linear or
Exponential, one can obtain more control on the nature of build savings.

We choose reasonable values for ‘factor’ to avoid making too large batch sizes
(e.g., batch sizes exceeding 50 builds). To do so, we limit the factors of Exponential
variant to {2, 3}. Similarly, factors of the Random-Exponential sub-variant are
limited to {2, 3, 4}. We maintained a 20% retention limit and 40% fallback limit
in our experiments. In other words, if less than 20% of the commits in the previous
batch have failed, then the batch size is reused for the next batch, and if more than
40% of commits of the previous batch failed, we reset the batch size to minimum
(i.e., 1). We also set the maximum allowed size of the batch to be 16 commits, so
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Fig. 3: This figure illustrates the Exponential Lightweight Dynamic Batching vari-
ant. After each batch build, depending on the failure rate of the most recent batch,
the algorithm increases or decreases the batch size for the next build by a factor
of 2.

as to avoid making larger batch sizes than 50 builds while using the Exponential
technique. We used a low retention limit to avoid the risk of encountering more
build fails in the subsequent batches. A moderate fallback limit allowed to ensure
adequate build savings, as a lower value would frequently reset the batch size to
1, hindering build saving efforts and a higher value could lead us to include more
failing commits in the next batch.

3.1.2 Composite Batch Size Updating: Mixed, MFU

The composite batch size updating techniques use an if-else-if branch to decide the
next batch size to use in CI. These approaches help to form more conservative batch
updating techniques that can decide how much a batch size needs to be reduced.
The difference between our two composite LWD variants boils down to their ability
to handle large failure rates. While the Mixed LWD variant immediately falls back
to the minimum batch size, the MFU algorithm will default to the batch size
that was most frequently used thus far for this project. Composite batch updating
variants were introduced to provide more balance between Linear and Exponential
atomic techniques where, depending on the acceptable level of build failures in the
project, engineers can configure to either drastically or conservatively update batch
sizes.

Algorithms 10 and 11 present the Mixed and MFU variants. In these algo-
rithms, elements fallback limit, min limit, med limit, max limit, factor, minimum
andmaximum are customizable according to the needs of the project. Each of these
limits are tested individually as well as along with the criterion that the previous
batch ended with a successful commit (to ensure that we are not in the middle of a
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Algorithm 7 Linear Batch updating algorithm

1: procedure Failure Case : (FR = failure rate)
2: if (FR > fallback limit) then ▷ Fallback Rule
3: return minimum
4: else if (FR < retention limit) && (last commit = Success) then ▷ Retention Rule
5: return(current size)
6: else if current size < factor then
7: return minimum
8: else
9: new size← current size− factor ▷ Factor Rule
10: return new size
11: end if
12: end procedure

13: procedure Success Case
14: if current size > maximum then ▷ Batch size should not
15: return(current size) ▷ be beyond max+ factor
16: else
17: new size← current size+ factor
18: return new size
19: end if
20: end procedure

Algorithm 8 Exponential Batch updating algorithm

1: procedure Failure Case : (FR = failure rate)
2: if (FR > fallback limit) then ▷ Fallback Rule
3: return minimum
4: else if (FR < retention limit) && (last commit = Success) then ▷ Retention Rule
5: return(current size)
6: else if current size < factor then
7: return minimum
8: else
9: new size← current size÷ factor ▷ Factor Rule
10: return new size
11: end if
12: end procedure

13: procedure Success Case
14: if current size > maximum then ▷ Batch size should not
15: return(current size) ▷ be beyond max× factor
16: else
17: new size← current size× factor
18: return new size
19: end if
20: end procedure

series of failing commits). If the min limit is not yet reached, we retain the current
batch size in the case of the Mixed batch updating technique. Consequently, for
Mixed and MFU techniques we update the batch size cautiously by subtracting
factor if the med limit is not reached, but more aggressively divide by factor if
the med limit is exceeded. In our experiments, we used the values of 10, 20 and
50 for the min limit, med limit and max limit respectively. To avoid making large
batch sizes, we limit the factor used in the Composite batch updating variants to
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Algorithm 9 Random Batch updating algorithm

1: procedure Failure Case : (FR = failure rate)
2: if (FR > fallback limit) then ▷ Fallback Rule
3: return minimum
4: else if (FR < retention limit) && (last commit = Success) then ▷ Retention Rule
5: return(current size)
6: else if current size < factor then
7: return minimum
8: else
9: new size← current size− /÷ random ▷ Factor Rule according to Table 1
10: return new size
11: end if
12: end procedure

13: procedure Success Case
14: if current size > maximum then ▷ Batch size should not
15: return(current size) ▷ be beyond max+ /× factor
16: else
17: new size← current size+ /× random ▷ Factor Rule according to Table 1
18: return new size
19: end if
20: end procedure

{2, 3} only. We also set minimum batch size to be 1 commit and maximum batch
size to be 16 commits. Similar to Atomic batch updating variants in Section 3.1.2,
we set low retention limits and moderate fallback limits to attempt adequate build
savings.

3.2 Use Case of Lightweight Dynamic Batching

The lightweight dynamic batching technique is designed to enable build engineers
to customize the configuration of their CI batching. Build engineers can choose
any of the 5 methods to save builds during CI. For each of these techniques, the
engineers can set the values of the fallback limit, retention limit according to the
cost/benefit tolerance of the project. The absence of offline elements in LWD also
allows engineers to update parameters that modify build behaviour on-the-fly, only
leveraging local knowledge of the previous batch’s outcome.

The choice of LWD variant and configuration can be adapted to a project’s
characteristics and development cycle. For instance, if a project needs to identify
failing commits early and cost is not an issue, then the fallback limit and retention
limits can be set low. Similarly, if the project needs to save the cost of executing
builds, then the fallback and retention limit can be set high. Similarly, developers
can also choose to set higher factor values (i.e., greater than 3) to allow larger
batch sizes to be used in build execution.

Additionally, during the development cycle, when new features are being added
into software, feedback is essential to understand what code changes are ready and
which ones need more work. Engineers can choose to set more conservative limits
(i.e., lower batch sizes) to be able to learn build outcomes as early as possible.
However, in between development cycles, where incoming commits are mostly
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Algorithm 10 Mixed Batch Size Updating Techniques

1: procedure Failure Case : (FR = failure rate)
2: if (FR > fallback limit) then ▷ Fallback Rule
3: return minimum
4: end if
5: if current size < factor then
6: return (minimum)
7: else if (FR < retention limit) && (lastcommit = Success) then ▷ Retention Rule
8: return (current size)
9: else if (FR < med limit) && (lastcommit = Success) then
10: return (current size - factor)
11: else if (FR < max limit) && (lastcommit = Success) then
12: return (current size ÷ factor)
13: else
14: return minimum
15: end if
16: end procedure

17: procedure Success Case
18: if current size > maximum then
19: return (maximum)
20: else
21: return min(current size*factor, 16)
22: end if
23: end procedure

Algorithm 11 MFU Batch Size Updating Techniques

1: procedure Failure Case : (FR = failure rate)
2: if (FR > fallback limit) then ▷ Fallback Rule
3: return minimum
4: end if
5: if current size < factor then
6: return (minimum)
7: else if (FR < retention limit) && (lastcommit = Success) then ▷ Retention Rule
8: return (current size)
9: else if (FR < med limit) && (lastcommit = Success) then
10: return (current size - factor)
11: else if (FR < max limit) && (lastcommit = Success) then
12: return (current size ÷ factor)
13: else
14: return MFU(batch size)
15: end if
16: end procedure

17: procedure Success Case
18: if current size > maximum then
19: return (maximum)
20: else
21: return min(current size*factor, 16)
22: end if
23: end procedure
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addressing bug fixes and code maintenance, higher batch sizes can be used to save
builds.

From time to time, projects could also monitor the performance of the selected
(and possibly customized) LWD technique on the project’s historical CI data. If
the customizations were not able to improve the approach’s performance, they
might opt to switch to a different LWD approach altogether instead of further
customizing the current approach. They might also decide to make such switches
when disruptive changes are expected in the development cycle, depending on the
development cycle..

Our technique improves upon the existing dynamic batching algorithm by
avoiding the need to pre-compute a look-up table for batch sizes or to frequently
recalculate the weighted failure rate. The lookup table of Bavand et al.’s exist-
ing dynamic batching technique forces build engineers to use the same settings
throughout the entire project lifetime, leaving them unable to make any other
project-specific customizations. Similarly, with state of the art static batching, a
constant batch size is used for every batch that is built in the project, irrespec-
tive of the results of the most recent build. Although effective, different phases of
software engineering like development, quality assurance and project maintenance
are likely to have different CI needs. This is why the lightweight dynamic batching
algorithm does not require a look-up table, but dynamically adapts the batch sizes
using intuitive arithmetic formulae.

One of the major advantages of LWD is its customizability, as illustrated above.
The customizability rule of LWD helps to adjust CI parameters to fit the context
of a project (which might change over time), along with the CI needs according to
the software engineering phase. Build engineers can customize limits of batch size
retention, fallback limits or decide maximum/minimum batch size allowed during
CI, depending on the priorities of their company. LWD’s factor rule helps to adjust
the frequency of scheduling builds by controlling the rate of increase/decrease of
batch sizes. For instance, after a successful batch compilation, factor 3 suggests a
bigger batch size than factor 2 for the next build. In a situation where consecutive
incoming commits are expected to be successful, larger batch sizes can reduce the
number of builds required and subsequently reduce CI cost. At the same time,
LWD’s fallback rule can help abruptly reset the batch size to 1 when many failing
commits are incoming. This reduces the overhead of bisection builds, which are
necessary to identify the commits that are responsible for failing the batch build.

4 Study Methodology

4.1 Study Goal and Research Questions

In order to validate the performance of our LWD variants compared to the base-
line batching techniques of Section 2.2, we perform an empirical study. Using
the Goal/Question/Metric template [3], our study goal is as follows: analyze the
performance of the lightweight dynamic batching variants during Continuous In-
tegration (CI) testing; for the purpose of (i) identifying simpler heuristics for
build savings and (ii) identifying ideal batch sizes for batching techniques; with
respect to the percentage of builds saved in comparison to building all commits;
from the point of view of software engineering researchers with expertise in
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mining software repositories and CI testing; and in the context of state-of-the-
art heuristics and open source projects collected from a Travis CI data set.

In particular, we address the following research questions:
RQ1: What is the best LWD approach to dynamically update the batch size? –

We use this question to compare the proposed linear, exponential, random, mixed
and most frequently used (MFU) batch updating variants to identify the technique
that saves most builds in CI.

RQ2: How does LWD perform in comparison to state-of-the-art static and
dynamic batching techniques? – We aim to identify the technique that is not only
simple to use but can also save the most builds in CI.

RQ3: Does the addition of CI-Skip rules make batching more effective? – We
empirically evaluate the existing rule-based CI-Skip technique both in combination
with our LWD batching variants and state-of-the-art batching techniques. To our
knowledge, this is the first study where CI-Skip rules are used in combination with
commit batching techniques.

4.2 Data Set

To perform an appropriate comparison of our study against those by Bavand et
al. [4] and Abdalkareem et al. [2], our data selection approach and data processing
operations are inspired by both of these studies.

Following a prior study by Beheshtian et al. [5], Bavand et al. extracted the top
9 projects from TravisTorrent(unknown release date) that have a failure rate less
than 20%. They also added to their study 3 additional top projects with a failure
rate between 20% and 40% to understand the impact of high failure rate projects
on batching. In summary, they studied 12 projects (5 Java and 7 Ruby) with
a failure rate between 6.57% and 40.30% of the commits made to their “master”
branch. For each project, they also used the first 100 builds to train their Weighted
Smoothing algorithm (refer to Section 2.2), leaving all the remaining commits for
testing purposes.

Abdalkareem et al. also used TravisTorrent for their study (release 6/12/2016).
They focused their study on projects written in Java, filtering their dataset of 1,283
open source projects down to the 393 projects written in Java. By the inherent
nature of the TravisTorrent dataset, the projects they examined contained at least
50 builds and at least 10 watchers. After cloning all 393 projects, they evaluated
all the commits made in a project after TravisCI was introduced (i.e., all commits
made after the .travis.yml file was first added to the project). They were unable
to identify the origin of one such project; hence, it was eliminated from the study.
In conclusion, they studied 392 projects, written in Java, that contain at least 50
builds.

To perform our study, we investigated the most recently available TravisTor-
rent [7] data dump (released 25/1/2017), which contained 3,881,992 builds from
948 projects. As much as possible, we combine the data collection processes of
both studied projects to perform our empirical study. First, we filtered the data
to retain Java-based projects, yielding 401,767 builds from 241 Java projects. The
build data of these 241 projects varies from 4 to 46,889 builds. In order to evaluate
the effect of our heuristics on large projects with varying failure rates, we then
only retained projects with over 2,000 commits, leaving us with a dataset of 53
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Fig. 4: Distribution of failure rate of 50 projects in the dataset.

projects. Following Bavand et al., we further limited ourselves to builds made only
on the “master” branch for each project. Similarly, following their study, we also
filtered out the first 100 builds from each project while testing across all heuristics.
After doing this, 3 of the 53 projects had to be eliminated since they had less than
100 builds in the master branch to begin with, leaving us with a final dataset of
50 projects with failure rates varying from 5.84% to 98.32%, as shown in Figure 4.

4.3 Variants of Studied Heuristics

We study all LWD batching and the state-of-the-art static and dynamic batching
with respect to the same three fallback algorithms, namely BatchBisect, Batch-
Stop4 and BatchDivide4. Hence, both LWD and the state-of-the-art dynamic
batching techniques have three variants each – one corresponding to each batching
algorithm. Furthermore, each variant of LWD has its sub-variants according to the
batch updating technique and factor used (see Table 1). We name our LWD batch
updating sub-variant with respect to their factor. For example, Exponential-3 is
an exponential batch updating variant used with a factor 3. The variants of static
batching, however, are obtained by choosing a fixed batch size. For BatchBisect,
batch sizes of 2, 4, 8 and 16 are used in our study, whereas BatchStop4 and Batch-
Divide4 use batch sizes ≥ 4 (i.e., 4, 8, 16). Each variant of static batching is also
named with respect to the batch size used. For example, BatchStop4-8 is used to
represent the BatchStop4 algorithm using a batch size of 8 commits.

In RQ3, we also apply CI-Skip rules on incoming commits to remove CI-Skip
commits from batches. Algorithm 12 details the detection of CI-Skip commits.
The algorithm examines each incoming commit to decide whether it can be ex-
cluded from compilation by following the rules of CI-Skip. If the commit cannot
be skipped, we append it to the batch of commits scheduled to be built. Once
the batch is completed, it is built according to the rules of the batching technique
being used and culprit finding techniques are used to detect any failing commit(s).
In this paper, we measure the performance of each studied heuristic - LWD and
state-of-the-art static and dynamic batching before and after applying CI-Skip.
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Table 2: Variants of State-of-the-art Heuristics

Heuristic Batching Algo-
rithm

Batch Sizes Variants

Static Batching BatchBisect 2, 4, 8, 16 BatchBisect-2, BatchBisect-4,
BatchBisect-8, BatchBisect-16

BatchStop4 4, 8, 16 BatchStop4-4, BatchStop4-8,
BatchStop4-16

BatchDivide4 4, 8, 16 BatchDivide4-4, BatchDivide4-8,
BatchDivide4-16

Dynamic
Batching

All algorithms BatchBisect, BatchStop4, Batch-
Divide4

Algorithm 12 CI-Skip (Abdalkareem et al. [2])

1: procedure FillBatch: (incomingCommit)
2: i = 0
3: batch = []
4: fails = []
5: batchSize← 16 ▷ Default starting batch size
6: while i < batchSize do
7: if is CISkip(incomingCommit) then
8: merge incomingCommit without CI build
9: else
10: batch.append(incomingCommit)
11: i← i+ 1
12: end if
13: end while
14: BatchBisect(batch, fails) ▷ or BatchStop4 or BatchDivide4
15: end procedure

4.4 Evaluation Methodology

To address our research questions, we constructed a build simulator (similar to
prior work [4, 5, 14, 24]) to sequentially replay the outcomes of the builds of a
project. We chronologically group incoming commits into batches, then ‘execute’
batch builds by iteratively re-calculating the number of builds needed to build each
batch. Upon a failing batch build, we then apply one of the bisection-based fallback
algorithms (i.e., BatchStop4, BatchBisect and BatchDivide4) to these batches and
dynamically update the batch sizes based on the rules of either an LWD variant
or CI-Skip rules. For the baselines, we relied on the batching simulator in the
replication packages from Beheshtian et al. [5] (static baseline) and Bavand et
al. [4] (dynamic baseline) to replicate the results of their techniques on our dataset
of 50 projects.

For each fallback algorithm, we ran our 5 LWD variants (and their sub-variants)
and all variants of the state-of-the-art static and dynamic baseline batching tech-
niques, then recorded the percentage of builds saved, i.e., the percentage of builds
avoided in comparison to building each incoming commit individually (TestAll
baseline). To calculate the percentage of builds saved, we use the following for-
mula:

builds saved =
Number of builds made

Total commits in the project
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Here, the number of builds made includes the number of batches built along
with all extra builds required in finding failing commits.

To further corroborate our findings, we perform statistical tests with 95% con-
fidence (α = 0.05) to identify whether there is a significant difference between the
percentage of builds saved by different heuristics. We rely on Wilcoxon signed-
rank tests for 2 paired distributions and Friedman Test (with post-hoc Conover
tests) for >2 paired distributions to compute statistical differences, then evaluate
the magnitude of the differences using the Cliff’s Delta effect size and Kendall’s
W coefficient of concordance, respectively. Following Vargha et al. [28], we inter-
pret Cliff’s Delta effect size as: small if δ ≥ 0.11; medium if δ ≥ 0.28 and large
if δ ≥ 0.43. Kendall’s W coefficient can be interpreted using Cohen’s guidelines
where 0.1 ≤ w < 0.3 indicates a small effect size, 0.3 ≤ w < 0.5 indicates a
moderate effect size and w ≥ 0.5 indicates a large effect.

To measure and compare the performance of our studied heuristics, we use the
performance metric of the median percentage of builds saved by each batching
variant across the 50 studied projects. Due to the requirement to fill an entire
existing batch before executing a build and bisecting to identify failing commits,
batching techniques have a default delay equal to the batch size before the notifica-
tion of build outcomes to the developer. For this reason, related work on batching
techniques [4,5] does not consider notification delay in their performance analysis,
in contrast to the work on build outcome prediction.

5 Performance Results of LWD Variants (RQ1)

In this section, we explore the performance of our LWD batching sub-variants and
determine the batch updating technique that has the best performance when used
with LWD. Overall, LWD techniques can save between a median of 37.38% and
48.86% builds (across the 50 studied projects), as shown in Figure 5. We now
discuss these results in more detail.

Picking the right factor value is important for Linear and Random
LWD variants, while it matters less or not at all for the other variants.

First, for the Linear Batch Updating technique, we performed a Friedman test
with a post-hoc Conover test to determine any statistically significant performance
differences in the percentage of builds saved for the variants using factor values 1 to
4. While, for each of the 3 fallback mechanisms, a significantly better factor value
was identified (see p-values in Table 3, and the winning factor values in Table 4),
the winning value was not consistent. With the BatchDivide4 fallback mechanism,
factor 3 was the best, with a Kendall’s W effect size statistic of w = 0.45, indicating
a large effect size. With BatchBisect and BatchStop4, however, no linear variant
performed significantly better. However, based on the median percentage of builds
saved, factor values 1 and 4, respectively, performed slightly better.

On the other hand, no particular Random variant was performing statisti-
cally better in comparison to other variants. However, we noticed that for the
BatchBisect fallback algorithm, the Random-Linear variant performed poorly in
comparison to other Random variants (Exponential and Jump), based on a Fried-
man test with post-hoc Conover tests comparing them. The Random-Jump and



Lightweight Dynamic Build Batching Algorithms for Continuous Integration 23

Table 3: p-values for for the LWD Batching Updating Variants (Table 4 shows the
corresponding best factor value). Bold indicates statistical significance for α = 0.05

Linear Exponential Mixed MFU Random
Test Used Friedman Pairwise

Wilcoxon
Pairwise
Wilcoxon

Pairwise
Wilcoxon

Friedman

Post-Hoc
Test

Conover n/a n/a n/a Conover

BatchBisect 2.26e-03 0.91 0.98 0.94 4.91e-05
BatchStop4 2.90e-14 0.63 0.78 0.84 0.0032
BatchDivide4 1.43e-14 0.79 0.71 0.79 1.32e-07

Table 4: Best factor values for each combination of LWD Batching Updating Vari-
ant and fallback algorithm, as well as best LWD variant per fallback mechanism.
Bold indicates the factor values that were statistically significantly better than
other factor values according to Table 3, while other factor values were deter-
mined based on higher median performance values (no significant improvement).

Linear Exp. Mixed MFU Random Best LWD subvariant
p-value Variant Median

%Builds
Saved

BatchBisect 1 2 2 2 Jump 1.13e-08 Linear-1 41.55%
BatchStop4 4 2 2 2 Exp. 4.43e-11 Linear-4 45.57%
BatchDivide4 3 2 2 2 Exp. 5.83e-11 Exp.-2 42.35%

Random-Exponential sub-variants performed only slightly better based on their
higher median performance for the BatchBisect, BatchStop4 and BatchDivide4
fallback algorithms respectively.

Finally, to identify any statistical differences in the performance between the
factor values 2 and 3 for the Exponential, Mixed and MFU techniques, we used
Pairwise Wilcoxon tests (see Table 3). However, none of the sub-variants of the
MFU, Mixed and Exponential techniques showed any statistical difference, i.e.,
picking the right factor value does not matter that much for them.

Hence, to determine a factor with better performance for these sub-variants
(for use in the remainder of this paper), we inspect the boxplots of the performance
distributions (Figure 5) to find factor values with higher median values. We found
that Factor 2 is better in this regard than value 3 for Exponential, Mixed and
MFU techniques, and select the former value for the remainder of the paper.

Amongst the LWD sub-variants of Table 4, Linear techniques save
higher percentage of builds for BatchBisect and BatchStop4 fallback al-
gorithms, while the Exponential technique saves most builds for Batch-
Divide4.

As reported in Table 4, we picked the sub-variants with the best performance
identified previously, then perform one Friedman test per fallback algorithm to
identify the most successful LWD sub-variant. Based on post-hoc Conover tests
(with Bonferroni correction of α

2 ), all the BatchBisect and BatchDivide4 LWD
variants have statistically similar performances. Based on the box plots of Fig-
ure 5, we note that Linear-1 BatchBisect and Exponential-2 BatchDivide4 have
the higher median performance (we use these variants in the remainder of this
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Fig. 5: Performance of all the lightweight batch updating techniques.

paper). Linear-4 BatchStop4 outperformed other BatchStop4 LWD with a large
effect size of w = 0.27.

The Linear-4 BatchStop4 saves the highest percentage of builds. We
perform a final statistical analysis to compare the best techniques of each fall-
back algorithm, as reported in Table 4, to each other. We find that the Linear-4
BatchStop sub-variant has a significantly higher percentage of saved builds than
the Linear-1 BatchBisect and Exponential-2 BatchDivide4 subvariants. It also has
higher median (45.57%), maximum (79.68%) build savings along with better skew-
ness, we will use this sub-variant in the remainder of this paper.

Amongst several hypotheses, we believe that the differences in the perfor-
mances of the LWD variants arise due to the nature of the underlying culprit
finding algorithms. According to Beheshtian et al. [5] the best batch sizes used
with the BatchBisect algorithm range from 4 to 8, with smaller batch sizes mak-
ing better savings. From our analysis of LWD, we revealed findings similar to
these recorded observations from literature. We found the BatchBisect algorithm
to have worked best with Linear-1 LWD, whose small factor sizes allow smaller
increases and decreases in the batch size. If at any point in CI, the fallback limit
was reached and the batch size was reset to 1, Linear-1 LWD would continue to
generate smaller batch sizes. While Exponential, Mixed and MFU LWD used fac-
tor size 2 to provide maximum savings with BatchBisect, Table 4 shows that their
performance was statistically similar to that of using factor size 3.

On the other hand, Beheshtian et al. also found that bisection is not effective for
batch sizes of 4 and less. Hence, by stopping bisection related builds after reaching
the batch size 4, BatchStop4 can improve over BatchBisect by 2.69%. Furthermore,
Bavand et al. [4], showed that the BatchDivide4 technique used larger batch sizes
on projects with low failure rates using their Dynamic Batching algorithm, to
make the highest savings amongst their studied algorithms. Larger factor sizes of
4 and 3 can make larger changes in batch sizes, enabling our Linear-4 to achieve
larger batch sizes faster than Linear-1 can. Similarly, by using multiplication the
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Fig. 6: Comparison of the performance of the best incarnation of our LWD variants
against Baseline Dynamic Batching and all variants of Static Batching techniques

Exponential variant can increase batch sizes more rapidly allowing BatchDivide4
to reach its ideal batch size more quickly.

Summary of RQ1: The Linear-4 BatchStop4 LWD variant perform the best
of all LWD variants, either statistically significantly or in terms of higher
median percentages of saved builds.

6 Comparing LWD variants with baseline algorithms (RQ2)

This section compares our the best of our LWD variants against the state-of-the-
art static and dynamic batching techniques.

Our LWD variants save a median of 4.75% more builds than the static
baseline technique (significant difference).

Figure 6 compares the performance of the best incarnation of our LWD variants
(as listed in Table 4) against all variants of the static batching technique. We found
that static batching techniques can save a median of 20.73% up to 38.71% builds
across the 50 studied projects, while lightweight dynamic batching can save a
median of 38.23% to 45.57% of builds.

By analyzing the median of the performance differences between each static
batching variant against its corresponding LWD variants (e.g., Static BatchBi-
sect versus Linear-X BatchBisect, Exponential-X BatchBisect etc.), we found that
LWD consistently outperforms the static batching techniques for each fallback
algorithm. LWD BatchBisect variants save a median 10.71% more builds in com-
parison to baseline static BatchBisect, while LWD BatchStop4 saves a median of
4.75% more builds in comparison to baseline static BatchStop4, and LWD Batch-
Divide4 saves 1.73% more builds than Baseline BatchDivide4.

Corresponding Friedman tests (Table 5) between each baseline variant and
corresponding LWD variants (using the optimal factor values established in Ta-
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Table 5: p-values comparing Static Batching Variants (columns) against LWD
Batching Variants (rows) (using the corresponding best factor value shown in
Table 4). Bold indicates statistical significance for α = 0.05.

BatchBisect BatchStop4 BatchDivide4
2 4 8 16 4 8 16 4 8 16

Linear < 2e-
16

1.0e-
14

1.6e-
11

1.8e-
13

6.1e-
16

2.1e-
11

2.8e-
14

3.7e-
08

0.0036 5.8e-
08

Exponential 1.8e-
12

3.4e-
09

1.4e-
06

3.6e-
08

4.9e-
09

1.8e-
05

1.1e-
07

0.0719 1.0 0.0934

Mixed < 2e-
16

7.9e-
15

1.3e-
11

1.4e-
13

2.8e-
10

1.7e-
06

7.1e-
09

0.0107 1.0 0.0144

Random 1.4e-
09

1.2e-
06

2.1e-
04

9.3e-
06

0.0077 0.8531 0.0501 2.0e-
08

0.0024 3.3e-
08

MFU 3.7e-
11

5.0e-
08

1.5e-
05

4.8e-
07

3.6e-
07

0.0005 5.8e-
06

1.0 1.0 1.0

ble 4), found statistically significant differences (in favour of LWD) for 41
50 of the

studied pairs of heuristics (static approach, LWD), with effect sizes ranging from
0.23 to 0.61 (i.e., large). However, as shown in the last three columns of Table 5,
we did not find any statistical difference between the BatchDivide4 MFU-2 and
BatchDivide4 Exponential-2 LWD sub-variant the Static BatchDivide4 variants.
Similarly, we did not find any statistical difference between the baseline static
BatchStop4-8/BatchStop4-16 variants and our LWD BatchStop4 Random Expo-
nential sub-variant (shown in row 4 of Table 5).

On the other hand, we calculated a significant difference in 8
10 pairs having

a variant of random batch updates compared to static batching. The magnitude
of this difference was found to range from 0.20 to 0.37 (large). This observation
indicates that a predetermined batch size is not essential for the best performance
of batching techniques, because using random batch sizes can be equally effective.

The LWD variants perform equally well as the baseline dynamic batch-
ing technique.

Our LWD variants are able to match the performance of the state-of-the-art
dynamic batching technique, despite leveraging less resources (by not requiring an
offline simulation or repeated calculations of weighted failure rates), all the while
adding the benefit of customizability (i.e., tweaking of factor values).

Figure 6 compares the LWD variants against the baseline dynamic technique
for all three fallback algorithms. The performance differences between the two
families of heuristics vary from 0 to 4% median builds saved across all algorithms.
17 out of the 39 LWD variants (i.e., all Linear, Exponential, Mixed, Random and
MFU variants for all three fallback algorithms) have a higher median performance
than their corresponding baseline dynamic technique.

When using a Pairwise Wilcoxon test to compare each corresponding pair of
LWD variant and baseline dynamic technique in Table 6, we found that although
there are some performance differences of up to 4%, they are negligible in the
bigger picture. We note no statistical difference (i.e., p − value < 0.05) between
any LWD variant and the baseline technique for any batching algorithm. This
indicates that the performance of the two heuristics are similar to each other.
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Table 6: p-values of Wilcoxon Tests comparing LWD Batching Variants (rows)
against Baseline Dynamic Batching Variants (columns). (Table 4 shows the corre-
sponding best factor value). Bold indicates statistical significance for α = 0.05.

Algorithm BatchBisect BatchDivide4 BatchStop4

Linear 0.7355 0.4119 0.7944
Exponential 0.9923 0.3154 0.9769
Mixed 0.8243 0.3201 0.9692
MFU 0.9923 0.2796 0.9846
Random 0.8168 0.481 0.8018

Fig. 7: Comparing the performance of Random Batch Size Updating variants
against the baseline Dynamic Batching techniques

These statistical similarities indicate that the use of simpler LWD variants,
some even using random batch size updating techniques, is equally effective as us-
ing the state-of-the-art dynamic batching technique. Figure 7 compares the random
batch updating variants (i.e., Random Linear, Random Exponential and Random
Jump) to the baseline dynamic technique, showing that, with the exception of
some outliers, data points of the two techniques are distributed similarly across
the nine plots.

Summary of RQ2: The LWD variants save a median of 4.44% to 10.71%
more builds than baseline static algorithms. Furthermore, the LWD variants
(including the random sub-variants) perform equally well as more complex
state-of-the-art baseline dynamic batching techniques.

7 Performance results of CI-Skip rule integration (RQ3)

Motivated by the success of the lightweight dynamic batching (LWD) rules, we
also evaluate the combination of LWD variants with another lightweight rule-
based technique, i.e., CI-Skip rules [2]. Algorithm 12 details how CI-Skip rules
were integrated with batching techniques.

Integrating CI-Skip rules with dynamic batching techniques does
not correlate with significant build savings.
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Figure 8a compares the performance of the LWD technique before and after
applying CI-Skip rules. From the figure, we see that although the median per-
centage of builds saved without using CI-Skip is a median of 0.92% higher than
with CI-Skip, the maximum percentage of builds saved is increased or remains
unchanged. Similarly, except for MFU, CI-Skip can also improve the minimum
percentage of builds saved for LWD.

Using Pairwise Wilcoxon tests to evaluate all pairs of CI-Skip vs. non-CI-Skip
versions of each LWD variant, we found no statistical differences when combin-
ing CI-Skip rules with LWD, indicating that CI-Skip does not have a significant
influence on build savings when used in combination with batching.

Similarly, Figures 8b and 8c compare the performance of the Baseline Static
(batch size=16) with and without CI-Skip rules, showing that in those cases as
well CI-Skip rules only are able to save an additional 0.87% of builds compared
to the non-CI-Skip variant. On the other hand, for Baseline Dynamic batching
algorithms we can save a median 0.64% more builds without using CI-Skip. We
could find no statistical differences between any two variants with and without
CI-Skip for these heuristics.

In contrast to LWD’s 41.94% median build savings, using CI-Skip rules by
themselves helped to save a median of 5.51% builds across the 50 studied projects.
The combination of batching with CI-Skip only saves a median of 0.87% builds
in addition. Since CI-Skip rules help to filter out simple commits that are highly
likely to yield successful builds, the batching heuristic instead has a higher impact
on failing commits than on successful commits.

Summary of RQ3: The combination of LWD and lightweight CI-Skip rules
does not correlate with further build savings.

8 Discussion and Threats to Validity

8.1 Wall-clock Time saved by Batching Techniques

Build avoidance heuristics introduced in literature are motivated by the drive to
reduce resources used during CI, including cost, energy and time. Up until now,
we follow Beheshtian et al. [5], Najafi et al. [24] and Bavand et al. [4] and measure
the performance of our studied algorithms in terms of percentage of builds saved.
In this section, by using some assumptions, we discuss the median wall-clock time
saved by each heuristic. First, for TestAll, i.e., the baseline technique not using
any batching techniques, the time required is measured as the sum of the duration
of builds of all individual CI commits. Second, we estimate the duration of a batch
build to be the time required to build only the last commit of the batch. If the
batch build fails, the time required to build the subsequent bisected batches are
also added to the build duration. The time saved by a heuristic is then computed
by the time required to build each batch in the project using the heuristic. Out of
the 50 projects examined, 9 did not record the build duration for their commits.
Hence, these were eliminated from our analysis. Figure 9 shows the median time
saved by all evaluated batching algorithms.

Of the 41 remaining projects, we find that the Baseline Dynamic
batching algorithm saves most median time, however this difference is
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(a) Lightweight Dynamic Batching

(b) Baseline Static Batching

(c) Baseline Dynamic Batching

Fig. 8: Comparing the performance of all Batching techniques with and without
CI-Skip rules

not statistically significant.
Using the BatchBisect culprit finding algorithm, it saved a median 5.49% and
12.49% of build time over LWD and Baseline Static batching respectively. Simi-
larly, it saved a median 5.34% and 10.57% of build time over LWD using Batch-
Stop4 and BatchDivide4 algorithms, respectively, and a median 8.75% and 7.38%
time over Static batching algorithms using the same two algorithms. We also find
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Fig. 9: Distribution of build time saved by all Batching Algorithms.

Table 7: p-values of Wilcoxon Tests comparing Time Saved by LWD Batching
Variants (rows) against Baseline Dynamic Batching Variants (columns). (Table 4
shows the corresponding best factor value). Bold indicates statistical significance
for α = 0.05.

Algorithm BatchBisect BatchStop4 BatchDivide4

Linear 0.8175 0.8275 0.5294
Exponential 0.7681 0.7976 0.7878
Mixed 0.7779 0.7878 0.6535
MFU 0.7583 0.7583 0.5723
Random 0.7292 0.7292 0.7196

Table 8: p-values comparing Time Saved by Static Batching Variants (columns)
against LWD Batching Variants (rows) (using the corresponding best factor value
shown in Table 4). Bold indicates statistical significance for α = 0.05.

BatchBisect BatchStop4 BatchDivide4
2 4 8 16 4 8 16 4 8 16

Linear 5.7e-
09

9.0e-
05

0.0261 5.0e-
04

7.3e-
07

0.0012 1.0e-
05

0.0152 0.0032 0.1714

Exponential 5.0e-
08

6.5e-
04

0.0745 3.1e-
03

2.3e-
06

0.0008 2.1e-
05

0.464 1.0 0.055

Mixed 3.5e-
08

5.0e-
04

0.0745 0.0015 4.4e-
05

0.0092 3.4e-
054

0.79 0.19 1.0

Random 4.0e-
07

0.0040 0.2756 0.0106 0.0093 0.8986 0.0207 1.0 0.42 1.0

MFU 2.4e-
08

0.0005 0.0609 0.0024 1.2e-
04

0.0343 3.4e-
04

0.055 0.017 0.464

that Baseline Static batching saves the least time while using BatchBisect, and
saves similar or more time with respect to LWD while using BatchStop4 and
BatchDivide4.

On the other hand, when compared to Baseline Dynamic batching algorithms,
we see that the LWD algorithm performs statistically similarly when compared
to the Baseline Dynamic variants. As the duration of a build across the commits
of a given project only has a limited variance over time, the observations about
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build duration echo those of RQ2, which showed no statistical difference in the
percentage of builds saved either.

Tables 7 and 8 discuss the statistical significance of the difference in time saved
by our best LWD variants against the Baseline Static and Dynamic algorithms.
Based on the findings of the statistical tests along with the boxplots of Figure 9,
we see that for 33 out of the 50 pairs comparing the variants of LWD and Static
batching, LWD saves significantly more time than Static Batching. Notably, Static
BatchDivide4 and Exponential, Mixed and Random LWD have no significant dif-
ferences in the time they save. Static BatchBisect-8 also saves similar or slightly
less time than LWD.

8.2 On Occam’s Razor

Through our case studies, we find that the performance of LWD is statistically
similar to that of baseline dynamic batching, i.e., the two techniques are equivalent
in their performance. However, we argue for the effectiveness of Lightweight Dy-
namic Batching, keeping in mind the principles of Occam’s Razor, which stresses
the importance of simplicity when measuring two competing theories [29].

While effective, the baseline dynamic batching algorithm requires calculation
of the weighted failure rate of the last 100 commits at every step. Furthermore,
it also requires an offline simulator that precomputes ideal batch sizes to be used
for corresponding weighted failure rates. On the other hand, the Lightweight Dy-
namic Batching technique only needs to know the failure rate of the most recent
batch build to decide the next batch size. LWD also does not require any offline
simulation, since required batch sizes are computed on the go, with minimal effort.

LWD is also a scalable technique that can be applied to a project without
prior setup. It can be applied from the first commit of a new project, whereas the
baseline dynamic batching algorithm can only be applied after the build outcome
of the first ‘N’ commits (where N = 100, 200, etc.) is known.

With straightforward batch size computations, build engineers can understand
batching decisions taken by LWD, more easily than that of a blackbox simulator.
Moreover, LWD provides the freedom to decide on-the-fly how frequently engi-
neers want to deliver build outcomes to developers. For instance, the number of
required builds can be reduced by configuring larger factor values and/or by using
techniques like Exponential LWD, which can increment batch sizes by large val-
ues and decrement conservatively or vice-versa. Similarly, smaller increments and
decrements to batch sizes can be made by using smaller factor values and using
techniques like Linear LWD.

On the other hand, where LWD saves significantly higher builds than Static
batching algorithms, it does not guarantee a lower wall-clock time of scheduled
builds. With Static BatchStop4 and Static BatchDivide4 required between 123%-
148% builds in Figure 6, Figure 9 shows that they require only up to 33.99% more
time than TestAll. In circumstances where quick delivery of build results is more
important than reducing energy consumed by builds, this trade-off between LWD
and Baseline batching algorithms can be useful to prioritize the current needs of
the team.
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8.3 Threats to Validity

We discuss the major threats to the study validity in three categories: construct,
internal, and external validity.

Construct Validity: Following the studies by Najafi et al. [24], Bavand et
al. [4], and Beheshtian et al. [5], we measure the performance of all studied heuris-
tics in terms of the percentage of builds they save, in comparison to individually
building 100% of incoming commits. Although useful, this metric does not give an
accurate representation of the time, computing resources or energy conserved by
the studied heuristics.

In Section 8.1, we measure the wall-clock time saved by each of our studied
heuristics. However, the dataset did not record build durations for many commits
for 9 of the 50 projects in our experiment. We attempt to approximate the time
saved by evaluating the remaining 41 projects. Additionally, to calculate the time
saved by LWD in comparison to baseline algorithms, we estimate the time required
to build each batch to be the time required to build the last commit of the batch
independently along with time required to bisect the batch to find failing commits.
While not 100% accurate, these approximations provide a good idea of the actual
wall-clock time differences.

Internal Validity: In our study, all simulation scripts, data analysis and
processing was conducted by a single author. This could pose a threat of human
error and bias due to faulty scripts or missing data. To minimize this risk, we
carefully use the replication packages by Bavand et al. [4], Beheshtian et al. [5]
and Abdalkareem et al. [2].

External Validity: In our work, we examine the impact of CI-Skip rules
presented by Abdalkareem et al. [2] on commit batching techniques. These CI-Skip
rules are designed for Java-based projects, and also led to us choosing Java projects
for our study. Furthermore, we also limit ourselves to large, open-source projects
containing at least 2,000 commits before 25-01-2017. However, we minimize the
threat this poses by incorporating projects with varying failure rates in our study
to generalize our results as much as possible. Further analysis will be needed to
estimate the results of our proposed LWD heuristics on smaller projects as well as
on projects using different programming languages, build and CI tools. The results
may also vary for proprietary projects, which will have to be analysed separately.

Conclusion Validity: We study statistical differences between our studied
heuristics (LWD, state-of-the-art static and dynamic batching techniques). We
use Wilcoxon pairwise signed-rank test when two groups are compared to each
other and use pair-wise Friedman tests with the post-hoc Conover test in situations
where more than 2 groups are involved. We also use Bonferroni correction wherever
applicable to reduce the risk of Type-I errors.

9 Conclusion

Researchers continue to investigate techniques that help to combat the high cost
of CI. Existing heuristics rely on build and test reduction and used techniques
that involved machine learning or rule based models. In our study, we mainly
investigate the impact of simple, rule-based heuristics and commit batching to
reduce the number of builds required to run during CI.
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Existing state-of-the-art static and dynamic commit batching techniques em-
phasize on either using the ‘ideal’ batch size or using more complex mathematical
models to dynamically update batch sizes throughout the CI process. On the other
hand, we examined the effect of easily customizable ‘lightweight techniques’ that
range from simple arithmetic operations to random and conditional operations to
dynamically update the batch size used. We find that our proposed techniques
perform better than state-of-the-art static batching algorithms and have save al-
most similar percentage of builds to the existing, more complex dynamic batching
algorithm. However, we also find that while our algorithm uses lesser build time
than Static batching algorithm, the time saved by state-of-the-art Dynamic batch-
ing is higher, particularly while using the BatchBisect and BatchDivide4 culprit
finding algorithms.

Amidst the era and boom of AI, our study strives to show that not every
question needs to be solved using intelligent methods. However, we understand
that the problem of CI build outcome prediction or batch size estimation requires
many factors to be considered, and is too random to predict. Any intelligent solu-
tion must either accept a reasonable degree of prediction errors or perform better
than random techniques. In such CI problems, simple, pragmatic solutions can be
equally if not more effective solutions.
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