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Abstract Once a Machine Learning (ML) model is deployed, the same model
is typically retrained from scratch, either on a scheduled interval or as soon as
model drift is detected, to make sure the model reflects current data distribu-
tions and performance experiments. As such, once a new model is available,
the old model typically is discarded. This paper challenges the notion of older
models being useless by showing that old models still have substantial value
compared to newly trained models, and by proposing novel post-deployment
model recycling techniques that help make informed decisions on which old
models to reuse and when to reuse. In an empirical study on eight long-lived
Apache projects comprising a total of 84,343 commits, we analyze the per-
formance of five model recycling strategies on three different types of Just-In-
Time defect prediction models (Random Forest (RF), Logistic Regression (LR)
and Neural Network (NN)). Comparison against traditional model retraining
from scratch (RFS) shows that our approach significantly outperforms RFS
in terms of recall, g-mean, AUC and F1 by up to a median of 30%, 20%, 11%
and 10%, respectively, with the best recycling strategy (Model Stacking) out-
performing the baseline in over 50% of the projects. Our recycling strategies
provide this performance improvement at the cost of a median of 2x to 6-17x
slower time-to-inference compared to RFS, depending on the selected strategy
and variant.
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1 Introduction

Machine Learning (ML) teams spend most of their time on model selection,
model training and model fine-tuning to select the models performing best on
training, validation and test datasets (Schelter et al. 2015). Once the initial
training of the machine learning models is completed, the focus shifts towards
integrating the models into software products, deploying said models in pro-
duction, then monitoring the performance of the machine learning models in
production, identifying issues affecting model performance.

One of the most common ML issues encountered in production is data
drift, also known as dataset shift (Quinonero-Candela et al. 2008), which oc-
curs when an ML model’s inference data distribution changes compared to
the training data distribution, leading to the model’s performance degrada-
tion. Such changes can occur discretely, for example after some outside event
that affects the inference data distribution, or continuously, with data gradu-
ally changing over time. When undetected, this phenomenon can have major
adverse effects on model performance, as surveyed in multiple case studies by
Paleyes et al. (2022). That said, drift is not necessarily a monotonous phe-
nomenon, as it can manifest as sudden drift, gradual drift or even recurrent
drift each of which requires specific monitoring and adaptation strategies to
address effectively.

There are multiple techniques for adapting models to new data, includ-
ing regular retraining from scratch and continual learning (Diethe et al. 2019),
but both directions have important drawbacks. Retraining models from scratch
(RFS) on recent data is costly, both financially, due to the cost of hardware,
electricity, or cloud compute time to train, develop, and maintain, and environ-
mentally, due to the carbon footprint required to fuel modern tensor processing
hardware (Strubell et al. 2019). With RFS, knowledge or insights gained from
previous model versions are not transferred to the new model; therefore, there
is no continuity between models. Continual learning, also referred to as lifelong
learning (Chen and Liu 2018), is a sequential learning process, requiring only
a small portion of input data at once to evolve or fine-tune a model. However,
it is prone to catastrophic forgetting: performance on previously learned data
could significantly degrade over time as new data points are added (De Lange
et al. 2021). Therefore, we focus on improving RFS model retraining in our
study.

We claim that, even with data drift, old models have value, and should be
reused (“recycled”) to improve future model performance. Based on this in-
sight, we propose to use post-deployment recycling strategies that exploit past
knowledge of model performance along with knowledge of data distribution at
inference time to recommend models from the past for future inference when
data distribution similarities are detected. The recycled models are used in a
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black-box manner, i.e., without fine-tuning or training, for inference on new
data. Such reuse is still a challenging task as it now requires predicting the
best model for a given inference data point, which can introduce additional
noise. However, it can be beneficial since it can improve the overall predic-
tion performance, and, because it treats the model as a black box, it can be
adopted easily in existing ML pipelines.

We empirically evaluate our approaches in the context of Just-In-Time
(JIT) defect prediction models (Kamei et al. 2012), a popular type of ML
model in the domain of software engineering, using data of 8 large, long-lived
open-source projects from the ApacheJIT dataset (Keshavarz and Nagappan
2022), we address the following research questions:

– RQ1: Are old JIT prediction models worth saving?
– RQ2: What variant works best for each recycling strategy?
– RQ3: Which recycling strategy performs the best overall?

Our main contributions are:

– We empirically evaluate and identify the value that historical JIT models
can provide to future inference on ActiveMQ, Camel, Cassandra, Flink,
Groovy, HBase, Hive and Ignite projects.

– We propose five different strategies for recycling software analytics models.
– We empirically evaluate the performance of these strategies and 29 variants

compared to RFS for three different types of JIT models.
– We evaluate the trade-offs between each recycling strategy in terms of

time-to-inference and metric performance.

2 Related Work

We discuss the differences between our results and the closest related work
on black-box reuse of models in detail in Section 7. This section discusses
the related work concerning JIT defect prediction and drift in software defect
prediction models.

2.1 JIT Defect Prediction

Defect prediction models have gained substantial attention in research (Zhao
et al. 2023). In particular, Just-In-Time (JIT) defect prediction approaches
have been proposed to help developers prioritize their limited software quality
assurance (SQA) resources on the riskiest commits (Kamei et al. 2012; Kim
et al. 2008), since JIT defect prediction aims to predict the defect likelihood
of each software change. These predictions can be expressed as concrete work
assignments for a developer to fix a defect due to a change, reducing the time
for finding the developer who introduced the defect because the predictions
are made early on, this ensures that the details of the code change are still
fresh in the developers’ minds.



4 Harsh Patel et al.

The four most commonly used families of code change properties used in
JIT models (Mockus and Weiss 2000; Kamei et al. 2012; Kim et al. 2008;
Kononenko et al. 2015) typically measure (a) the magnitude of the change
(Size, dimension in Table 1); (b) the dispersion of the changes across modules
(Diffusion); (c) the defect proneness of prior changes to the modified modules
(History) and (d) the experience of the author (Author Experience).

2.2 Concept Drift in Software Analytics

Similar to other fields, software analytics models are also affected by concept
drift due to evolving software project data and require retraining to maintain
performance. Ekanayake et al. (2009) study the effect of concept drift in soft-
ware projects by evaluating the prediction quality of file-level software defect
prediction models over sequential releases of software projects over time. They
find that the quality of the prediction follows periods of stability and drift
in software projects, suggesting that concept drift is an important factor to
consider when investigating defect prediction. Stability refers to a period when
the defect prediction quality of a model is continuously above a certain thresh-
old (AUC > 0.8). This stability period was observed to be as long as ∼ 15
months for one of the projects (Eclipse). However, the authors also found that
the overall quality of the prediction drops significantly (AUC ≈ 0.5) during
periods of drift.

Our study is different in that we are evaluating JIT defect prediction mod-
els detecting bug-inducing commits in real-time, whereas Ekanayake et al.
(2009) study the effect of concept drift over sequential releases of software
projects using file-level features such as # revisions and # bugs fixed of critical
type. While they study the effects of drift by looking at prediction performance
over time using AUC, we evaluate drift by studying the feature survival rate
of JIT models over time. Additionally, we evaluate each historical model over
time based on its commit-level error performance compared to other historical
models to identify the value of each model over time.

A study by McIntosh and Kamei (2018) suggests that fix-inducing changes
are a moving target, and that JIT models lose a large proportion of their
discriminatory power and calibration scores one year after being trained due to
value shifts in the metrics used to train them. Their study evaluates JIT models
over time and evaluates the importance scores of code change properties over
time. We compare models by their commit-level error performance to quantify
the model’s value and correlate it with the feature survival rate of the model
to understand impact of drift. Olewicki et al. (2022) study when to retrain
a model for detecting brown builds in continuous integration (CI) using a
priori heuristics such as comparison to a prior week’s performance or to the
cumulative product of performance of recent models of past few weeks, which
seem effective ways to reduce retraining costs. Both of these studies are related
to our work, as they study the retraining problem in software analytics models.
However, as both keep retraining new models, the older models are discarded,
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losing potentially valuable historical knowledge that the model has learned at
a specific time. Our study focuses on how to keep reusing historical models,
i.e., model recycling.

There have been multiple studies on online JIT defect prediction (Cabral
and Minku 2022; Tabassum et al. 2022; Tan et al. 2015). Although online learn-
ing can be an effective solution to retraining from scratch in practice because
of the low cost of retraining, it however is prone to catastrophic forgetting
(De Lange et al. 2021). For instance, Gao et al. (2023) found that fine-tuning
CodeBERT on new datasets leads to substantial performance degradation on
the initial dataset by 28.9% and 84.6% for code summarization and vulnerabil-
ity detection, respectively. Olewicki et al. (2023) found that taking preventive
measures for catastrophic forgetting of previously acquired knowledge, im-
proved F1-score significantly from 4-26% for 3 out of 8 projects studied. This
is particularly problematic when dealing with sequential data, as the model
may prioritize recent data and forget valuable information from the past. On-
line JIT software defect prediction studies focus on improving the stability of
predictions over time, while our study focuses on utilizing historical models
to improve the quality of predictions at inference time. Therefore, our study
could be complementary to these studies as it can be used along with online
learning to improve the quality of predictions over time.

3 RQ1: Are old models worth saving?

This section outlines the design and results of our initial empirical study trying
to understand the value of old machine learning models in the context of JIT
defect prediction.

3.1 Motivation

As ML models age, their prediction accuracy is expected to decrease due to
data drift (Ekanayake et al. 2009; Olewicki et al. 2022; McIntosh and Kamei
2018; Cabral and Minku 2022). The general assumption is that it is necessary
to regularly retrain the machine learning model with new data to make sure
the model’s predictions remain relevant to newer production data. In this race
to avoid the negative effects of drift, ML teams rely on this assumption and
simply discard old models without any second thought. This encourages us to
find out whether old machine learning models (MLMs) are really of no value
in practice, or whether there is any value in preserving old models.
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Table 1: Commit Metrics

Dimen-
sion

Met-
ric

Description

Size
la total number of lines added in commit

ld total number of lines deleted in commit

Diffusion

nf number of files modified in commit

nd number of directories modified in commit

ns number of subsystems modified in commit

en-
tropy

distribution of change over files in commit

History

ndev number of unique developers who previously changed the modified
files of a commit

age average time since the previous change of the modified files of a
commit

nuc number of unique changes to the modified files of a commit

Author
Experience

aexp number of prior commits by the commit author

arexp same but in the last # months

asexp number of prior commits to the subsystem of this commit by the
commit author

3.2 Study Design

3.2.1 Studied Systems

3.2.1.1 Dataset

Several datasets are available for JIT defect prediction (Kamei et al. 2012;
Jiang et al. 2013; McIntosh and Kamei 2018; Keshavarz and Nagappan 2022).
Keshavarz and Nagappan (2022) built a large JIT bug prediction dataset called
ApacheJIT comprising the commits of 14 popular Apache projects. ApacheJIT
has 106, 674 commits, 28, 239 of which are labelled bug-inducing. Commits in
ApacheJIT have the same features as Kamei et al. (2012), listed in Table 1.

In this study, we focused on utilizing commits from 8 specific projects
within ApacheJIT as shown in table 2, excluding the remaining six projects
for the following reasons:

– Hadoop HDFS and MapReduce: ApacheJIT contains commits from
both the Hadoop HDFS and MapReduce projects. However, many commits
from these projects are not segregated, making it challenging to accurately
identify the project of origin for each commit and perform a study on
these projects independently. It is plausible that this issue arose due to the
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Table 2: ApacheJIT: Project Defect Distribution

Project # Total
Commits

# Buggy Commits
(%)

Time Period
(Years)

ActiveMQ 6,126 1,404 (∼22%) 2005-2019

Camel 22,700 3,078 (∼13%) 2007-2019

Cassandra 8,159 3,117 (∼38%) 2009-2019

Flink 11,691 2,811 (∼24%) 2010-2019

Groovy 8,059 1,614 (∼20%) 2003-2019

Hbase 8,730 3,782 (∼43%) 2007-2019

Hive 6,842 4,223 (∼61%) 2008-2019

Ignite 12,036 2,439 (∼21%) 2014-2019

projects’ repositories being independent initially, but later consolidated
into a shared repository named Hadoop.

– Kafka, Spark, Zeppelin, and Zookeeper: These projects have a no-
tably low number of commits, of approximately 1,000 or even fewer. In our
study, this limited number of commits translates to an insufficient number
of time windows for each project for training and evaluating JIT models.

3.2.1.2 Machine Learning Models

Over the years, many machine learning algorithms have been used to predict
buggy commits. However, Zeng et al. (2021) found that “simple” JIT defect
prediction approaches outperform more complex approaches like CC2Vec and
DeepJIT. Hence, we decided to use the JITLine model of Pornprasit and Tan-
tithamthavorn (2021), which is one of the best-performing JIT defect predic-
tion models and uses Random Forest as a classifier. To evaluate generalizability
of our findings, we also evaluate our recycling strategies using a simpler model
such as the Logistic Regression model inspired from Kamei et al. (2012) and
a more complex Deep Neural Network model from Hoang et al. (2019) called
DeepJIT. The details about the features used in each model are discussed later
in Section 3.2.5.

Furthermore, since our study focuses on evaluating historical models, it
is worth noting that the field of software engineering provides easy access to
such models. This accessibility is facilitated by the availability of open-source
software projects, which allow for the mining of chronological changes made
to the software.

3.2.2 Data Preparation

This study aims to evaluate old JIT machine learning models’ performance
over time. Since each ApacheJIT project has a finite number of data sam-
ples, we use a sliding window technique to create more data splits. Figure 1
illustrates the sliding window sampling technique.
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We first sort the commits by author date, then using a sliding window
of one thousand commits that shifts by increments of two hundred, we cre-
ate more windows for a dataset. The data windows mimic the real-time data
stream encountered by machine learning models in production. For every win-
dow created, we establish both a training and validation set. The training set
comprises 80% of the data, randomly sampled from a window, while the vali-
dation set holds the remaining 20% of the data scattered across the window.

JIT defect prediction faces verification latency (Cabral et al. 2019), which is
particularly important in online learning. This means that in reality a new data
point (commit) can only be used for future (online) training once its actual
label is known, which could take a variable amount of time. I.e., retrospectively
assuming those data points’ labels to be known instantly after a prediction is
not realistic. Hence, to make empirical evaluation more realistic, it is custom to
choose a latency threshold to delay the use of new data points for retraining.
Song et al. (2023) found that reducing this latency threshold (from 90 to
15 days) led to an increase of up to 45.86% in mislabeling defect-inducing
examples. To address this threat to validity, we keep a gap of 200 samples
(median of 57 days) between our training and testing sets, denoted as “Delayed
Labelling (DL)” (also known as verification latency) in Figure 1. Subsequently,
we use the two hundred samples after the DL gap as the test set, resulting in
a test set of the same length as the validation and DL sets.

Fig. 1: Sliding Window Sampling

Based on the sliding window sampling technique, we create a total of 386
data splits across eight projects, as shown in Table 3. The minimum number
of commits for a project is 6,126 (ActiveMQ), which is far greater than the
number of commits required to create a window (i.e., 1,000) and results in a
minimum of 26 data splits according to the following formula:

# Data Splits = ⌊# Commits−Window Size

Window Shift
⌋+ 1
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Table 3: Data Splits resulting from Sliding Window Sampling

Project # Total Commits # Data Splits # Evaluated Windows

ActiveMQ 6,126 26 9

Camel 22,700 109 92

Cassandra 8,159 36 19

Flink 11,691 54 37

Groovy 8,059 36 19

Hbase 8,730 39 22

Hive 6,842 30 13

Ignite 12,036 56 39

3.2.3 Model Version History

Using the above sliding window sampling, each resulting time window serves
as the training data for a new RFS model. Ekanayake et al. (2009) used a
constant training period length of 2 months and evaluated defect predictions
over each month while our training period is of a median of 9 months over
different projects. We also maintain a history of 15 model versions consisting
of 8-123 months of data depending on the project and with a median of 33
months for each window evaluated. This decision strikes a balance between
excessive reliance on distant model history and retaining sufficient context.

On top of 15 windows for 15 historical models, the current window is
required to train the RFS model as our baseline, the next window is skipped
to address verification latency, and the window after that is used for evaluation.
Therefore, the total # evaluated windows for each project is lower than the
total # windows (data splits) created for the project as listed in Table 3. As the
sliding window advances, the model history moves forward. When the model
history size surpasses the predefined limit of 15 windows, we discard the oldest
version, ensuring we continuously have updated models while maintaining a
manageable history.

In section 5, in addition to the variants with limited model history, we also
evaluate variants of recycling strategies without limits on the model history size
for each window. This allows us to consider a broader historical perspective.

3.2.4 Handling Class Imbalance

Since software projects typically have very few bugs relative to the total
number of commits, JIT datasets typically are imbalanced. Several sampling
strategies are available to address imbalanced class problems, like oversam-
pling and undersampling. For the JITLine and Logistic Regression models, we
chose the oversampling approach Synthetic Minority Over-sampling Technique
(SMOTE) as used by Pornprasit and Tantithamthavorn (2021). The SMOTE
method of over-sampling the minority class involves creating synthetic minor-
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ity class examples, and it can achieve better classifier performance than only
undersampling the majority class (Chawla et al. 2002). For DeepJIT, each win-
dow of data is resampled with replacement into smaller batches having equal
distribution of both positive and negative labels to address the class imbal-
ance. In our sliding window sampling shown in figure 1, we apply SMOTE or
resampling to each training set only, while the validation and test sets remain
unchanged.

3.2.5 Feature Selection and Engineering

Fig. 2: Feature Selection and Engineering

The pre-processing pipeline of features for each model is shown in Figure
2. We use the same features as Pornprasit and Tantithamthavorn (2021) for
all models. However, there are some differences in the way these features are
processed for each model, as discussed below.

JITLine – JITLine uses both commit metrics listed in Table 1 and code
changes (i.e., added and removed lines of code in a commit). The code changes
are converted into count vectors using the Bag of Words (BoW) technique.
BoW is a common technique for extracting features from text documents that
involves counting the number of times a word appears in a document, then
transforming the text into a vector of word counts. Since code changes can
include thousands of code tokens, including commit metrics, this leads to a
very large feature space, considering our window size of 1,000 data points, and
that a general rule-of-thumb calls for at least 10-15 samples per feature to
avoid overfitting 1.

1 https://postindustria.com/how-much-data-is-required-for-machine-learning
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To reduce the feature space, we use scikit-learn’s SelectKBest feature se-
lection method (Pedregosa et al. 2011) to select the top 100 features (tokens)
based on the chi-squared test. The chi-squared test is often employed for fea-
ture selection in text classification tasks because it helps identify the most
relevant features by measuring the independence between each feature (term
or word) and the class labels. It focuses on selecting features that have signifi-
cant associations with the classes, allowing for the prioritization of terms that
contribute the most discriminative information for classification.

Logistic Regression – We use the same features as JITLine, but to remove
collinearity between commit metrics features, we use the Variance Inflation
Factor (VIF) score to remove features having a score above 10 (James et al.
2013). Additionally, we use stepwise selection to remove features that do not
contribute to the model’s performance. Finally, we use the same feature selec-
tion method as JITLine to select the top 100 features.

DeepJIT – The original DeepJIT model does not use commit metrics from
Table 1 as features. Instead, it uses the commit messages and code changes.
However, to keep consistency across all models, we use the same features as
JITLine and Logistic Regression models, i.e., both commit metrics and code
changes. To improve time to convergence, we use scikit-learn’s StandardScaler
to scale the features to a mean of 0 and a standard deviation of 1 (Pedregosa
et al. 2011). DeepJIT does not require feature reduction since it automati-
cally understands the semantic features of each deleted or added line in each
changed file. Then, it aggregates these features to generate a new representa-
tion (embedding) of the changed file, which is used to construct the features
of the code changes (Hoang et al. 2019).

3.2.6 Evaluating Model Performance

We use standard performance metrics such as F1 score, AUC, Precision and
Recall to evaluate each model’s performance. Apart from these metrics, we also
evaluate models using Specificity, Geometric Mean and Average Precision.

For binary classification, G-mean is the square root of the product of the
minority and majority class recall values (

√
recall × specificity). The minority

recall is the ratio tp/(tp+fn) where tp is the number of true positives and fn is
the number of false negatives, quantifying the ability to avoid false negatives.
Specificity is the ratio tn/(tn+ fp) where tn is the number of true negatives
and fp is the number of false positives. It quantifies the ability to avoid false
positives (Lemâıtre et al. 2017).

For readability purposes, we only discuss g-mean, AUC, F1 score, preci-
sion and recall in our summary plots and tables in the paper, while the repli-
cation package also includes the other performance metrics, i.e. Specificity
and Average Precision (Patel 2023). Since the g-mean is a geometric mean of
performance measured separately on each class, it is a better metric for the
performance of imbalanced classification tasks (Kubat et al. 1997).
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3.2.7 Analysis of Old ML Models

To understand how trained ML models change their performance over time, we
evaluate each ML model version on test sets of future time windows. Based on
their error on each data sample Yerror = abs(Yprob −Yactual) we find the best-
performing old model for each future commit. We then lift up this information
to the level of time windows by determining the model versions performing best
on the largest number of commits in that window. This metric can be defined
as the Temporal Commit Dominance Factor (TCDF ), which is calculated as
follows:

TCDF (mi, wj) =
# Commits in wj for which mi achieves the lowest Yerror

# Commits in wj

Where mi is the model version, wj is the window and i ≤ j.

TCDF quantifies the model’s dominance and effectiveness over a range
of commits within a given time window. For each model, we subsequently
calculate the percentage of future windows in which that version was the best
in terms of TCDF in order to quantify its (future) value. This is defined as the
Future Window Dominance Percentage (FWDP ) and is calculated as follows:

FWDP (mi) =
# Future Windows for which mi achieves the highest TCDF

Total # Future Windows

We do not use statistical tests to identify winning model versions, since
even if a winning model only marginally wins on more commits, the RFS
model still is not that appealing.

To understand the performance of older models in the presence of drift, we
also evaluate the Feature Survival Rate (FSR) of models over time (Olewicki
et al. 2022). As explained in Figure 3, we do this by first calculating, for
each model of each time window, the top 20 features based on their feature
importance. Then, for each pair of time windows (i, j; where, j > i), we find
the percentage of the top 20 features from model i that survived in model j.
FSR can be calculated as follows:

FSR(mi,mj) =
# Selected Top Features from mi that survived in mj

# Selected Top Features in mi(= 20)
∗ 100

Where mi and mj are the model versions and j > i.

To measure feature importance, we use the SHapley Additive exPlanation
(SHAP) values proposed by Lundberg and Lee (2017), which is a Classifier
Agnostic Feature Importance method. It is one of the more recent global fea-
ture importance methods that gives consistent results not impacted by feature



Post Deployment Recycling of Machine Learning Models 13

Fig. 3: Evaluating FSR of Models over Time Windows

interactions (Rajbahadur et al. 2021). We rank features based on the mean
SHAP value first, then its standard deviation (from high to low) across all test
samples in a time window, and select the top 20 features. The high mean is an
indicator of the overall high importance of a feature across all test samples,
while the high standard deviation is an indicator of the changing importance
of a feature across test samples meaning that the feature may have a positive
(predicting commit as buggy) or negative impact on prediction depending on
the test sample.

To understand whether drift plays any role in the observation of a model
being the best for a given future time window or not, we want to identify
whether there is a statistically significant difference between feature survival
rates of a model in the windows where the model is winning vs. not winning.
For this, we perform in each studied project a statistical analysis of all models
that won in at least one window. We observed that one of these two groups
(typically the “winning” group, sometimes “not-winning”) sometimes can have
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Fig. 4: Identifying Statistical Significance of Feature Survival Rate Differences
with the Help of Confidence Intervals (With Group A: Majority Group used
for calculating Confidence Interval, Group B: Minority Group compared with
Group A)

fewer than six data samples, which makes it difficult to use statistical tests
like Wilcoxon signed-rank test. Therefore, as shown in Figure 4, we calculate
the confidence interval (α = 0.05) of the feature survival rate for the majority
group (i.e., either the “winning” or “not-winning” group) and identify the
data samples of the minority group falling outside the confidence interval of
the majority group. Since our original goal is to understand the difference
in statistical significance, we consider the difference in feature survival rate
statistically significant if 50% or more minority data points fall outside the
majority confidence interval.

Models from the last few windows have fewer chances to win due to the lack
of future test windows. Hence, to ensure sufficient data points for calculating
confidence intervals, we exclude model versions that are within ten windows
of the end window.

Sometimes a model may win in an immediate next window but may not
win far in the future. On the contrary, a model may not win immediately but
may win far in the future. So, to understand the potential of model reuse,
we investigate the period of potential reuse by identifying the last and first
windows a model is winning in. This gives us an idea of how far in the future
a model can be reused.

3.3 Results

Old models have value. Based on TCDF, we found that six projects
(ActiveMQ, Camel, Cassandra, Groovy, HBase and Ignite) have an
old model dominating in ≥ 52% of their time windows. The other
project (Flink) has an old model dominating in ≥ 32% of their time
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windows. Only one project (Hive) has more uniformly distributed
windows where it can be difficult to predict the winning model. Fig-
ure 5 evaluates, for a given time window i of project Camel (X-axis), all past
model versions, to calculate their classification error (Yerror) on that window’s
test commits (Y -axis). Each cell in the figure shows the value of TCDF , i.e.,
the ratio of commits in which that cell row (model version) outperformed all
other, model versions available for that window (vertical column) in terms
of absolute error. For a given time window (vertical column), the higher the
number of commits for which a model is the best, the darker the colour of the
cell.

The figure shows long, horizontal red lines for a minority of model ver-
sions, suggesting that these model versions continuously performed better for
an extended time period. For example, model v1 has the longest and darkest
horizontal red line expanding approximately until window 86 (covering ∼ 74%
of time windows, comprising commits from ∼ 101 months). This effect is shift-
ing to other model versions over time, e.g., model v60 and later model v90,
following a similar trend of a continuous horizontal red line. In contrast, we
note that the diagonal is not dark, indicating that RFS models do not auto-
matically outperform older models, even though they have been trained using
the most recent data for that inference time window. Figures for other projects
show similar patterns and have been included in the replication package (Patel
2023).

Figure 6 shows, for each project, the FWDP for the model versions (with
FWDP > 0). As per the figure, model v1 for project Camel was considered the
best model version for ∼ 74% of the time windows, which confirms our finding
above, with model v90 in second position winning in ∼ 8% of the windows. The
figure shows that old models dominated at least ≥ 52% of the time windows
for all projects except Flink and Hive. Although Flink did not have a single
dominating old model, it had three dominating old models that constituted
∼ 78% of total windows. For Hive, it was found that models v23 and models
from v25 to 28 were RFS models winning their targeted window while v7
was the only model able to win time windows up to 3 times consecutively,
whereas the remaining versions only won 1 or 2 consecutive windows. This
could be because of the high ratio of buggy commits (∼ 60%) present in Hive
compared to other projects (< 50%), which may require model adaptations
that old models cannot accommodate.

As to why early models seem to dominate a substantial percentage of time
windows, we have a number of hypotheses. First, the nature of software devel-
opment evolves over time, especially during major release development peri-
ods marked by substantial feature and restructuring changes that affect larger
segments of a codebase. Conversely, minor releases, following Lehman’s fifth
law and emphasizing the “conservation of familiarity”, highlight that growth
is constrained by the necessity to maintain familiarity (Herraiz et al. 2013).
Many software projects follow an agile process with iterations of N weeks,
where changes within each iteration are more cohesive than across iterations.
Therefore, consecutive iterations often focus on more similar changes than
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Fig. 5: Camel: Percentage of Data Samples with Best Performance (i.e.,
TCDF ∗ 100) per Model Version over Time Windows

non-consecutive ones, allowing older models to remain relevant for extended
periods.

For example, in Figure 5, noticeable triangle patterns align with major
version releases of Apache Camel2, such as the periods from window 16 to
87, 88 to 97, 98 to 103, and 104 to the end. Winning models like v1, trained
on commits from 2007-2008, coincide with the release of Camel v1.0.0. Sim-
ilarly, models v88, v98, and v104, trained on commits from 2017, 2018-2019,
and 2019, respectively, align with the releases3 of Camel v2.20.0, v2.24.0, and
v3.0.0. This suggests that the changes in subsequent releases might not be sub-
stantial enough (conservation of familiarity) to warrant retraining the model,
explaining the sustained performance of older models.

2 https://github.com/apache/camel
3 https://camel.apache.org/releases/#camel
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Table 4: Number and Proportion of Best Models per Project

Project # Total
Models

# Winning
Models

% Winning
Models

% RFS Models
Winning[1]

ActiveMQ 26 3 11.54 0.00
Camel 109 10 9.17 4.35
Cassandra 36 2 5.56 5.00
Flink 54 11 20.37 13.51
Groovy 36 3 8.33 5.00
Hbase 39 1 2.56 4.35
Hive 30 9 30.00 38.46
Ignite 56 4 7.14 2.56

■ Outlier

[1] Ratio of # Winning RFS Models over # Evaluated Windows (see Section 3.2.3)

Second, JIT (Just-in-Time) software defect prediction encounters concept
drift, which involves changes in the ratio of examples for each predicted class
(Cabral et al. 2019). Such changes reflect shifts in the software development
process, including evolving priorities or refactoring efforts. For example, a
development team might initially prioritize the graphical user interface (GUI)
and later shift focus to implementing business logic, introducing a concept drift
in the relationship between input features and labels. Additionally, alterations
in software development practices, like refactoring, can influence the rate of
defect-inducing changes, resulting in shifts in the class distribution.

As seen in Figure 5, the observable triangle patterns coincide with shifts
in the label distribution. For example, windows 16-87 exhibit a median of
approximately 157 buggy commits, windows 88-97 show a median of about
60 buggy commits, windows 98-103 display a median of around 25 buggy
commits, and windows 104 to the end demonstrate a median of approximately
20 buggy commits. Building on the earlier reasoning, the older model leading
the distribution change appears to outperform the more recent RFS model,
which is trained on the latest data.

For most projects, the percentage of RFS models winning was
meagre(< 14%), except for Hive (∼ 38%), where using the RFS mod-
els can contribute the most to achieving the best performance. Table
4 shows the percentage of windows where the latest RFS model outperformed
the older models, when evaluated on test commits from its respective test
window. Hive’s ratio of best models to total models of ∼ 30% could be be-
cause of the high ratio of buggy commits (∼ 60%) present in Hive compared to
other projects (< 50%), which may require model adaptations that old models
cannot accommodate, as discussed above.

The median FSR values of 17 out of 26 winning model versions in
winning windows consistently range from 30% to 70%. Figure 7 illus-
trates the FSR for model versions on their winning time windows compared
to their non-winning time windows for each project. Please note that because
project Hbase had only one old model version (v1) winning all future win-
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Fig. 6: Best Models in terms of FWDP per Project. Starred models also won
as RFS model for the window they were trained on.

dows, we do not see any data points in Figure 7 to compare with the winning
windows. Overall, looking at the quartiles indicated in the figure, we can see
that the FSR of models in winning time windows is higher than their FSR
in non-winning time windows. At first sight, this finding aligns with the com-
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mon wisdom that model retraining becomes necessary when high drift occurs.
Table 5 indeed confirms that the FSR for the windows in which a model is
winning is higher than for windows in which the model is not winning. This is
confirmed for 17 out of 26 winning model versions by the fact that for > 50%
of minority (mostly from winning windows) data points the FSR falls outside
the confidence interval (OCI) of the majority group (mostly from non-winning
windows).

However, the Median Feature Survival Rate (MFSR) in winning windows
is still relatively low with only 7 out of 26 model versions having an MFSR of
at least 50%, indicating that older models still outperform the RFS models in
the presence of non-trivial concept drift. The reason behind this unexpected
observation could be that the non-surviving features of these older models
do not contribute significantly to the prediction and the rules learned by the
model from an older time window are more fundamental and can be applied to
a large proportion of new commits, indicating repeating patterns in the data.

Table 5 shows that the # of time windows of a model from its
first winning window to its last winning window, ranges from 3 to 70
for more than 60% of the winning model versions. The longest winning
(reuse) period was for model v1 for project camel, with the last winning win-
dow of that model being as far as 70 windows, despite the MFSR across the 70
winning windows being relatively low (35%). A similar pattern of long-range
winning and low FSR can be seen for other projects too. Additionally, the
# of winning windows for a model is more than 1 for ∼ 65% of the winning
model versions. The longest reuse period is indicated in bold in Table 5, and
ranges from 3-71 windows, and with MFSR ranging from 0-50%. Where a
model has more than 1 winning window (65% of winning models), the median
reuse period is ∼ 17 and the MFSR median is ∼ 35%. Despite the low MFSR
of winning model versions, these models continue to perform well and win in
future windows as far as 70 windows away from their first winning window,
indicating their potential to be recycled. This intriguing outcome challenges
the common belief that models must always be retrained from scratch and
discarded.

Old models have the best performance in ≥ 52% and ≥ 32% of fu-
ture time windows for six and one projects respectively, up to a me-
dian of 3-70 windows in the future. This suggests that saving and
potentially recycling old models to make predictions in future win-
dows could make more sense than RFS in the context of JIT.

Summary for Research Question 1

4 Model Recycling Algorithms

Given that RQ1 showed that old models have value, we need to find the best
approach to recycle them. Recycling is the process of reusing old models to im-
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Fig. 7: FSR per Winning Model Version per Project

prove the prediction performance at a future inference time. Recycling not only
emphasizes the preservation of valuable historical models, but also encourages
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Table 5: Confidence interval results for FSR per reused model per project

Project Model
Version

# Windows OCI[1] WW[3] MFSR[4]

W[2] NW[2] # % #
Windows

Win-
dow

%

ActiveMQ
2 1 8 0 0.00 0 15 35.0
4 3 6 0 0.00 7 16 50.0

Camel

1 68 24 21 87.50 70 15 35.0
2 2 90 2 100.00 34 45 27.5

60 2 45 2 100.00 14 72 50.0
88 2 17 2 100.00 5 88 57.5
90 6 11 3 50.00 6 90 45.0
98 3 6 1 33.33 2 98 25.0
99 1 7 0 0.00 0 102 30.0

Cassandra 1 18 1 0 0.00 18 15 30.0

Flink

4 10 27 6 60.00 29 20 5.0
5 12 25 12 100.00 29 22 0.0
6 7 30 4 57.14 28 18 15.0
7 1 36 0 0.00 0 45 10.0
8 1 36 1 100.00 0 32 15.0

21 1 30 1 100.00 0 24 70.0

Groovy
1 10 9 4 44.44 17 15 22.5
2 8 11 3 37.50 16 17 25.0

19 1 14 1 100.00 0 19 60.0

Hive

1 1 12 1 100.00 0 16 40.0
5 2 11 1 50.00 3 15 50.0
7 3 10 2 66.67 3 17 45.0

21 1 6 1 100.00 0 21 55.0

Ignite

2 34 5 1 20.00 38 15 40.0
3 1 38 1 100.00 0 28 30.0
4 3 36 1 33.33 20 29 45.0

■ % OCI ≥ 50%

[1]OCI – % of minority windows where FSR lies Outside the Majority 95% Confidence
Interval
[2]W – # Windows where model version is winning, NW - # Windows where model
version is non-winning
[3]WW – Winning Window, i.e., the window where the given model version was winning
[4]MFSR – Median FSR on Windows in which a model version is winning

ML practitioners to derive continued benefits from these models’ accumulated
knowledge.

However, the process of devising effective recycling strategies is not without
its challenges. The crux of the challenge lies in striking a balance between the
utility of old models and the potential risks associated with their use. On
the one hand, outdated models might fail to capture the nuances of evolving
data patterns, leading to diminished prediction accuracy. On the other hand,
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deploying older models too conservatively might overlook opportunities where
their insights could still prove valuable. To address this challenge, we propose a
range of distinct strategies for recycling old models. The common goal behind
each strategy is to make informed estimations about which old models to use
and when to use them.

This section describes the general idea behind model recycling and the con-
crete recycling strategies we propose to implement this concept. An overview
of these strategies is shown in Figure 8, and we now discuss each of these in
detail.

(a) Model Selection (b) Single Model Reuse (c) Model Stacking

(d) Model Voting (e) Clustering

Fig. 8: Recycling Strategies

4.1 Model Selection

As shown in Figure 8a, the model selection strategy chooses at inference time,
between the best old model thus far and the latest RFS MLM. To make this
work, a model selection recycling model has to be trained pre-inference that
predicts what version of the model (old or latest) to use for prediction at
inference time. Algorithm 2 shows the process involved in this strategy, while
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Algorithm 1 shows the process involved in finding the best old model from the
model history (used by Algorithm 2).

pre-inference – As shown in Algorithm 2, for each window C, we first pre-
pare (pre-inference) the training features (Xtrain) by combining the training
data from the model version history including the current time window (C).
The features are created from commit metrics and code changes as explained
in Section 3.2.5. Second, before we can create the oracle (Ytrain), we select
the best old model from history, as shown in Algorithm 1. This old model can
be chosen based on metrics like g-mean or F1-score of the historical models.
Once the best old model is identified, to create the oracle (Ytrain) we then
determine the best model version between the best old model and RFS model
for each commit in the training data based on their error (abs(Y i

prob−Y i
actual))

on that commit. Finally, we train a recycling model able to select either the
best old model or the RFS model using the prepared features (Xtrain) and
oracle (Ytrain).

during-inference – As new commits arrive, we use the recycling model to
predict the best model version for each commit, then apply the predicted
model version (i.e., old or new) to make predictions for the new commit.

Additionally, we also designed a variant of model selection where we do not
train a recycling model, but during inference, we just average the probabilities
of both models as Y final

prob = 1/2∗(Y vi
prob+Y

vj
prob). This variant requires inference

from both old and new models.

Algorithm 1: Find Best Model from Model History with GMean for
the Current Window (used by Algorithms 2 and 3)

Input:
C /* Current Time Window */

1 Hall /* Model Version History */

2 Ypred /* Historical Models’ Predicted Labels */

3 Yactual /* Historical, Actual Labels */

Output: V /* Model Version with Best G-Mean Score */

4

5 Function findBestOldModel(C, Hall, Ypred, Yactual):
6 maxScore← 0, V ← −1
7

/* Evaluate each model version one window at a time */

8 foreach modelV ersion ∈ Hall[C − 15 : C − 1] do
/* Note: ground truth (Yactual) is same for all models */

9 score = gMean(Ypred[C − 15 : C][modelV ersion], Yactual[C − 15 : C])
10 if score > maxScore then
11 maxScore = score
12 V = modelV ersion

13 return V

14 End Function

As major drawbacks, the model selection strategy adds a layer of complex-
ity to the inference process either by requiring training a new recycling model
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Algorithm 2: Training a Model Selection Recycling Model for the
Current Window
Input:
C /* Current Time Window */

1 K /* Past Knowledge of Models’ Performance */

2 D /* Seen Training Data */

3 Hall /* Model Version History */

Output: M /* Model Selection Model */

4

5 Function modelSelection(C, K, D, H):
6 Ypred ← K[C − 15 : C][′predictedLabel′]
7 Yactual ← D[C − 15 : C][′actualLabel′]
8 V ← findBestOldModel(C, Hall, Ypred, Yactual)

9

/* Prepare oracle Ytrain for model selection recycling */

10 foreach i ∈ D[C − 15 : C][′commitID′] do
11 Ytrain[i]← argmin(K[i][′error′][C],K[i][′error′][V ])

/* Prepare features Xtrain as per Section 3.2.5 */

12 Xtrain ← prepareFeatures(D[C − 15 : C])
13

/* Train RF to predict which model version to use for each commit */

14 M = RandomForestClassifier().fit(Xtrain, Ytrain)
15 return M

16 End Function

or by requiring inference from both old and new models to aggregate predicted
probabilities. However, it can be an effective strategy if the recycling model
can identify changes in data distribution (drift) and choose an appropriate
model that performed better on similar data samples in the past.

4.2 Single Model Reuse

As depicted in Figure 8b, this strategy is designed to identify the best old
model from a given model version history during pre-inference time and use
the selected best old model during inference. Algorithm 3 shows the process
involved in this strategy, and again leverages Algorithm 1 to find the best old
model from the model history.

pre-inference – As shown in Algorithm 3, for each window C, the pre-
inference step involves finding the best old model from the available model
history. In addition, we also train a RFS model, to use it as a historical model
in the next window, although this model is ignored for the current window C.

during-inference – At inference time, unlike the model selection strategy,
the single model reuse strategy exclusively utilizes the old model to detect
bug-inducing commit IDs as they arrive.

The single model reuse strategy is a simple approach that does not require
any additional training or inference time. Yet, as this strategy only uses a
historical model, it may not be able to always find the best historical model
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Algorithm 3: Finding the Best Old Model Version for the Current
Window using Single Model Reuse

Input:
C /* Current Time Window */

1 K /* Past Knowledge of Models’ Performance */

2 D /* Seen Training Data */

3 Hall /* Model Version History */

Output: V /* Best Old Model */

4 Function modelReuse(C, K, Hall):
5 Ypred ← K[C − 15 : C][′predictedLabel′]
6 Yactual ← D[C − 15 : C][′actualLabel′]
7 V ← findBestOldModel(C, Hall, Ypred, Yactual)

8 return V

9 End Function

for the latest time window. For example, when the data distribution changes
significantly, the historical model may not be able to make accurate predic-
tions.

4.3 Model Stacking

As its name implies, model stacking utilizes stacked MLMs for inference. Those
initially were proposed by Wolpert (1992), and found applications in various
domains. The fundamental idea is to employ multiple models to generate pre-
dictions, then utilize a meta-model to combine the predictions from these base
models, as illustrated in Figure 8c. In the case of JIT, the meta-model is
trained to identify bug-inducing commits using the probabilities generated by
the base models as features. The meta-model can be a simple linear regression
or a more complex model such as a neural network.

The two main differences between traditional stacking and our stacking
recycling approach are that traditional stacking re-trains both the stacked
models and the meta-model simultaneously; however, we treat the stacked
models as black boxes, thereby avoiding their re-training. Second, in practice,
stacking combines models trained on the same data whereas we combine his-
torical models trained on different data from different time windows up to and
including the latest model.

The process can be split into two stages: pre-inference and at-inference.
The pre-inference stage involves training the meta-model, and the at-inference
stage involves using the meta-model to make predictions. The pre-inference
stage can be further split into two stages: filtering of model version history
and training meta-model.

pre-inference/filtering – Using the entire model history might not be ideal
for this strategy, given that it employs all models for predictions. Hence, we
employ statistical tests to identify the best models for stacking from history.
As illustrated by Algorithm 4 and Figure 9, to find the most distinct set of
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Fig. 9: Filtering Model History using Statistical Tests

models, we conduct a statistical test on the absolute error vectors (Yerror(mi)
and Yerror(mj)) of each pair of models. The error vectors are retrieved by
finding the absolute error between actual and predicted class probabilities for
both models mi and mj as defined earlier in Section 3.2.7, for each commit
available in the model version history. The statistical tests on the error vectors
help us to identify the most similar models in the model history, cluster those
and select the best model from each cluster. We then use the selected models
for stacking. We evaluate both the Wilcoxon signed-rank test (Woolson 2007)
and the Scott-Knott Effect Size Difference (ESD) test (Tantithamthavorn et al.
2018) to reduce the size of the model history. We apply Bonferroni correction
(Weisstein 2004) to adjust the p-value for multiple comparisons.

pre-inference/training meta-model – As explained in Algorithm 5, for each
window C, we first prepare the training features (Xtrain) using the method
explained in Section 3.2.5. Here, the oracle (Yactual) includes labels for each
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Algorithm 4: Filter Model Search Space using Statistical Tests for
the Current Window (used by Algorithms 5 and 6)

Input:
C /* Current Time Window */

1 Hall /* Model Version History */

2 Yprob /* Models’ Predicted Probabilities */

3 Yactual /* Actual Labels */

Output: Hfiltered /* Filtered Model Version History */

4 Function filterModelHistory(C, Hall, Yprob, Yactual):
5 modelsToRemove← []

/* Create all pairs of chronologically ordered model versions for

comparison e.g. (1, 2), (1, 3), (2, 3) for models 1, 2, 3 */

6 versionPairs← combinations(Hall)
7

8 foreach (modelX,modelY ) ∈ versionPairs do
/* If a model is already set to be filtered out, skip checking

for statistical significance */

9 if modelX ∈ modelsToRemove
10 or
11 modelY ∈ modelsToRemove
12 then
13 continue

14

/* Evaluate statistical similarity between the error vectors of

the two models */

15 Y modelX
err ← absolute(Yactual[C − 15 : C]− Yprob[C − 15 : C][modelX])

16 Y modelY
err ← absolute(Yactual[C − 15 : C]− Yprob[C − 15 : C][modelY ])

17 pV alue = wilcoxon(Y modelX
err , Y modelY

err )
18

/* If the models have statistically similar error vectors, remove

one of the models in comparison, otherwise keep both since they

both are distinct */

19 if pV alue ≥ ALPHA then
/* Find the model version that more frequently has better

absolute error than the other */

20 modelV ersion← findLosingModelV ersion(Y modelX
err , Y modelY

err )
21 modelsToRemove.remove(modelV ersion)

22 Hfiltered ← Hall[C − 15 : C].remove(modelsToRemove)
23 return Hfiltered

24 End Function

commit indicating whether it is bug-inducing or not. Finally, we train the
meta-model using the prepared features (Xtrain) and oracle (Yactual).

at-inference – As new commits arrive, all stacked models predict prob-
abilities for a commit being bug-inducing. We then use the meta-model to
combine the probabilities from the stacked models to make predictions for the
new commit.

Our historical stacking approaches leverage a simple logistic regression
(LR) model or a more complex random forest (RF) model as our meta-models.
We also evaluate two different feature space configurations for our meta-model.
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Algorithm 5: Training Model Stacking Recycling Model for the Cur-
rent Window
Input:
C /* Current Time Window */

1 K /* Past Knowledge of Models’ Performance */

2 D /* Seen Training Data */

3 Hall /* Model Version History */

Output: M /* Meta Classifier Model */

4 Function modelStacking(C, K, D, Hall):
5 Yprob ← K[C − 15 : C][′predictedProbability′]
6 Yactual ← D[C − 15 : C][′actualLabel′]
7 Hfiltered ← filterModelHistory(C, Hall, Yprob, Yactual)

8

/* Prepare features Xtrain as per Section 3.2.5 */

9 Xtrain ← prepareFeatures(D[C − 15 : C])
10

/* Train meta-model */

11 M = StackingClassifier(
/* Use filtered model versions as base estimators */

12 baseEstimators = Hfiltered,
/* Use Random Forest or Logistic Regression (Section 4.3) as meta

classifier */

13 metaEstimator = RandomForestClassifier(),
/* Treat the base estimators as black boxes */

14 fitBaseEstimators = false,
/* Use commit features for meta classifier */

15 useCommitFeatures = true,
16 )
17 M.fit(Xtrain, Yactual)
18 return M

19 End Function

One uses only base (stacked) models’ prediction probabilities as features, while
the other configuration adds the commit features (i.e., commit metrics and
code changes) in conjunction with the base models’ prediction probabilities
as features. When training the meta-model with only stacked models’ proba-
bilities, we utilize LR, as this configuration involves a smaller feature space.
However, we use RF when training the meta-model with stacked model proba-
bilities and original model features. The scikit-learn library’s StackingClassifier
(Pedregosa et al. 2011) is used to implement the model stacking strategy.

Furthermore, we evaluate this strategy using different data sampling con-
figurations, which are as follows:

1. all – Utilize the full aggregated training data of the model history, including
the training data of the RFS model.

2. random – Randomly sample training data (equal to the window size) from
the aggregated training data of the model history.

3. randomly resampled – Randomly resampled training data (equal to the
window size) from the aggregated training data of the model history based
on class labels. Since the source dataset is imbalanced, this configuration
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ensures that the data points from each class are represented equally (50%-
50%) in the training sample.

Model stacking is a more complex strategy than the other two strategies,
as it requires training a meta-model and there are more than two models
required for inference. However, it can be an effective strategy since involving
more models trained on different data from different time windows can help
the meta-model to generalize better.

4.4 Model Voting

The Model Voting strategy, similar to Model Stacking, utilizes stacked MLMs
for inference. However, the key distinction lies in the approach used to combine
the predictions from the base models. Figure 8d illustrates that Model Voting
employs a straightforward voting mechanism. Unlike Model Stacking, there
is no meta-model involved in this strategy. The process can be split into two
stages: pre-inference and at-inference. The pre-inference stage involves filtering
the model history and the at-inference stage involves using the filtered model
history to make predictions.

pre-inference – As shown in Algorithm 6, for each window C, using the
same filtering algorithm 4 used in Model Stacking, we filter the model history
using statistical tests, similar to model stacking. The statistical tests help us to
identify the most similar models (in terms of model predictions) in the model
history as explained earlier in Figure 9. Finally, we create the voting classifier
by creating an ensemble of the filtered model versions as base estimators.

at-inference – As new commits arrive, the base estimators predict proba-
bilities for each commit. We then use the voting mechanism to combine the
probabilities from the base estimators to make the final prediction for the new
commit.

We implement the Model Voting strategy using mlxtend’s EnsembleVote-
Classifier (Raschka 2018). By default, the EnsembleVoteClassifier re-trains
the base estimators, but we configure it to treat them as black boxes. So,
there is no training involved in this strategy. Additionally, instead of creating
an ensemble of different models trained at the same time on the same data,
we create an ensemble of historical models, including the latest model, trained
on different data from different time windows.

We experiment with both hard and soft voting mechanisms. Hard vot-
ing is the simplest form of majority voting, where the class label (ŷ) is pre-
dicted based on majority (plurality) voting across all classifiers Cj (ŷ =
mode{C1(x), C2(x), ..., Cm(x)}). On the other hand, soft voting chooses the
class label with the highest cumulative probability across all models, retrieved
by aggregating predicted probabilities p from each classifier Cj , i.e., ŷ =
argmaxi

∑m
j=1 wjpij , where wj represents the weight assigned to the jth clas-

sifier and pij represents the predicted probabilities of each class label i by jth
classifier. We do not explicitly provide weights to the EnsembleV oteClassifier
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Algorithm 6: Creating Model Voting Recycling Model for the Cur-
rent Window
Input:
C /* Current Time Window */

1 K /* Past Knowledge of Models’ Performance */

2 D /* Seen Training Data */

3 Hall /* Model Version History */

Output: M /* Meta Classifier Model */

4 Function modelVoting(C, K, D, Hall):
5 Yprob ← K[C − 15 : C][′predictedProbability′]
6 Yactual ← D[C − 15 : C][′actualLabel′]
7 Hfiltered ← filterModelHistory(C, Hall, Yprob, Yactual)

8

9 M = EnsembleV oteClassifier(
/* Use the filtered model versions as base estimators */

10 baseEstimators = Hfiltered,
/* Use soft voting to combine predictions */

11 voting =′ soft′,
/* Treat the base estimators as black boxes */

12 fitBaseEstimators = false,
13 )
14 return M

15 End Function

so it assigns uniform weights to each base estimator giving equal importance
to predictions from each classifier.

The Model Voting strategy requires multiple JIT models for inference. It
can be an effective strategy because the base models are trained on different
data from different time windows, providing diverse knowledge to the ensem-
ble, which can be beneficial. However, it can be challenging due to drift, since
voting relies only on base model prediction probabilities and there is no meta-
model to calibrate the predictions from the base models like the model stacking
approach does.

4.5 Clustering

The clustering strategy is depicted in Figure 8e. Intuitively, this strategy lever-
ages the ball tree clustering algorithm to learn the similarity between commits
from the current model history based on features retrieved from their com-
mit metrics and code changes. Then for inferencing new commits, it utilizes
the prepared ball tree to identify the closest neighbours and selects the best-
performing model on these neighbouring samples for inference. The process
can be split into two stages: pre-inference and at-inference. The pre-inference
stage involves training the ball tree algorithm responsible for finding neigh-
bouring samples, and the at-inference stage involves using the learned ball tree
algorithm to make predictions.

pre-inference – As shown in Algorithm 7, for each window C, we first
prepare the training features (Xtrain) using the same process as before. Second,
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we train the ball tree algorithm using the prepared features (Xtrain). We chose
the ball tree algorithm because it is faster than both brute force and the KD
tree algorithm for high-dimensional data (with ≥ 100 features).

Algorithm 7: Training Ball Tree Algorithm for the Current Window

Input:
C /* Current Time Window */

1 D /* Seen Training Data */

Output: M /* Nearest Neighbor Model */

2 Function createNNModel(C, D):
3 Xtrain ← D[C − 15 : C][′features′]
4

/* Create NN model using commit metrics and code changes as features

*/

5 M = NearestNeighbors(algorithm =′ ballT ree′)
6 M.fit(Xtrain)
7 return M

8 End Function

Algorithm 8: Inference with Clustering for the Current Window

Input:
C /* Current Time Window */

1 K /* Past Knowledge of Models’ Performance */

2 NC /* Nearest Neighbor Model for C */

3 Hall /* Model Version History */

4 kN /* # neighboring commits to consider in model selection */

5 Xnew /* Unseen commit ID */

Output: Pnew /* Predicted Label for Xnew */

6 Function modelVoting(C, K, NC , Hall, kN , Xnew):
7 commitIDs← getKNearestCommitIDs(NC , Xnew, kN)
8 modelV ersion← getBestModelV ersionByMSE(K[C − 15, C], Hall[C − 15 :

C], commitIDs)
9 Pnew ← predict(modelV ersion,Xnew)

10 return Pnew

11 End Function

at-inference – At inference time, we query the ball tree algorithm for each
new commit to retrieve the k neighbouring (i.e., most similar in terms of feature
vector) commits observed in the past. The primary objective is to identify the
best model from model history based on the models’ performance on these
neighbouring commits. To achieve this, we evaluate the mean-squared error
(MSE) of all models from the model history at the current window on these
neighbouring commits. Afterwards, we find the model with the best MSE from
the evaluated model history on these neighbours, and use it for inference on the
new commit as outlined in Algorithm 8. The implementation of the clustering
strategy incorporates scikit-learn’s NearestNeighbors (Pedregosa et al. 2011).
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The process involved in inference can be seen as costly, as it requires eval-
uating the available model history on k neighbouring commits at inference
time. To reduce the computation cost at-inference, in turn reducing delay in
inference, we propose to use absolute error lookup by evaluating the models at
the pre-inference time. At the pre-inference time, we evaluate the models on
each commit in the training data seen by the available model history. We then
store the absolute error of each model for each commit from the training data.
At inference time, we retrieve the pre-evaluated absolute error of models for
the k-neighbouring commits of the new commit. We then aggregate the ab-
solute errors on k-neighbouring commits into mean-squared-error (MSE) for
each model and use MSE to identify the best model for the new commit.

Clustering is an intuitive strategy that selects the best model based on the
similarity of the new commit to the commits observed in the past. Since this
strategy identifies the best model at runtime, it requires evaluating multiple
models at runtime, which can be computationally expensive. These compu-
tation costs can be reduced by using the absolute error lookup as discussed
earlier. Clustering can be an effective strategy since it selects the best model
based on its local performance on the most similar commits in the past.

5 Empirical Evaluation of Recycling Strategies

In this section, we evaluate the recycling strategies proposed in Section 4
to answer RQ2 and RQ3. For each research question, we first describe the
approach we use to evaluate the recycling strategies. Then, we present the
results of our case study and discuss the findings.

5.1 RQ2: What variant works best for each recycling strategy?

5.1.1 Motivation

This research question aims to find out what variant of each recycling strategy
exploits the most value out of old models when compared to exclusively using
a model that is retrained from scratch (RFS). We do not yet compare across
recycling strategies.

5.1.2 Approach

Each proposed recycling strategy can be implemented with various configu-
rations, which we refer to as a variant. These variants are created based on
the different configuration dimensions discussed in Section 4 as listed in Table
6. For each recycling strategy, we empirically evaluate its multiple variants to
find the best variant for this research question. The data used for this evalua-
tion is the same as in RQ1 (Section 3). The baseline (RFS) is created by using
the same setup as described in Sections 3.2.1 to 3.2.6.
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For each variant, we collect performance vectors by evaluating the variant
on the metrics discussed in Section 3.2.6 for each time window. As a baseline,
we use the respective model that is retrained from scratch (RFS) for each
window, e.g., RFS Random Forest model for Random Forest model variants
and RFS Logistic Regression model for Logistic Regression model variants. We
use the Wilcoxon signed-rank test (Woolson 2007) to find the variants that
statistically significantly perform better than the baseline, using Bonferroni
correction (Weisstein 2004) to adjust the p-value for multiple comparisons.
Then, to evaluate the effect size for each variant with significant change, we
use Cliff’s delta effect size (Macbeth et al. 2011). Cliff’s delta measures the
observable effect of significant differences. We followed the values provided
by Hess and Kromrey (2004) for interpreting the result of this value. Values
smaller than 0.147 are negligible, values in the range [0.147, 0.33) are small,
values in the range [0.33, 0.474) are medium, and values greater than 0.474 are
large. For detailed p-value statistics and the effect size of each variant, please
refer to the online replication package (Patel 2023).

To identify whether a significant change is positive or negative, we calcu-
late the difference in mean metric performance between recycling and baseline
performance vectors. If the value is negative, we mark that as performance
degradation, while, if positive, we mark that as performance improvement
compared to the baseline. For detailed differences in the mean metric perfor-
mance of each variant, we again refer to the online replication package (Patel
2023).

To summarize the statistical results for each variant, we show for each
performance metric the number of projects having significant improvement
or degradation out of the eight projects evaluated. To highlight whether the
change is positive or negative, we show superscript “+” for improvement and
“−” for degradation. We also highlight the cells based on the summarized
effect size of the change. For a single variant, the summarized effect size is the
most frequent effect size across all projects. In case of a tie, we superscript
the cell with a “∗” and highlight the cell with the greater effect size out of the
two. For example, if a variant improves a performance metric in 4/8 projects
by a small effect size and in 4/8 projects by a large effect size, we highlight
the cell with a large effect size and superscript the cell with a “∗”.

5.1.3 Results

5.1.3.1 Model Selection

For Random Forest (RF) and Logistic Regression (LR) models, the
model selection recycling variants were able to significantly improve
recall and g-mean compared to RFS for at least 25% of the projects,
while they suffered significant performance degradation for Neural
Network (NN) models. Tables 7, 8 and 9 show the number of projects that
experienced significant change per metric for the RF, LR and NN models, re-
spectively. The RF variants show similar improvements in recall, g-mean, AUC
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Table 6: List of variants evaluated for each recycling strategy

Recy-
cling
Strat-
egy

Variant
Dimen-
sion

Description Evaluated
Options

Model
Selection

Model
Search
Space

Length of model version history Limited (=15), All

Filtering
Metric

Metric used for filtering the model search
space

f1-score, g-mean

Post In-
ference

Post inference method used to combine old
and new model’s prediction probabilities

average-probabilities

Single
Model
Reuse

Model
Search
Space

Length of model version history Limited (=15), All

Filtering
Metric

Metric used for filtering the model search
space

f1-score, g-mean

Model
Stacking

Model
Search
Space

Length of model version history Limited (=15), All

Filtering
Test

Statistical test used for filtering the model
search space

Wilcoxon,
ScottKnott

With
Commit
Features

Flag indicating whether commit features
(i.e. commit metrics and code changes) were
used in training meta-model

yes/no

Data
Sample

Data sampling technique used to sample
data from seen data

all, random
(N=1000), randomly
resampled (N=1000)

Model
Voting

Model
Search
Space

Length of model version history Limited (=15), All

Filtering
Test

Statistical test used for filtering the model
search space

Wilcoxon,
ScottKnott

Voting
Method

Voting method used to combine probabilities
or votes from ensemble of classifiers

soft, hard

Clustering
k-
Neighbors

# neighboring samples used to evaluate and
select the best model for unseen data sample

20, 40

and F1 for 2-3 projects with effect sizes ranging from negligible to medium.
However, there is a noticeable decline in precision for 1-2 projects, with neg-
ligible to small effect sizes. Determining a clear winner is challenging, as all
variants display similar performance, ± one project (effect size). Among the
LR variants, specifically #2, #4, #6, and #8, stand out as the top performers.
They demonstrate improvements (up to a median of 2.6-4%) in precision, AUC,
and F1, without any performance degradation. Other LR variants result in de-
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creased recall (up to a median of 5.5%) while improving other metrics but only
for one or two projects. In contrast, NN variants consistently exhibit perfor-
mance degradation across almost all projects, with large effect sizes observed
for all metrics. This can be because of the high variance in the performance
of NN models, which makes it difficult to find a good old model for inference.
We will not discuss NN models further in this section since it seems that the
model selection strategy does not work well for NN models.

For both RF and LR, variants #5-8 were able to perform similarly as
variants #1-4, despite using a simpler configuration, since they only require a
limited model search space, in turn requiring less computations. While for RF,
variants #2, #4, #6 and #8 show improvements in more projects than the
other four variants, these improvements are not as significant as the other four
variants because of the negligible effect size in AUC, g-mean and F1. However,
variants #4 and #8 can be argued to be slightly better choices in practice due
to no significant degradation in precision. Similarly, for LR, variants #2, #4,
#6 and #8 show improvements in more projects than the other four variants,
with variants #4 and #8 showing slightly better performance in terms of
g-mean, precision and F1.

filtering metric – Out of all variants, one can see that using g-mean as the
filtering metric resulted in slightly more projects experiencing significant im-
provements in precision, g-mean and F1. This can be because the g-mean gives
equal importance to both classes (Section 3.2.6). This characteristic helps the
filtering process in finding the best old model that performs well on both class
labels, in turn helping the strategy to pick the best old model for inference.

post-inference – We also observe that using the post-inference method (i.e.,
averaging probabilities of the old and new models) instead of using a recycling
model, improved AUC in > 25% projects for all variants (i.e., #2, #4, #6
and #8), with negligible to medium effect size and resulted in lower recall
improvements. This can be because using post-inference averages the proba-
bilities of both old and new models, which favours the prediction towards a
more confident model (i.e., class label with higher probability). Since confi-
dent predictions improve the ROC curve, it results in better AUC but this
does not mean the model was able to make more correct predictions. This
can happen if the model adjusts its predicted probabilities across the board,
making them more extreme, but still maintaining the same decision boundary
for classification.

5.1.3.2 Model Reuse

The best model reuse recycling variants were able to significantly
improve recall, g-mean and F1 for at least one project in case of RF,
did not improve or degrade significantly in case of LR and degrade
significantly in case of NN. Table 10 shows that the RF variants had very
similar performance, with improvements in 2-4 (small-large effect, up to a
median of 7.4-8%), 1 (small-medium effect, up to a median of 4.5-5.8%) and 1
(negligible-small effect, up to a median of 3.8-4%) project(s) for recall, g-mean
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Table 7: Model Selection (RF): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Post
Inference

Preci-
sion

Re-
call

G-
Mean

AUC F1

all

1 f1 score n/a 2−∗ 2+∗ 0 0 0

2 f1 score avg. prob. 1− 2+∗ 1+ 2+ 1+

3 g-mean n/a 1− 2+∗ 0 0 0

4 g-mean avg. prob. 0 2+∗ 2+ 3+ 1+

limited

5 f1 score n/a 2−∗ 2+∗ 0 0 0

6 f1 score avg. prob. 1− 2+∗ 1+ 2+ 1+

7 g-mean n/a 1− 2+∗ 0 0 0

8 g-mean avg. prob. 0 2+∗ 2+ 3+ 1+

Cliff’s Delta Effect Size) ■ Small ■ Medium ■ Large

Table 8: Model Selection (LR): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Post
Inference

Preci-
sion

Re-
call

G-
Mean

AUC F1

all

1 f1 score n/a 3+ 2+2−∗ 2+ 1+ 1+

2 f1 score avg.
prob.

3+ 2+ 1+ 6+ 2+∗

3 g-mean n/a 5+ 2−∗ 1+ 0 2+∗

4 g-mean avg.
prob.

4+ 0 4+∗ 5+ 3+

limited

5 f1 score n/a 3+ 2+2−∗ 2+ 1+ 1+

6 f1 score avg.
prob.

3+ 2+ 1+ 6+ 3+

7 g-mean n/a 5+ 2−∗ 2+∗ 0 2+∗

8 g-mean avg.
prob.

4+ 0 4+ 5+ 3+

Cliff’s Delta Effect Size) ■ Small ■ Medium ■ Large

and F1, respectively. These improvements come at the cost of degradation
in 3 (small effect, up to a median of 4.5-4.8%), 0-1 (medium effect, up to a
median of 3.7) and 0-1 (negligible effect, up to a median of 1%) project(s) for
precision, g-mean and AUC metric performance, respectively. While variants
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Table 9: Model Selection (NN): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Post
Inference

Preci-
sion

Re-
call

G-
Mean

AUC F1

all

1 f1 score n/a 7− 5− 6− 7− 7−

2 f1 score avg. prob. 7− 5− 6− 7− 7−

3 g-mean n/a 7− 6− 6− 7− 7−

4 g-mean avg. prob. 7− 6− 6− 7− 7−

limited

5 f1 score n/a 7− 5− 6− 7− 7−

6 f1 score avg. prob. 7− 6− 6− 7− 7−

7 g-mean n/a 7− 6− 6− 7− 7−

8 g-mean avg. prob. 7− 6− 6− 7− 7−

Cliff’s Delta Effect Size) ■ Small ■ Medium ■ Large

#1 and #3 show higher effect size improvements than the other two variants,
they lack in the overall number of projects experiencing improvements.

Table 11 shows that LR variants did not make enough significant changes
in the performance of any metrics to say that recycling the old model is better
than retraining from scratch. Worse, Table 12 shows that the NN variants
resulted in significant degradation in all projects for all metrics. Both model
selection and model reuse strategies depend significantly on the selection of the
best old NN model and result in significant degradation in performance due
to its over-reliance on the old NN model. This suggests that old NN models
are not able to generalize to other windows. This can again be because of the
high variance in the performance of NN models over different windows, which
makes it difficult to find a good old model for inference.

model search space – Although there is no clear winner, variants #3 and
#4 use a simpler configuration, since they use a limited model search space,
which requires less computation.

filtering metric – Similar to model selection, the model reuse recycling
strategy results in slightly more projects experiencing improvements in recall
and g-mean when using g-mean as a filtering metric, although one project
had a larger effect size improvement in recall for f1-score filtering. This can
be because of the g-mean’s characteristic of giving equal importance to both
classes in the score (3.2.6). Since this recycling strategy reuses the old model
as is, using g-mean as a filtering metric helps in selecting the model with the
best performance on both class labels.
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Table 10: Model Reuse (RF): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Preci-
sion

Re-
call

G-
Mean

AUC F1

all
1 f1 score 3− 2+∗ 1+1−∗ 1− 1+

2 g-mean 3− 4+ 1+ 0 1+

limited
3 f1 score 3− 2+∗ 1+1−∗ 1− 1+

4 g-mean 3− 4+ 1+ 0 1+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 11: Model Reuse (LR): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Preci-
sion

Re-
call

G-
Mean

AUC F1

all
1 f1 score 2− 1+ 0 0 0

2 g-mean 1+ 0 0 1+ 0

limited
3 f1 score 1+2− 1+ 0 0 0

4 g-mean 0 0 0 0 0

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 12: Model Reuse (NN): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Metric

Preci-
sion

Re-
call

G-
Mean

AUC F1

all
1 f1 score 7− 5− 6− 7− 7−

2 g-mean 7− 6− 7− 7− 7−

limited
3 f1 score 7− 5− 6− 7− 7−

4 g-mean 7− 6− 7− 7− 7−

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

5.1.3.3 Model Stacking

The best model stacking variant for RF uses the Wilcoxon test for
filtering model version history, randomly resampled or all samples
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for training, and both stacked model probabilities and commit fea-
tures. In Table 13, RF variants #2, #3, #5, #6, #8, #9, #10, and #11
stand out with the highest number of projects experiencing significant im-
provements. They demonstrate improvements in recall (5-6 projects, medium
to large effect, up to a median of 17-35.8%) and g-mean (2-4 projects, large
effect, up to a median of 11.8-21.3%). However, there is a trade-off with a
decline in precision (up to a median of 9%) across 2-6 projects with small
effect sizes. Among these variants, #6 and #8 win by minimizing the number
of projects with small effect size degradation in precision while significantly
improving recall and g-mean in the majority of projects (up to 75% and 50%
of projects, respectively).

The most effective LR model stacking variant adopts the Wilcoxon
test for filtering model version history, randomly resampled or all
samples for training, and both stacked model probabilities and com-
mit features. Alternatively, variants using the ScottKnott test with
all samples for training, combined with both stacked model proba-
bilities and commit features, also prove effective. Table 14 shows that
LR variants #1, #5, #6, #8, #9, #10, and #11 have the most projects with
significant improvements in precision (4-6 projects, small to large effect, up
to a median 5.4-14%), g-mean (4-6 projects, medium to large effect, up to a
median 5.7-8%), AUC (6-7 projects, large effect, up to a median 5.8-11%), and
F1 (5-7 projects, small to medium effect, up to a median 5-8.7%). However,
there is a decrease in recall (up to a median of 9%) in one project with a
medium effect size. Variants #1, #6, and #8 stand out by having only one
or no project with medium effect size degradation in recall while significantly
improving other metrics for at least 60% of projects with significantly small
to large effect sizes.

The optimal NN model stacking variant uses either the Wilcoxon
or ScottKnott test for filtering model version history, randomly re-
sampled or all samples for training, and both stacked model prob-
abilities and commit features. Finally, Table 15 shows that NN variants
#1, #5, #6, #8, and #11 exhibit the most projects with significant improve-
ments in g-mean (4-6 projects, large effect, up to a median 7.9-9.8%), AUC
(6-7 projects, large effect, up to a median 7.6-10%), and F1 (6-7 projects, small
to large effect, up to a median 9.8-12.4%). However, they show a decline in
precision (up to a median 4.3-8.8%) and recall (up to a median 22-23%) in
1-2 projects with medium to large effect sizes. Variants #1, #5, #6, and #8
excel by using simpler configuration (limited model search space) and provid-
ing similar improvements in g-mean and AUC for at least 50% and > 75% of
projects with significantly large effect sizes, respectively.

filtering test – When comparing ScottKnott and Wilcoxon filtering test
variants side-by-side, overall Wilcoxon performed better than ScottKnott by
having improvements in slightly more projects with higher effect size. This
can be because Wilcoxon resulted in more models remaining for stacking than
ScottKnott, which means that more statistically different models provide in-
put to the meta-model for training. These models are trained on different
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time windows, which can help the meta-model to generalize better on unseen
commits.

data sampling technique – Out of all data sampling variants, randomly
resampled worked best, followed by using all data, and using a random sample.
This can be because the random sample variant outputs training data with
skewed label distribution due to label imbalance in the source dataset. This
label bias in data propagates to the model and negatively impacts the results.
Compared to the all data variants, randomly resampled performed better while
using less training data, in turn requiring less computation.

model search space – Using the full model search space (“all”) results in a
high number of models used for stacking and can increase the feature space, in
turn increasing the compute time with no or negative effect on the improve-
ments of g-mean, AUC and F1 results as shown in Tables 13, 14 and 15. This
is why we did not try all possible variants under the all model search space
variants. Between the all and limited model search space, limited seemed to
provide improvements in more projects than using all.

commit features – Overall, using commit features along with stacked model
probabilities resulted in fewer projects with degradation in precision than us-
ing only stacked model probabilities, while giving a similar performance in
other metrics, or resulted in more projects with improvements across multiple
metrics. This can be because commit features can provide additional informa-
tion to the model including information about underlying feature distribution
changes between time windows, which can help the model to improve on clas-
sification mistakes made by base models. However, using commit features can
increase the feature space and hence the training time.

5.1.3.4 Model Voting

The best model voting recycling variant for RF and LR uses the
Wilcoxon test for filtering model version history, limited model ver-
sion history and soft voting, while no significant improvements were
observed for NN. Table 16 shows that RF variants #1 and #2 demonstrate
the highest number of projects with significant improvements and the fewest
instances of precision degradation (up to a median of 3.2%). Both variants
show similar improvements in recall (1 project with a medium effect, up to a
median of 7.5%) and AUC (1 project with a negligible effect, up to a median of
1.5%). However, variant #2 slightly outperforms by having a negligible effect
size degradation in precision.

In Table 17, LR variants #1, #2, and #3 lead in projects with improve-
ments across various metrics: precision (2 projects with a small effect, up to a
median of 6%), recall (1 project with a medium-large effect, up to a median
of 10.7%), AUC (2-3 projects with a medium effect, up to a median of 5.8%),
and F1 (1-3 projects with a small effect, up to a median of 4.6%). While vari-
ant #2 shows no degradation and more projects with improvements, it only
marginally outperforms the others.
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Table 13: Model Stacking (RF): # of projects (out of 8) experiencing significant
change per evaluation metric

Model
Search
Space

# Filter-
ing
Test

With
Commit
Features

Data
Sample

Pre-
ci-
sion

Re-
call

G-
Mean

AUC F1

limited

1 Scot-
tKnott

yes all 1− 3+∗ 2+∗ 1+ 1+

2 Scot-
tKnott

no all 6− 6+∗ 3+∗ 1+ 1+

3 Scot-
tKnott

no randomly
resampled

6− 5+ 2+∗ 1+ 1+

4 Scot-
tKnott

yes random 2+1− 2+2−∗ 2− 0 1−

5 Scot-
tKnott

yes randomly
resampled

5− 6+ 4+∗ 1+ 1+

6 Wilcoxon yes all 2−∗ 6+∗ 4+∗ 1+ 1+

7 Wilcoxon yes random 1+ 2+2−∗ 2− 0 0

8 Wilcoxon yes randomly
resampled

4− 6+∗ 4+∗ 1+ 1+

9 Wilcoxon no all 6− 5+ 3+ 1+ 1+

10 Wilcoxon no randomly
resampled

6− 5+ 3+ 1+ 1+

all 11 Wilcoxon yes randomly
resampled

4− 5+ 3+ 1+ 1+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Finally, Table 18 reveals that none of the NN variants succeed in improving
model performance. This might be attributed to a generalization issue, where
the models struggle to generalize well on unseen commits. Alternatively, it
could be that filtered models were not different enough to be useful for voting.

model search space – Similar to model stacking, using all model version
history impacted performance negatively, so we did not test other variants
with the all model search space option.

voting method – Using hard voting resulted in performance degradation
for RF, improved performance for LR models and negligible improvements for
NN. The reason behind this variance in performance can be that the correct
predictions have a higher chance of getting overshadowed by other models
in the ensemble, as the hard voting variant relies on majority voting using
models’ predicted labels.
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Table 14: Model Stacking (LR): # of projects (out of 8) experiencing significant
change per evaluation metric

Model
Search
Space

# Filter-
ing
Test

With
Commit
Features

Data
Sample

Pre-
ci-
sion

Re-
call

G-
Mean

AUC F1

limited

1 Scot-
tKnott

yes all 6+∗ 1+1−∗ 5+ 7+ 7+∗

2 Scot-
tKnott

no all 6+ 0 2+∗ 4+ 2+

3 Scot-
tKnott

no randomly
resam-
pled

6+ 0 2+∗ 4+ 2+

4 Scot-
tKnott

yes random 6+ 1+4− 2+1− 6+ 3+1−

5 Scot-
tKnott

yes randomly
resam-
pled

4+ 5+ 5+ 6+ 6+

6 Wilcoxon yes all 6+ 1+1−∗ 5+ 7+ 6+

7 Wilcoxon yes random 6+ 1+4− 2+1− 6+ 3+1−∗

8 Wilcoxon yes randomly
resam-
pled

5+ 3+ 6+ 7+ 6+

9 Wilcoxon no all 6+ 0 4+∗ 6+ 5+∗

10 Wilcoxon no randomly
resam-
pled

6+ 0 5+ 6+ 5+

all 11 Wilcoxon yes randomly
resam-
pled

5+ 4+ 5+ 6+ 6+∗

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

filtering test – Overall, using the Wilcoxon test for filtering model version
history works slightly better for the model voting recycling strategy. This can
be because the Wilcoxon filtering again results in more models than Scot-
tKnott, i.e., more models are used in the ensemble than ScottKnott. This can
lead to better performance, since voting relies only on the predicted probabil-
ities of the models as input.

5.1.3.5 Clustering

Although model clustering sounds like an intuitive way for recycling,
it does not result in any performance gain; instead, it degrades the
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Table 15: Model Stacking (NN): # of projects (out of 8) experiencing signifi-
cant change per evaluation metric

Model
Search
Space

# Filter-
ing
Test

With
Commit
Features

Data
Sample

Pre-
ci-
sion

Re-
call

G-
Mean

AUC F1

limited

1 Scot-
tKnott

yes all 5+1− 2+2− 4+1− 7+ 7+

2 Scot-
tKnott

no all 0 1+ 0 0 0

3 Scot-
tKnott

no randomly
resam-
pled

0 1+ 0 0 0

4 Scot-
tKnott

yes random 5+1− 2+2− 2+2− 6+ 2+1−∗

5 Scot-
tKnott

yes randomly
resam-
pled

1+ 4+ 6+∗ 6+ 6+

6 Wilcoxon yes all 5+1− 2+2− 4+1− 7+ 7+

7 Wilcoxon yes random 5+1− 2+2− 2+2− 7+ 2+1−

8 Wilcoxon yes randomly
resam-
pled

1+ 4+ 6+∗ 6+ 6+

9 Wilcoxon no all 0 2+∗ 0 1+ 0

10 Wilcoxon no randomly
resam-
pled

0 1+ 0 0 0

all 11 Wilcoxon yes randomly
resam-
pled

1+ 4+ 6+∗ 6+ 6+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

performance by a large margin for all models, i.e., RF, LR and NN.
Tables 19, 20 and 21 show that all variants showed a significant reduction in
metric performance for almost all projects, without significant improvement.

k-neighbors – Increasing the # of neighbours in variant #2 to twice that
of variant #1 did not make any improvements in performance metrics. Given
the inclusion of 15 different models in the search space, relying solely on the
model with the lowest MSE may not always be the optimal approach. This is
because the top-performing model in terms of MSE could potentially be overly
specialized to the training data, leading to overfitting issues. As a result, the
selection process tends to favour models that have been trained on a time
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Table 16: Model Voting (RF): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Test

Voting
Method

Preci-
sion

Re-
call

G-
Mean

AUC F1

limited
1 Scot-

tKnott
soft 1− 1+ 0 1+ 0

2 Wilcoxon soft 2− 1+ 0 1+ 0

3 Wilcoxon hard 1− 2+ 1− 1+ 1−

all 4 Wilcoxon soft 2+∗ 1+4− 4− 1+ 2−

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 17: Model Voting (LR): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Test

Voting
Method

Preci-
sion

Re-
call

G-
Mean

AUC F1

limited
1 Scot-

tKnott
soft 2+∗ 1+1−∗ 2+∗ 2+ 2+

2 Wilcoxon soft 2+∗ 1+ 0 3+ 3+

3 Wilcoxon hard 2+∗ 1+ 0 3+ 1+

all 4 Wilcoxon soft 4+ 1+4− 1− 3+ 1+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 18: Model Voting (NN): # of projects (out of 8) experiencing significant
change per evaluation metric

Model Search
Space

# Filtering
Test

Voting
Method

Preci-
sion

Re-
call

G-
Mean

AUC F1

limited
1 Scot-

tKnott
soft 0 0 0 0 0

2 Wilcoxon soft 0 1− 0 0 0

3 Wilcoxon hard 1+ 0 0 0 0

all 4 Wilcoxon soft 2−∗ 1+ 2−∗ 2−∗ 2−∗

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large
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window containing most of the neighbouring commits. This inherent bias may
help explain why the clustering strategy did not yield favourable results in our
experimental setup.

Table 19: Clustering (RF): # of projects (out of 8) experiencing significant
change per evaluation metric

# k-Neighbors Precision Recall G-Mean AUC F1

1 20 7− 7− 7− 7− 7−

2 40 7− 7− 7− 7− 7−

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 20: Clustering (LR): # of projects (out of 8) experiencing significant
change per evaluation metric

# k-Neighbors Precision Recall G-Mean AUC F1

1 20 7− 7− 7− 7− 7−

2 40 7− 7− 7− 7− 7−

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 21: Clustering (NN): # of projects (out of 8) experiencing significant
change per evaluation metric

# k-Neighbors Precision Recall G-Mean AUC F1

1 20 7− 6− 6− 7− 7−

2 40 7− 7− 6− 7− 7−

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large
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Model Selection and Model Reuse strategy variants performed very
similarly to each other in terms of prediction performance, while
Model Stacking and Model Voting strategy variants performed bet-
ter when the Wilcoxon test was used for filtering model history. Al-
though Clustering sounds like an intuitive way for recycling, it did
not result in any performance gain; instead, it degraded the perfor-
mance by a large margin. All strategies except Clustering showed
significant improvements in at least one project for Random Forest
(RF) and Logistic Regression (LR) models. However, none of the
strategies except Model Stacking showed significant improvements in
any project for Neural Network (NN) models.

Summary for Research Question 2

5.2 RQ3: Which recycling strategy performs the best?

5.2.1 Motivation

After evaluating the variants of each recycling strategy in isolation in RQ2,
we want to determine which strategy works best overall. Additionally, while a
recycling strategy may work best in terms of the model’s performance, we want
to understand the trade-off between inference latency and model performance
for each recycling strategy, because some strategies require one extra model
inference to determine the best historical model, while others require inference
of more than two historical models.

5.2.2 Approach

This research question builds on RQ2. Having found the best variant(s) for
each recycling strategy, we compare each recycling strategy using its best vari-
ant. We reuse the performance results of RQ2, this time to determine the best
variant across all recycling strategies.

As the best RF variant for each recycling strategy, we use variant #8
from model selection, variant #4 from model reuse, variant #8 from model
stacking and variant #2 from model voting, respectively, because these showed
the best performance in terms of # projects across evaluation metrics while
using simpler configurations. We do not include any variant from clustering in
this comparison because it did not show any significant improvements in any
of the projects. Using the same criteria, we selected LR variants #8, #8 and
#2 for model selection, model stacking and model voting, respectively. We do
not include any variant from model reuse and clustering in this comparison,
because they did not show any significant improvements in any of the projects.
For NN, we selected #8 for model stacking only, since other strategies did not
show any significant improvements in any of the projects.
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Furthermore, we evaluate the inference latency of the selected best variant
for each recycling strategy. As a baseline, we measure the inference latency
of the RFS model on a given window. The inference latency is retrieved by
measuring the time to inference on each test sample for that window, and do-
ing this across all windows yielding

∑project=8
project=1(# Evaluated Windows)project∗

Test Size(=200) measurements. We only collect one time measurement per test
sample since there are enough test samples for each project to generalize the
latency. For example, the minimum # test samples for the project with the
least # windows (9 for ActiveMQ) is 1, 800. We then compare each recycling
strategy’s best variant based on its metric performance and on its inference
latency.

We perform statistical tests on the latency measurements of each recy-
cling strategy’s best variant against the baseline (no recycling). We use the
Wilcoxon signed-rank test to determine if the latency measurements of each
recycling strategy’s best variant are significantly different from the baseline
and we use the Cliff’s Delta effect size to determine the magnitude of the
difference between them. Additionally, to help understand latency differences,
we measure the median latency ratio of the recycling strategy’s best variant
to the baseline.

5.2.3 Results

The model stacking recycling strategy gives the best improvements
in terms of prediction performance in recall, g-mean and F1 among
all recycling strategies tested. Tables 22, 23 and 24 show the significant
performance metric changes for each best variant of RQ2 for all models (RF,
LR and NN). For RF, out of all recycling strategies evaluated in this study,
model stacking showed a significant increase in 4/8 and 6/8 projects for g-mean
and recall respectively (compared to RFS), with large effect sizes, despite a
decrease in precision in 4/8 projects with small effect sizes. For LR, model
stacking showed a significant increase in all metrics, while improving perfor-
mance for ≥ 75% of projects for g-mean, AUC and F1, with medium-large ef-
fect sizes. Finally, for NN, model stacking was the only strategy that improved
performance with 6/8 projects in g-mean, AUC and F1. Model stacking is an
ensemble approach, and when used with multiple generalizers trained on dif-
ferent time windows, it seems to get the most out of old estimators across all
models.

Model selection and model voting are second-best recycling strate-
gies in terms of prediction performance. There is no clear second-best
recycling strategy between model selection and model voting. For RF and
LR, The model selection recycling strategy shows improvements across more
projects with a negligible-medium effect size. On the other hand, for RF, model
voting shows slight improvements in recall and AUC, while for LR, it shows
higher effect size improvements in Recall, AUC and F1 for comparatively more
projects. Finally, for NN, both model selection and model voting showed no
significant improvements as discussed earlier. Model selection uses the recy-
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cling model’s prediction to decide which model to reuse for inference, whereas
model voting is an ensemble approach that uses the predictions of multiple
models to decide the final prediction. In other words, model selection, while
using fewer models than model voting, can provide similar performance im-
provements if not better than model voting.

The model reuse recycling strategy comes last in terms of pre-
diction performance. While it was able to boost the performance of recall
and g-mean in some projects, it led to precision degradation in more projects
than it was able to improve g-mean or F1. Additionally, it was only able to
significantly improve performance for RF models, not for LR and NN. This
can be because the model reuse recycling strategy’s focus on reusing only the
best old model can sometimes result in a model that is not well suited for the
current data distribution.

Table 22: # of projects (out of 8) experiencing significant change for the best
recycling strategy variants (RF)

Recycling Strategy Precision Recall GMean AUC F1

Model Selection 0 2+∗ 2+ 3+ 1+

Single Model Reuse 3− 4+ 1+ 0 1+

Model Stacking 4− 6+ 4+ 1+ 1+

Model Voting 2− 1+ 0 1+ 0

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Table 23: # of projects (out of 8) experiencing significant change for the best
recycling strategy variants (LR)

Recycling Strategy Precision Recall GMean AUC F1

Model Selection 4+ 0 4+ 5+ 3+

Model Stacking 5+ 3+ 6+ 7+ 6+

Model Voting 2+∗ 1+ 0 3+ 3+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Inference latency increases by 6-11x for model voting, 7-17x for
model stacking, 2x for model selection, and remains the same for
model reuse compared to the baseline. Figures 10, 11 and 12 show the
inference latency results for each best variant under each recycling strategy
tested for each model, while Tables 25, 26 and 27 show the difference factor
between inference latency of baseline and recycling for each project and model
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Table 24: # of projects (out of 8) experiencing significant change for the best
recycling strategy variants (NN)

Recycling Strategy Precision Recall GMean AUC F1

Model Stacking 1+ 4+ 6+∗ 6+ 6+

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

alongside statistical test results. The baseline shows results when only using
the latest model for every inference request.

Both model voting and model stacking result in significantly
higher inference latency than the baseline, i.e., six to seventeen
times. Between the two, model stacking requires higher inference
times because of the additional computations required for meta-
model inference. Tables 25, 26 and 27 and Figures 10c 11b and 12a show
that these slowdowns are statistically significant in all projects and models
with large effect sizes, with the median inference time ranging from 6-11x
baseline for model voting and 7-17x baseline for model stacking. This is due
to the ensemble nature of these two recycling strategies, i.e., we are doing in-
ferencing on multiple models stacked together. Note that this may differ with
the choice of model history filtering approach, because, in our study, we saw
that the Wilcoxon test-based variant resulted in generally more than three
models and sometimes up to ten or more after filtering. In contrast, the num-
ber of models stacked is significantly lower with the Scott Knott test-based
variants. Even though both recycling strategy variants in the table used the
Wilcoxon test for filtering, model stacking has a higher inference delay than
model voting. This is because the selected model stacking recycling variant
requires using the meta-model inference as well as commit features alongside
stacked model probabilities, which increases the feature space and inference
time.

Model selection results in twice the inference latency of the base-
line because of the additional inference required for each inference
request. This is because the best variant tested for model selection averages
probabilities of two predictions, meaning it always requires inference of two
models before it can provide a final prediction. Hence, as expected, Tables
25 and 26 show that model selection has statistically significant differences in
latency in all projects, with large effect sizes and with a median inference time
of ∼ 2x baseline.

The model reuse recycling strategy results in the same inference
latency as the baseline because it requires a single model inference
for each inference request. For model reuse strategy, in both cases we are
only doing inference with one model, i.e., inference with the old recycled model
or baseline inference with the RFS model. Table 25 shows that the model reuse
recycling strategy has a statistically significant difference in latency in only five
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projects, but with negligible effect size and median inference time being similar
to baseline (1x).

The model selection and model stacking variants provide a good
trade-off between inference latency and model performance. In prac-
tice, depending on the importance of inference latency or performance, an
appropriate strategy can be chosen. Both model selection and model stacking
are good strategies because of the trade-off between their metric performance
and inference latency. Model selection, while giving performance improvements
in at least 25% of projects, results in inference latency of 2x baseline. On the
other hand, model stacking, while providing performance improvements in at
least 50% of projects, results in inference latency of 7-17x baseline. Looking
at model voting, it improves the performance in only 12 − 37% of projects,
while still resulting in inference latency of 6-11x baseline. Lastly, model reuse,
while resulting in the same inference latency as the baseline and improving
performance in 12 − 50% of projects, also degrades precision for 37% of the
projects.

The decision on a model recycling strategy is ultimately left to
practitioners, guided by our analysis of the trade-off between pre-
dictive performance and inference latency. While inference latency re-
mains a crucial consideration, it is not the sole determinant when opting for
a recycling strategy. In scenarios where the model operates in real-time sys-
tems, inference latency takes precedence over model performance. Conversely,
in batch systems, model performance outweighs inference latency.

Ensemble approaches can leverage parallel inference, diminishing
the significance of inference latency in the selection of a recycling
strategy. Our latency analysis reveals that some recycling strategies exhibit
superior predictive performance but incur a substantial increase, ranging from
6 to 17 times, in inference latency compared to the baseline. Notably, this
practical limitation can be mitigated by adopting parallel inference for stacked
base models instead of a sequential approach. Furthermore, it is essential to
stress that the observed increase in inference latency, although noteworthy,
consistently remains within the acceptable fraction-of-a-second range (< 300
milli-seconds), aligning precisely with the demands of the intended application
scenarios for just-in-time software defect prediction applications. Take, for
example, pull request review systems, where predictions occur while developers
await the review’s completion, which could take hours or even days.
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(a) Model Selection (b) Model Reuse

(c) Model Stacking (d) Model Voting

Fig. 10: Inference Latency per Recycling Strategy (RF)

Table 25: Median latency ratio of recycling to baseline and statistical test
results for inference latency of the best variant of each recycling strategy (α =
0.05) (RF)

Recycling Strategy Project

Ac-
tiveMQ

Camel Cas-
sandra

Flink Groovy HBase Hive Ig-
nite

Model Selection 2.016 2.017 2.017 2.029 1.996 1.990 1.988 2.023
Model Reuse 1.001 1.004 1.012 1.003 1.004
Model Stacking 7.598 10.356 8.889 10.676 9.287 9.001 8.598 9.325
Model Voting 6.757 9.232 7.811 9.453 8.369 8.230 7.652 7.994

Cell Highlights
(Cliff’s Delta Effect Size)

■ Small ■ Medium ■ Large

Note: blank cells above indicate that there was no statistically significant difference
between the latency of the baseline and the recycling strategy for that project.

Model selection provides improvements in at least ∼ 25% of projects
with 2x inference latency for RF and LR models, model stacking
provides improvements in at least ∼ 50% of projects with 7-17x in-
ference latency for all models, model voting provides improvements
in ∼ 12-37% of projects with 6-11x inference latency for RF and
LR, and model reuse provides improvements in ∼ 12-50% of projects
with no inference latency increase for only RF. Based on the trade-
off between inference latency and model performance, model selec-
tion and model stacking seem to be the best recycling strategies.

Summary for Research Question 3
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(a) Model Selection (b) Model Stacking

(c) Model Voting

Fig. 11: Inference Latency per Recycling Strategy (LR)

(a) Model Stacking

Fig. 12: Inference Latency per Recycling Strategy (NN)
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Table 26: Median latency ratio of recycling to baseline and statistical test
results for inference latency of the best variant of each recycling strategy (α =
0.05) (LR)

Recycling Strategy Project

Ac-
tiveMQ

Camel Cas-
sandra

Flink Groovy HBase Hive Ig-
nite

Model Selection 1.962 1.982 1.925 2.046 2.002 1.918 1.956 1.960
Model Stacking 16.409 17.811 15.246 16.935 16.052 15.566 12.900 17.015
Model Voting 10.105 11.612 8.141 11.723 8.974 9.856 6.921 11.057

Table 27: Median latency ratio of recycling to baseline and statistical test
results for inference latency of the best variant of each recycling strategy (α =
0.05) (NN)

Recycling Strategy Project

Ac-
tiveMQ

Camel Cas-
sandra

Flink Groovy HBase Hive Ig-
nite

Model Stacking 10.617 12.001 10.723 11.460 12.072 8.644 9.766 13.377

6 Threats to Validity

6.1 Internal Validity

In our experimental setup, we employed a sliding window technique to create
data splits, utilizing a window size of one thousand samples. The choice of
window size significantly impacts the number of samples available for training
a single model. Due to the infeasibility of evaluating all possible window sizes,
we addressed this potential threat to validity by conducting additional analysis
using a window size of two thousand samples alongside our primary window
size of one thousand samples. However, this did not show any significant im-
provements over the original window size. The results of these additional study
results can be found in the replication package (Patel 2023).

Similarly, we maintained a window shift of two hundred samples for all
analyses, which controls the overlap of data samples between consecutive win-
dows. To explore the impact of different window shifts, we further tested our
best variants with a window shift of three hundred samples. The results showed
some improvements in the baseline but they are not significantly better than
the original configuration settings used in this paper. The results of these
additional study results can be found in the replication package (Patel 2023).

In Section 3, we propose several hypotheses to account for instances where
older models outperform newer ones. While we hypothesize that such occur-
rences may stem from changes in project evolution, as previously discussed,
our work does not provide definitive evidence to support this claim. We ac-
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knowledge the need for further investigation into this and consider it as a
potential future work.

In the limited model history approaches, we set the model history size to
fifteen, considering only the fifteen most recent model versions for recycling
strategies. This limitation was a reasonable choice to avoid delving too far back
into the history of models. Given that the cost of computing resources and
time required to train and evaluate models increases with the model history
size, we decided not to continue testing other variants with a larger model
history size. However, to ensure a thorough investigation, we also conducted
experiments without limit on the model history size, enabling us to explore
potential improvements beyond the limited model history setting. Again, the
results do not show improvements over the limited model history setting. This
has been discussed in the results section of this paper.

We adopted hyperparameters from the JITLine model (Pornprasit and
Tantithamthavorn 2021) as a baseline for our RF model training, hyperparam-
eters from the DeepJIT model (Hoang et al. 2019) for our NN models and the
default configuration for LR provided by scikit-learn (Pedregosa et al. 2011).
Although hyperparameter tuning could potentially enhance the performance
of our MLM, we deliberately avoided this process to maintain consistency
across our experiments. Similar to Falessi et al. (2021), our focus does not lie
in improving the performance of the defect prediction MLM. But rather on
exploring the possibility of recycling old models to enhance the performance of
existing MLMs, treating them as black boxes. By conducting these supplemen-
tary experiments and maintaining specific choices in hyperparameter tuning,
we aim to provide a robust and comprehensive evaluation of our approach
while mitigating potential internal threats to the validity of our study.

In our DeepJIT experiments, we do not use commit messages as features.
This is because we want consistency in the features used across all models
(RF, LR and NN). However, one can argue that models like DeepJIT can
benefit additionally from textual features like commit messages. Therefore, we
conducted additional experiments with DeepJIT using commit messages as
features along with both commit metrics and code change features. The results
when compared with DeepJIT without commit messages showed statistical
significance, but with negligible effect size, in almost all metrics and projects.
The results of these additional study results can be found in the replication
package (Patel 2023).

6.2 External Validity

Our research used the ApacheJIT dataset (Keshavarz and Nagappan 2022) and
Just-In-Time defect prediction models to conduct our experiments. It is es-
sential to acknowledge that this dataset primarily comprises popular Apache
projects and their associated known bugs, which may limit its representa-
tiveness compared to all software projects. Furthermore, since the projects
within the dataset are written in the Java programming language, there may
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be concerns about the generalizability of our results to other programming lan-
guages. However, the commits level features used in this paper are language-
independent and can be extracted from any software project. Since we use
JIT defect prediction models to conduct our experiments, our results may not
apply to other software analytics models.

However, despite these considerations, we firmly believe that our approach’s
fundamental principles and methodologies are applicable and generalizable be-
yond the confines of the ApacheJIT dataset or JIT defect prediction models.
This adaptability extends to other software analytics techniques, further en-
hancing its potential utility. Therefore, while recognizing the specific context
of our case studies, we are optimistic that our findings can serve as a valu-
able foundation for future research and practical applications across diverse
software projects and programming languages.

Our study uses JIT defect prediction models leveraging random forest,
logistic regression and neural network models. These models fall under tra-
ditional machine learning models, and are widely used for defect prediction
(Zhao et al. 2023). Recently, Large Language Models (LLMs) have started
to revolutionize many fields. However, even today, many companies are still
training and deploying the majority of their own bread-and-butter non-LLM
machine learning models (deep learning, traditional classification models, etc.).
McKinsey’s report4 emphasizes that despite the rapid progress of generative
AI, traditional AI applications (like advanced analytics and machine learning)
still contribute more to the overall potential value (11.0-17.7 trillion dollars)
compared to the incremental impact of new generative AI use cases (2.6-4.4
trillion dollars). As such model recycling techniques will remain relevant in
the foreseeable future.

As to the applicability of model recycling to LLMs, the emergence of tech-
niques like frugalGPT (Chen et al. 2023) offer an efficient and cost-effective ap-
proach to using LLMs by sequentially cascading multiple LLMs, from cheapest
to most expensive. With various LLM APIs available, each with unique perfor-
mance and costs, strategic selection based on query requirements can reduce
expenses and enhance performance. The LLM cascade strategy sequentially
sends a query to multiple LLM APIs, returning the first reliable (cheapest) re-
sponse and avoiding more expensive queries, showing how multiple inferences
with LLM models are not unrealistic. As such, one could imagine our model
recycling strategies to be applied to LLMs as well, either to improve model
performance (focus of the current paper) or to reduce inference costs (Chen
et al. 2023). We leave this follow-up work as a potential future work.

6.3 Construct Validity

ApacheJIT uses the SZZ algorithm to find bug-inducing changes. The SZZ
algorithm tends to label many clean commits as bug-inducing. However, Ke-

4 https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-
potential-of-generative-ai-the-next-productivity-frontier#key-insights
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shavarz and Nagappan (2022) use additional filtering steps that are shown
to be effective in removing safe changes that are identified as bug-inducing
by SZZ, and they utilized GumTreeDiff (Falleri et al. 2014) to remove trivial
changes. Therefore, we believe that the bug-inducing changes in ApacheJIT
are of high quality.

We use the sliding window technique to create data splits to mimic release
cycles in real-world ML applications. This technique may not exactly repre-
sent every nuance of the real-world scenario, but it provides a structured and
controlled way to simulate the progression of time and evolving data distri-
butions. Despite its slight deviations from reality, we firmly believe that the
sliding window technique is a valuable approximation.

7 Discussion

The reuse of historical models in general is not new. There have been several
studies done in the past to exploit historical models to some extent for concept
drift adaptation. We have listed them in Table 28 along with other related
work. There are multiple distinctive features of our study compared to these
studies, which we discuss in detail in this section.

Black-box – A major distinctive feature of our study is that we treat the
historical models as black boxes. This is important, because retraining histor-
ical models can be costly and time-consuming, and would change the known,
possibly certified behaviour of an existing model. Furthermore, training data
or scripts of old models might no longer be available, while the historical,
black-box model could still be valuable.

Time Window – Another distinctive feature of our study is that we limit the
number of historical models to be reused, which in turn limits the historical
data to a specific time window. This is because, as we add models to the
ensemble, it increases complexity and it is impractical to load all historical
models in memory at inference. However, we also evaluated variants without
limiting the number of models where filtering is applied, which not only reduces
historical models but also selects models trained on diverse data distributions.
We believe that filtering can help in selecting the model trained on distinct
data trends which can help the ensemble generalize better on unseen data.

Filtering History – The third distinctive feature of our study is that we
filter the historical models before reusing them. This is because we want to
avoid reusing models that are too similar to other models in the ensemble
and might reduce the ensemble’s performance. This is important because if we
reuse similar models, it can lead to overfitting and reduce the diversity of the
ensemble. Another advantage of filtering historical models is that it reduces
the number of models to be reused, which reduces the number of models to
be inferenced per commit in turn reducing the inference time.

While many studies do limit the historical models using a time window,
they do not filter the models. They use weighted voting, which adjusts the
weights of the models based on their performance on the latest data. This



Post Deployment Recycling of Machine Learning Models 57

is done to avoid reusing models that are not performing well on the latest
data. However, this approach does not consider the diversity of the models,
which is important to avoid overfitting. This also means that all models in
the ensemble are inferenced every time even if their weight in prediction is
negligible, leading to higher latency.

Filtering Method – Filtering can be done in multiple ways. On the one
hand, one could use statistical tests such as the Wilcoxon or ScottKnott test
to cluster similar models and select models with statistically different error
performances. On the other hand, one could also use clustering techniques or
simply use performance metrics such as g-mean or f1-score to find the best
historical model. We believe that filtering can be done in multiple ways and
can be further explored in future work.

Domain – While prior research has explored historical model reuse for
concept drift adaptation, our study is the first to assess its applicability in the
context of software analytics models. It is important to note that the outcomes
of black-box model reuse can vary across domains. For instance, in tasks like
news article classification, as seen with TIX (Forman 2006), it consistently
achieved over 10 points of F-measure improvement. In contrast, experiments by
Tsymbal et al. (2008) using synthetic data sets emulating abrupt and gradual
concept drifts, as well as a real-world antibiotic resistance data set, revealed
that dynamically integrating classifiers built over small time intervals or fixed-
sized data blocks can outperform methods like majority voting and weighted
voting. As such, it is important to evaluate the performance of model recycling
in the domain of software analytics.

In our study, we evaluate the performance of five model recycling strategies
on Just-In-Time defect prediction models. When we compare the performance
of recycling strategies across projects, we see a variance in performance. This
is not only a problem with our study but also with other studies in the lit-
erature. For example, JITLine’s (Pornprasit and Tantithamthavorn 2021) F1-
score between OpenStack and QT differs by 10%. Similarly, in the study by
Kamei et al. (2016) on JIT defect prediction, within-project JIT defect pre-
diction F1-score varied up to 47% between eleven different projects studied.
This variance in performance can be due to the difference in data distributions
between projects. This is also the reason why we see a variance in performance
across projects in our study. However, we believe that our study is still valuable
because we see a consistent improvement in performance across projects for
the best recycling strategy (Model Stacking). This also holds for performance
degradation variants from the worst recycling strategy (Clustering).

Furthermore, we perform the first large-scale comparative study of multiple
recycling strategies. We also evaluate the trade-offs between each strategy in
terms of time-to-inference and metric performance. We believe that our study
can be a valuable foundation for future research and practical applications
across diverse software projects and programming languages.
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8 Conclusion

In summary, this study challenges the conventional practice of discarding older
Machine Learning (ML) models once newer ones are deployed. It highlights the
substantial value that older models still hold compared to freshly trained RFS
counterparts. This paper introduces novel post-deployment model recycling
techniques, offering a more informed approach to deciding which old models
to reuse and when to do so.

Through an empirical investigation across eight long-lived Apache projects,
encompassing a substantial number of commits, this study analyzes the per-
formance of five model recycling strategies on three different types of models in
the domain of Just-In-Time defect prediction, a popular subdomain of software
analytics. Our findings indicate that our approach significantly outperforms
the traditional RFS approach in terms of recall, g-mean, AUC and F1 perfor-
mance metrics. Our best recycling strategy (Model Stacking) outperforms the
baseline in over 50% of the projects across all models. These results may differ
based on the choice of the project and recycling strategy.

While these recycling strategies showcase improved model performance,
it is important to consider that they come at the cost of negligible to low
effect size degradation in precision and increased time-to-inference compared
to RFS. Nevertheless, this research underscores the potential of thoughtfully
retaining and reusing older models, enhancing the effectiveness of ML models
in real-world settings.
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