
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

On Combining Commit Grouping and Build Skip
Prediction to Reduce Redundant Continuous
Integration Activity

Divya M. Kamath · Eduardo Fernandes ·
Bram Adams · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Context: Continuous Integration (CI) is a resource intensive, widely
used industry practice. The two most commonly used heuristics to reduce the
number of builds are either by grouping multiple builds together or by skipping
builds predicted to be safe. Yet, both techniques have their disadvantages in terms
of missing build failures and respectively higher build turn-around time (delays).
Objective: We aim to bring together these two lines of research, empirically com-
paring their advantages and disadvantages over time, and proposing and evalu-
ating two ways in which these build avoidance heuristics can be combined more
effectively, i.e., the ML-CI model based on machine learning and the Timeout
Rule. Method: We empirically study the trade-off between reduction in the num-
ber of builds required and the speed of recognition of failing builds on a dataset of
79,482 builds from 20 open-source projects. Result: We find that both of our hy-
brid heuristics can provide a significant improvement in terms of less missed build
failures and lower delays than the baseline heuristics. They substantially reduce
the turn-around-time of commits by 96% in comparison to skipping heuristics, the
Timeout Rule also enables a median of 26.10% less builds to be scheduled than
grouping heuristics. Conclusions: Our hybrid approaches offer build engineers a
better flexibility in terms of scheduling builds during CI without compromising
the quality of the resulting software.

D.M. Kamath
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: divya.kamath@queensu.ca

E. Fernandes
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: eduardo.fernandes@queensu.ca

B. Adams
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: bram.adams@queensu.ca

A.E. Hassan
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: hassan@queensu.ca



2 Divya M. Kamath et al.

Keywords Software build · Build avoidance heuristic · Machine learning ·
Software analysis · Empirical study

1 Introduction

Continuous Integration (CI) is the practice of periodically integrating code changes
from multiple contributors into a single code base [38], in order to identify conflicts
as early as possible and hence reduce the overall merge effort. As such, it is one of
the most important quality assurance practices in current software development
and has been largely adopted by both open source and closed source projects [15].
One of the pillars of CI is automated building and testing of incoming pull requests
or commits, a practice confusingly called “CI” as well. Such automated CI builds
typically compile a commit on all supported platforms, on each of which the build
results are tested using suites of unit, integration, scale and regression testing [12].

While CI testing is essential to identify and fix issues that could lead to build
failures [2], to perform such CI in real-world industry settings is far from being
a trivial task [20]. On the one hand, a large number of commits are produced
daily [34]. Each such commit has to undergo the compilation and test activities, the
latter can involve hundreds to thousands of tests to be run. Since all this CI activity
has to be performed on all supported platforms, and a failure will eventually lead
to a new commit for which, in turn, all compilation and test activity has to be
repeated, the total build cost in terms of time, energy and resources for a given
commit across all platforms and test suites has become challenging, even for large
companies [13,16,49].

On the other hand, previous studies [24,26,27] suggest that some commits are
more likely to lead to build failures compared to other commits. Commits that
include simple and recurring types of code changes, such as adding comments,
renaming files, and updating README files [2], tend not to need a thorough round
of testing. Hence, such change-sets can mostly be exempted from CI testing (just
undergoing less frequent nightly builds, for instance).

For other kinds of changes, various heuristics have been proposed in order to
reduce the time and resources during software compilation and testing. Heuristics
for skipping [26] and combining [35] builds focus on reducing the number of builds
(i.e., compilation and testing) that will be scheduled, while test case prioritization
and reduction [13] focus on speeding up the test activity within scheduled builds.
In this study, we are particularly interested in the former heuristics for their build
order-preserving characteristics. These heuristics can be grouped in two major
categories: (1) grouping, which includes heuristics designed for grouping multiple
builds together before forwarding the resulting batch to CI testing [6], instead
of running each build separately; (2) skipping heuristics, which only schedules
essential CI builds, i.e., builds that are more likely to fail.

Despite ongoing research on these two categories of heuristics, both types of
heuristics still face important challenges. The frailties of the grouping heuristics
include a larger turn-around-time for commit building and inefficiencies in iden-
tification of the root cause of failing builds. On the other hand, skipping heuris-
tics [2, 24], instead, run the risk of skipping failing builds, which could leave a
developer unaware of faults in their code. Since these two heuristics come from



Title Suppressed Due to Excessive Length 3

two separate lines of research, they have not been empirically compared with each
other or combined into more advanced heuristics combining the strengths of both.

In this paper, we hypothesize that the combination of grouping and skipping
heuristics, i.e., incorporating build outcome prediction in commit grouping tech-
niques, can reduce the number of commits for which actual build activity needs to
be scheduled. We present a large-scale quantitative study on 79,482 builds from 20
open-source projects aimed to empirically assess our hybrid heuristics for reducing
the number of builds made during CI compared to three state-of-the-art group-
ing heuristics [6] – i.e., BatchBisect, Batch4, and BatchStop4 – and one skipping
heuristic, i.e., SmartBuildSkip [24]. In particular, we address the following three
RQs:

– RQ1: At the commit level, how do the baseline batching and skipping heuristics
perform compared to each other? - We compare SmartBuildSkip against the
existing state-of-the-art commit grouping techniques and study the trade-off
between the number of builds required and the median delays seen between
the two methods. Based on the identified strengths and weaknesses of these
heuristics, we propose two hybrid heuristics for reducing the number of builds
during CI testing.

– RQ2: How does the performance of ML-CI compare to the baseline heuristics? -
The first hybrid heuristic uses a machine learning (ML) model to predict build
outcomes of incoming commits. This heuristic can skip unnecessary builds and
apply commit grouping heuristics in cases where builds are expected to be
made.

– RQ3: How does the performance of the Timeout Rule compare to the baseline
heuristics? - This hybrid heuristic reduces the delays of the SmartBuildSkip al-
gorithm by both necessitating a build at regular intervals and by using commit
grouping heuristics to further reduce the builds made in CI.

We summarize below our major study contributions:

– Grouping heuristics can increase the number of builds required in the CI system
by a median of 52.94%, in comparison to skipping heuristics.

– Skipping heuristics can induce a median delay of 11.5 builds in the identification
of failing builds. After evaluating our two hybrid heuristics, we observed that
they can significantly reduce the median delays introduced by skipping-based
heuristics by 96%.

– ML-CI can reduce the median delays by 9.5 builds in comparison to skipping-
based heuristics and maintains the low turn-around-time of grouping-based
heuristics, but it also suffers from the latter heuristics’ high percentage of
builds required.

– The Timeout Rule also maintains a low turn-around-time of 1-2 commits along
with reducing the number of required builds by a median of 26.10% in com-
parison to grouping-based heuristics.

– Our study’s replication package1 is available online.

We organized the remainder of this paper as follows. Section 2 discusses back-
ground information and related work. Section 3 and 6 detail the main heuristics

1 https://github.com/SAILResearch/replication-21-divya_kamath-build_avoiding_
heuristics-code

https://github.com/SAILResearch/replication-21-divya_kamath-build_avoiding_heuristics-code
https://github.com/SAILResearch/replication-21-divya_kamath-build_avoiding_heuristics-code


4 Divya M. Kamath et al.

discussed in the paper. Sections 4 and 7 introduce our study methodology, includ-
ing the study goal, research questions, and study steps. Sections 5, 8, and 9 present
our study results per research question. Section 11 discusses threats to the study
validity. Finally, Section 12 concludes this paper and suggests future work.

2 Background and Related Work

2.1 Study of build failures

The study of builds and build outcome prediction began in the early 2000s. Has-
san et al. [18] used historical build results and project attributes to predict the
certification result of a build. Further studies examined the factors affecting build
failures and proposed algorithms to predict build outcomes. Kwan et al. [31] identi-
fied that higher social co-ordination in a project correlates with more build failures
for certain build types. Cataldo et al. [8] studied the impact of project attributes
and cross-project feature interactions on software integration failures. Similarly,
Islam et al. [21] identified the relation between factors such as complexity, contri-
bution models, and other project attributes and the build result. Those authors
empirically analyzed data from TravisCI, Git and Github, providing evidence that
build complexity – usually measured by the number of build commits – and source
code churn in terms of changed lines of code or files [29] are negatively correlated
with build failures.

Researchers also used an alternate approach of monitoring and sending pre-
emptive alerts to developers when their changes can impact future build activities
such as build duration and future build failures [42]. In parallel, Zhang et al.
and Seo et al. [39, 47] analyzed the frequency of compiler errors that cause build
failures and the corresponding fix times and fix patterns. Kerzazi et al. [29] also
reviewed the circumstances that lead to build breakages and the effect of such
failures on developers. The Culprit Finder algorithm presented by Zifti et al. [48]
uses a combination of heuristics to rank commits according to their suspiciousness
to find the root cause of a build failure. As root cause of a failure, Ghaleb et
al. [17] studied the characteristics of CI builds that led to long duration of builds,
like rerunning failed commands or not caching frequently used variables.

Xia et al. [45] analyzed 4 major build systems to study and categorize their bugs
and fixes. Vassallo et al. [43] compared CI processes with the occurrences of build
failures and derived a taxonomy of build failures. The impact of various factors
on build failures were also studied by Jain et al. [22] who inspected the effects of
a large team size on build failures. Rausch et al. [37], analyzed build failures from
14 OS Java projects and identified error categories and noisy build data, while
Zolfagharinia et al. [49] studied the impact of OS changes and environments on
build failures. Finally, Wu et al. [44] presented insights on failure frequencies and
fix times in docker build data and studied the evolution of docker build failures
over time.



Title Suppressed Due to Excessive Length 5

While these studies reveal the characteristics of builds and the features that
impact the outcome of a build, the main contribution of our study is to propose
build avoidance heuristics that use decisions made by predictive models and other
approaches to reduce the number of builds scheduled by CI. We evaluated our
proposed heuristics on data collected from TravisCI and compare our findings to
4 state-of-the-art build reduction heuristics.

2.2 Build Outcome Prediction

In recent years, the study of build outcome prediction has gained momentum.
Finley et al. [14] identified useful metrics for build outcome prediction and used
the Hoeffding Tree classification method with adaptive sliding window to classify
builds. Alternately, Hassan et al. [19] use abstract syntax tree-level code change
modification data to predict the pass/fail outcome of a build. Other diverse so-
lutions to build outcome prediction were introduced by Ni et al. [36] and Barrak
et al. [3] who used cascaded classifiers and multivariate models, respectively, to
predict build outcomes. Beller et al. [7] aimed to understand the importance of
software testing in the CI process and identify the influence of the integration en-
vironment and project language on testing. This exploratory study suggests that
the majority of failed tests occur due to failures in tests run during the builds.

In summary, the studies discussed above suggest that software process, build
environment, and development team characteristics are major factors that influ-
ence the outcome of builds in CI system. Our study investigates other factors such
as the time elapsed since previous scheduled builds and commit factors, which
could be used to help engineers make the decision of whether or not to build a
commit. Our proposed hybrid algorithms work on these factors to provide effort
savings for CI builds.

2.3 Speeding up CI

In previous studies, researchers have reduced the effort required for CI builds
according to two broad approaches: (1) by reducing the number of builds scheduled
during CI and (2) by speeding up test suite execution within scheduled CI builds.
Speeding up test suites covers a wide range of test case prioritization and test
case selection techniques. In test case prioritisation techniques, the tests that have
higher potential to fail are tested first, while in regression test case selection a
minimal set of test cases that ensures a maximum code coverage is tested. The
effectiveness of these techniques are explored extensively in literature [13,23,33,46].

Overall, there are three broad techniques introduced to reduce the volume of
builds made during CI: (1) Static methods, which use a set of predefined rules to
determine which commits are safe to be skipped, (2) Batching, which can build
multiple commits at a time and identify culprit commits, and (3) Prediction mod-
els, which predict whether a build is likely to succeed or fail, and skip unnecessary
builds.

Abdalkareem et al. [1] manually investigated 1,813 explicitly skipped CI com-
mits and presented a rule-based technique to skip further commits. They also
presented CI Skip and CI Run rules to automatically identify the commits that



6 Divya M. Kamath et al.

are safe to skip [1]. They extracted 23 features from the historical data of 10
software repositories and identified that the number of developers and commit
messages can help in deciding which commits are safe to skip along with the CI
Skip rules.

Large companies like Google and Facebook that have a large number of in-
coming commits, typically attempt to reduce the number of builds made in their
CI by grouping (“batching”) commits together and scheduling builds one group
at a time [6]. Such a batch grouping approach considers a build to be necessary
only once for a group of sequential commits, thereby reducing the total number
of builds. Nafaji et al., Beheshtian et al., and Bavand et al., [5, 6, 35] presented
various batch grouping approaches that can group together multiple commits to
reduce the number of builds required during CI. If such a batched build fails, each
grouping approach uses a unique methodology to determine the culprit failing
commits present in the batch.

Chen et al., [9] identified that different outcomes of previous builds have dif-
ferent impacts in development activities of the current build. They introduced
BuildFast, which is a hybrid, adaptive algorithm that switches between 2 predic-
tion models based on the outcome of the previous build. It uses a history-aware
approach with specific features to predict build outcomes. Jin et al. [24,25,26,27]
presented several studies on skipping builds based on the predicted build out-
come. They presented (1) SmartBuildSkip, which uses a Random Forest classifier
on build and project features to predict build failures, (2) PreciseBuildSkip, which
uses CI-Skip and CI-Run [2] rules to predict build failures, and (3) HybridBuild-
Skip, which combines both SmartBuildSkip and PreciseBuildSkip in a hybrid way.
In a separate work [26], they evaluated 14 variants of 10 techniques of selection and
prioritization strategies on build and test granularities. They presented a dataset
and a collection of techniques to improve CI using build/test selection and priori-
tization.

In our study, we focus on reducing the number of scheduled builds by combining
commit grouping techniques with the predicted outputs of models performing build
outcome prediction. With the introduction of predictive models, our heuristics do
not group all commits in a project to be built in group as the novel batch grouping
techniques do. Instead, our prediction models choose which commits need to be
built, then proceeds to build them in a batch. Sections 3 and 6 detail all the
algorithms used in our study.

3 Baseline Heuristics

This section discusses in detail the two families of baseline heuristics that are
studied in this paper: Grouping Heuristics and Skipping Heuristics. We present
the studied algorithms of these two families in this section and compare their
performance in Section 5.

3.1 Grouping Heuristics

In this paper, to limit our scope, we study commit grouping approaches that use
batch bisection methods for identifying failing builds. Consequently, we exclude



Title Suppressed Due to Excessive Length 7

Fig. 1: This figure illustrates the number of builds required by BatchBisect commit
grouping algorithm [6]. In the figure, red boxes signify failing builds and green
boxes signify successful builds.

other approaches based on pool testing like Dorfman Medical Pool Testing and
Double Pool Testing since they do not include bisection to identify culprit commits.
Following the work of Bavand et al. [5], who state the Batch4 algorithm to be the
best static batching algorithm, we choose the three state-of-the-art approaches
discussed by Beheshtian et al. [6], i.e., Batch4, BatchStop4 and BatchBisect.

In each of these algorithms, a sequence of commits is grouped into batches
based on the rules of that algorithm, before the entire batch is built once. If the
batch build passes, the build has saved substantial amount of time and computing
resources compared to running a separate build for each commit. However, if a
batch build fails, subsequent builds are necessary to determine the commit(s)
causing the failure. Each algorithm defines its own rules to identify those culprit
commits.

Figure 1 illustrates running the BatchBisect algorithm (Algorithm 1) on a
dataset of 8 commits, with a batch size of 4 commits. It basically groups each
sequence of 4 commits into a batch, then runs one build for the entire batch. If we
assume that the boxes in green represent commits with successful build outcomes2

(passing builds) and the boxes in red represent commits with unsuccessful build
outcomes (failing build), we can see why the first batch builds successfully, while
the second batch fails.

Although commit grouping algorithms can reduce the number of builds made, if
a grouped build fails (especially for projects with a failure rate less than 25% [35]),
it can get more expensive to identify the culprit commit. For example, upon a fail-
ure, a technique like BatchBisect uses a bisection approach to systematically, and
with as few extra builds as possible, detect the build failure culprits. In Figure 1,
the initial, failing batch C5-C8 is divided into two smaller batches, both of which

2 Of course, the algorithm does not know this information, only an approach that builds
every single commit would.



8 Divya M. Kamath et al.

Algorithm 1 BatchBisect

1: procedure batchbisect(batch, fails)
2: if len(batch) == 1 then
3: build outcome = Build(batch)
4: if build outcome == False then
5: fails.extend(batch)
6: end if
7: return
8: end if
9: outcome← Build(batch)
10: if outcome == False then
11: half = len(batch)/2
12: BatchBisect(batch[: half ])
13: BatchBisect(batch[half :])
14: end if
15: end procedure
16: procedure fillbatch(batchSize, incomingCommit)
17: i = 0
18: batch = []
19: fails = []
20: while i < batchSize do
21: batch.append(incomingCommit)
22: i← i+ 1
23: end while
24: if i == batchSize then
25: outcome← BatchBisect(batch, fails)
26: end if
27: end procedure

Algorithm 2 Batch4

1: procedure batch4(batch, fails)
2: outcome← Build(batch)
3:
4: if outcome == False then
5: i← 0
6: while i < batch size do
7: build outcome← Build(batch[i])
8: if build outcome == False then
9: fails.extend(batch[i])
10: end if
11: end while
12: end if
13: end procedure
14: procedure fillbatch(batchSize, incomingCommit)
15: i = 0
16: batch = []
17: fails = []
18: while i < batchSize do
19: batch.append(incomingCommit)
20: i← i+ 1
21: end while
22: if i == batchSize then
23: outcome← Batch4(batch, fails)
24: end if
25: end procedure



Title Suppressed Due to Excessive Length 9

Algorithm 3 BatchStop4

1: procedure batchstop4(batch,fails)
2: if len(batch) <= 4 then
3: i← 0
4: while i < batch size do
5: build outcome = Build(batch[i])
6: if build outcome == False then
7: fails.extend(batch)
8: end if
9: end while
10: end if
11: outcome← Build(batch)
12: if outcome == False then
13: half = len(batch)/2
14: BatchStop4(batch[: half ])
15: BatchStop4(batch[half :])
16: end if
17: end procedure
18: procedure fillbatch(batchSize, incomingCommit)
19: i = 0
20: batch = []
21: fails = []
22: while i < batchSize do
23: batch.append(incomingCommit)
24: i← i+ 1
25: end while
26: if i == batchSize then
27: outcome← BatchStop4(batch, fails)
28: end if
29: end procedure

fail again. Another step of bisection results in batches of 1 commit, and learns that
commits C6 and C7 both have issues. In this case, BatchBisect had to schedule 7
builds compared to the 4 builds of a naive approach that builds every individual
commit.

The Batch4 algorithm (Algorithm 2) operates with a single batch size of 4
commits, and does not use bisection upon failure. Instead, if a batch fails, the
Batch4 algorithm directly builds all individual commits in the batch to identify
the culprit commit(s). The final batching algorithm, BatchStop4 (Algorithm 3) is
a combination of BatchBisect and Batch4 –it bisects all commits until a batch size
of 4 is reached, then performs Batch4. For instance, for a batch of 16 commits, the
whole batch is built first. If there is an error, it splits into 2 batches of 8. If those
fail too, it splits into four batches of 4. For each failing batch of 4, it will build
each of its 4 commits individually.

In this paper, we make an effort to reduce the turn-around-time of a commit.
This turn-around-time refers to the total duration from the time a developer pushes
their commit to the CI server to the time the commit is integrated into the code
base.

In comparison to traditional CI where each incoming commit is scheduled to
build individually, the commit grouping techniques increase the turn-around-time
for a commit. The turn-around-time of grouping heuristics includes the grouping-
based delay, the build duration of the top-level batch and the bisection duration
in case the top-level batch fails. From the time it is pushed to build, the commit



10 Divya M. Kamath et al.

has to wait for the build queue to fill up with new incoming commits. The larger
the batch size is, the larger the delay of each individual commit. For example, in
a batch size of 4 commits, a median delay of 1.5 builds is incurred, where the first
commit waits for 3 builds, second commit for 2 builds, and third commit for 1
build, until the final commit completes the batch and a build can be made. In this
paper, we call this delay the “grouping-based delay”.

Apart from order-preserving batching heuristics, Behestian et al. [6] also dis-
cuss the RiskTopN and RiskBatch algorithms, which group commits into batches
based on the risk associated with each commit. Due to this, the ordering of the
commits may be affected, which may lead to inconsistent results due to merge con-
flicts. Since there is no significant difference between the performance of the order-
preserving and order-obstructing algorithms, we have chosen to work with order-
preserving commit grouping algorithm in this study, i.e., BatchBisect, Batch4 and
BatchStop4.

3.2 Skipping Heuristics

In this paper, we limit ourselves to study one skipping-based algorithm to narrow
down our scope. We explore the SmartBuildSkip algorithm introduced by Jin et
al. [24], which uses a Random Forest Classifier based on build and project features
such as the number of source lines of code, team size, number of files, number
of test lines of code, etc., to predict the outcome of a build. We choose to study
this algorithm as it is the first technique that does not use the previous build
outcome or historical model predictions to predict the outcome of future builds,
yielding a more realistic workflow. Our work (presented in Section 6) explores the
effects of integrating ‘Timeout Values’ in SmartBuildSkip-based build prediction
algorithms.

The algorithm (see Algorithm 4) works in two phases by distinguishing between
the first and subsequent failures: a) prediction phase and b) deterministic phase.
In the prediction phase, the algorithm predicts a commit’s CI outcome and uses
the prediction to determine if a build should be run (failure prediction) or not
(pass prediction). If a build is predicted to fail, and the build indeed does fail,
the algorithm moves on to the next phase by assuming that all the subsequent
builds are going to fail and hence forcing builds to be run (without using the
prediction model) until a build pass is observed. Once a build pass is obtained,
SmartBuildSkip goes back to the prediction phase.

Figure 2 illustrates the SmartBuildSkip algorithm on the same data set as
Figure 1. Note that the colours again indicate the actual build outcome (if a given
build would have been scheduled), while in this case the model’s prediction and
actions are labelled accordingly.

Beginning with commits C1 and C2, the SmartBuildSkip algorithm predicts
the builds to pass, hence skipping the build entirely. When it comes to commit C3,
the algorithm predicts the build to fail, and hence schedules the build to identify
the error. Yet, the build for commit C3 is successful, which prompts SmartBuild-
Skip to continue predicting build outcomes by staying in its first execution phase.
Similarly, commits C4 and C5 are predicted to pass and the build is skipped. When
the algorithm predicts commit C6 to fail, a build is run, which reveals an unsuc-
cessful build. This prompts the algorithm to switch to the deterministic phase



Title Suppressed Due to Excessive Length 11

Fig. 2: This figure illustrates the number of builds required in the SmartBuildSkip
algorithm. In the figure, red boxes signify failing builds and green boxes signify
successful builds.

and it also builds commit C7. When this build fails, the algorithm continues to
build commit C8, which runs successfully. Once this passing build is seen, Smart-
BuildSkip switches back to the prediction phase for the remaining commits. While
BatchBisect required 1 build for C1-C4 and 7 builds for C5-C8, SmartBuildSkip
required only 4 builds (C3 and C6-C8) for the whole set of commits.

Algorithm 4 SmartBuildSkip

1: predictor ← SmartBuildSkip
2: build flag ← 0
3: while True do
4: commit← incoming commit
5: if build flag is True then
6: result← Build(commit)
7: if result is True then
8: build flag ← 0
9: end if
10: else
11: outcome← predict(commit)
12: if outcome is True then
13: continue
14: else
15: result← Build(commit)
16: if result is False then
17: build flag ← 1
18: end if
19: end if
20: end if
21: end while

However, when running the SmartBuildSkip algorithm, a delay can be incurred
in the identification of a build failure. This occurs because the model used to pre-
dict the build outcome could incorrectly predict a failing build to pass and poten-
tially could do so for a long time. Since, due to the nature of the SmartBuildSkip
algorithm, builds that are likely to pass are skipped, the true build failure is not
caught until a future build failure is predicted and hence built for real.

Figure 3 further illustrates these delays, showing the total delay in a set of 14
commits from C1-C14. When a failing build is skipped, (for example, for C2, C7
and C9) the build failure and its root cause are unknown to the build engineer.



12 Divya M. Kamath et al.

The algorithm continues its prediction phase until a future commit is predicted to
fail (for example, for C4 and C10). When these commits are built, the previous
build failures are also caught. In this paper, we refer to these delays as “skipping-
based delays”. Such delays are also discussed by Jin et al. [24], who try to address
these by finding the optimal threshold for the prediction model’s predicted failure
probability, and also propose several rule-of-thumb techniques that only rely on
basic rules comparing a single build feature to a threshold (as opposed to using a
complex prediction model).

For skipping-based heuristics, the turn-around-time varies according to the
actual build outcome of a given commit, as shown in Table 1. In case a pass is
predicted, but the build actually fails, one incurs a skipping-based delay, while in
case of failure predictions or during the deterministic phase, the turn-around-time
equals the actual build duration. Only when a pass prediction was correct, no
delay is incurred.

Table 1: Turn-around-time for skipping-based heuristics.

Prediction Actual Build Outcome
Pass Fail

Pass 0 Skipping-based
delay

Fail Build duration Build duration
Deterministic

Phase
Build duration Build duration

While the large turn-around-time (especially the skipping-based delays) of
SmartBuildSkip can be concerning, it also cannot accommodate cases where de-
velopers split up their work into multiple commits [30], causing some of the inter-
mediate commits to fail. While SmartBuildSkip may flag each failure immediately
and lead to unnecessary build executions, grouping heuristics are more likely to
stitch the multiple intermediate commits together into one full build (batch) that
can build successfully.

4 RQ1 Study Methodology

4.1 Data Set

The dataset for this paper is extracted from the replication package of the Smart-
BuildSkip algorithm [24]. In their study, Jin et al. [24], selected 359 projects out of
the 1,359 projects having CI data available on Travis Torrent. They only selected
projects that are more than one year old, with at least 200 builds and at least
1,000 lines of source code. Beheshtian et al. [6] evaluated the top 9 largest projects
out of 1,200 available projects on Travis Torrent, selecting only active projects
that have a failure rate of less than 25%.



Title Suppressed Due to Excessive Length 13

Fig. 3: This figure illustrates the delays incurred during the SmartBuildSkip algo-
rithm.

In our study, from the 1,277 projects in the replication package of SmartBuild-
Skip [24], we select those projects that consist of at least 2,000 commits, in order
to analyse the trends of the four models. We do not limit our selection based on the
failure rate of the project in order to identify the ramifications of our approaches
on all kinds of projects. Eventually, our study resulted in a dataset of 20 projects.

Table 2: Studied Software Projects (ordered by #commits)

Projects Size of Dataset Distribution
(number of commits) (% of failed builds)

Rails 14,133 27.94
Jruby 8,275 55.79
Metasploit-framework 7,602 3.39
Cloudify 4,815 17.79
Vagrant 4,049 6.74
Rubinius 4,005 28.43
Open-build-service 3,718 21.70
Gradle 3,569 6.16
Sonarqube 3,163 14.73
Loomio 2,924 23.73
Fog 2,785 27.89
Opal 2,595 6.82
Cloud-controller-ng 2,399 18.71
Puppet 2,347 4.13
Concerto 2,301 8.30
Sufia 2,259 10.88
Geoserver 2,183 47.36
Orbeon-forms 2,166 46.49
Graylog2-server 2,110 2.93
Heroku 2,084 14.87



14 Divya M. Kamath et al.

4.2 Evaluation Methodology

Our choice for at least 2,000 commits allows our study to chronologically segregate
our data into training and test data sets of adequate sizes. Using projects of this
minimum size will also allow to incorporate different real-world behaviours into the
dataset like long continuous streaks of build failures, scattered build failures, etc.
We perform a sliding window based strategy making a series of training and testing
windows throughout the timeline of a project. We need to find an optimal window
size to ensure that the size of the training data is large enough to incorporate
both passing and failing commits in the window. By trial and error, we found the
optimal window size for our evaluation approach to be obtained by dividing each
project’s dataset by 5. The dataset segregation procedure is depicted in Figure 4a.

For each window, we use 70% of the sliding window for training and use the
remaining window data for testing. After completing the analysis on this window,
we slide the window by half its length to get a new window. We repeat this process
for the entire dataset incorporating the maximum data points possible. We exclude
from our analysis any remaining data points that fall outside all windows.

(a) Sliding Windows forming training and test sets along
the commit timeline of the studied projects.

(b) Segregation of build outcomes

Fig. 4: Training process and data segregation.



Title Suppressed Due to Excessive Length 15

For each heuristic, we developed a simulator to apply the rules of the algorithms
discussed in Section 3 chronologically on the data in a given test set. As a given
heuristic is applied on the incoming commits, we record the number of builds
made, builds skipped and unidentified build fails. We also record the number of
consecutive predicted build passes for the timeout feature. At the end, for each
heuristic, for each project, we compute the percentage of builds required along
with the median delays induced by each heuristic.

4.3 RQ1 Analysis Procedure

This question compares the existing prediction-based algorithm SmartBuildSkip
with the commit grouping algorithms proposed by Beheshtian et al. [6]. We eval-
uate each heuristic in terms of two performance metrics.

The first performance metric is the Percentage of Builds Required. The lower
this value, the better, as it indicates that more builds were skipped. We compare
this metric between both baseline heuristics as well as TestAll, i.e., a simple base-
line building each commit individually [6]. We measure the percentage of builds
required for all the heuristics by calculating the total number of builds made and
skipped for each project.

The second performance measure is Delay. For SmartBuildSkip, we measure the
skipping based delays, whereas we measure grouping based delays for the commit
grouping algorithms. We measure the median delay of a given heuristic across all
commits of a given project, and, for a given heuristic, the median of these median
delays across all projects.

Beheshtian et al. [6] identified the best batch sizes to be used with the Batch-
Bisect algorithm as being between 4 and 8 builds, whereas batch sizes of 2, 4 and
8 builds gave major savings with BatchStop4. To that extent, we evaluate all the
heuristics in this paper with batch sizes 2, 4 and 8. To further evaluate the effect
of larger batch sizes on all heuristics, we also evaluate the batch size 16.

We study the percentage of builds and median delays required by all 4 base-
line heuristics, namely SmartBuildSkip, Batch4, BatchBisect and BatchStop4. In
addition, we also analyze the number of bad skips made by SmartBuildSkip to
study the robustness of the latter approach.

5 Performance Results of Baseline Heuristics (RQ1)

Table 3 shows the percentage of builds required by the baseline heuristics. For
the heuristics BatchBisect and BatchStop4, the batch size that provides the best
performance is listed along with the results achieved with it.

Compared to the best batching approach (i.e., Batch4), SmartBuild-
Skip requires only a median of 12.92% builds to be made compared to
54.97%, saving a median of 41.06% builds. Figure 5a plots the percentage
of builds required for the 20 projects by the Batch4 and SmartBuildSkip algo-
rithms, while Figure 5b summarizes the results for the four baseline approaches.
For BatchBisect and BatchStop4, the plots show the results for the batch sizes
with the lowest percentage of builds required.



16 Divya M. Kamath et al.

Algorithm
SmartBuildSkip Batch4 BatchStop4 BatchBisectProject
% of
Builds
Required

% of
Builds
Required

% of
Builds
Required

Batch
Size

% of
Builds
Required

Batch
Size

cloud-
controller-
ng

11.265 74.691 80.401 4 74.691 4

cloudify 16.955 45.252 42.868 16 38.639 16
concerto 3.865 45.974 44.122 8 42.19 8
fog 26.587 83.73 93.915 2 83.73 4
geoserver 62.002 99.491 108.227 2 99.491 4
gradle 0.883 44.548 40.966 8 39.512 8
graylog2-
server

1.225 34.996 23.797 16 22.747 16

heroku 14.578 53.333 55.644 8 51.378 8
jruby 79.32 108.406 121.373 2 108.406 4
loomio 17.298 73.485 82.828 4 73.485 4
metasploit-
framework

1.023 37.476 28.972 16 28.436 16

opal 3.49 43.519 40.883 8 39.459 8
open-build-
service

16.542 69.357 76.333 4 69.357 4

orbeon-
forms

64.444 80.085 96.838 2 80.085 4

puppet 1.734 35.303 25.138 16 24.507 16
rails 24.109 72.799 82.966 4 72.799 4
rubinius 30.751 84.878 92.07 2 84.878 4
sonarqube 8.187 56.608 60.234 4 56.608 4
sufia 4.412 51.797 53.513 8 49.755 8
vagrant 2.378 39.552 33.836 16 30.818 16

Median 12.922 54.971 57.939 6.0 53.993 6.0

Table 3: Percentage of Builds Required by Individual Heuristic

The low percentage for SmartBuildSkip in all 20 projects confirms that it can
substantially reduce the resources consumed during CI. At least 25% of the projects
require only 41% builds using the BatchBisect algorithm, while the Batch(Stop)4
algorithms require up to 80% of builds for at least 75% of the projects. Except
for three outliers (i.e., Geoserver, JRuby, Orbeon-forms), SmartBuildSkip requires
less than 31% builds to be made for all projects.

The optimal batch size is 8 builds for 75% of the projects using
BatchStop4 and for 20% of the projects using BatchBisect. In some
projects, better performance can be achieved by simply increasing or decreasing
the batch size to 2, 4 or 16. By increasing the batch size, we reduce the number
of builds required to be made for a given test dataset. However, if more builds
in the test dataset are failing, the batching algorithms make more builds in order
to find the culprit commit(s). Hence, batching algorithms can improve or reduce
performance depending on the failure rate, i.e., the percentage of build failures in a
project: if there are more failing builds than passing builds in a project, a smaller
batch size is more effective, like for BatchBisect in Fog, Rubinius etc. If there
are more passing than failing builds, larger batch sizes are more effective, like for
BatchStop4 and BatchBisect using a batch size of 16 in Vagrant, Graylog2-server,



Title Suppressed Due to Excessive Length 17

100 50 0
vagrant

sufia
sonarqube

rubinius
rails

puppet
orbeon-forms

open-build-service
opal

metasploit-framework
loomio
jruby

heroku
graylog2-server

gradle
geoserver

fog
concerto
cloudify

cloud_controller_ng

0 50 100

Batch4 SmartBuildSkip

(a) Percentage of builds required for the
20 projects by SmartBuildSkip (SBS)
and Batch4.

SmartBuildSkip Batch4 BatchBisect BatchStop4

0

20

40

60

80

100

120 SmartBuildSkip
Batch4
BatchBisect
BatchStop4

Percentage of Required Builds for 
 the Baseline Algorithms

Batching Algorithm

P
er

ce
nt

ag
e 

of
 R

eq
ui

re
d 

B
ui

ld
s

Loading [MathJax]/extensions/MathMenu.js

(b) Boxplot of the Percentage of Builds Re-
quired for each Baseline Algorithm.

Fig. 5: Builds Required by Baseline Algorithms.

Puppet etc. For similar reasons, Nafaji et al. [35] and Beheshtian et al. [6] recom-
mend using batching algorithms with projects having less than 25% failure rate.

The median delay of SmartBuildSkip varies from 2 to 80 commits.
As shown in Figure 6, the minimum median delay is made by project Orbeon-
Forms (2 commits) while the maximum median delay (80 commits) is made by
project Metasploit-Framework, for a median value of 11.5 builds across all projects.
This means that if SmartBuildSkip misses to catch a build failure in Metasploit-
Framework, it can take a median of 80 commits before the build failure is caught.
This number varies for every project.

The drastic shift in performance from Orbeon-Forms to Metasploit-Framework
may be due to the sensitivity of the SmartBuildSkip model. Looking at Table 2,
Orbeon-Forms has a 46.49% failure rate, whereas Metasploit-Framework has a low
failure rate of 3.29%. This means that the model trained on Metasploit-Framework
has not seen many examples of build failures, which can lead to inadequate training
of the SmartBuildSkip model. Subsequently, SmartBuildSkip is not able to identify
build failures effectively.

Alternately, builds are scheduled less frequently due to the predictive nature of
the SmartBuildSkip algorithm. The more builds are skipped by the algorithm, the
more out of touch it becomes with the actual outcomes, had the builds been sched-
uled. Since it has no knowledge of previous build outcomes, SmartBuildSkip will
not be able to recognise an actual build failure that it incorrectly predicted to pass.
This build failure is only revealed when a future build is scheduled due to a pre-
dicted failure. If builds were scheduled more frequently, build failures would have
been identified earlier. We proposed our Timeout Rule to combat this shortcoming
of SmartBuildSkip by issuing frequent builds, governed by a timeout mechanism.



18 Divya M. Kamath et al.

m
etasploit-fram

ew
ork

gradle

concerto

vagrant

sufia

puppet

opal

sonarqube
cloudify

graylog2-server
heroku

loom
io

open-build-service
cloud_controller_ng
fog

rails

rubinius

geoserver
jruby

orbeon-form
s

0

100

200

300

Delays in SmartBuildSkip

Project

D
el

ay
 (

in
 n

um
be

r 
of

 c
om

m
its

)

Fig. 6: Boxplots of delays made per project by SmartBuildSkip algorithm.

Summary of RQ1: While SmartBuildSkip can save a median of 41.06%
builds more than Commit Grouping, it introduces median delays in the iden-
tification of failed builds varying from 2 to 80 commits due to the low frequency
of scheduled builds.

6 Hybrid Heuristics

Given the trade-offs in benefits and drawbacks of commit grouping and skipping
heuristics, we propose two hybrid heuristics (combining both families of heuristics)
that try to maximize the benefits of both heuristics, while minimizing the median
delays. The first hybrid heuristic, ML-CI, uses prediction models, while the second
one, Timeout Rule, is rule-based (inspired by the basic rules of Jin et al. [24]).

6.1 ML-CI Model

To overcome the (1) potential sensitivity of SmartBuildSkip to failing intermedi-
ate commits and potential skipping-based delays in observing failures, and the (2)
larger number of builds required by commit grouping algorithms upon a failing
batch build, we combine the two heuristics together into a hybrid heuristic that
aims to reduce the number of builds scheduled in the second phase of SmartBuild-
Skip, as well as the median delays.

Instead of immediately scheduling a build to be run upon a predicted build
failure, the second phase of SmartBuildSkip would wait until a batch of commits



Title Suppressed Due to Excessive Length 19

Table 4: Commit-level Metrics

Metric Description Usage

patch size Size of the commit in
terms of number of
source lines of code

The larger the size of the commit, the
more likely it is to contain bugs

test churn Number of lines modi-
fied in test files

Test files are less likely to contain bugs
than source code

freq file churn Number of times a
source code file is mod-
ified

If a file is changed often, its possibility
of being error-prone is higher

files churn
(added)

Number of files added
in the pull request(PR)

If more files are interacted by the PR,
it is better to be rigorously tested

files churn
(deleted)

The number of files
deleted in the pull re-
quest(PR)

If more files are interacted by the PR,
it is better to be rigorously tested

timeout Number of commits
skipped since the last
build

If last build was scheduled too long
ago, it is better to schedule build to
make sure everything is working well

num commit Number of commits in
the PR

The more commits in a PR, the more
need for testing

has arrived before building the batch. By doing a batch build, the likelihood of
a build failing due to a commit being an intermediate commit would drop, as
the other commits in the batch might fix the incomplete behaviour. Hence, the
likelihood of a passing build would increase, reducing the number of builds that
actually would be run. The main risk of this hybrid approach would be that a
correctly predicted build failure would risk having to wait for the group build to
start before finding the culprit.

In order to deal with the second problem of SmartBuildSkip, i.e., the issue
that build failures could take a longer time to be spotted if the prediction model
does not predict any failure (an issue potentially made worse due to the use of
batching), we expanded SmartBuildSkip’s prediction model with a timeout feature
that simply keeps track of how many consecutive build passes have been predicted
by the model before the current commit. The higher this timeout, the more out-
of-sync our knowledge about the build status is with reality, and the higher the
likelihood that a build failure has been missed.

While SmartBuildSkip’s model explicitly was limited to features that do not
rely on knowledge of previous build runs (because those builds might not have
been run at all), information about previous predictions of the model itself would
be readily available, assuming we take care of the case when model predictions are
not used, i.e., the second phase of SmartBuildSkip.

Algorithm 5 shows ML-CI’s integration of batch building within SmartBuild-
Skip. While the overall operation of SmartBuildSkip is maintained (modulo the
metrics and timeout feature), ML-CI will group commits and build a batch, in-
stead of individual commit builds, when a commit is predicted to fail. For example,
consider C to be the set of commits {c1, c2, c3, ... , cn} where n is the number of
commits in the CI system. Also consider that we are using the BatchStop4 commit
grouping algorithm with a BatchSize of B. As in the case of SmartBuildSkip, if
the commit ci is predicted to pass, the model does not spend time building the
commit. However, if ci is predicted to fail, then all commits from ci to ci+B−1

are grouped before being built together. If the group build passes, we go back to



20 Divya M. Kamath et al.

the prediction phase for commit ci+B , however, if the group build fails, the rules
of the commit grouping algorithm are applied. This process is repeated until a
group build passes. We count a finished batch build as a timeout of “1” on line
13, because we have successfully seen one passing build.

Algorithm 5 ML-CI Model

1: predictor ← RandomForestModel
2: build queue← []
3: num passes← 0
4: Grouping ← False
5: while True do
6: commit← incoming commit
7: if Grouping is True then
8: build queue.append(commit)
9: if len(build queue) is batch size then
10: BatchStop4(build queue) ▷ See Algorithm 3
11: Clear(build queue)
12: Grouping ← False
13: num passes← 1
14: end if
15: else
16: outcome← predict(commit ∪ num passes)
17: if outcome is True then
18: num passes← num passes+ 1
19: continue
20: else
21: num passes← 0
22: build queue.append(commit)
23: Grouping ← True
24: end if
25: end if
26: end while

By introducing build prediction in a commit grouping algorithm, we can re-
duce the number of groups required to be built. Similarly, for sensitive prediction
algorithms that perform many unnecessary builds, we reduce the number of builds
actually scheduled by grouping builds together. However, as a drawback, the ML-
CI model suffers from both grouping-based and skipping-based delays due to the
combination of grouping and skipping heuristics. With larger batch sizes, the de-
gree of grouping-based delay becomes higher, whereas smaller batch sizes (and
the use of the timeout feature in the prediction model) might find an optimum
between avoiding spurious builds while not incurring too high skipping delays.

6.2 Timeout Rule

In the same vein as Jin et al. [24], we also propose a simpler rule-based approach, in
this case focusing explicitly on skipping-based delays of SmartBuildSkip, i.e., the
risk that a failure is predicted a long time after an actual failing commit occurred.
Our hybrid heuristic again exploits a timeout metric, but this time as a measure
of confidence in the SmartBuildSkip model’s predictions. The timeout metric is
used external to the SmartBuildSkip model (i.e., not as a feature of the model)



Title Suppressed Due to Excessive Length 21

to count the number of consecutive builds skipped by it. In essence, this heuristic
not only schedules a build when SmartBuildSkip’s model predicts a failure, but
also when the model has predicted too many build passes consecutively, i.e., when
the timeout metric exceeds a timeout threshold.

In other words, while the model would not consider a build necessary, the
timeout mechanism adds a safety check able to avoid long stretches of predicted
build passes without scheduled build. When the timeout threshold is reached,
we again use batching to possibly reduce the number of builds to actually run.
Similar to ML-CI, we incorporate commit grouping in the Timeout Rule to deal
with transient build failures that might be fixed by a quick follow-up commit.
By waiting for a batch of builds instead of immediately scheduling a build, the
likelihood of such transient failures requiring additional builds can more likely be
reduced.

Fig. 7: Illustration of the Timeout Rule meta-heuristic in a worst case scenario
for SmartBuildSkip (no failure predictions). In the figure, red boxes signify failing
builds, green boxes signify successful builds and yellow boxes signify the grouped
builds.

Algorithm 6 shows the Timeout Rule, and is illustrated in Figure 7, which
shows a worst-case scenario when no build failure is predicted by SmartBuildSkip,
hence SmartBuildSkip itself would not schedule any build to be run for a long
time. When the build time-out threshold is reached at commit ci (i.e., c4), the
prediction of SmartBuildSkip is ignored and instead the commits from ci to ci+B−1

are grouped and built together (with the value of the build time-out reset to 1).
If the batch truly fails, the subsequent steps of the batching algorithm are applied
to find the culprit commits. Note that on lines 11 and 19 Grouping is set to
False if the batch build is successful, otherwise to True. Grouping is a Flag that
shows when to start grouping commits together. If true, we know we have to start
grouping; if false, we have to continue with processing individual commits.



22 Divya M. Kamath et al.

Algorithm 6 Timeout Rule

1: predictor ← SmartBuildSkip
2: build queue← []
3: timeout← 0
4: Grouping ← False
5: while True do
6: commit← incoming commit
7: if timeout > threshold then
8: build queue.append(commit)
9: if len(build queue) is batch size then
10: (batch outcome)← Build(build queue)
11: Grouping ← (batch outcome)?False : True
12: timeout← 1
13: end if
14: else
15: if Grouping is True then
16: build queue.append(commit)
17: if len(build queue) is batch size then
18: (batch outcome)← Build(build queue)
19: Grouping ← (batch outcome)?False : True
20: timeout← 1
21: end if
22: else
23: outcome← predict(commit)
24: if outcome is True then
25: timeout← timeout+ 1
26: continue
27: else
28: Clear(build queue)
29: build queue.append(commit)
30: Grouping ← True
31: end if
32: end if
33: end if
34: end while

By introducing the Timeout Rule, we aim to reap the benefits of SmartBuild-
Skip while reducing the skipping-based delay. Although the total number of builds
is reduced, a build is made periodically to ensure that large delays are not in-
duced. The value of the confidence threshold can be set based on the requirements
of an organization. If the project has historically had a larger failure rate, setting
a smaller confidence threshold will ensure that the builds are enforced more fre-
quently. On the other hand, if a project has a lower failure rate, larger confidence
thresholds can be used to perform period builds and ensure that there are no
undetected build failures.

Of course, if the timeout threshold is too long, skipping-based delays can
still be incurred. Those skipping-based delays, however, will only reach the maxi-
mum threshold of max(timeout, batchSize). Additionally, the rule also introduces
grouping-based delays. When a confidence threshold is reached or a build is pre-
dicted to fail, grouping-based delays are incurred as the commits wait for the build
queue to fill.



Title Suppressed Due to Excessive Length 23

7 Study Design

7.1 Study Goal and Research Questions

In order to validate the performance of the two hybrid heuristics compared to the
two baseline heuristics, we perform an empirical study. We used the
Goal/Question/Metric template [4] to describe our study goal as follows: analyze
the performance of the hybrid heuristics designed for reducing the number of builds
during Continuous Integration (CI) testing; for the purpose of 1) identifying
advantages and drawbacks of the existing grouping and skipping heuristics and 2)
evaluating the performance of hybrid techniques that combine both categories of
heuristics; with respect to the percentage of builds required in comparison to
building all commits and to the delay of observing build failures; from the point
of view of software engineering researchers with expertise in mining software
repositories and CI testing; and in the context of state-of-the-art heuristics and
open source projects collected from a Travis CI data set shared by recent work [24].

In particular, we evaluate the two hybrid heuristics introduced in Section 6,
i.e., ML-CI and Timeout Rule, and compare them to the Grouping and Skipping
Heuristics in terms of the following research questions:

RQ2: How does the performance of ML-CI compare to the baseline heuris-
tics? – ML-CI performs commit grouping in the second phase of SmartBuildSkip,
while adding a timeout feature in the first phase model. We aim to identify the
practicality of such a hybrid heuristic and identify its strengths and weaknesses
in comparison to the baselines. We also evaluate the performance of ML-CI with
varying hyper-parameters such as batch size and the choice of commit grouping
algorithm.

RQ3: How does the performance of the Timeout Rule compare to the baseline
heuristics? – The Timeout rule forces SmartBuildSkip to schedule builds once a
timeout threshold is exceeded, then uses commit grouping in the second phase of
SmartBuildSkip. Along with comparison of this hybrid heuristic to the baselines,
this research question also aims to evaluate its performance with varying hyper-
parameters such as batch size and commit grouping algorithm.

The SmartBuildSkip algorithm recognises that many build failures occur con-
secutively after another build failure. To distinguish the characteristics of the first
build failure from the subsequent build failures, Jin et al. [24] used the data of
build passes and first build failures to train their model. Similarly, we segregate the
dataset into build passes, first failures and subsequent failures, then discard the
latter when training our models in both of our meta-heuristics, i.e., the Timeout
Rule and ML-CI. This segregation is depicted in Figure 4b.

7.2 RQ2 Analysis Procedure

As discussed in Section 6.1, ML-CI is a machine learning Random Forest Model
trained on the commit metrics defined in Table 4, including a new time-out metric,
to perform a prediction of the pass/fail outcome of the incoming commit under
analysis. If a failure is predicted, we use commit grouping algorithms.

By varying the batching algorithm used with ML-CI between Batch4, Batch-
Bisect and BatchStop4, we come up with three variants of ML-CI. We evaluated



24 Divya M. Kamath et al.

the BatchBisect ML-CI variant with a batch size of 2, 4, 8, 16, and evaluated the
BatchStop4 variant with the batch sizes 8 and 16. We omit the use of batch size
4 for the BatchStop4 variant as it is identical to the Batch4 variant. After com-
paring the three variants, we will compare the best one to SmartBuildSkip and its
corresponding baseline batching algorithm.

As ML-CI integrates commit grouping approaches with SmartBuildSkip, the
ML-CI hybrid algorithm inherits both skipping and grouping delays. Some failing
commits that are not recognized by the prediction model cause skipping-based de-
lays whereas the failing commits that are recognised and built can cause grouping-
based delays. In other cases, the passing commits that are skipped by ML-CI cause
zero delays, whereas passing commits that are incorrectly predicted to fail will
cause grouping-based delays. To measure the Delay of ML-CI, we calculate the
combined delays, i.e., for a given commit we select either the skipping-based de-
lay, grouping-based delay or zero, whichever applies (note that only one applies to
each commit).

We further apply statistical tests to determine whether the performance of ML-
CI variants and baseline heuristics is similar or different. For the 4 heuristics (three
ML-CI variants and one baseline heuristic), we evaluate the statistical difference
separately for percentage of builds required and for median delays. To do so, we
use the Kruskal-Wallis test supported by the Pairwise Wilcoxon test as a post-
hoc measure at a confidence interval of 95% (alpha=0.05). If two heuristics are
found to be statistically different, we further evaluate the effect size to gauge the
magnitude of their difference.

7.3 RQ3 Analysis Procedure

The Timeout rule discussed in Section 6.2 essentially uses the SmartBuildSkip
model to predict build outcomes, yet (1) forces a build once a set number of
builds has been skipped (“timeout”) and (2) uses build grouping instead of direct
execution of a build.

To evaluate this approach, we use timeout values in the range [2, 20]. As with
ML-CI, we also vary the batching algorithm used with the Timeout Rule to get its
three variants then use the best one to compare with baseline heuristics. Similarly,
we evaluated the BatchBisect Timeout Rule variant with a batch size of 2, 4, 8, 16,
and evaluated the BatchStop4 variant with the batch sizes 8, 16. To simplify our
observations, we only report the results of the timeout value that gives the best
results (i.e., minimum builds required and minimum median delay). We do not
perform further analysis of variations of timeout values as we use the best values
for each project and heuristic. For example, the best timeout value to be used with
project Geoserver while using the TR-Batch4 variant is 2, on the other hand, the
best timeout value with to be used with project Rails for the same Timeout Rule
variant is 20.

While all batching delays are grouping-based, and all SmartBuildSkip delays
are skipping-based, our Timeout rule could cause either skipping or grouping de-
lays. Similar to ML-CI, we measure the combined delay of Skipping and Grouping-
based delays together along with the statistical difference between the 3 variants
of the Timeout Rule and the baseline heuristics.



Title Suppressed Due to Excessive Length 25

Table 5: Variants of ML-CI

Grouping Heuristic Batch Size
Used

Obtained Variant

Batch4 4 MLCI-Batch4
BatchBisect 1 MLCI-BatchBisect-1

2 MLCI-BatchBisect-2
4 MLCI-BatchBisect-4
8 MLCI-BatchBisect-8
16 MLCI-BatchBisect-16

BatchStop4 8 MLCI-BatchStop4-8
16 MLCI-BatchBisect-16

8 Performance Results for ML-CI (RQ2)

In the following sections, we discuss the performance of ML-CI with respect to the
baseline algorithms, i.e., SmartBuildSkip and the Batching Algorithms. Section 8.1
evaluates the 3 variants of the ML-CI model. Sections 8.2.2 and 8.2.3 compare the
results of ML-CI with SmartBuildSkip and Batch4, respectively.

8.1 Comparing the variants of ML-CI

8.1.1 Approach

We derive the 3 main variants of ML-CI that are listed in Table 5, obtained by
varying the batching algorithm used between Batch4, BatchBisect and Batch-
Stop4. We further obtain 8 sub-variants by varying the batch size used for each
batching algorithm. Table 6 lists the results of the percentage of builds required
and the median delay observed for the 20 studied projects, for each variant of
the ML-CI model. For the Batch4 column in the table, each entry is obtained by
using a batch size of 4 builds. For the BatchBisect column, the batch size can vary
between [1, 2, 4, 8, 16] whereas for the BatchStop4 column, the batch size can be
8 or 16 builds. Figure 8 depicts the box plots of Percentage of Builds required,
median combined delays and best batch sizes used by the ML-CI variants across
20 projects.

Using two Kruskal-Wallis tests, we statistically compare the performance (per-
centage of builds required and median delay) of the three main variants of ML-CI
obtained with the best performing batch size as listed in Table 6. We further in-
vestigated any statistical differences reported by Kruskal-Wallis using the Pairwise
Wilcoxon post-hoc test. We measure the effect size using the eta-squared statis-
tic [41] and interpret it accordingly: 0.01−0.06 (small effect), 0.06−0.14 (moderate
effect) and >= 0.14 (large effect).

8.1.2 Results

For ML-CI, the median percentage of builds required is 45.84% for
MLCI-Batch4, 50.13% for MLCI-BatchStop4, and 43.15% for MLCI-
BatchBisect, although this performance is not consistent across projects.
The Kruskal-Wallis test performed at a confidence level α = 0.05, revealed that



26 Divya M. Kamath et al.

Table 6: Results of ML-CI

ML-CI
MLCI-Batch4 MLCI-BatchBisect MLCI-BatchStop4Project

%
Builds
Re-
quired

Median
Delay

Batch
Size

%
Builds
Re-
quired

Median
Delay

Batch
Size

%
Builds
Re-
quired

Median
Delay

Batch
Size

cloud-
controller-
ng

62.27 2 4 55.56 1 2 74.61 4 8

cloudify 21.11 2 4 23.95 2 4 28.49 4 8
concerto 39.45 2 4 40.42 4 8 38.49 4 8
fog 69.78 2 4 64.09 1 2 86.31 4 8
geoserver 87.02 2 4 71.25 1 2 103.39 4 8
gradle 37.59 2 4 38.63 2 4 37.85 4 8
graylog2-
server

30.71 2 4 23.01 8 16 21.96 8 16

heroku 36.27 2 4 38.13 1 2 42.31 4 8
jruby 73.06 2 4 62.62 1 2 103.6 4 8
loomio 54.1 2 4 57.26 1 2 73.86 4 8
metasploit-
framework

34.04 2 4 28.53 8 16 28.0 8 16

opal 35.4 2 4 36.68 2 4 36.54 4 8
open-build-
service

51.97 2 4 45.89 1 2 60.49 4 8

orbeon-
forms

63.33 2 4 67.26 1 2 73.93 4 8

puppet 31.21 2 4 23.48 4 8 23.01 4 8
rails 44.47 2 4 36.29 1 2 64.09 4 8
rubinius 74.0 2 4 63.12 1 2 88.15 4 8
sonarqube 48.36 2 4 51.17 1 2 52.4 4 8
sufia 47.22 2 4 49.84 2 4 47.88 4 8
vagrant 26.43 2 4 28.44 4 8 25.51 4 8
Median 45.846 2.0 43.154 1.0 50.137 4.0

Table 7: Comparing Median Delays of ML-CI variants with each other

Test Used
p-values

MLCI-Batch4 MLCI-
BatchBisect

MLCI-
BatchStop4

Kruskal-Wallis 1.523e-07
MLCI-Batch4 Pairwise

Wilcoxon
– 0.0654 3.3e-09

MLCI-
BatchBisect

Pairwise
Wilcoxon

– – 0.0001

there is no statistical difference (p− value = 0.5624) in the median percentage of
builds required amongst the 3 variants. The three variants of ML-CI consistently
demonstrate their best performance, i.e., the least percentage of builds required,
in projects like Graylog2-server, Cloudify, Puppet and Vagrant, while they demon-
strate their least effective performances in projects like Geoserver, JRuby, Rubinius
and Fog.

We formulate two hypotheses explaining these findings of ML-CI. Based on
the metadata of the dataset projects, we can hypothesize that dataset distribution



Title Suppressed Due to Excessive Length 27

Batch4 BatchBisect BatchStop4
0

20

40

60

80

100

Percentage of Required Builds for 
 the ML-CI Variants

ML-CI Variant

P
er

ce
nt

ag
e 

of
 R

eq
ui

re
d 

B
ui

ld
s

(a) Boxplot of Required
builds in ML-CI
variants using the 3 Batch-
ing algorithms.

Batch4 BatchBisect BatchStop4
0

1

2

3

4

5

6

7

8

Median Delays for the 
ML-CI Variants

ML-CI Variant

M
ed

ia
n 

D
el

ay

(b) Boxplot of Median De-
lays in ML-CI
variants using the 3 Batch-
ing algorithms.

Batch4 BatchBisect BatchStop4
0

2

4

6

8

10

12

14

16

Median Batch Sizes for the 
ML-CI Variants

ML-CI Variant

M
ed

ia
n 

D
el

ay

(c) Boxplot of Batch Sizes
used in ML-CI
variants using the 3 Batch-
ing algorithms.

Fig. 8: Boxplots demonstrating the range of Percentage Build Required, Median
Delays and the best performing batch sizes in ML-CI.

heroku

rails

orbeon-form
s

geoserver
sufia

concerto

puppet

cloud_controller_ng
opal

fog

loom
io

sonarqube
open-build-service
rubinius

vagrant

cloudify

m
etasploit-fram

ew
ork

jruby

gradle

graylog2-server

0

50

100

150

200

250

300

350

400

Delays in ML-CI: BATCH4, batch size 4

Project

D
el

ay
 (

in
 n

um
be

r 
of

 c
om

m
its

)

Fig. 9: Boxplots of delays made per project by the ML-CI Batch4 variant.

can be a factor directly related to the performance of the ML-CI model. More
balanced datasets seem to require more builds for ML-CI compared to datasets
that have a lower distribution of failing builds. For example, based on Table 2, we
see that many projects such as Graylog2-server, Sufia, Puppet etc., record more
passing builds than failing builds. Therefore, the Random Forest Model of ML-CI
that trains on these projects’ data points, is more likely to predict their builds to



28 Divya M. Kamath et al.

Table 8: Comparing Percentage of Builds Required by ML-CI variants amongst
each other

Test Used
p-values

MLCI-Batch4 MLCI-
BatchBisect

MLCI-
BatchStop4

Kruskal-Wallis 0.5624
MLCI-Batch4 Pairwise

Wilcoxon Not needed, since Kruskal-Wallis test
shows no significant differenceMLCI-

BatchBisect
Pairwise
Wilcoxon

pass. However, projects like Geoserver and JRuby contain a similar distribution of
passing and failing builds. Hence, the models trained on these data points are less
biased and do not as frequently predict build passes. This pattern can also be seen
in the data of low-failure ratio datasets like Metasploit-Frameworks, Opal, Gradle
and Puppet, and high-failure ratio datasets like Orbeon-forms, Loomio, Fog and
Rubinius.

Another explanation could be the distribution of the failed builds, i.e., whether
build failures are seen to occur consecutively or are singularly distributed through-
out the dataset. If build failures occur close to one another, they are likely to be
grouped together in a single batch, with the batching algorithms requiring more
builds to identify these multiple build fails in the batch (due to bisection). How-
ever, if a single build failure is to be detected in a batch, bisection can reveal
the culprit commit and the batching algorithms can detect them with less builds
comparatively. This hypothesis can explain the behaviour behind moderate failure
datasets such as Rails and Cloud-Controller-Ng requiring more builds to be made.

ML-CI exhibits median delays of 1 build for the BatchBisect variant,
2 builds for the Batch4 variant and 4 builds for the BatchStop4 variant.
From Table 6, we see that the batch size that provides the best performance with
BatchBisect is 2, whereas batch size 8 provides the best results with BatchStop4.
Every time a batch of size 8 is filled, a median delay of 3.5 builds is incurred, while
it only causes a delay of 0.5 build when a batch of size 2 is made. Similarly, a batch
of size 4 incurs a median delay of 1.5 builds. Hence, the median delay incurred
by BatchBisect is less than the median delay incurred by Batch4 and BatchStop4.
Although large batch sizes may reduce the number of builds made, they also
increase the waiting time for builds in the queue, which can reduce the efficiency
of the developers in a project. Essentially, ML-CI creates a trade-off between build
wait times and build resources. To moderate the trade-off, a carefully considered
batch size should be used that can optimise the priorities of the project that uses
ML-CI.

We also see from Figure 9 that the median skipping based delays in ML-CI is
2 builds for all projects. This means that if a failing build is skipped by ML-CI,
it is identified after a median of 2 builds. At a confidence interval α = 0.05, a
Kruskal-Wallis test indicated a significant difference in the median delays of the
three ML-CI variants with a p− value = 1.523e− 07.

To further investigate this statistical difference, we used the Pairwise Wilcoxon
Test at a confidence interval α = 0.05 as a post-hoc testing measure. We measured



Title Suppressed Due to Excessive Length 29

p − value = 3.3e − 09, and p − value = 0.0001, showing a strong statistical
difference between the median delays of MLCI-BatchStop4 against MLCI-Batch4
and MLCI-BatchBisect respectively, with a large effect size of r = 0.76 and r =
0.50. From Table 6, we see that MLCI-BatchStop4 requires higher median delays
than the other two variants. We can hypothesize that this difference arises due
to the difference in BatchSize used by the three algorithms. The Batch4 variant
uses a batch size of 4, while the BatchBisect variant is also seen to perform best
with a median batch size of 4 builds. However, the BatchStop4 variant performs
best with a median batch size of 8 builds. Table 6 shows the builds required for
all variants of ML-CI grouped by the batch size. We see that the variants require
similar percentages of builds when they are scheduled to build with the same batch
size.

8.2 Comparison to Baselines

8.2.1 Approach

We choose one variant of ML-CI to compare to the baseline heuristics in this
work. According to Bavand et al. [5], as the baseline Batch4 algorithm has the
best performance among static batching techniques, we choose the MLCI-Batch4
variant to be compared to the baselines. Since the delays of SmartBuildSkip and
the delays of the Batching algorithms are two different kinds of delays (skipping
and grouping) and hence cannot be compared head-to-head, the following subsec-
tions separately compare ML-CI to SmartBuildSkip and to the Batch4 Batching
algorithm. The scatterplots in Figure 11 and 13 plot the Percentage of Builds Re-
quired, whereas, Figure 10 and 12 plot the median delay, each of which compares
ML-CI with the SmartBuildSkip and Batch4 baselines, respectively. These results
are also noted in Table 9.

To determine whether ML-CI numerically outperforms the Baseline models,
we look at the proximity of the data points to the X and Y axes. If the data point
is closer to the Y axis compared to the X axis, then we can ascertain that ML-CI
is a more effective build saving heuristic for the given project compared to the
baseline algorithm. For simplicity, we plot the y = x reference line on the graphs.

We used statistical tests to measure any differences in performance between
the three ML-CI variants and the baseline algorithms. The results of these tests
are reported in Tables 10 and 11.

8.2.2 Comparing to SmartBuildSkip

ML-CI incurs a median skipping delay of 2 builds across projects, sig-
nificantly lower than that of SmartBuildSkip’s 2 to 80 builds delay. From
Figure 10, we see that all the data points of ML-CI lie below those of SmartBuild-
Skip, indicating that the median delay incurred by ML-CI is lower compared to
that of SmartBuildSkip. Considering the magnitude of the delays, SmartBuildSkip
appears to cause a median skipping delay greater than 10 builds for 11 projects out
of the studied 20 projects. On the other hand, the median delay caused by ML-CI
reaches 2 builds for all data points using the Batch4 ML-CI variant. Similarly, the
median delays incurred by ML-CI ranges from 1 to 8 builds, with the maximum



30 Divya M. Kamath et al.

Table 9: Comparing MLCI-Batch4 with Baseline algorithms

Project Builds Required Median Delay
MLCI-
Batch4

Baseline
Batch4

Smart-
Build-
Skip

MLCI-
Batch4

Baseline
Batch4

Smart-
Build-
Skip

cloud-
controller-
ng

62.269 74.691 11.265 2.0 1.5 7.0

cloudify 21.107 45.252 16.955 2.0 2.0 16.0
concerto 39.452 45.974 3.865 2.0 2.0 30.0
fog 69.775 83.73 26.587 2.0 1.5 7.0
geoserver 87.023 99.491 62.002 2.0 2.0 4.0
gradle 37.591 44.548 0.883 2.0 2.0 53.0
graylog2-
server

30.709 34.996 1.225 2.0 2.0 12.0

heroku 36.267 53.333 14.578 2.0 2.0 11.0
jruby 73.061 108.406 79.32 2.0 2.0 3.0
loomio 54.104 73.485 17.298 2.0 1.5 10.0
metasploit-
framework

34.04 37.476 1.023 2.0 1.5 80.0

opal 35.399 43.519 3.49 2.0 1.5 19.0
open-build-
service

51.968 69.357 16.542 2.0 2.0 7.0

orbeon-
forms

63.333 80.085 64.444 2.0 2.0 2.0

puppet 31.206 35.303 1.734 2.0 2.0 22.0
rails 44.471 72.799 24.109 2.0 1.5 6.0
rubinius 73.997 84.878 30.751 2.0 2.0 5.0
sonarqube 48.363 56.608 8.187 2.0 2.0 17.0
sufia 47.222 51.797 4.412 2.0 1.5 23.5
vagrant 26.429 39.552 2.378 2.0 2.0 27.0

Table 10: Comparing Median Delays of ML-CI variants with Baseline Algorithms

The Wilcoxon Signed Rank tests compare each baseline batching algorithm against the
corresponding ML-CI variant.

Test Used
p-values

MLCI-Batch4 MLCI-
BatchBisect

MLCI-
BatchStop4

SmartBuildSkip Kruskal-Wallis 2.238e-11
Pairwise
Wilcoxon

8.9e-08 3.8e-06 8.8e-05

Baseline
Batch4

Wilcoxon
Signed Rank

0.004294 n/a n/a

Baseline
BatchBisect

Wilcoxon
Signed Rank

n/a 0.1554 n/a

Baseline
BatchStop4

Wilcoxon
Signed Rank

n/a n/a 0.6266

delay of 408 builds, while it ranges from a median 5 to 80 builds, with maximum
delay of 456 builds, in SmartBuildSkip.

A Kruskal Wallis test confirmed the significant difference between the me-
dian delay induced by the different ML-CI variants and SmartBuildSkip with
p − value = 2.238e − 11 at α = 0.05. The Pairwise Wilcoxon post-hoc test fur-



Title Suppressed Due to Excessive Length 31

Table 11: Comparing Percentage of Builds Required by ML-CI variants with Base-
line Algorithms

The Wilcoxon Signed Rank tests compare each baseline batching algorithm against the
corresponding ML-CI variant.

Test Used
p-values

MLCI-Batch4 MLCI-
BatchBisect

MLCI-
BatchStop4

SmartBuildSkip Kruskal-Wallis 3e-05
Pairwise
Wilcoxon

0.00010 0.00024 0.00010

Baseline
Batch4

Wilcoxon
Signed Rank

0.05589 n/a n/a

Baseline
BatchBisect

Wilcoxon
Signed Rank

n/a 0.03752 n/a

Baseline
BatchStop4

Wilcoxon
Signed Rank

n/a n/a 0.4612

metasploit-framework

gradle
concerto

vagrant

sufia
puppet

opal
sonarqube

cloudify
graylog2-server

heroku
loomio

open-build-service

cloud_controller_ng

fog rails
rubinius

geoserver

jruby
orbeon-forms

0

10

20

30

40

50

60

70

80
method

SmartBuildSkip

ML-CI

BATCH4 - 4 : Median Delay in ML-CI v/s SmartBuildSkip

Project

M
ed

ia
n 

D
el

ay
s

Fig. 10: Median Combined Delay in MLCI-Batch4 vs SmartBuildSkip algorithm.

ther showed that the median delay of SmartBuildSkip is significantly higher than
the median delay of each of the ML-CI variants (Batch4, BatchBisect, Batch-
Stop4) with p− values of (8.9e− 08, 3.8e− 06, 8.8e− 05) and a large effect size of
(0.59, 0.51, 0.43).

ML-CI requires a median of 24.66% more builds compared to Smart-
BuildSkip. On the other hand, Figure 11 shows that a median percentage of
45.84% of builds across the 20 projects are run with ML-CI. All projects require
more than 20% of builds (minimum of 21.10% in Cloudify). In contrast with Smart-
BuildSkip, the projects require a median of 12.92% of builds to schedule, with all
but 3 projects requiring less than 31% of builds. The maximum percentage of builds
required is about 79.31% for JRuby, while the same project requires 73.06% builds
with ML-CI.



32 Divya M. Kamath et al.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90 project
heroku

rails

gradle

jruby

metasploit-framework

cloudify

vagrant

rubinius

open-build-service

sonarqube

loomio

fog

opal

cloud_controller_ng

puppet

concerto

sufia

geoserver

orbeon-forms

BATCH4 - 4 : Percentage Builds Required in ML-CI v/s SmartBuildSkip

Percentage Builds Required in ML-CI

P
er

ce
nt

ag
e 

B
ui

ld
s 

R
eq

ui
re

d 
in

 S
m

ar
tB

ui
ld

S
ki

p

Fig. 11: Percentage of Required builds in ML-CI (using Batch4) vs SmartBuildSkip
algorithm.
The diagonal represents x=y, hence all points below the line are instances where
SmartBuildSkip performs better than ML-CI.

A Kruskal Wallis test performed to analyze the statistical difference in the
percentage of builds required by SmartBuildSkip and the three variants of ML-
CI revealed a significant difference between them with a p − value = 0.06541 at
α = 0.05. The pairwise Wilcoxon rank sum post-hoc test further calculated a
p− value = 0.00010 between SmartBuildSkip and each MLCI-Batch4 and MLCI-
BatchStop4 variant, with a large effect size of r = 0.43. Similarly, we also calculated
a p− value = 0.00024 with a large effect size of r = 0.41 between SmartBuildSkip
and the MLCI-BatchBisect variant. From Table 3 and Table 6, we know that
SmartBuildSkip requires much less builds (median of 12.92%) as compared to the
MLCI-variants.

8.2.3 Comparing to Batch4 Baseline

We see a close call between ML-CI and the Baseline Batch4 algorithm
in terms of percentage of builds required and median combined de-
lay, with an improvement of small effect size in grouping delay for the
Batch(Stop)4 variants of ML-CI. In Figures 12 and 13, we see that both the
ML-CI Batch4 variant and the baseline Batch4 algorithm have similar values of
Median Delay and Percentage of Builds Required. All projects have a median de-
lay of 1.5-2 builds for the baseline Batch4, and a similar median of 2 builds for
the Batch 4 ML-CI variant.

In Figure 13, all data points lie near or slightly above the y = x reference
line, indicating that in most cases ML-CI requires slightly less builds compared to
the baseline Batch4 algorithm. The maximum percentage of builds is 108.41% in
baseline Batch4 (JRuby) and 87.02% for the MLCI-Batch4 variant (Geoserver).



Title Suppressed Due to Excessive Length 33

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3
project

heroku

rails

gradle

jruby

metasploit-framework

cloudify

vagrant

rubinius

open-build-service

sonarqube

loomio

fog

opal

cloud_controller_ng

puppet

concerto

sufia

geoserver

orbeon-forms

BATCH4 - 4 : Median Delay in ML-CI v/s Batching

ML-CI Delays

B
at

ch
in

g 
D

el
ay

s

Also, heroku, gradle, jruby, cloudify, vagrant, 
rubinius, open-build-service, sonarqube, opal,
puppet, concerto, geoserver, graylog2-server

Also cloud-controller-ng, fog, loomio, 
metasploit-framework, rails

Fig. 12: Median Combined Delay in ML-CI (using Batch4) vs. Baseline Batch4
Batching algorithm.
The diagonal represents x=y, hence all points below the line are instances where
baseline batching performs better than ML-CI.

0 20 40 60 80 100

0

20

40

60

80

100

project
heroku

rails

gradle

jruby

metasploit-framework

cloudify

vagrant

rubinius

open-build-service

sonarqube

loomio

fog

opal

cloud_controller_ng

puppet

concerto

sufia

geoserver

orbeon-forms

BATCH4 - 4 : Total Builds Required in ML-CI v/s Batching

Percentage Builds Required in ML-CI

P
er

ce
nt

ag
e 

B
ui

ld
s 

R
eq

ui
re

d 
in

 B
at

ch
in

g

Loading [MathJax]/extensions/MathMenu.js

Fig. 13: Percentage of Required builds in ML-CI (using Batch4) vs Baseline Batch4
Batching algorithm.
The diagonal represents x=y, hence all points above the line are instances where
ML-CI performs better than baseline batching.

The lowest percentage of builds requires 21.01% builds for MLCI-Batch4(cloudify),
and 34.99% of builds for the baseline Batch4(Graylog2-server) technique.

We performed a Wilcoxon Signed Rank test to determine statistical differ-
ences between the percentage of builds required by each variant of ML-CI and
its corresponding Baseline variant (e.g., MLCI-Batch4 variant compared to the
baseline Batch4 approach). As shown in Table 19, the test calculated p-values=



34 Divya M. Kamath et al.

(0.05589, 0.03752, 0.4612) for the Batch4, BatchBisect and BatchStop4 ML-CI
variants, respectively, revealing no significant differences in percentage of builds
required for the MLCI-Batch4 and MLCI-BatchStop4 variants and their corre-
sponding baseline algorithms. However, we see that the MLCI-BatchBisect vari-
ant has a significantly better performance in comparison to Baseline BatchBisect
algorithm with a large effect of r = 0.23.

One possible explanation could be that ML-CI performs very well with small
batch sizes. We have found that projects like Fog, Rails, Geoserver etc., that work
best with smaller batch sizes in ML-CI, have higher failure rates. Due to the
incorporation of SmartBuildSkip in the ML-CI algorithm, we find that ML-CI can
schedule less builds using a smaller batch size than baseline batching algorithms.
For example, from Table 3, we see that project Cloud-controller-ng requires 80.40%
builds with a batch size of 4 commits and that project Cloudify requires 42.86
builds with a batch size of 16 commits using baseline BatchBisect algorithm. On
the other hand, from Table 6 we see that the same projects require a median of
55.56% less builds with batch size 2 and 23.95% less builds with batch size 4.

However, we also see that ML-CI variants require similar builds as their baseline
counterparts for projects like Graylog2-server and Metasploit-framework. Particu-
larly, these projects have a low failure rate of less than 4%. This would mean that
the ML-CI models trained on these projects have not seen enough build failures
during the training phase, making it difficult for them to identify build failures
during testing. Hence, the performance of the two techniques becomes similar to
each other.

Table 18 shows the statistical difference of the median combined delays. We
obtained a p−value = 0.004294 for the Batch4 variant, p−value = 0.1554 for the
BatchBisect variant and p−value = 0.6266 for the BatchStop4 variant, indicating
that there are differences between the median delays of the ML-CI Batch4 variant
and Baseline Batch4 at a confidence interval of α = 0.05. That said, we computed
an effect size of r = 0.31, which denotes a small effect.

8.3 Discussion

From the ML-CI approach, we see that predicting the build outcome (including a
time-out feature) and using this prediction to skip and group builds does not con-
sistently improve on either SmartBuildSkip or Batching. While it can significantly
reduce the median number of skipping delays with respect to SmartBuildSkip, it
also increases the percentage of required builds, or it only improves on the per-
centage of builds required with a small effect size compared to baseline batching
approaches.

To better understand these findings, we decided to study the role of individ-
ual features on the overall prediction of ML-CI. For this, we measured feature
importance of each feature used in the ML-CI models using impurity-based im-
portance [32]. Table 12 shows for each feature the median feature importance score,
ranking the features from highest to lowest median.

The analysis shows how the three features with the highest feature importance
scores are gh commits on files touched, time out and git diff src churn. While
gh commits on files touched and git diff src churn are relatively “generic” features
(i.e., applicable to other fields than CI), feature time out is highly specific to CI and



Title Suppressed Due to Excessive Length 35

Table 12: Most Important Features of ML-CI

Order Median Score Feature Name Feature Description

1 0.295 gh commits on files
touched

Frequency of commits made on
the files touched by commit

2 0.203 time out Most recent number of consec-
utive predicted build passes or
build skips leading up to cur-
rent build

3 0.184 git diff src churn Size of commit sent to build
4 0.098 git diff files modified Number of files modified by

current build
5 0.088 git diff test churn Number of lines of test file

changes
6 0.043 git num all built

commits
Number of commits added to
current build

7 0.039 git diff files added Number of files added in cur-
rent build

8 0.018 git diff files deleted Number of files deleted by cur-
rent build

9 0.005 git num commit
comments

Number of comments added in
the commit

its high median importance seems to suggest that a kind of time-out mechanism is
crucial when predicting build outcomes. Notably, the higher the number of passes,
the higher the probability that builds are scheduled by ML-CI.

In contrast, SmartBuildSkip does not have any such mechanism to “reset” its
internal state, such that a very long streak of predicted build passes might lead
SmartBuildSkip not to schedule any build for a very long time, causing the high
skipping delays of Figure 10. Batch4 does have a fixed batch size, but it ignores
prior success/failure.

Hence, given these issues of SmartBuildSkip and Batch4, as well as the obser-
vations about the role played by time out in the ML-CI model, we analyze in the
next RQ whether the Timeout Rule proposed in Section 6.2 is able to improve on
SmartBuildSkip’s lack of reset mechanism.

Summary of RQ2: We observe that the performance of the ML-CI Model
is on par with (or at least only slightly better than) that of commit grouping
algorithms and requires a median of 26.44% more builds than SmartBuildSkip,
albeit with a median skipping delay of 9.5 builds less.

9 Performance Results for Timeout Rule (RQ3)

This section compares the performance of the Timeout Rule against the baseline
SmartBuildSkip and Batching algorithms. Section 9.1 reports the results compar-
ing the variants of the Timeout Rule. Sections 9.2.2 and 9.2.3 compare the results
of the Timeout Rule with SmartBuildSkip and Batch4, respectively.



36 Divya M. Kamath et al.

9.1 Comparing the variants of the Timeout Rule

9.1.1 Approach

Similar to ML-CI, we derive three main variants of the Timeout Rule as detailed
in Table 13. We study the performance of the three main variants of the Timeout
Rule in this section. By varying the batch size used with the Timeout Rule we
obtained 8 sub-variants. Other variants of the Timeout Rule can be derived by
using other commit-grouping techniques that are not used in this work.

The percentage of builds required and the median delay observed for the 20
studied projects, for each variant of the Timeout Rule is listed in Table 14. Similar
to ML-CI, for the Batch4 column in the table, each entry is obtained by using
a batch size of 4 builds. For the BatchBisect column, the batch size can vary
between [1, 2, 4, 8, 16] whereas for the BatchStop4 column, the batch size can be
8 or 16 builds. Figure 14 depicts the box plots of Percentage of Builds required,
median combined delays and best batch sizes used by the Timeout Rule variants
across 20 projects. While Figure 14c depicts the distribution of best performing
timeout values across 20 projects, each of the 20 data points in Figures 14a and 14b
represent the percentage of builds required and median delay obtained with the
best performing batch size for that Timeout Rule variant.

In Section 9.2, we further choose the TR-Batch4 variant to dive into deeper
analysis to compare the performance between the Timeout Rule, Baseline Batch4
and SmartBuildSkip algorithms. We choose the Batch4 variant as a representative
of baseline commit grouping algorithms to simplify comparisons as it uses a single
batch size of 4 commits throughout the CI process for all projects.

It is important to note that we do not use the same fixed size of Timeout value
across all analyzed projects. On evaluating each Timeout Rule sub-variant with
Timeout values in the range [2, 20], we choose for each project the confidence
value that gives the best results. For example, the best Timeout value used for
project Rails with TR-Batch4 variant is 20, but project Rubinius works best with
the Timeout value of 11 and Orbeon-forms uses a Timeout value of 16.

We also use the Kruskal-Wallis and Wilcoxon Signed Rank statistical tests to
statistically compare the median delay and percentage of builds required by the
variants of Timeout Rule amongst each other or with baseline heuristics. We use
two Kruskal Wallis tests, one to compare median delay and another to compare
percentage builds required by the three main variants of the Timeout Rule in Ta-
ble 14. We use the post-hoc Pairwise Wilcoxon test at confidence values of α = 0.05
to further investigate any statistical differences indicated by the Kruskal-Wallis
Test. We also use a Wilcoxon signed rank test to calculate statistical differences
between each Timeout Rule variant in Table 14 with its corresponding commit
grouping variant in Table 3.

9.1.2 Results

The Timeout Rule requires a median percentage of builds of 29.30%
for the BatchBisect variant, 34.96% builds for the Batch4 variant, and
41.11% for the BatchStop4 variant, demonstrating a significant reduc-
tion in the percentage of builds required during CI. Three quarters of
projects require less than 46.40% builds for the BatchBisect variant, less than



Title Suppressed Due to Excessive Length 37

Table 13: Variants of the Timeout Rule

Grouping Heuristic Batch Size
Used

Obtained Variant

Batch4 4 TR-Batch4
BatchBisect 1 TR-BatchBisect-1

2 TR-BatchBisect-2
4 TR-BatchBisect-4
8 TR-BatchBisect-8
16 TR-BatchBisect-16

BatchStop4 8 TR-BatchStop4-8
16 TR-BatchBisect-16

Table 14: Results of Timeout Rule

Timeout Rule
TR-Batch4 TR-BatchBisect TR-BatchStop4Project

%
Builds
Re-
quired

Median
Delay

Batch
Size

%
Builds
Re-
quired

Median
Delay

Batch
Size

%
Builds
Re-
quired

Median
Delay

Batch
Size

cloud-
controller-
ng

38.812 2.0 4 30.247 1.0 2 48.457 4.0 8

cloudify 34.025 2.0 4 33.064 1.0 2 39.216 4.0 8
concerto 16.667 2.0 4 12.399 1.0 2 20.692 4.0 8
fog 56.217 2.0 4 49.008 1.0 2 65.542 4.0 8
geoserver 85.496 2.0 4 94.232 1.0 2 98.388 4.0 8
gradle 8.879 2.0 4 7.373 1.0 2 9.761 4.0 8
graylog2-
server

9.099 2.0 4 7.437 1.0 2 9.449 4.0 8

heroku 35.911 2.0 4 28.356 1.0 2 43.022 4.0 8
jruby 110.664 2.0 4 118.779 1.0 2 123.429 4.0 8
loomio 42.677 2.0 4 34.596 1.0 2 51.641 4.0 8
metasploit-
framework

9.064 2.0 4 7.334 1.0 2 10.38 4.0 8

opal 15.527 2.0 4 11.823 1.0 2 19.088 4.0 8
open-
build-
service

43.049 2.0 4 34.479 1.0 2 54.061 4.0 8

orbeon-
forms

95.043 2.0 4 101.88 1.0 2 109.829 4.0 8

puppet 11.505 2.0 4 8.511 1.0 2 13.16 4.0 8
rails 53.852 2.0 4 43.802 1.0 2 65.854 4.0 8
rubinius 69.848 2.0 4 61.78 1.0 2 81.835 4.0 8
sonarqube 28.48 2.0 4 22.164 1.0 2 35.322 4.0 8
sufia 18.219 2.0 4 14.379 1.0 2 22.958 4.0 8
vagrant 13.946 2.0 4 11.157 1.0 2 17.787 4.0 8
Median 34.968 2.0 29.301 1.0 41.119 4.0

55.03% for the Batch4 variant, and less than 65.69% for the BatchStop4 vari-
ant. Project Metasploit-Framework requires the least builds, i.e., 7.33% using TR-
BatchBisect-2 variant, while the maximum percentage of builds required occurs
for JRuby, i.e., 123.42% using TR-BatchStop4-8 variant. Having more than 100%
builds required means that there are more builds scheduled than the number of
incoming commits. This could happen in instances where commit grouping is ap-



38 Divya M. Kamath et al.

Batch4 BatchBisect BatchStop4
0

20

40

60

80

100

120

Percentage of Required Builds for
 Timeout Rule Variants

Timeout Rule Variant

P
er

ce
nt

ag
e 

of
 R

eq
ui

re
d 

B
ui

ld
s

(a) Boxplot of % builds required
in the Timeout Rule
variants.

Batch4 BatchBisect BatchStop4
0

0.5

1

1.5

2

2.5

3

3.5

4

Median Delays for Timeout Rule Variants

Timeout Rule Variant

M
ed

ia
n 

D
el

ay

(b) Boxplot of Median
Combined Delays in
Timeout Rule variants.

5

10

15

20

Best Timeouts for the 
Timeout Rule

Timeouts

(c) Boxplot of
best timeouts
used in the
Timeout Rule.

Fig. 14: Boxplots demonstrating range of Percentage Build Required, Median De-
lays, and best timeouts to use in Timeout Rule.

Table 15: Comparing Median Delays of the Timeout Rule variants with each other

Test Used
p-values

TR-Batch4 TR-
BatchBisect

TR-
BatchStop4

Kruskal-Wallis 1.543e-13
TR-Batch4 Pairwise

Wilcoxon
– 4.7e-10 4.7e-10

TR-
BatchBisect

Pairwise
Wilcoxon

– – 4.7e-10

Table 16: Comparing Percentage of Builds Required by the Timeout Rule variants
amongst each other

Test Used
p-values

TR-Batch4 TR-
BatchBisect

TR-
BatchStop4

Kruskal-Wallis 0.3688
TR-Batch4 Pairwise

Wilcoxon Not needed, since Kruskal-Wallis test
shows no significant differenceTR-

BatchBisect
Pairwise
Wilcoxon

plied for a batch full of failing commits, yielding to massive bisection activity.
In these cases, building each incoming commit individually is better than using
commit grouping algorithms.

In order to determine any statistical differences between the three variants of
the Timeout Rule, we used the Kruskal Wallis test, as recorded in Table 16. By
performing the test at a confidence level of α = 0.05, we computed p − value =



Title Suppressed Due to Excessive Length 39

gradle

puppet

cloud_controller_ng
cloudify

rubinius

geoserver
orbeon-form

s
rails

heroku

concerto

vagrant

graylog2-server
opal

jruby

sonarqube
sufia

fog

m
etasploit-fram

ew
ork

open-build-service
loom

io

0

5

10

15

20

Delays in Timeout Rule: BATCH4, batch size 4

Project

D
el

ay
 (

in
 n

um
be

r 
of

 c
om

m
its

)

Fig. 15: Median combined delays made per project by TR-Batch4 variant.

0.3688, which signifies no statistical difference between the builds required for the
3 variants of this rule.

The median combined delays in a project for the Timeout Rule range
from 1 to 4 builds, with a 2 build median delay across the TR-Batch4
variant, 1 build delay for the TR-BatchBisect variant and 4 build delay
for the TR-BatchStop4 variant. Figure 15 shows the distribution of delays for
the TR-Batch4 variant. The plot shows that the median delay is 2 builds for all
projects. This means that if a failing build is skipped by the Timeout Rule, that
build is frequently identified within 2 builds. The plots for the other two variants
look similar, but with a different (consistent) median delay across all projects.
With the Timeout Rule, we find that projects yield a consistent median delay for
a given variant (cf. Table 14). This is because, with the Timeout Rule, builds are
scheduled more frequently to identify build failures as early as possible. Doing so
ensures that skipping-based delays are reduced to a minimum. Since builds that
are scheduled are also scheduled in batches, this increases the number of grouping-
based delays. Hence, the median delay is majorly influenced by the batch size used
by the Timeout Rule variant. If two projects use the same batch size, chances are
that they make the same median delay in failing build identification.

On performing a Kruskal Wallis test, we measured p − value = 1.543e − 13
for the 3 Timeout Rule variants, which indicates a statistical difference with large
effect size (r = 0.80) between the median delays of the 3 variants. The Pairwise
Wilcoxon post-hoc test at a confidence interval of α = 0.05 further confirmed that
statistically significant differences arise between the three variants.

We find that smaller batch sizes are more effective with the Timeout
Rule. Table 14 shows the performance numbers of the 3 variants of the Timeout



40 Divya M. Kamath et al.

Rule based on their batch sizes. We see that similar batch sizes have similar per-
formance across each variant, while varying the batch size can improve or impair
the performance. Larger batch sizes reduce the percentage of builds required along
with reducing the number of skipping-based delays. However, they also increase
the wait time of builds in the build queue while new incoming builds fill up the
queue. This increases the cumulative delay for a build.

9.2 Comparison to Baselines

9.2.1 Approach

In the following sections of the paper, we compare the Timeout Rule to the Base-
line Batch4 and SmartBuildSkip algorithms, and we also study the impact of dif-
ferent timeout thresholds. Similar to ML-CI, the following subsections separately
compare the Timeout Rule to SmartBuildSkip and to the Batch4 Batching algo-
rithm. We again focus on the comparison of the Timeout Rule to Batch4 as it has
a performance comparable or better than other baseline batching heuristics [5].
Figure 17 and 19 represent the scatter plots that plot the Percentage of Builds
Required, whereas the scatter plots in Figures 16 and 18 plot the median delay,
each of which compares the Timeout Rule with the SmartBuildSkip and Batch4
baselines, respectively. These results are also shown in Table 17.

9.2.2 Comparing to SmartBuildSkip

The Timeout Rule induces a median skipping delay of 9.5 commits less
than SmartBuildSkip, but requires a median of 20.81% more builds.
In Figure 16, we see the median delay incurred for SmartBuildSkip and the TR-
Batch4 variant. We see that all the data points for the SmartBuildSkip heuristic
are above those of the TR-Batch4 line, meaning that the delays are lower for
the Timeout Rule than for SmartBuildSkip. Compared to the median delay of
11.5 builds required by SmartBuildSkip, the delays are substantially lower in the
Timeout Rule. All the data points have a median skipping delay of 2 builds for
the TR-Batch4 variant, whereas more than half of the projects have a median
delay of more than 10 commits for SmartBuildSkip. Similarly, the median delay of
TR-BatchBisect and TR-BatchStop4 variants is 4 builds. This indicates that the
Timeout Rule reduces median delays by 7.5-10.5 builds in comparison to Smart-
BuildSkip. The maximum median delay with SmartBuildSkip for 80 builds with
Metasploit-Framework, only has 2 builds of median delay with TR-Batch4. The
minimum median delay of 2 commits is made by Orbeon-forms in SmartBuildSkip,
which also yields 2 commits of delay with the TR-Batch4.

On the other hand, SmartBuildSkip requires 20.81% less builds compared to
the Timeout Rule in most projects. In fact, the highest percentage of builds
required by SmartBuildSkip is 79.32% in project JRuby, compared to 110.66%
of builds for the TR-Batch4 variant. However, with a few exceptions like Rails,
Orbeon-forms, Rubinius, Fog, JRuby and Geoserver, all other projects require less
than 50% of total builds using the Timeout Rule, with 8 of them requiring less
than 20% builds. In other words, Figures 16 and 17 clearly show a trade-off be-
tween percentage of builds required and median skipping delay for the Timeout



Title Suppressed Due to Excessive Length 41

Table 17: Comparing TR-Batch4 with Baseline algorithms

Project Builds Required Median Delay
TR-
Batch4

Baseline
Batch4

Smart-
Build-
Skip

TR-
Batch4

Baseline
Batch4

Smart-
Build-
Skip

cloud-
controller-
ng

38.812 74.691 11.265 2.0 1.5 7.0

cloudify 34.025 45.252 16.955 2.0 2.0 16.0
concerto 16.667 45.974 3.865 2.0 2.0 30.0
fog 56.217 83.73 26.587 2.0 1.5 7.0
geoserver 85.496 99.491 62.002 2.0 2.0 4.0
gradle 8.879 44.548 0.883 2.0 2.0 53.0
graylog2-
server

9.099 34.996 1.225 2.0 2.0 12.0

heroku 35.911 53.333 14.578 2.0 2.0 11.0
jruby 110.664 108.406 79.32 2.0 2.0 3.0
loomio 42.677 73.485 17.298 2.0 1.5 10.0
metasploit-
framework

9.064 37.476 1.023 2.0 1.5 80.0

opal 15.527 43.519 3.49 2.0 1.5 19.0
open-build-
service

43.049 69.357 16.542 2.0 2.0 7.0

orbeon-
forms

95.043 80.085 64.444 2.0 2.0 2.0

puppet 11.505 35.303 1.734 2.0 2.0 22.0
rails 53.852 72.799 24.109 2.0 1.5 6.0
rubinius 69.848 84.878 30.751 2.0 2.0 5.0
sonarqube 28.48 56.608 8.187 2.0 2.0 17.0
sufia 18.219 51.797 4.412 2.0 1.5 23.5
vagrant 13.946 39.552 2.378 2.0 2.0 27.0

Rule. Although the number of builds are slightly higher than the SmartBuildSkip
algorithm, the Timeout Rule can significantly reduce the delays compared to the
former.

To validate the improvement in performance for the Timeout rule, we used
Kruskal Wallis tests between the performance of the four methods (i.e., Smart-
BuildSkip and the three Timeout Rule variants, with best performing batch size
and timeout thresholds for each project). With α = 0.05, the test yields a p −
value = 0.0070 for percentage of builds required and p − value = 8.581e − 16
for the median skipping delay , indicating a significant difference in the per-
formance of SmartBuildSkip and the three variants. Further analysis using the
pairwise Wilcoxon rank sum post-hoc test confirmed that the Timeout Rule vari-
ants require significantly lower median delays compared to SmartBuildSkip with
p− values = (3.6e− 08, 1.2e− 08, 1.2e− 05) and effect sizes r = (0.61, 0.63, 0.48),
denoting a significant effect.

9.2.3 Comparing to Batch4

In comparison to the Baseline Batch4 algorithm, the Timeout Rule re-
duces the percentage of builds required during CI and makes either
similar or 0.5 commits higher median delays. In Figures 18 and 19, we



42 Divya M. Kamath et al.

Table 18: Comparing Median Delay of Timeout Rule variants to Baseline Algo-
rithms.

The Wilcoxon Signed Rank tests compare each baseline batching algorithm against the
corresponding ML-CI variant.

Test Used
p-values

TR-Batch4 TR-
BatchBisect

TR-
BatchStop4

SmartBuildSkip Kruskal-Wallis 8.581e-16
Pairwise
Wilcoxon

3.6e-08 1.2e-08 1.2e-05

Baseline
Batch4

Wilcoxon
Signed Rank

0.004294 n/a n/a

Baseline
BatchBisect

Wilcoxon
Signed Rank

n/a 9.618e-05 n/a

Baseline
BatchStop4

Wilcoxon
Signed Rank

n/a n/a 1

Table 19: Comparing the Percentage of Builds Required by Timeout Rule variants
to Baseline Algorithms.

The Wilcoxon Signed Rank tests compare each baseline batching algorithm against the
corresponding ML-CI variant.

Test Used
p-values

TR-Batch4 TR-
BatchBisect

TR-
BatchStop4

SmartBuildSkip Kruskal-Wallis 0.007021
Pairwise
Wilcoxon

0.022 0.061 0.011

Baseline
Batch4

Wilcoxon
Signed Rank

0.006715 n/a n/a

Baseline
BatchBisect

Wilcoxon
Signed Rank

n/a 0.004267 n/a

Baseline
BatchStop4

Wilcoxon
Signed Rank

n/a n/a 0.1081

see that performance of the Timeout Rule compared to the Baseline Batch4 al-
gorithm. With traditional batching algorithms, commits bide their time in the
build queue as they wait for it to fill up with new incoming commits. However,
with the Timeout Rule, we reduce the number of commits that need to be built,
hence reducing the median delay of these commits, by selectively building batches
of incoming commits based on prediction of build failure-proneness. With the re-
duction in build wait time, we see that the Timeout Rule has either very similar
delays to that of Baseline Batch4 or higher.

Similarly, by choosing only few builds to group together, the Timeout Rule also
reduces the total number of builds made in a project. Hence, in extreme cases we
can see a reduction in the percentage of builds required compared to traditional
batching from 80.09% to 30.24% in the case of Cloud Controller, 82.82% to 34.59%
in Loomio and so on. In general, the Timeout Rule yields 26.10% less builds than
Baseline Batch4, 29.67% less builds than Baseline BatchBisect and 15.67% less
builds than Baseline BatchStop4.



Title Suppressed Due to Excessive Length 43

metasploit-framework

gradle
concerto

vagrant

sufia
puppet

opal
sonarqube

cloudify
graylog2-server

heroku
loomio

open-build-service

cloud_controller_ng

fog rails
rubinius

geoserver

jruby
orbeon-forms

0

10

20

30

40

50

60

70

80
method

SmartBuildSkip

Timeout Rule

BATCH4 - 4 : Median Delay in Timeout Rule v/s SmartBuildSkip

Project

M
ed

ia
n 

D
el

ay
s

Fig. 16: Median Combined Delay for the Timeout Rule (using Batch4 and best
performing timeout threshold for that project) vs SmartBuildSkip algorithm.

0 20 40 60 80 100

0

20

40

60

80

100

project
gradle

puppet

open-build-service

metasploit-framework

fog

sufia

sonarqube

jruby

opal

graylog2-server

vagrant

concerto

heroku

rails

orbeon-forms

geoserver

rubinius

cloudify

cloud controller ng

BATCH4 - 4 : Percentage Builds Required in Timeout Rule v/s SmartBuildSkip

Percentage Builds Required in Timeout Rule

P
er

ce
nt

ag
e 

B
ui

ld
s 

R
eq

ui
re

d 
in

 S
m

ar
tB

ui
ld

S
ki

p

Fig. 17: Percentage of Required builds for the Timeout Rule (using Batch4 and
best performing timeout threshold for that project) vs SmartBuildSkip algorithm.
The diagonal represents x=y, hence all points below the line are instances where
SmartBuildSkip performs better than the Timeout Rule.

However, we also note that the Timeout Rule does not always yield less builds
than Baseline Batching algorithms. For example, we see from Figure 19 that
projects JRuby and Orbeon-forms require less builds with the baseline Batch4
algorithm. We attribute this to the higher build failure rate of the two projects.
Additionally, with a baseline batching technique all incoming commits are batched
together, which means that both successful and failing commits are grouped to-
gether in a batch. Moreover, some of the batches may also comprise more successful



44 Divya M. Kamath et al.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3
project

gradle

puppet

open-build-service

metasploit-framework

fog

sufia

sonarqube

jruby

opal

graylog2-server

vagrant

concerto

heroku

rails

orbeon-forms

geoserver

rubinius

cloudify

cloud controller ng

BATCH4 - 4 : Median Delay in Timeout Rule v/s Batching

Timeout Rule Delays

B
at

ch
in

g 
D

el
ay

s

Also, gradle, puppet, open-build-service, sonarqube,
jruby, graylog2-server, vagrant, concerto, heroku,
orbeon-forms, geoserver, rubinius, cloudify

Also, cloud-controller-ng, rails, opal, 
sufia, fog, metasploit-framework, 

Fig. 18: Median Combined Delay in the Timeout Rule (using Batch4 and best
performing timeout threshold for that project) vs Baseline Batch4 Batching algo-
rithm.
The diagonal represents x=y, hence all points below the line are instances where
baseline batching performs better than the Timeout Rule.

than failing commits. However, with the Timeout Rule, we begin to build commits
only when the SmartBuildSkip model identifies a higher probability of build fail-
ure. In doing so, batches of the Timeout Rule comprise more failing commits than
successful commits, which take more builds to identify. In the real world, however,
batching techniques can be leveraged to increase the probability of a bug-fixing
commit pushed into the same batch as a bug-inducing commit. For example, if
developers observe small, transient failures in a commit pushed to CI, they can
push a bug-fixing commit in the same batch and avoid build failures.

A Wilcoxon Signed Rank test at a confidence interval of α = 0.05, between
the median delays of each pair of Timeout rule variant and baseline, we found
that there is a significant difference between the performance of each variant of
the Timeout Rule and its corresponding baseline batching algorithm. Between the
Timeout rule variants (Batch4, BatchBisect, BatchStop4) and their correspond-
ing baseline algorithms, we computed p − values = (0.0067, 0.0042, 0.1081) for
percentage of builds required, and p − values = (0.0042, 9.618e − 05, 1) for me-
dian delays. This indicates that TR-Batch4 and TR-BatchBisect variants have
significant performance differences in comparison to their baseline counterparts.

9.3 Comparing Timeout values of the Timeout Rule

By increasing the timeout threshold and lowering the batch size of the
Timeout Rule variants, we can achieve better performance.

In Figure 20, we analyse the Rails project to inspect the effects of parameters
of the Timeout Rule on its performance. We study Rails as it requires the lowest
median delay when using SmartBuildSkip, and requires less than 100% builds



Title Suppressed Due to Excessive Length 45

0 20 40 60 80 100

0

20

40

60

80

100

project
gradle

puppet

open-build-service

metasploit-framework

fog

sufia

sonarqube

jruby

opal

graylog2-server

vagrant

concerto

heroku

rails

orbeon-forms

geoserver

rubinius

cloudify

cloud controller ng

BATCH4 - 4 : Percentage Required in Timeout Rule v/s Batching

Percentage Builds Required in Timeout Rule

P
er

ce
nt

ag
e 

B
ui

ld
s 

R
eq

ui
re

d 
in

 B
at

ch
in

g

Fig. 19: Percentage of Required builds in the Timeout Rule (using Batch4 and
best performing timeout threshold for that project) vs Baseline Batch4 Batching
algorithm.
The diagonal represents x=y, hence all points above the line are instances where
the Timeout Rule performs better than baseline batching.

with commit-grouping techniques, making its builds and delays easily comparable
to the delays of our Timeout Rule variants. The graphs for other projects are in
the online replication package. To do so, we record the performance of the Timeout
Rule variants for varying batch sizes and timeout thresholds. The lower the median
delay and the percentage of builds required, the better the performance of the
corresponding heuristic, i.e., the closer a data point is to the origin, the better
performance it denotes.

Although SmartBuildSkip requires close to 24.1% builds, it induces a median
skipping delay close to 6 builds. From Figures 6 and 15, we also learnt that the
median delay for the Batch4-Timeout variant in Rails is 2 builds. On the other
hand, we see that reducing the batch size of the baseline batching algorithms
decreases the batching based delays.

In particular, we notice from the figure that the delays induced by the Timeout
Rule can be reduced by decreasing the batch size used, and the percentage of builds
required by the Rule can be reduced by increasing the timeout value. Batch sizes 2
and 4 with higher timeout values of 16 and above are closer to the origin, indicating
that these configurations of the Timeout have the best performance compared to
the rest of the configurations in comparison to other heuristics for Rails. As we
increase the timeout value, the skipping-based delay can also increase due to the
larger gap between two mandatory builds. However, for each mandatory build of
batch size ‘N’ commits, ‘N-1’ number of grouping-based delays are incurred. This
makes the number of grouping-based delays significantly higher than the number
of skipping-based delays. Due to which we notice the median combined-delays to
shift and reflect the grouping-based delays, which remain more or less constant for
a given batch size.



46 Divya M. Kamath et al.

0 20 40 60 80
0

1

2

3

4

5

6

7

8
Timeout Rule 
Batch Size

2

4

8

16

Grouping

SmartBuildSkip

2

4

6

8

10

12

14

16

18

20
Timeout

Percentage of Builds Required v/s Delay for rails

Percentage of Required Builds

M
ed

ia
n 

D
el

ay

Batch Size: 2

Batch Size: 4

Batch Size: 8

Batch Size: 16

Fig. 20: Percentage of Builds Required vs. Median Delay for each timeout thresh-
old, batch size and batching algorithm of the Timeout Rule for Rails.

Summary of RQ3: The percentage of builds required by the Timeout Rule
is 26.10% lower than for Batch4, but 20.81% greater than SmartBuildSkip.
The median delay induced by the Timeout Rule is, however, 9.5 builds builds
lower than for SmartBuildSkip, but similar to that of baseline Batch4. The
performance of the Timeout Rule can also be improved by reducing the batch
size or increasing the timeout threshold.

10 Study Implications

In this section, we discuss the implications of our study and its practical usage in
real-world CI scenarios.

10.1 Trade-offs between Number of Builds and Delays

In Section 5, we discussed the limitations of the existing SmartBuildSkip algorithm
and commit grouping techniques. On the one hand, we see that while reducing the
number of builds required during CI, SmartBuildSkip induces larger delays in
identifying failing builds. On the other hand, commit grouping techniques sched-
ule more builds, which helps to reduce median delays. By combining these two



Title Suppressed Due to Excessive Length 47

heuristics together in ML-CI and Timeout Rule, we provide an opportunity for
practitioners to make use of the trade-off between the two performance metrics.

Depending on the priorities of the project and company, practitioners can
choose to schedule a minimum number of builds by using larger batch sizes in ML-
CI, or larger timeout values and batch sizes in the Timeout Rule. By increasing
the batch size, practitioners also provide more opportunities for a transient build
failure in an existing commit to be fixed by a subsequent commit of the same
batch, allowing the entire batch to compile successfully (avoiding costly bisection).
Additionally, increasing the timeout threshold will also limit the frequency at
which builds are scheduled without any build-fail prediction. However, increasing
the batch size or timeout values will increase the median delay by either increasing
the wait time spent in the build queue or increasing the delay of failing build
identification.

With ML-CI and Timeout Rule, practitioners can choose to either only reduce
the number of builds required, only reduce the delays or find an optimal balance
between both performance metrics for their specific context/project. For example,
from Figure 20, we see that Rails requires the least percentage of builds and lowest
delays with a batch size of 2 and a timeout value of 20, compared to it using a
batch size of 8 and timeout value of 16. Builds can be further reduced by further
increasing the timeout value.

10.2 Time Saved by Build Saving Heuristics

Reducing the builds required helps reduce the resources required in CI. For ex-
ample, the less the builds are scheduled, the less energy consumed by servers.
Another way in which we could analyse the impact of reducing CI builds is by
estimating the time reduced by using these heuristics. This requires a number of
assumptions. First, we consider as baseline the sum of the duration of all builds.
For commit grouping techniques, the duration of a batch build is estimated to
be the duration required to individually compile the last commit of the batch.
For Smart-Build-Skip, ML-CI and Timeout Rule, we estimate the required build
time as the sum of the durations of the scheduled builds. Table 20 shows the time
saved by SmartBuildSkip, baseline commit grouping techniques, ML-CI and the
Timeout Rule. When a heuristic saves X% time, it means that it requires X% less
time than what is required while scheduling individual builds.

We note that the less builds are required for a heuristic, the more actual time
is saved. By saving 91.67% time, SmartBuildSkip saves the maximum amount of
time, followed by the Timeout Rule which saves 63.36% time. Although Smart-
BuildSkip saves more time and requires less builds, our findings in RQ3 showed
how the Timeout Rule yields the least median delays, allowing build failures to be
caught as early as possible. Commit grouping techniques and ML-CI both yield
a similar number of builds scheduled to each other, and save similar a amount of
time (build).



48 Divya M. Kamath et al.

Table 20: Median % Time Saved by Build Saving Heuristics

Method Smart-
Build-
Skip

Batch4 BatchBisect BatchStop4 Median

4 2 4 8 16 8 16

Smart-
Build-
Skip

91.67 – – – – – – – 91.67

Commit
Group-
ing

– 47.58 27.68 44.30 45.31 43.03 33.94 69.88 44.30

ML-CI – 46.42 29.19 43.41 44.58 39.41 46.97 43.27 43.41
Timeout
Rule

– 69.27 57.78 60.74 63.36 66.03 67.46 61.40 63.36

10.3 Ghost Failures in SmartBuildSkip

Fixing failing commits in CI is a tedious process. After recognising the occurrence
of failing commits, the root cause of these failure needs to be identified. Once
a build failure is identified, commit grouping techniques subsequently rerun the
build on subsequences of commits until the culprit commits are found, making
them adept at both recognizing that the build is failing and identifying their root
causes. On the other hand, while SmartBuildSkip can recognize that the build is
failing, it cannot detect the root cause of these failures. If SmartBuildSkip makes a
false positive prediction (i.e., does not identify a failing commit), it causes a delay.
These build failures remain in the CI pipeline as ‘Ghost Failures’ until rectified.
Identifying these Ghost failures and buggy commits is an essential part of CI, one
that will require additional builds to accomplish.

In our work, we are unable to fully fix this problem of SmartBuildSkip. Future
work should focus on this.

10.4 Practical Adoption of ML-CI and Timeout Rule

While current CI servers do not offer build failure prediction mechanisms out of
the box, leading CI services like TeamCity and Azure DevOps do provide support
for advanced techniques like commit grouping heuristics. As such, we could learn
from the way in which the latter are provided to CI users to understand how build
failure prediction mechanisms could be integrated in the future.

In particular, most CI servers support a concept of ”build trigger” (e.g., [11,
40]), which allows practitioners to configure and control when build pipelines are
scheduled for a project. For example, Azure DevOps allows to set triggers to batch
a sequence of commits by specifying a time interval during which the build waits
for further commits before kicking off. Alternatively, flags in commit messages can
also be used to prevent the CI server from including a commit in the builds [10].

Learning from these integrations, we believe one could build similar mech-
anisms to integrate MLCI and Timeout Rule into the CI environment to save
builds. One technique could be to add to build configuration files a new type of
build trigger allowing to specify a build failure prediction model to determine if a



Title Suppressed Due to Excessive Length 49

build should be triggered or not for a given commit. Alternatively one could also
imagine a prediction model to be run during code review of a pull request (similar
to static analysis jobs running in parallel with code review). Upon prediction of
a build pass, a flag could be inserted into the pull request’s commit message to
prevent the commit from being built. In both cases, the prediction model could be
hosted in a web service, as is typical for many machine learning models. Further-
more, similar to traditional build triggers, humans could still manually override
the build decision, if deemed necessary. As such, the technical building blocks
to integrate advanced build skipping heuristics into CI environments are already
available in practice.

10.5 Challenges and Recommendations to Practitioners

The build saving heuristics that we discussed in this paper provide beneficial CI
cost savings in terms of energy, time and resources. However, this comes at the
cost of increased median delays for developers who push their commits into the
CI server. In the case of commit grouping heuristics, developers have to wait for
sufficient incoming commits to fill an entire batch, while commit skipping algo-
rithms may cause delays in failing build identification. In this study, we measure
this delay in terms of the number of commits received into CI before the developer
gets feedback on their commit.

The inflow of commits into a project depends on the number of developers
in the project, its size, release cycle etc. Depending on these factors, delays are
considered to be relative to the project. For example, a large project like JRuby
may see 100 incoming commits in a few hours, but for a smaller project it may take
2 months to receive 100 commits. Depending on these factors of delay and costs,
developers need to consider the trade-off that our hybrid heuristics will provide to
decide which heuristic may be more beneficial to their work.

If practitioners set their primary goal to be build reduction, a commit skipping
approach like SmartBuildSkip is a better option to adopt. However, if code quality
and maintenance is a priority, more conservative approaches like commit grouping
can be used. Hybrid heuristics like ML-CI and the Timeout Rule help to explore
the trade-offs in between the two extremities of commit skipping and commit
grouping techniques.

11 Threats to Validity

We discuss the major threats to the study validity in three categories: construct,
internal, and external validity.

Construct Validity: Our study uses imbalanced TravisTorrent datasets that
consist of data of projects with at least 2000 builds to test our proposed algorithms.
These datasets may or may not be able to similar to the real-world CI scenarios.
To mitigate this threat, we simulate the real-world practical application of build
saving techniques by forming training and tests sets along the timeline of the
studied products.

Additionally, we use metrics corresponding to build frequency and turn-around-
time to measure the performance of our heuristics. While they may not accurately



50 Divya M. Kamath et al.

demonstrate the amount of time saved by each heuristic during CI, they have been
chosen due to their prior use by other developers and authors [5, 6, 24,35].

Internal Validity: The features for predicting the build outcome have been
chosen based on prior literature [19, 24]. However, software build systems evolve
continuously and might be correlated with features that are currently not con-
sidered in the models. The performance of the model used for predicting build
outcomes will impact the results of our proposed heuristics. However, as discussed
in Section 9.3, these threats can be mitigated by adjusting the timeout value of
the Timeout Rule and adjusting the batch size used in our heuristics.

Another threat to internal validity is caused by the case studies conducted
using scripts by a single author. This could pose a threat regarding human biases
and limitations that may have led to missing data, faulty scripts etc. This threat
is mitigated by writing a test suite that checks the artifacts produced for the
empirical study. We have also made the replication package available online [28].

External Validity: Our study evaluated the performance of proposed heuris-
tics on 20 projects from the TravisTorrent dataset, where each project consists
of more than 2,000 commits and has different balance ratios between failed and
successful builds. The results of our study require follow-up analysis to understand
their generalization to projects with less than 2,000 commits. Furthermore, results
may vary with different permutations of project size and balance. Additionally,
our study focused on the data extracted from TravisTorrent, which collects builds
from open-source projects that use TravisCI. The results of our approaches may
vary for proprietary projects and build data which would have to be analyzed
separately.

We also note the many open source projects on GitHub that migrated their
CI/CD platforms from TravisCI to Github Actions, making the data inspected in
this project relatively older. We choose to study TravisCI due to its prevalence
in existing studies [5,6,24]. Even though our heuristics are independent of the CI
platform used (and could be easily integrated using a tool), Our choice of data
may pose a threat to external validity as the performance of our heuristics may
vary when used with newer CI/CD platforms. However, by examining all of the
studied existing and newer heuristics on the same dataset, we are able to perform
accurate comparisons of their performance, which can help developers draw reliable
conclusions.

Additionally, it is important to mention that our hybrid heuristics are trained
on past data of a project and tested on future data. However, data of historical CI
outcomes may not be readily available in all organizations, making our technique
less feasible and posing a threat to external validity. Additionally, practitioners
will need to allow full build scheduling for some time to collect sufficient data for
training models before they can switch to build saving heuristics. Cross-project
testing, i.e., using the models trained on one project to predict the build outcomes
of another project, could be analysed to accommodate the issue of lack of data
availability.



Title Suppressed Due to Excessive Length 51

Conclusion Validity: As our study compares multiple heuristics against each
other, we had three or more distributions of the percentage of builds required and
median delay for the same collection of commits. Hence, we used statistical tests to
draw conclusions regarding the performance of our hybrid heuristics in comparison
to existing baseline heuristics. We use the Kruskal-Wallis test supported with the
Pairwise Wilcoxon test for post-hoc testing and recorded the p-values and effect
sizes for each conclusion.

12 Conclusion

Despite its cost, continuous integration is an essential element in the development
of a project. The earlier bugs are revealed within a project, the less expenses it
imposes on the company, yet to achieve this level of quality assurance, CI consumes
considerable resources. Reducing the number of builds scheduled can reduce this
cost of CI, but the choice of what to build and what not to build remains a
difficult decision. Heuristics like SmartBuildSkip and commit grouping, developed
by different lines of research, each come with their own cost, in terms of percentage
of builds required or delays.

While ML-CI can perform well for certain projects, its performance is mostly
on par with that of traditional commit grouping algorithms, with only minor im-
provements in terms of grouping delay. More studies and experiments will have
to be performed to improve this hybrid approach. On the other hand, the Time-
out Rule can balance out the disadvantages of commit skipping by introducing
a timeout threshold that “resets” the SmartBuildSkip model. The disadvantages
of commit grouping are also greatly reduced by reducing the number of instances
where commit grouping is used, leading to a reduction of 26.10% builds required.
While SmartBuildSkip still required less builds, the Timeout Rule significantly
reduced the risk of delays, while not conceding too many extra builds to be run.

Overall, our study introduces hybrid heuristics that combine two seemingly
isolated lines of research with successful results, in particular for the Timeout Rule.
More such heuristics could be explored in the future to improve even better trade-
offs in terms of percentage of builds required and median delays of CI systems.

13 Conflict of Interest

All authors declare that they have no conflicts of interest.

14 Data Availability

The datasets generated during and/or analysed during the current study are avail-
able in the online replication package [28].

References

1. Abdalkareem, R., Mujahid, S., Shihab, E.: A machine learning approach to improve the
detection of CI skip commits. IEEE Transactions on Software Engineering (TSE) 47(12),
2740–2754 (2020)



52 Divya M. Kamath et al.

2. Abdalkareem, R., Mujahid, S., Shihab, E., Rilling, J.: Which commits can be ci skipped?
IEEE Transactions on Software Engineering PP (2019). DOI 10.1109/TSE.2019.2897300

3. Barrak, A., Eghan, E.E., Adams, B., Khomh, F.: Why do builds fail?—a conceptual repli-
cation study. Journal of Systems and Software 177, 110939 (2021)

4. Basili, V., Rombach, H.: The TAME project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering (TSE) 14(6), 758–773 (1988)

5. Bavand, A.H., Rigby, P.C.: Mining historical test failures to dynamically batch tests to
save ci resources. In: 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 217–226. IEEE (2021)

6. Beheshtian, M., Bavand, A., Rigby, P.: Software batch testing to save build test resources
and to reduce feedback time. IEEE Transactions on Software Engineering (TSE) pp. 1–18
(2021)

7. Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: An explorative
analysis of Travis CI with GitHub. In: Proceedings of the 14th International Conference
on Mining Software Repositories (MSR), pp. 356–367 (2017)

8. Cataldo, M., Herbsleb, J.D.: Factors leading to integration failures in global feature-
oriented development: an empirical analysis. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 161–170 (2011)

9. Chen, B., Chen, L., Zhang, C., Peng, X.: Buildfast: History-aware build outcome prediction
for fast feedback and reduced cost in continuous integration. In: 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 42–53. IEEE
(2020)

10. DevOps, A.: Skipping ci for individual pushes. URL https://learn.microsoft.com/
en-us/azure/devops/pipelines/repos/azure-repos-git?view=azure-devops&tabs=
yaml#skipping-ci-for-individual-pushes

11. DevOps, A.: Specify events that trigger pipelines. URL https://learn.microsoft.com/
en-us/azure/devops/pipelines/build/triggers?view=azure-devops

12. Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality
and reducing risk. Pearson Education (2007)

13. Elbaum, S., Rothermel, G., Penix, J.: Techniques for improving regression testing in con-
tinuous integration development environments. In: Proceedings of the 22nd International
Symposium on Foundations of Software Engineering (FSE), pp. 235–245 (2014)

14. Finlay, J., Pears, R., Connor, A.M.: Data stream mining for predicting software build
outcomes using source code metrics. Information and Software Technology 56(2), 183–
198 (2014)

15. Fowler, M., Foemmel, M.: Continuous integration (2006)
16. Gallaba, K., Macho, C., Pinzger, M., McIntosh, S.: Noise and Heterogeneity in Historical

Build Data: An Empirical Study of Travis CI. In: Proc. of the International Conference
on Automated Software Engineering (ASE), p. 87–97 (2018)

17. Ghaleb, T.A., Da Costa, D.A., Zou, Y.: An empirical study of the long duration of con-
tinuous integration builds. Empirical Software Engineering 24(4), 2102–2139 (2019)

18. Hassan, A., Zhang, K.: Using decision trees to predict the certification result of a build.
In: Proceedings of the 21st International Conference on Automated Software Engineering
(ASE), pp. 189–198 (2006)

19. Hassan, F., Wang, X.: Change-aware build prediction model for stall avoidance in con-
tinuous integration. In: Proceedings of the 11th International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 157–162 (2017)

20. Herzig, K., Greiler, M., Czerwonka, J., Murphy, B.: The art of testing less without sacrific-
ing quality. In: Proceedings of the 37th International Conference on Software Engineering
- Volume 1, ICSE ’15, p. 483–493. IEEE Press (2015)

21. Islam, M., Zibran, M.: Insights into continuous integration build failures. In: Proceedings
of the 14th International Conference on Mining Software Repositories (MSR), pp. 467–470
(2017)

22. Jain, R., Singh, S.K., Mishra, B.: A brief study on build failures in continuous integration:
Causation and effect. In: Progress in Advanced Computing and Intelligent Engineering,
pp. 17–27. Springer (2019)

23. Jeffrey, D., Gupta, N.: Test case prioritization using relevant slices. In: Proceedings of the
30th International Computer Software and Applications Conference (COMPSAC), pp.
411–420 (2006)

24. Jin, X., Servant, F.: A cost-efficient approach to building in continuous integration. In:
Proceedings of the 42nd International Conference on Software Engineering (ICSE), pp.
13–25 (2020)

https://learn.microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git?view=azure-devops&tabs=yaml#skipping-ci-for-individual-pushes
https://learn.microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git?view=azure-devops&tabs=yaml#skipping-ci-for-individual-pushes
https://learn.microsoft.com/en-us/azure/devops/pipelines/repos/azure-repos-git?view=azure-devops&tabs=yaml#skipping-ci-for-individual-pushes
https://learn.microsoft.com/en-us/azure/devops/pipelines/build/triggers?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/build/triggers?view=azure-devops


Title Suppressed Due to Excessive Length 53

25. Jin, X., Servant, F.: Cibench: a dataset and collection of techniques for build and test
selection and prioritization in continuous integration. In: 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 166–167. IEEE (2021)

26. Jin, X., Servant, F.: What helped, and what did not? an evaluation of the strategies to
improve continuous integration. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp. 213–225. IEEE (2021)

27. Jin, X., Servant, F.: Which builds are really safe to skip? maximizing failure observation
for build selection in continuous integration. Journal of Systems and Software 188, 111292
(2022)

28. Kamath, D.: Replication package (2023). https://github.com/SAILResearch/replication-
21-divya kamath-build avoiding heuristics-code

29. Kerzazi, N., Khomh, F., Adams, B.: Why do automated builds break? an empirical study.
In: 2014 IEEE International Conference on Software Maintenance and Evolution, pp. 41–
50. IEEE (2014)

30. Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S.: Splitting commits via past code changes.
In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), pp. 129–136. IEEE
(2016)

31. Kwan, I., Schroter, A., Damian, D.: Does socio-technical congruence have an effect on
software build success? a study of coordination in a software project. IEEE Transactions
on Software Engineering 37(3), 307–324 (2011)

32. Learn”, S.: ”feature importances with a forest of trees”. URL https://scikit-learn.
org/stable/auto_examples/ensemble/plot_forest_importances.html

33. Marré, M., Bertolino, A.: Using spanning sets for coverage testing. IEEE Transactions on
Software Engineering (TSE) 29(11), 974–984 (2003)

34. Meyer, M.: Continuous integration and its tools. IEEE Software 31(3), 14–16 (2014).
DOI 10.1109/MS.2014.58

35. Najafi, A., Rigby, P., Shang, W.: Bisecting commits and modeling commit risk during
testing. In: Proceedings of the 27th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 279–289 (2019)

36. Ni, A., Li, M.: Cost-effective build outcome prediction using cascaded classifiers. In:
Proceedings of the 14th International Conference on Mining Software Repositories (MSR),
pp. 455–458 (2017)

37. Rausch, T., Hummer, W., Leitner, P., Schulte, S.: An empirical analysis of build failures in
the continuous integration workflows of Java-based open-source software. In: Proceedings
of the 14th International Conference on Mining Software Repositories (MSR), pp. 345–355
(2017)

38. Rehkopf, M.: What is continuous integration? URL https://www.atlassian.com/
continuous-delivery/continuous-integration

39. Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’ build
errors: A case study (at Google). In: Proceedings of the 36th International Conference on
Software Engineering (ICSE), pp. 724–734 (2014)

40. TeamCity: Configuring vcs triggers. URL https://www.jetbrains.com/help/teamcity/
8.0/configuring-vcs-triggers.html#per-check-in-triggering

41. Tomczak, M., Tomczak, E.: The need to report effect size estimates revisited. an overview
of some recommended measures of effect size (2014)

42. Tufano, M., Sajnani, H., Herzig, K.: Towards predicting the impact of software changes
on building activities. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 49–52. IEEE (2019)

43. Vassallo, C., Schermann, G., Zampetti, F., Romano, D., Leitner, P., Zaidman, A., Di Penta,
M., Panichella, S.: A tale of CI build failures: An open source and a financial organization
perspective. In: Proceedings of the 33rd International Conference on Software Maintenance
and Evolution (ICSME), pp. 183–193 (2017)

44. Wu, Y., Zhang, Y., Wang, T., Wang, H.: An empirical study of build failures in the
Docker context. In: Proceedings of the 17th International Conference on Mining Software
Repositories (MSR), pp. 76–80 (2020)

45. Xia, X., Zhou, X., Lo, D., Zhao, X., Wang, Y.: An empirical study of bugs in software
build system. IEICE TRANSACTIONS on Information and Systems 97(7), 1769–1780
(2014)

https://github.com/SAILResearch/replication-21-divya_kamath-build_avoiding_heuristics-code
https://github.com/SAILResearch/replication-21-divya_kamath-build_avoiding_heuristics-code
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.jetbrains.com/help/teamcity/8.0/configuring-vcs-triggers.html#per-check-in-triggering
https://www.jetbrains.com/help/teamcity/8.0/configuring-vcs-triggers.html#per-check-in-triggering


54 Divya M. Kamath et al.

46. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: A
survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012). DOI 10.1002/stv.430. URL
https://doi.org/10.1002/stv.430

47. Zhang, C., Chen, B., Chen, L., Peng, X., Zhao, W.: A large-scale empirical study of com-
piler errors in continuous integration. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 176–187 (2019)

48. Ziftci, C., Reardon, J.: Who broke the build? Automatically identifying changes that
induce test failures in continuous integration at Google Scale. In: Proceedings of the 39th
International Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), pp. 113–122 (2017)

49. Zolfagharinia, M., Adams, B., Guéhénuc, Y.G.: Do not trust build results at face value-
an empirical study of 30 million cpan builds. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pp. 312–322. IEEE (2017)

https://doi.org/10.1002/stv.430

	Introduction
	Background and Related Work
	Baseline Heuristics
	RQ1 Study Methodology
	Performance Results of Baseline Heuristics (RQ1)
	Hybrid Heuristics
	Study Design
	Performance Results for ML-CI (RQ2)
	Performance Results for Timeout Rule (RQ3)
	Study Implications
	Threats to Validity
	Conclusion
	Conflict of Interest
	Data Availability

