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Abstract The Common Vulnerabilities and Exposures (CVE) program is
dedicated to analyzing vulnerabilities, then to assigning a unique ID to them
and disclosing the vulnerabilities to affected software vendors. A CVE Num-
bering Authority (CNA) is a key partner in the CVE program responsible for
assigning an official ID to a CVE and registering a description of the vulnera-
bility in order to communicate it to the other CNAs and the affected software
vendors. To avoid the disclosure of vulnerabilities before the development of
a fix, the CNAs and the affected vendors need to coordinate a proper sched-
ule for the disclosure of vulnerabilities and the release of their fixes through
multi-party coordination. This paper analyzes the practices used by CNAs to
coordinate on vulnerability fix releases and disclosure by empirically studying
the 13 CNAs that assigned the most CVEs from 2010 to 2020 and are also
software vendors. Our results show that the studied CNAs discover and assign
CVE IDs for the majority of vulnerabilities that affect their own products,
which we refer to as self-assigned vulnerabilities. While the vulnerabilities
that are assigned for other CNAs’ products, which we refer to as delegated
vulnerabilities, tend to be more severe than the self-assigned vulnerabilities,
(median Common Vulnerability Scoring System score of 7.5), we observe that
their fixes are released at a slower pace. Moreover, when such a delegated vul-
nerability affects several CNAs’ products, the fixes are released a median of 4
days after the disclosure date, with a median delay between the first and last
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patch releases of those products of 35 days up to more than one year, which
corresponds to a large window of exploitation.

Keywords Developer coordination · Vulnerabilities · Patch release speed ·
Software ecosystems

1 Introduction

The surge of vulnerabilities in the past few years indicates the high risk of
keeping software systems operational, since software vendors cannot guaran-
tee a patch for all vulnerabilities before those are exploited by attackers. In
fact, the number of exploits on zero-day software vulnerabilities has doubled
from 2020 to 2021.1 Releasing a timely fix becomes vital to reduce exploits of
such vulnerabilities and save the losses of vulnerable software. In other words,
a delay of fix releases until after disclosure implies higher risks to users. For
example, millions of users waited for at least 6 months to get fixes of a par-
ticular vulnerability in Microsoft Word.2 As a result, this delay led to a large
number of attacks on victim systems and a substantial amount of losses.

To deal with vulnerabilities, organizations and companies often rely on
vulnerability databases to become aware of vulnerabilities and get their fixes.
The CVE program [2] is designed to link such vulnerability databases and
other tools together by assigning a unique identifier (CVE ID) to a given
vulnerability, which software vendors often include in the relevant mitigation
plans (e.g., security advisories, fixes). Users leverage the CVE ID to find all
the information (e.g., fixes) related to that vulnerability.

CVE IDs are assigned by a diverse group of organizations, companies and
researchers, acting as CVE Numbering Authorities (CNAs) [1]. There are over
two hundred CNAs, each of which are security experts within their own specific
scopes of coverage. They evaluate a vulnerability before assigning an identifier,
then control the disclosure process. That is, the CNAs, the discoverer, and the
affected software vendors coordinate to develop a vulnerability fix and schedule
a proper disclosure time, i.e., multi-party coordination.

There are many challenges for parties involved in multi-party vulnerability
coordination and disclosure [4]. For example, the number of affected vendors
is typically too large for the discoverer to deal with, thus involving a coordi-
nator (CNA) to cope with this. However, the higher the number of involved
parties in fixing a vulnerability, the higher the complexity of coordination be-
tween the involved parties. In such a case, the affected vendors are unlikely
to release their fix in a coordinated fashion. In addition, when an affected
vendor does not consider a report to be a vulnerability, the CNA is forced to
disclose the vulnerability to nudge the vendor to release a fix, implying that
the vulnerable products become the target of attackers. Furthermore, cloud

1 https://www.technologyreview.com/2021/09/23/1036140/
2021-record-zero-day-hacks-reasons/

2 https://www.businessinsider.com/hackers-microsoft-word-flaw-reuters-2017-4

https://www.technologyreview.com/2021/09/23/1036140/2021-record-zero-day-hacks-reasons/
https://www.technologyreview.com/2021/09/23/1036140/2021-record-zero-day-hacks-reasons/
https://www.businessinsider.com/hackers-microsoft-word-flaw-reuters-2017-4
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computing services often use customized versions of open-source projects like
distributions or middleware. As such, the fix for a particular vulnerability in,
say, a customized Debian version on OpenStack is likely to be released later
than the fix for Debian itself.

It is important to note that, while CNAs correspond to security experts
generating new CVE IDs, they also can play other roles in parallel, such as
that of the discoverer, coordinator, and/or affected vendor. First, a CNA could
be the discoverer of a vulnerability in its own products, and be responsible
for assigning a CVE ID for the vulnerability, before, subsequently, having
to develop a vulnerability fix in a timely manner. Second, the CNA could be
responsible for both assigning a CVE ID and controlling the disclosure process,
notifying the public of the vulnerability to remediate the vulnerable products.
In this case, the CNA coordinates the schedule of releasing the fixes with
the discoverer and the affected vendors, including the (upstream) vendor that
developed the vulnerable product and those (downstream) that leveraged the
vulnerable product as part of their products. As typically multiple downstream
vendors rely on the fixes released by the upstream vendor, this increases the
difficulty of coordination. Finally, the CNA could be one of the affected vendors
receiving the notification of its vulnerable product, then has to release the fix
according to the coordinated schedule.

The large threat of vulnerabilities led researchers to systematically analyze
vulnerabilities from a wide range of aspects. Some prior studies analyzed vul-
nerability lifecycles to shed light on the vulnerability disclosure process [19, 40].
Other studies explored the disclosure process from the economy of vulnerabil-
ities, such as vulnerability trading markets [11, 42], and evaluated the cor-
relation with exploits [8]. Some studies worked on understanding the patch
development process [23, 28, 34]. While providing insights of vulnerabilities
for a certain aspect, these investigations have been limited to the software
vendors’ perspective. However, to the best of our knowledge, no study has
focused on the special role of CNAs.

In this work, we conduct a large-scale empirical study of 39,409 vulnera-
bilities that affect products of the top 13 CNAs with the largest number of
assigned CVE IDs, based on a dataset that merges vulnerability entries from
the National Vulnerability Database (NVD) [5] and their associated security
fixes. Due to the different responsibility of being a CNA and being a software
vendor, we study the CNAs who have played both roles to gain an under-
standing of the efficiency of releasing vulnerability fixes w.r.t the disclosure
date. We classify vulnerabilities into two groups: vulnerabilities whose CVE-
IDs are assigned by the affected CNAs, i.e., self-assigned vulnerabilities, and
those whose CVE IDs are not assigned by the affected CNAs, i.e., delegated
vulnerabilities. We characterize in detail the delay of releasing vulnerability
fixes in comparison to different affected product types and the number of ven-
dors. We also explore the delay in each of the studied CNAs and summarize
common practices. We structure our study by answering the following research
questions, yielding the following key findings:
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RQ1: What are the characteristics of self-assigned vs. delegated
vulnerabilities?
The first RQ analyzes the prevalence of self-assigned vs. delegated
vulnerabilities to measure the degree to which the CNAs focus on vul-
nerability discovery, and characterizes these two types of vulnerabili-
ties. The majority of vulnerabilities affecting CNAs are self-assigned,
though 3 out of the 13 CNAs have a similar percentage (≈50%) of self-
assigned and delegated vulnerabilities. Application-type products have
the largest proportion (47%) of self-assigned vulnerabilities across the
CNAs, compared to the operating-system (35%) and hardware (18%)
types of products. Furthermore, delegated vulnerabilities are more se-
vere than self-assigned vulnerabilities, with a median Common Vul-
nerability Scoring System (CVSS) score of 7.5.

RQ2: How fast do the CNAs develop fixes for self-assigned vs.
delegated vulnerabilities?
Due to the high severity level of delegated vulnerabilities, RQ2 mea-
sures how fast the studied CNAs release fixes for these vulnerabilities
per product type, and compare the results with self-assigned vulner-
abilities. In general, the studied CNAs release fixes for delegated vul-
nerabilities slower than self-assigned ones. For delegated vulnerabilities
affecting the application type of product, while the studied CNAs re-
lease fixes in a median of -1 day (before the disclosure date), 2 of the
CNAs (i.e., Apple and Oracle) release the majority of fixes at least 90
days after the disclosure date. For delegated vulnerabilities affecting
the operating-system type of product, the delay of patch releases is a
median of 3 days after the disclosure date. 3 out of the studied CNAs
(i.e., Apple, Oracle, and Red Hat) release fixes for the majority of such
vulnerabilities at least 90 days after the disclosure date.

RQ3: How effectively do the CNAs coordinate to release fixes for
shared vulnerabilities?
Since the delay of patch releases for delegated vulnerabilities is longer
than self-assigned ones, this RQ studies potential collaboration be-
tween the studied CNAs on releasing fixes. We measure the delay of
vulnerabilities that affect multiple CNAs’ products, i.e., multi-affected
vulnerabilities, vs. those that affect one CNA’s products, i.e., single-
affected vulnerabilities. 3 out of the studied CNAs have a majority
of their vulnerabilities as multi-affected. The CVSS score of multi-
affected vulnerabilities that affected both application and operating-
system types of products reaches almost the full score of 10 (extremely
severe), while the CVSS score of those that affected one product type
is a median of 5.1 (medium-severity). In addition, the delay of multi-
affected vulnerabilities that are delegated is a median of 4 days after
the disclosure date. Moreover, 4 out of the studied CNAs (Apple, IBM,
Oracle, and Red Hat) release the fixes of such vulnerabilities slower
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than the other studied CNAs, with the majority of fixes being released
at least 90 days after the disclosure date.

The studied CNAs release prompt fixes for self-assigned vulnerabilities,
while they are relatively slower for delegated vulnerabilities, which are more
severe. These results suggest that some CNAs coordinate on releasing fixes
while some do not, ending up with a large window (of at least 90 days)
for potential vulnerability exploits related to delegated vulnerabilities in the
operating-system type of product or those that affect multiple CNAs’ products.
Researchers should focus on better understanding and analyzing the collabo-
ration processes for such kinds of vulnerabilities to reduce their impact.

Paper organization. Section 2 provides the background of common security
specifications and multi-party coordination on fixing vulnerabilities. Section 3
discusses prior related work to our study. Section 4 describes how we design our
study and obtain our studied dataset. Section 5 answers our research questions.
Section 6 discusses the implications of our study. Section 7 discusses the threats
to the validity of our study. Finally, Section 8 concludes the paper.

2 Background

In this section, we briefly introduce the Common Vulnerabilities and Expo-
sures (CVE) program and National Vulnerability Database (NVD), the Com-
mon Vulnerability Scoring System (CVSS), the Common platform enumera-
tion (CPE) specification, and the multi-party coordination model on fixing
vulnerabilities.

2.1 Common Vulnerabilities and Exposures (CVE) and National
Vulnerability Database (NVD)

The CVE platform [2] is one of the most popular platforms storing lists of
publicly disclosed computer security vulnerabilities. Since there are many
databases storing information regarding security vulnerabilities, the CVE plat-
form assigns a CVE ID to each vulnerability to give users a way to recognize
unique vulnerabilities across various databases, and coordinates the develop-
ment of fixes across software vendors. Such CVE IDs are assigned by CVE
Numbering Authorities (CNAs), each of which represents a large software
company, security company, or research organization. The diversity of CNAs
provides varied yet specific areas of expertise for different types of vulnerabil-
ities. After a CVE ID is assigned, the CNA records concise information (e.g.,
ID, description) about the vulnerability and includes references, while the full
details (e.g., affected products) appear in other databases, such as the NVD.
Then, the new CVE record will be posted on the CVE website.

The NVD [5] is tasked with analyzing CVE records after they have been
synchronized from the CVE website to the NVD, typically within an hour. Af-
ter a CVE record is in the NVD, NVD analysts analyze the vulnerability based
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on the relevant information provided with the CVE record, such as references.
The analysts also manually search any publicly available information on the
internet at the time of the analysis. The analysis process ensures that any pub-
licly available information is used to document affected vendors and products
for the CVE. This information also includes CVSS scores (Section 2.2) and a
specification of the affected products using the CPE standard (Section 2.3).

2.2 Common Vulnerability Scoring System (CVSS)

The CVSS [6] is an open framework for assigning scores to a vulnerability to
indicate its threat level. CVSS scores are widely used by many prior stud-
ies [24, 40, 46] and large organizations and companies (e.g., Computer Emer-
gency Response Team (CERT)) to communicate the severity of the vulnera-
bilities found in their products. A CVSS score is composed of three sets of
metrics: base, temporal and environmental, each of which has its own under-
lying scoring component.

The base metrics represent the innate characteristics of a vulnerability
to indicate its severity via two subscore groups: exploitability, i.e., how the
vulnerability is exploited, and impact, i.e., the extent of victim system losses
if the vulnerability is exploited. Computing all the subscores results into a
threat score of a vulnerability. For example, a base score in the range of 4.0
to 6.9 indicates medium severity.

The temporal metrics represent metrics that can change over time. These
metrics measure the current exploitability of the vulnerability, as well as the
availability of mitigation plans, such as a patch.

Finally, the environmental metrics reflect additional attributes of a vulner-
ability in a specific environment, in terms of potential losses of a brand or a
product, the proportion of vulnerable systems and the extent of impact. Note
that we use CVSS 2.0 as CVSS 3.0 (released in 2015) and 3.1 (released in
2019) are inadequate for the majority of our data as we study vulnerabilities
whose CVE ID was issued between 2010 and 2019.

2.3 Common platform enumeration (CPE) specification

The CPE specification3 defines standardized methods for assigning names to
software vendors and their products. For example,

“cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:* ”
represents a CPE string following the CPE 2.3 specification. In this case, the
vendor and its product are Microsoft Internet Explorer 8.0.6001, Beta version.
The CPE specification classifies products into three types: applications (a),
operating systems (o), and hardware devices (h). The “a” before “microsoft” in
the CPE string indicates that Internet Explorer is an application. The string

3 https://cpe.mitre.org/specification/

https://cpe.mitre.org/specification/
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Fig. 1: Overview of multi-party coordination on fixing vulnerabilities. The
dashed lines indicate possible coordination between the parties involved in fix-
ing a vulnerability. The coordination activities include collecting information
of a vulnerability, investigating root causes, discussing and developing a fix,
and testing the fix. Note that software vendors can be a CNA and/or the
discoverer and vice versa.

after “Beta” is a formatted string to reflect additional attributes (e.g., target
hardware version is x86 or x64) of the product.

2.4 Multi-party coordination on fixing vulnerabilities

Figure 1 presents the multi-party coordination involved with fixing vulnera-
bilities. After a vulnerability in a product is found, the discoverer reports it to
the affected software vendor(s) and coordinates with the software vendor(s) for
mitigation plans. Meanwhile, the discoverer requests a CVE ID from a CNA
that controls the vulnerability disclosure process. Before the disclosure, the
CNA assigns and validates the vulnerability and coordinates a proper disclo-
sure time with the discoverer and affected software vendor(s). Users typically
become aware of vulnerabilities from the CVE record and get the fixes from
the affected software vendors.

A CNA can also be the discoverer of a vulnerability, or could be the soft-
ware vendor of a vulnerable product. In all these cases, the CNA could be the
one issuing its own CVE IDs, or the CVE ID could be assigned by another
CNA. Since being a CNA indicates that the CNA has the expertise of vul-
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nerabilities in a specific area, self-assigned vulnerabilities by a CNA are not
unheard of. On the one hand, self-assignment reflects an earlier awareness of
a vulnerability than attackers, while on the other hand, self-assignment could
be subjective and underestimate the impact of the vulnerability. By contrast,
delegated vulnerabilities indicate that there is a potential delay of becoming
aware of a vulnerability from the discoverer.

There is no uniform policy amongst organizations on how to disclose a
vulnerability in multi-party coordination. Several corporations, organizations,
and governments have been working on providing guidelines and practices for
multi-party vulnerability coordination. For example, MITRE has published
the practices for a Coordinated Vulnerability Disclosure (CVD) process.4 The
US’ Cybersecurity and Infrastructure Security Agency (CISA) proposed im-
portant steps and factors for CVD to ensure that users and administrators
receive clear and actionable information in a timely manner.5 The European
Cyber Resilience Act was published in September 2022.6 However, only CISA
suggested more concrete guidelines, such as an explicit number of days for dis-
closure, as stated “CISA may disclose vulnerabilities as early as 45 days after
the initial attempt to contact the vendor is made regardless of the availabil-
ity of a patch or update.” Therefore, our study aims to figure out the current
practices from the 13 leading companies (CNAs) by measuring the time taken
between the disclosure of vulnerabilities and the release of their fixes in the
context of multi-party coordination.

3 Related Work

We discuss prior empirical studies of disclosure and patching (Section 3.1)
and large-scale vulnerability analysis (Section 3.2) and highlight the difference
between this study and prior studies (Section 3.3).

3.1 Disclosure and Patching

Vulnerability disclosure reflects exposing sufficient information of vulnerabili-
ties to the public, where stakeholders can pick up the information and perform
mitigation plans. Zhao et al. [47] observed from two bounty platforms, i.e.,
Wooyun and HackerOne, that researchers have been making significant con-
tributions, in terms of vulnerability discovery, to secure tens of thousands of
organizations on the Internet. Arora et al. [9] conducted a study to estimate
the impact of vulnerability disclosure and availability of patches from both
the attackers’ and software vendors’ perspectives. The study suggested that

4 https://cve.mitre.org/cve/researcher_reservation_guidelines
5 https://www.cisa.gov/coordinated-vulnerability-disclosure-process
6 https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

https://cve.mitre.org/cve/researcher_reservation_guidelines
https://www.cisa.gov/coordinated-vulnerability-disclosure-process
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
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although software vendors quickly reacted to disclosed vulnerabilities, the fre-
quency of attacks also increased. The study further revealed that open source
vendors patched faster than closed source vendors.

Patching applications and operating systems is a common strategy to avoid
vulnerability exploits. Some prior works focused on patch development. Nappa
et al. [33] evaluated the impact of code reuse on patching vulnerabilities on
1,593 vulnerabilities from 10 popular client applications. The authors observed
that the delay of patch releases between a reused code snippet in two applica-
tions is a median of 11 days up to 118 days. Li and Paxson [28] investigated
the patch release process and characterized security patches from a diverse
set of 682 open-source software projects, including more than 4k bug fixes
for over 3k vulnerabilities. The study revealed that the fixes for 78.8% of all
CVEs were committed on the disclosure date, while 50% of them were patched
more than a week before the disclosure date. In our work, we study the delay
of patch releases w.r.t the disclosure date, which is the most risky time in a
vulnerability lifecycle, and characterize the influential factors related to the
delay.

Another line of research is related to patch identification and propagation in
various sets of open-source projects, i.e., program languages (e.g., Python [37],
JavaScript [14]), devices (e.g., IoT [32], Android [17, 45]), or diverse sets of
projects [14, 31, 44]. For example, Wang et al. [44] developed a machine learn-
ing model to identify hidden security patches in open-source projects, i.e.,
patches without explicit description in change logs or release notes. These
patches could be adopted by similar types of open-source projects that have
the same vulnerability and are unpatched. Our study focuses on vulnerabil-
ities in products of top companies (CNAs) in security and investigates their
practices.

3.2 Large-scale Vulnerability Analysis

Due to the increase in availability of big data technology in recent years, many
prior works have conducted analyses on a large-scale set of vulnerabilities.
Liu et al. [30] studied the characteristics (e.g., developer, blamed code) of
vulnerabilities from the patches of 3,806 vulnerabilities in 5 popular open
source projects, written in C/C++. For example, vulnerable code are usually
introduced by less than 10% of developers in a project. Shahzad et al. [40]
characterized vulnerabilities from a wide range of aspects, including when they
were introduced, how they evolved over time and which types of vulnerabilities
lead to a higher number of exploits. Feutrill et al. [18] showed that the time
series of public vulnerability disclosures have a long range dependence, with
burstiness, high variation, and slow convergence. Many prior work relied on
their own set of vulnerabilities to develop relevant tools, e.g., detection [16,
21, 29] prediction [13, 41], notification [43], etc.
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3.3 Multi-party coordination of CNAs for vulnerability fix releases and
disclosure

Differentiating from the aforementioned prior work, we study the efficiency
of patch releases from top companies that control the vulnerability disclosure
process, as a CNA. As discussed in Section 2.4, these CNAs have expertise in
security, compared to ordinary software projects/vendors, and are involved in
multi-party coordination on fixing vulnerabilities.

Although the number of vulnerability exploits surges quickly after disclo-
sure and drops quickly after patching [9, 10], in such a complex coordination
model, the involved parties face many challenges (e.g., patching fixes to mul-
tiple affected products, the information leakages on social media), ending up
with delays [38]. First of all, each party has its own strategy for dealing with
vulnerabilities, development policy and release cycles. Second, these policies
and release cycles prevent simultaneous rollout of fixes from all affected ven-
dors at once. The more time passes since the release of the first fixed product,
the greater the pressure for the affected vendors that have not yet developed
or integrated a fix into their product. In this paper, we call the time between
the rollout of the first and the last product impacted by a vulnerability, the
vulnerability’s “patch coherence”. Moreover, when an affected vendor is not
able to fix a vulnerability, the vendor seeks help from another vendor, leading
to an increase in involved parties and further complicating the fixing process.
Furthermore, a vulnerable project might have its own derived projects that
are blocked until the vulnerable project releases the fix, again increasing the
difficulty of finding a coordinated schedule and delaying the release of fixes.

Given the special role of CNAs in multi-party coordination on fixing vul-
nerabilities, this paper focuses on empirically understanding the coordination
practices employed by the top CNAs.

4 Study Design

This section presents the approach for our empirical study to understand the
coordination efficiency of CNAs as software vendors. RQ1 studies the amount
of self-assigned and delegated vulnerabilities and their threat levels. RQ2 mea-
sures whether the delay of patch releases for self-assigned and delegated vul-
nerabilities is influenced by the type of the affected product. Finally, in order to
understand the efficiency of collaboration across CNAs, RQ3 studies the delay
of patch releases between CNAs that are affected by the shared vulnerabilities.

4.1 Subject CNA Selection

As discussed in Section 2.4, CNAs are responsible for assigning, validating and
disclosing vulnerabilities, while software vendors are responsible for develop-
ing and releasing vulnerability fixes. To gain insights from current practices,
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Fig. 2: Overview of our study approach.

we selected 13 CNAs who are also software vendors and amongst the top 20
CNAs in terms of the number of CVE IDs they assigned. Table 1 presents
the top 20 CNAs along with the number of assigned CVEs, the affected prod-
uct types, the month of their first assigned CVE ID, and their organization
type. Table 1 shows that 14 out of the top 20 CNAs are software vendors.
4 out of 20 are organizations regarding security (i.e., MITRE and CERT), 1
is a bug bounty platform and 1 represents a group of corporations related to
the Android platform. We exclude the #10 ranked CNA related to the An-
droid platform since it involves several corporations. We unify vulnerabilities
assigned by Talos (#16) with those assigned by Cisco (#6) since Talos is an
intelligence group of Cisco. Finally, we obtain a total of 13 CNAs that are also
software vendors for our study.

4.2 Data Collection

Figure 2 presents an overview of our study approach. Our dataset consists
of vulnerability reports from the NVD and their security advisories from
tenable.com.7 A vulnerability report includes the information (e.g., CVE ID,
description) related to a vulnerability (cf. Section 2), while a security advisory
indicates how to fix the vulnerable product of a particular affected vendor. We
only consider vulnerability reports with a valid CVE ID.8 First, we extract
106,828 vulnerabilities, i.e., unique CVE IDs, that were assigned by the top
20 CNAs and whose CVE ID was issued between Jan. 2010 and Dec. 2020,
before we remove 9,836 invalid vulnerabilities that were rejected, disputed or
duplicated, i.e., 96,992. The numbers in the 3rd column of Table 1 present the

7 https://www.tenable.com/
8 https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_

issues.html

tenable.com
https://www.tenable.com/
https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html
https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html
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Table 1: The top 20 CNAs with the most valid CVE IDs assigned. Note that the
three RQs study the bold CNAs, which are both CNAs and software vendors.
Note that a vulnerability may affect several CNAs’ products, i.e., both self-
assigned and delegated vulnerabilities, so that the sum of the 4th and 5th
columns is greater than the unique number of the studied vulnerabilities that
affected the 13 CNAs, i.e., 39,409.

CNAs # of
CVEs

# of
delegated

CVEs9

# of self-
assigned

CVEs8

Affected
product

types6
Type7

1 MITRE 44,383 3,939 0 - NP
2 Red Hat 7,331 333 1,466 A.O C
3 Oracle 6,076 218 5,529 A.H.O C
4 Microsoft 5,786 13 5,438 A.H.O C
5 IBM 4,241 209 4,113 A.H.O C
6 Cisco systems 4,098 32 4,069 A.H.O C
7 Apple 3,906 481 3,827 A.H.O C
8 Adobe 3,583 2,716 3,224 A C
9 CERT/CC1 2,635 105 0 - N
10 Android2 2,607 2,331 0 - C
11 Qualcomm 1,722 597 1,124 A.H.O C
12 Google 1,719 576 1,361 A.H.O C
13 ICS-CERT3 1,714 10 0 - N
14 JPCERT/CC4 1,655 93 0 - N
15 Mozilla 1,278 458 1,201 A.H.O C
16 Talos5 962 0 49 A.H.O C
17 HackerOne 920 30 0 - B
18 Dell 848 31 263 A.H.O C
19 Intel 770 31 669 A.H.O C
20 Huawei 758 1 732 A.H.O C

1 A computer emergency response team (CERT) is an expert group that handles com-
puter security incidents. CERT/CC represents the CERT Coordination Center.
2 Android indicates a group of people associated with Google Inc. or the Open Handset
Alliance.
3 ICS-CERT represents the CERT for industrial control systems (ICS).
4 JPCERT/CC represents the CERT in Japan.
5 Talos is an intelligence group in Cisco.
6 ‘A’ represents application product type, ‘H’ represents hardware and ‘O’ represents
operating system.
7 Organizational type: ’C’ represents commercial, ’N’ represents not-profit, ’B’ represents
bug bounty platform and ’NP’ represents not-for-profit.
8 The CNAs that are not a software vendor do not have self-assigned CVEs.
9 Note that the delegated CVEs only affected the products of the other studied CNAs.

numbers of valid CVE IDs assigned by the top 20 CNAs. As discovering vul-
nerabilities takes time and developers usually take more than two years to fix
them after the discovery [34], we decided to keep a safety margin of 1 year for
developing vulnerability fixes between the end of our data set (Dec. 2020) and
the time at which we started this work (Jan. 2022). To better understand the
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efficiency of vulnerability fix releases for both self-assigned and delegated vul-
nerabilities, we then identify delegated vulnerabilities in each CNA amongst
the vulnerabilities assigned by all the 20 CNAs, while discarding the vulner-
abilities that did not affect any product of the 13 studied CNAs. Finally, our
dataset contains a total of 39,409 vulnerabilities.

For each of these 39,409 vulnerabilities, we extract the corresponding vul-
nerability report from the NVD official data feeds.9 Such a vulnerability report
includes its CVE ID, assignor (CNA), CVSS scores, published date (i.e., dis-
close to the public), and affected software configurations according to the CPE
specification (discussed in Section 2.3).

Furthermore, we also extract patch dates from security advisories in tenable.
com.10 Tenable.com is a vulnerability exposure company that offers tools for
over 30k companies around the world to protect their systems from security
risks. Tenable.com organizes security advisories that are made by a software
vendor who released a fix (e.g. security advisory, patch) for a given vulner-
ability. A security advisory in Tenable.com includes its CVE ID(s), affected
software configurations (CPEs), and its patch publication date. Note that a
security advisory might contain several vulnerabilities when a software vendor
releases the fixes of these vulnerabilities in one security update.

We aggregate the vulnerability reports and security advisories by CVE IDs
and affected software configurations (CPEs).

4.3 Efficiency measurement

To study the efficiency of CNAs in multi-party coordination on vulnerability
fix releases and disclosure, we measure the efficiency of a CNA (as a software
vendor) from three aspects: 1) the awareness of vulnerabilities of its own prod-
ucts in RQ1, 2) the delay of patch releases w.r.t. the disclosure date in RQ2
and RQ3, i.e., Diffpd, and 3) the delay between the first and last patch releases
across the CNAs when they are affected by a shared vulnerability in RQ3, i.e.,
its patch coherence Diffpp (see Section 3.3).

First, as discussed in Section 2.4, since a CNA represents an expert in vul-
nerabilities, identifying self-assigned vulnerabilities reflects the extent of effi-
ciency in finding vulnerabilities in its own products. In addition, self-assigned
vs. delegated vulnerabilities are treated in terms of the capability of a given
CNA to validate whether a vulnerability affects its own product vs. other
CNAs’ products.

Second, for a given CNA, the delay (Diffpd) of patch releases of a vulner-
ability represents the time between the disclosure date of a vulnerability and

9 https://nvd.nist.gov/vuln/data-feeds
10 Note that we use tenable.com, since the open-source vulnerability database (OS-

VDB), which was widely used to study the patch available date for security vulner-
abilities [19, 40], was shutdown permanently in 2016, https://www.securityweek.com/
osvdb-shut-down-permanently.

tenable.com
tenable.com
Tenable.com
Tenable.com
Tenable.com
https://nvd.nist.gov/vuln/data-feeds
https://www.securityweek.com/osvdb-shut-down-permanently
https://www.securityweek.com/osvdb-shut-down-permanently
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patching disclosure

 Diffpd  <0

discovery patching

 Diffpd  > 0

Fig. 3: Illustration of the measurement of Diffpd. The Diffpd of a vulnerability
is calculated by subtracting the disclosure date from the patch (available)
date. A negative value (Diffpd <0) indicates the patch is available before the
disclosure date.

the availability of a patch for it, as shown in Figure 3. The most risky vulner-
abilities are those that are disclosed to the public without an available fix [40],
in which case the Diffpd is positive. In fact, in many cases, an exploitation
method is provided when a vulnerability is disclosed [39], enabling anyone to
exploit the vulnerability. In other words, the delay Diffpd indicates the size of
the window during which attackers could actively exploit the vulnerability at a
large scale. A negative value of Diffpd indicates that a fix (patch) was released
before the disclosure date of the vulnerability, which is the optimal case for
users to avoid vulnerability exploits. The larger the value of Diffpd, the more
risky a victim system is.

We compare the delay (Diffpd) from several aspects within one CNA and
across the studied CNAs: self-assigned vs. delegated, affected product types,
and the number of affected vendors (CNAs). We detail our approaches in the
section of each RQ.

The first CNA
patches disclosure

Diffpp

discovery
The last CNA

patches

Fig. 4: Illustration of the measurement of Diffpp (patch coherence).

Lastly, as a vulnerability could affect several CNAs’ products, these CNAs
in principle should coordinate vulnerability fix releases and disclosure. We
measure such coordination across the affected CNAs by the metric of “patch
coherence”, which is the delay (Diffpp) between the first and last patch releases
across the CNAs, as shown in Figure 4. A small value of patch coherence
indicates a more consistent speed of patch releases from the affected vendors,
suggesting that users of all affected products become protected in the same
period. We compare the delay (Diffpp) from several aspects: self-assigned vs.
delegated, vulnerability weaknesses, and pairs of affected CNAs. We detail our
approaches in RQ3.
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5 Results

5.1 RQ1: What are the characteristics of self-assigned vs. delegated
vulnerabilities?

Motivation: Given the rise of security issues within software supply chains,
fixing vulnerabilities requires multi-party coordination (as discussed in Section
2.4). Delegated vulnerabilities indicate not only a potential delay of becoming
aware of the vulnerabilities, but also indicate that users might wait for a longer
time to get the fixes. This increases the chance of vulnerability exploits and
results in disruption in software supply chains and promoting conflicts between
their users. Understanding the characteristics of self-assigned and delegated
vulnerabilities gives insights to software vendors when developing fixes and to
users on securing their systems.

Approach: We measure the prevalence of self-assigned and delegated vulner-
abilities by calculating the number and percentage of vulnerabilities in each
group for each of the 13 CNAs. To analyze the characteristics of self-assigned
and delegated vulnerabilities, we investigate the affected product types (i.e.,
application, hardware and operating system) from the CPE configurations,
the severity level using the CVSS 2.0, and the assignor-assignee pairs of the
CNAs.

Results: 12 out of the 13 studied CNAs (i.e., all except for Google)
have 3 up to 49 times as many self-assigned vulnerabilities as dele-
gated ones. Google instead has a majority (77%) of delegated vulnerabilities.
In general, the CNAs seem to dedicate substantial effort on their own prod-
ucts. More specifically, Figure 5 indicates that Apple, Microsoft and Red Hat
are the CNAs with a similar percentage of self-assigned and delegated vulner-
abilities, i.e., Apple: 53% vs. 47%, Microsoft: 53% vs. 47%, Red Hat: 50% vs.
50%.

Mitre (not one of the 13 CNAs) has assigned vulnerabilities to
all the 13 CNAs. Figure 6 shows the heat map of the assignor and assignee
pairs of the 13 CNAs (and Mitre) for delegated vulnerabilities. In terms of
being an assignor, Mitre is the #1 CNA followed by Red Hat and Dell, who
assigned vulnerabilities to 11 and 8 CNAs, respectively. Mitre has focused
on software security for more than two decades and won several awards and
notable achievements.11 Red Hat12 and Dell13 have a sterling reputation in
software security. Adobe assigned vulnerabilities to 6 CNAs and has assigned
the largest number of vulnerabilities to Microsoft (2,700) and Apple (2,516)
among all the assignors.

On the other hand, Red Hat, Google and Apple are the assignee
of 12 CNAs, followed by Microsoft who is the assignee of 11 CNAs. Among

11 https://www.mitre.org/about/awards-and-recognition
12 https://www.redhat.com/ja/about/press-releases/press-bestlinuxsolutions
13 https://www.dell.com/en-us/blog/dell-software-security-solutions-of-awards-and-honors/

https://www.mitre.org/about/awards-and-recognition
https://www.redhat.com/ja/about/press-releases/press-bestlinuxsolutions
https://www.dell.com/en-us/blog/dell-software-security-solutions-of-awards-and-honors/
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Fig. 5: The number and percentage of self-assigned vs. delegated vulnerabilities
in the 13 CNAs.
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Fig. 6: Heat map of the assignor-assignee pairs based on the number of dele-
gated vulnerabilities. Note that Mitre is the #1 assignor but is not included
in the studied CNAs.

these four CNAs, Red Hat has the smallest number of delegated vulnerabili-
ties (1,555), compared to the other three CNAs (Google: 2,481, Apple: 3,296,
Microsoft: 4,418). Red Hat and Google have the largest number of vulnerabil-
ities delegated from Mitre, while Apple and Microsoft get them from Adobe.
In addition, Qualcomm only has one assignor, i.e., Mitre.

For the application type of product, the 12 CNAs have 2 up to 49
times as many self-assigned vulnerabilities as delegated vulnerabil-
ities. For the operating-system type of product, Google, Microsoft,
Red Hat, and Oracle have a majority of delegated vulnerabilities
(98%, 58%, 67%, and 55%, respectively), while Apple has a similar
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Fig. 7: The number and percentage of self-assigned vs. delegated vulnerabilities
in the 13 CNAs, based on the three product types, i.e., application, hardware
and operating-system.

percentage of delegated (49%) and self-assigned (51%) vulnerabili-
ties. In general, the application type of product is responsible for the largest
percentage (47%) of vulnerabilities across the CNAs, while the hardware type
of product accounts for the smallest percentage (18%) of vulnerabilities. Both
application and hardware types of products have a median of 3 vulnerabili-
ties across the CNAs. The unique number of affected hardware products (i.e.,
9,364) of the studied affected vendors is approximately three times as high as
that of affected application products (i.e., 3,346). Figure 7 shows the percent-
ages of self-assigned and delegated vulnerabilities in the three product types
for each of the studied CNAs. In 12 out of the 13 CNAs, the majority (at
least 62%) of vulnerabilities affecting the application type of product are self-
assigned, compared to 8 out the 13 CNAs for the operating-system type of
product.

Delegated vulnerabilities are more severe than self-assigned vul-
nerabilities. For the application type of product, delegated vulnerabilities
have a median CVSS score of 7.5, i.e., high-severity, while self-assigned vul-
nerabilities have a median CVSS score of 6.8 (medium-severity) in Figure 8.
The difference between delegated and self-assigned vulnerabilities is statisti-
cally significant by a Wilcoxon test, with a p-value < 0.01 (α = 0.01). The
effect size is small (0.26). For the operating-system type of product, although
delegated and self-assigned vulnerabilities both have a median CVSS score of
7.1, delegated vulnerabilities have higher first and third quartiles than self-
assigned vulnerabilities, i.e., both the top and bottom half of the distribution
of delegated vulnerabilities are more severe than that of self-assigned vulner-
abilities.
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Fig. 8: For the application type of products, delegated vulnerabilities have a
higher CVSS 2.0 score than self-assigned vulnerabilities.

: Summary of RQ1

12 out of the 13 studied CNAs have a higher percentage of self-assigned
vulnerabilities than delegated vulnerabilities, though 3 of them have a
similar percentage of both types of vulnerabilities. The studied CNAs
have a majority of self-assigned vulnerabilities for the application type
of product, compared to the hardware and operating-system types of
products. However, delegated vulnerabilities are more severe than self-
assigned vulnerabilities for the application and operating-system types
of products across the CNAs.

5.2 RQ2: How fast do the CNAs develop fixes for self-assigned vs. delegated
vulnerabilities?

Motivation: The results in RQ1 reveal that the studied CNAs have a ma-
jority of self-assigned vulnerabilities. However, delegated vulnerabilities have
a higher threat level, suggesting a higher impact when such a vulnerability is
disclosed without an available fix. We aim to understand the speed of releasing
vulnerability fixes in these CNAs, the duration of the period users are at risk,
and whether the threat level of a vulnerability influences the speed of patch
releases.

Approach: As discussed in Section 4.3, we compute the delay (Diffpd) of
patch releases for each vulnerability. To measure the speed of patch releases,
we classify the delay into 5 duration categories (w.r.t. the disclosure date): <
-30, [−30, 0), [0, 30), [30, 90), and ⩾ 90 days and calculate the number of self-
assigned and delegated vulnerabilities in each category for the studied CNAs.
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These five categories represent earlier-than-one-month before the disclosure
date, within-one-month before the disclosure date, within-one-month after the
disclosure date, one-quarter after the disclosure date, and longer-than-one-
quarter after the disclosure date.

We compare the Diffpd delay between the application and operating-
system types of products, since the hardware type of product only accounts
for the minority (13%) of vulnerabilities and tenable.com does not have secu-
rity advisories for vulnerabilities that affected this type of product. Note that
Qualcomm has insufficient data in tenable.com because it has the majority
of its vulnerabilities in the hardware type of product (as shown in Figure 7).
Therefore, we only study 12 out of the 13 CNAs in this RQ. In addition, we
compute the CVSS scores of the vulnerabilities for the two product types.

Results: For the application type of product, the CNAs release fixes
for delegated vulnerabilities at a slower pace than self-assigned vul-
nerabilities by a median of 1 day, yet typically still before disclosure.
In particular, self-assigned vulnerabilities are fixed in a median of 2 days be-
fore the disclosure date across the CNAs, while delegated vulnerabilities are
fixed in a median of 1 day before the disclosure date. The difference of the
delay is significant by a Wilcoxon test, with a p-value < 0.01 and a medium
effect size of 0.53.

One possible reason why patches for delegated vulnerabilities still appear
before the disclosure date is that, even though there is a potential delay of
becoming aware of vulnerabilities, the vulnerability has a low severity and can
be fixed easily. Another possible reason is that the CNA (as a coordinator)
and the affected software vendors agreed on a schedule to only disclose the
vulnerability once the fixes are released. It is also possible that a vulnerability
prompts the affected vendor to re-design certain functionalities in the vulner-
able product, then only to publicly disclose upon release of the first re-design
product version (even if this causes substantial delays). For example, Adobe
was aware of CVE-2016-4271 approximately six months before the disclosure
date.14 This CVE was a flaw in Adobe Flash allowing to bypass the local sand-
box and exfiltrate important data on Windows (e.g., user credentials). Adobe
redesigned Flash Player 23 to no longer use a sandbox.

For the application type of product, all the studied CNAs release the fixes
for most of the self-assigned vulnerabilities within 30 days before the dis-
closure date, while 2 of the CNAs release fixes for most of the delegated
vulnerabilities at least 90 days after the disclosure date (⩾ 90 days). Table
2 shows all details of the 5 duration categories of the Diffpd delay for self-
assigned and delegated vulnerabilities. In general, the CNAs are anticipated
to deal better with self-assigned vulnerabilities than delegated vulnerabilities
in terms of the delay of patch releases.

Although there is a potential delay of becoming aware of delegated vul-
nerabilities, 6 out of the 12 CNAs release the fixes for most of their delegated

14 https://blog.bjornweb.nl/2017/02/flash-bypassing-local-sandbox-data-exfiltration-
credentials-leak/

tenable.com
tenable.com
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Table 2: The number of self-assigned and delegated vulnerabilities that affect
the application type of product for the 5 duration (days) categories of the
Diffpd delay for the studied CNAs. For each row, the bold number indicates
the category with the largest number of respective vulnerabilities among the
5 duration categories.

CNA Assignor < -30 -30∼0 0∼30 30∼90 ⩾ 90
Adobe Self-assigned 447 2,609 366 97 12

Delegated 5 33 8 3 3
Apple Self-assigned 177 686 358 160 114

Delegated 3 33 26 41 88
Cisco Self-assigned 55 380 138 5 6

Delegated 1 - - - -
Dell Self-assigned 1 3 - - -

Delegated 2 1 1 - -
Google Self-assigned 586 856 136 3 -

Delegated 48 576 67 2 -
Huawei Self-assigned - - - - -

Delegated - - 1 1 1
IBM Self-assigned 141 451 101 84 101

Delegated 42 66 22 22 25
Intel Self-assigned - - - - -

Delegated - 2 - - -
Microsoft Self-assigned 16 1,104 401 11 7

Delegated 1 10 7 8 5
Mozilla Self-assigned 584 731 97 25 1

Delegated 85 343 47 6 5
Oracle Self-assigned 226 2,775 730 94 208

Delegated 31 26 44 66 175
Red Hat Self-assigned 144 234 94 60 99

Delegated 10 34 46 79 67

vulnerabilities within 30 days before disclosure. On the other hand, 1 CNA
(i.e., Red Hat) requires 30∼90 days after disclosure (median of 42 days), and
2 CNAs (i.e., Apple and Oracle) even more than 90 days after disclosure (me-
dian of 117 and 120 days, respectively). Due to insufficient vulnerabilities for
Dell, Intel and Huawei, we encourage future studies to collect more data to
analyze the generalizability of our results.

For the operating-system type of product, the CNAs again release
fixes for delegated vulnerabilities at a slower pace than self-assigned
vulnerabilities, by a median of 5 days. More specifically, the fixes for
delegated vulnerabilities are released in a median of 3 days after the disclosure
date, while the fixes for self-assigned vulnerabilities are released in a median
of -2 days before the disclosure date. Table 3 indicates that 8 out of the 12
CNAs release fixes for most of the self-assigned vulnerabilities within 30
days before the disclosure date (-30∼0 days), 1 CNA (Mozilla) more than 30
days before the disclosure date (< -30 days), and 1 CNA (Red Hat) more
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Table 3: The number of self-assigned and delegated vulnerabilities that affect
the operating-system type of product for the 5 duration (days) categories of
the Diffpd delay for the studied CNAs. For each row, the bold number indicates
the category with the largest number of respective vulnerabilities among the
5 duration categories.

CNA Assignor < -30 -30∼0 0∼30 30∼90 ⩾ 90
Adobe Self-assigned - - - - -

Delegated - - - - -
Apple Self-assigned 1,086 1,861 223 231 70

Delegated 32 33 27 94 112
Cisco Self-assigned 27 338 281 4 39

Delegated 2 1 - - -
Dell Self-assigned - - - - -

Delegated 2 - - - -
Google Self-assigned 3 10 - - -

Delegated 11 23 - - -
Huawei Self-assigned 4 6 - - -

Delegated 2 - - - -
IBM Self-assigned 11 22 2 - 1

Delegated 3 6 2 - 1
Intel Self-assigned - 1 - - -

Delegated - - - - -
Microsoft Self-assigned 7 2,031 616 25 5

Delegated 5 206 89 13 3
Mozilla Self-assigned 3 1 - - -

Delegated 3 - - - -
Oracle Self-assigned 1 90 56 13 15

Delegated 1 4 8 18 30
Red Hat Self-assigned 4 6 6 10 42

Delegated - 5 25 31 89

than 90 days after the disclosure date (⩾ 90 days). In contrast, for delegated
vulnerabilities, 3 out of the 12 CNAs release fixes for the largest number of
vulnerabilities within 30 days before the disclosure date (-30∼0 days), 3 CNAs
(i.e., Apple, Oracle, and Red Hat) are more than 90 days after the disclosure
date (⩾ 90 days), and 4 CNAs are more than 30 days before the disclosure
date (< -30 days), though the numbers for these 4 CNAs are relatively small.

The delay (Diffpd) of patch releases for delegated vulnerabilities
that affect the operating-system type of product is larger than for
those that affect the application type of product, by a median of 4
days. In particular, only for high-severity delegated vulnerabilities, the delay
(Diffpd) of patch releases for the operating-system type of product is similar
to the application type of product (Wilcoxon test: p-value = 0.23) in Figure
9. For medium-severity delegated vulnerabilities, the delay (Diffpd) of patch
releases for the operating-system type of product is longer than the application
type of product by a median of 18 days (Wilcoxon test: p-value < 0.01), with



22 Jiahuei Lin et al.

HIGH MEDIUM LOW

delegated self−assigned delegated self−assigned delegated self−assigned

−200

0

200

D
iff

pd
(d

ay
s)

product types application operating−system

Fig. 9: The comparison of the delay (Diffpd) of releasing patches between the
severity levels (i.e., high, medium and low), self-assigned vs delegated, and the
product types across the CNAs.

a negligible effect size of 0.04. For low-severity delegated vulnerabilities, the
gap of the delay (Diffpd) between the two product types is a median of 69 days
(Wilcoxon test: p-value < 0.01), with a small effect size of 0.3. Hence, the
Diffpd delay of delegated vulnerabilities in operating-systems-related products
interact with the severity level of the vulnerabilities. The higher the severity
of a delegated vulnerability, the smaller the Diffpd delay, i.e., a quicker fix.

On the other hand, for self-assigned vulnerabilities, the delay of vul-
nerabilities that affect the application type of product is similar to those that
affect the operating-system type of product across all severity levels (i.e., high,
medium, and low). According to a Chi-square test, the severity levels and as-
signor (i.e., self-assigned or delegated) of a vulnerability are two independent
variables (p-value < 0.05). When a vulnerability in a product is found by the
assignor (i.e., the product owner), the Diffpd delay is similar across all severity
levels for both product types, typically close to the disclosure date.

: Summary of RQ2

Across the two product types, the studied CNAs release fixes for self-
assigned vulnerabilities faster than for delegated vulnerabilities. The
delay (Diffpd) of patch releases for self-assigned vulnerabilities does not
correlate with the vulnerabilities’ severity level, while for delegated vul-
nerabilities, the lower the severity level, the slower the patch is released.
Furthermore, the gap of the delay between the severity levels in vulner-
able operating-systems-type products is larger than in application-type
products.
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5.3 RQ3: How effectively do the CNAs coordinate to release fixes for shared
vulnerabilities?

Motivation: The results in RQ1 and RQ2 indicate that delegated vulnerabil-
ities are more severe than self-assigned vulnerabilities and the delay of patch
releases for delegated vulnerabilities is longer than self-assigned vulnerabilities.
Furthermore, delegated vulnerabilities indicate that there exists a potential de-
lay before the affected CNAs are aware of these vulnerabilities, unless CNA
coordination is able to mitigate it. In order to measure the coordination ef-
ficiency on fixing vulnerabilities, we focus on vulnerabilities that affect more
than one CNA’s products, which we refer to as multi-affected vulnerabilities.

Approach: To know the extent of efficiency of coordination across the CNAs,
we first compare the number and percentage of vulnerabilities that affected
more than one CNA’s products to those that affect only one CNA (i.e., single-
affected vulnerabilities) for the 5 duration categories of RQ2. We compare
the three CVSS score metrics (i.e., base, impact, and exploitability) between
multi-affected and single-affected vulnerabilities. Similar to RQ2, we compute
the Diffpd delay and compare the delay between multi-affected and single-
affected vulnerabilities from two aspects: (1) self-assigned vs. delegated and
(2) the affected product types (i.e., application vs. operating system vs. both).
Vulnerabilities affecting products of both types indicate more complex issues
for which the affected vendors need a longer time to (jointly) develop a fix,
potentially having a higher impact on victim systems. Similar to RQ2, due to
insufficient data for hardware-type products in tenable.com, we only study
12 out of the 13 CNAs (exclude Qualcomm).

In addition, as discussed in Section 4.3, we evaluate coordination efficiency
across the CNAs by the Diffpp delay between patch releases for shared vul-
nerabilities, i.e., patch coherence. In particular, we compute the Diffpp delay
for each of the multi-affected vulnerabilities across the studied CNAs. A large
Diffpp indicates that the CNAs are less effective in coordinating vulnerability
fixes across their products, since the fixes are spread out across time, with
some affected products being prone to exploitation of a vulnerability for a
much longer time.

We analyze the delay (Diffpp) between the first and last patch dates from
the following three aspects:
1) The number of affected variants: A variant represents a flavour of a

product designed for particular conditions. For example, Cisco Catalyst’s
campus LAN switches have several variants, such as the Catalyst 6500
series and Catalyst 7600 series that support different network layers. A
higher number of affected variants indicates that the affected vendors need
more time to adopt the fixes to all the affected variants of a particular
product.

2) Vulnerability weaknesses: Since every vulnerability corresponds to a
variety of weaknesses on a victim system, we study whether the delay of
a particular type of weakness is longer than the others. We identify the

tenable.com
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top 10 weaknesses in the multi-affected vulnerabilities (see Table 5), based
on the CWE (Common Weakness Enumeration) framework [3] that has
been widely used in prior work [12, 46], and compare the delay among the
top 10 CWEs. The CWE framework lists common security weaknesses with
their information, including description, code examples, detection methods,
and potential mitigation. The CWE framework also classifies associated
weaknesses in groups that developers and practitioners could then use as
a common language for vulnerability discussions.

3) Pairs of studied CNAs: We are interested in whether certain pairs of
CNAs have a closer coordination of vulnerabilities than others. As the
results in RQ2 indicate that the Diffpd delay varies across the CNAs (see
Tables 2 and 3), we classify pairs of the studied CNAs that exhibit a similar
pattern of releasing fixes. For example, a pair of CNAs that usually release
fixes before the disclosure is more likely to coordinate on a fix, achieving
better (lower) patch coherence. We consider any pairs from Adobe, Google,
Microsoft and Mozilla as a group, which we refer to as “AGMM”, since these
CNAs release fixes of most of both types (i.e., self-assigned and delegated)
of vulnerabilities across the two product types before disclosure (Tables 2
and Table 3). By contrast, Apple, Oracle and Red Hat have an inconsistent
speed of releasing fixes, which we group together as “AOR”. We assign the
remaining pairs as “others”. In addition, the AGMM and AOR groups rep-
resent two extreme groups of CNAs: one of them is quicker with releasing
fixes, while the other is slower, yielding a lower and upper bound of patch
coherence across the studied CNAs.

Results: Adobe (80%), Apple (53%) and Red Hat (75%) are im-
pacted by the majority of multi-affected vulnerabilities. Apple and
two other CNAs (Microsoft and Mozilla) have a similar percentage (≈50%)
of single-affected and multi-affected vulnerabilities, i.e., Apple: 53% vs. 47%,
Microsoft: 46% vs. 54% and Mozilla: 49% vs. 51%. Figure 10 indicates that the
other 9 out of 12 studied CNAs have a majority (at least 69%) of single-affected
vulnerabilities.

The 5,339 multi-affected vulnerabilities that affect both product
types are more severe than (1) those that affect one product type
and (2) single-affected vulnerabilities (Kruskal-Wallis test: p-value
< 0.05). More specifically, Figure 11 shows that multi-affected vulnerabilities
that affect the two product types have a median base score of 9.3, a median
exploitability score of 8.6 and a median impact score of 10, which suggests an
extremely high-severity level. By contrast, multi-affected vulnerabilities that
only affect one type of product (i.e., application or operating-system) are less
severe than single-affected vulnerabilities, with median base scores of 5.8 and
5, respectively. Such vulnerabilities have a similar median score across the
three metrics of CVSS scores in Figure 11 (grey bars).

The delay (Diffpd) of patch releases for multi-affected vulnerabil-
ities is longer than for single-affected vulnerabilities, especially for
delegated ones that are also multi-affected. For delegated vulnerabili-
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Table 4: The comparison of the delay Diffpd of patch releases between single-
affected vs. multi-affected and delegated vs. self-assigned vulnerabilities for
the studied CNAs. For each row, the bold number indicates the category with
the largest number of vulnerabilities among the 5 duration categories.

CNA Assignor Type < -30 -30∼0 0∼30 30∼90 ⩾ 90
Adobe Self-assigned Single 26 515 35 3 5

Multi 421 2,094 331 94 7
Delegated Single 3 18 1 2 2

Multi 2 15 7 1 1
Apple Self-assigned Single 1,087 2,150 458 346 149

Multi 176 397 123 45 35
Delegated Single 11 36 19 15 15

Multi 24 30 34 120 185
Cisco Self-assigned Single 80 723 414 9 44

Multi 4 11 10 - 1
Delegated Single - 1 4 - -

Multi 1 1 - - -
Dell Self-assigned Single - 1 3 - -

Multi - - - - -
Delegated Single 4 1 - 4 -

Multi - - 1 - -
Google Self-assigned Single 260 431 83 1 -

Multi 329 435 53 2 -
Delegated Single 27 293 42 1 -

Multi 32 306 25 1 -
Huawei Self-assigned Single 4 6 - - -

Multi - - - - -
Delegated Single 2 - - - -

Multi - - 1 1 1
IBM Self-assigned Single 137 422 95 72 86

Multi 15 51 8 12 16
Delegated Single 42 65 22 22 17

Multi 3 7 2 - 9
Intel Self-assigned Single - 1 - - -

Multi - - - - -
Delegated Single - 1 - - -

Multi - 1 - - -
Microsoft Self-assigned Single 21 3,126 1,013 36 11

Multi 2 9 4 - 1
Delegated Single 1 17 5 13 6

Multi 5 199 91 8 2
Mozilla Self-assigned Single 231 367 40 21 -

Multi 356 365 57 4 1
Delegated Single 69 251 15 3 2

Multi 19 92 32 3 3
Oracle Self-assigned Single 132 2,251 436 59 118

Multi 95 614 359 48 105
Delegated Single 6 8 2 3 6

Multi 26 22 50 81 199
Red Hat Self-assigned Single 106 174 34 24 25

Multi 42 66 66 46 116
Delegated Single 2 4 1 3 2

Multi 8 35 70 107 154
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Fig. 10: The number and percentage of single-affected and multi-affected vul-
nerabilities in each of the studied CNAs.
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Fig. 11: The three metrics of CVSS scores for single-affected and multi-affected
vulnerabilities that affect one (i.e., either application or operating-system) or
two types (i.e., both) of products.

ties, the CNAs release fixes for multi-affected vulnerabilities in a median of
4 days (after the disclosure date), while they release fixes for single-affected
vulnerabilities in a median of -2 days (before the disclosure date). For self-
assigned vulnerabilities, the CNAs release fixes for both single- and multi-
affected vulnerabilities in a median of -2 days (before the disclosure date). For
an individual CNA, similar to the results for the application and operating-
system types of products in RQ2 (Table 2 and 3), IBM, Apple, Oracle, and
Red Hat release fixes for the largest number of multi-affected and delegate
vulnerabilities as late as at least 90 days after the disclosure date (⩾ 90 days)
in Table 4, which is slower than the other studied CNAs.

The Diffpp delay (i.e., patch coherence) for multi-affected vulner-
abilities that affected less than 5 variants of both product types is
the shortest (median of 2 days), compared to vulnerabilities that
affected one type of product (median of 186 days for the application
type, and 334 for the operating system type), as shown in Figure 12.
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Fig. 12: Comparison of the delay (Diffpp) between when the first and last
patches are available across the studied CNAs, based on affected product types
and the number of affected variants. A variant represents a flavour of a product
designed for particular conditions (e.g., x84 or x64).
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Fig. 13: The comparison of the delay (Diffpp) between when the first and
last patch dates, base on the top 10 vulnerability weaknesses (CWEs) in the
multi-affected vulnerabilities. Table 5 reflects the details of the top 10 CWEs.

One possible reason for this is that multi-affected vulnerabilities that affected
both types of products are more severe (see Figure 11). In general, the Diffpp

delay of multi-affected vulnerabilities is a median of 35 days across the CNAs.
Figure 12 also indicates that the more products affected by a multi-affected
vulnerability, the longer the patch coherence.

The Diffpp delay (i.e., patch coherence) for vulnerabilities with
weaknesses related to buffer overflow (CWE-119) and permissions,
privileges, and access controls (CWE-264) is the shortest (median of



28 Jiahuei Lin et al.

Table 5: The top 10 common weaknesses (CWEs) in the multi-affected vul-
nerabilities.

# CWE Name Count
1 CWE-119 Improper restriction of operations within the bounds of a

memory buffer
142

2 CWE-416 Use after free 60
3 CWE-264 Permissions, privileges, and access controls 27
4 CWE-200 exposure of sensitive information to an unauthorized actor 25
5 CWE-125 Out-of-bounds read 25
6 CWE-787 Out-of-bounds write 21
7 CWE-399 Resource management errors 16
8 CWE-20 Improper input validation 14
9 CWE-79 Cross-site scripting 11
10 CWE-189 Numeric errors 11
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Fig. 14: Comparison of the delay (Diffpp) between the first and last patches.
“AGMM” represents any pair of vendors from Adobe, Google, Microsoft, and
Mozilla. “AOR” represents any pair of vendors from Apple, Oracle, and Red
Hat.

0 days), as shown in Figure 13. In general, the Diffpp delay of multi-affected
vulnerabilities is a median of 35 days across the CNAs. Table 5 shows the top
10 weaknesses in the multi-affected vulnerabilities, along with their name and
count. Four (CWE-119, CWE-416, CWE-125, CWE-787) out of the top 10
CWEs are memory errors, four (CWE-264, CWE-200, CWE-20, CWE-189)
are related to design flaws, two (CWE-399, CWE-79) are related to resource
management errors.

Although some CWEs are related to a similar issue, the patch coherence
of such related vulnerability types can still vary substantially. For example,
vulnerabilities with CWE-119 (#1) “buffer overflow” and CWE-416 (#2) “use
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after free” are memory errors that both could be detected by static analysis
tools and even be automatically fixed [27]. However, the patch coherence for
CWE-119 is a median of 0 days, while for CWE-416 is a median of 178 days
(Wilcoxon test: p-value < 0.01, a large effect size of 1.32).

When any pair of CNAs from Adobe, Google, Microsoft, and
Mozilla (i.e., the AGMM group) are affected by a common vulnera-
bility, the Diffpp delay (i.e., patch coherence) is a median of 0 days,
while for any pairs of CNAs from Apple, Oracle, and Red Hat (i.e.,
the AOR group), the Diffpp delay is a median of 277 days. The dif-
ference between the two groups of CNAs is significant (Wilcoxon test: p-value
< 0.01) and the effect size is large (1.94). Figure 14 shows a large variance in
the AOR group, compared to the variance in the AGMM group. This could be
due to the security update policy of each CNA, which may vary by product.
For example, in the AOR group, Oracle releases security updates quarterly,15
while Apple16 and Red Hat17 have a more flexible schedule. By contrast, in the
AGMM group, Google,18 Microsoft19 and Mozilla20 release security updates
either monthly or in (under) 30 days. As a result, the variance of the patch co-
herence in the AGMM group is relatively small. Another possible reason could
be the development process and management in a CNA, e.g., low-priority for
products in an old version.

: Summary of RQ3

Although the majority (i.e., 9) of the studied CNAs have a minority
(<50%) of multi-affected vulnerabilities, these vulnerabilities are severe
according to the CVSS scores, especially when they affect both types of
products. The delay (Diffpd) of patch releases for multi-affected vulner-
abilities is longer than that of single-affected vulnerabilities. When the
CNAs are affected by the common vulnerabilities, the patch coherence
of vulnerabilities with weaknesses related to buffer overflow (CWE-119)
and access controls (CWE-264) is a median of 0 days. Furthermore, the
patch coherence in the AGMM group (i.e., Adobe, Google, Microsoft,
and Mozilla) has a median of 0 days.

15 https://www.oracle.com/corporate/security-practices/assurance/
vulnerability/
16 https://support.apple.com/en-us/HT201220
17 https://access.redhat.com/solutions/3711551
18 https://chromium.googlesource.com/chromium/src/+/master/docs/security/
severity-guidelines.md
19 https://www.microsoft.com/en-us/msrc/faqs-security-update-guide
20 https://support.mozilla.org/en-US/kb/managing-firefox-updates

https://www.oracle.com/corporate/security-practices/assurance/vulnerability/
https://www.oracle.com/corporate/security-practices/assurance/vulnerability/
https://support.apple.com/en-us/HT201220
https://access.redhat.com/solutions/3711551
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/severity-guidelines.md
https://www.microsoft.com/en-us/msrc/faqs-security-update-guide
https://support.mozilla.org/en-US/kb/managing-firefox-updates
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6 Discussion

In this section, we discuss the implications of our findings for practitioners
(Section 6.1), researchers (Section 6.2) and CNAs (Section 6.3).

6.1 Practitioners

Practitioners should be aware of the potential issue of patch incoher-
ence, i.e., a large value of Diffpp, after the fix of a given vulnerability
is available. Although the studied CNAs are leading security companies, the
delay Diffpp of patch releases between them for a given vulnerability could
vary from 0 days up to more than one year. The patch incoherence indicates
the period that some of the vulnerable products affected by a vulnerability
with an available fix remain unfixed. The delay Diffpp is impacted by product
types, vulnerability weaknesses, and the affected vendors. For example, CVE-
2011-307121 allowed remote attackers to cause a denial of service in Chrome
(Google) and Safari (Apple). Google made an announcement of security up-
dates for CVE-2011-3071 along with 11 other vulnerabilities in a point re-
lease,22 while Apple made an announcement for CVE-2011-3071 along with
120 other vulnerabilities in a major release.23

We compare patch coherence with two prior studies. Nappa et al. [33]
observed that the patch coherence of vulnerabilities in a shared code snippet
between two applications is a median of 11 days from 10 popular client-side
applications. The patch coherence in our work is longer (i.e., a median of 35
days) than the prior work since we study vulnerabilities that affected two
CNAs’ products with different code bases, which needs developers of each
of the CNAs to develop their own fix. For dependent packages in the npm
ecosystem, Decan et al. [15] showed that 50% of the dependent packages
affected by vulnerable upstream projects took nearly 14 months to release
fixes, while their upstream usually had a fix available within one month. The
patch coherence of the dependent packages is longer than of the projects in our
work. One possible reason of the poor patch coherence for dependent packages
in npm could be due to the development process and management of these
dependent projects, e.g., additional migration effort (e.g., code changes) to fix
the vulnerable upstream projects [26].

Practitioners should develop a better coordination model on vul-
nerability fix releases to reduce the size of the window of vulnera-
bility exploits (i.e., obtain a negative value of Diffpd) for delegated
vulnerabilities. Each individual CNA releases fixes for vulnerabilities with
a delay Diffpd w.r.t. the disclosure date (Tables 2 to 4). The Diffpd delay
for delegated vulnerabilities is longer than for self-assigned vulnerabilities,

21 https://nvd.nist.gov/vuln/detail/CVE-2011-3071
22 https://chromereleases.googleblog.com/2012/04/stable-and-beta-channel-updates.
html
23 https://support.apple.com/en-us/HT202561

https://nvd.nist.gov/vuln/detail/CVE-2011-3071
https://chromereleases.googleblog.com/2012/04/stable-and-beta-channel-updates.html
https://chromereleases.googleblog.com/2012/04/stable-and-beta-channel-updates.html
https://support.apple.com/en-us/HT202561
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Table 6: Comparison of the Diffpd delay with prior work.

Data1 Subjects Types Diff2
pd

Our work 2010 - 2020 13 CNAs companies median of -2 day
Shahzad et al. [40] 1998 - 2011 8 vendors both3 < 0 days4

Li and Paxson [28] Till 2016 682 projects open-source < -7 days
Piantadosi et al. [35] 337 vulns Apache Http

and Tomcat
open-source median -12 and -

54 days
Decan et al. [15] 2012 - 2017 npm open-source < 0 days5

Alfadel et al. [7] 550 vulns Python open-source > 0 days6

1 Note that we present either the data period of studied vulnerabilities or the number
of studied vulnerabilities, when applicable.
2 Note that we present an approximate value with the percentage in the footnote when
the prior work did not state a precise value.
3 2 open-source vendors and 6 companies.
3 73% before disclosure.
4 84% before disclosure.
5 51% after disclosure.

even though the risk level for delegated vulnerabilities is higher than for self-
assigned ones. Since delegated vulnerabilities indicate that at least one CNA
develops a fix and another CNA controls the disclosure process, i.e., at least
two CNAs are involved, a larger value of Diffpd (>0) could be an indicator of
low-quality coordination between these involved CNAs. Since this of course de-
pends on other factors, like the difficulty of fixing a given vulnerability, future
work should study the quality of coordination in more detail.

In order to put our findings in perspective, we compare the Diffpd delay
with prior studies and summarize the result in Table 6. We observe that the
trend of the Diffpd for vulnerabilities in our work is similar to vulnerabilities
from 1998 to 2011 studied by Shahzad et al. [40]. While several other works [7,
15, 28, 35] studied vulnerabilities in open-source projects, our study focuses
on corporations (CNAs). Yet, the gap of the Diffpd delay between open-source
projects and corporations is not significantly large, as these studies found
that the value of the (Diffpd) delay in open-source projects usually is negative
(before disclosure), except in the Python ecosystem [7].

6.2 Researchers

Researchers could explore more dimensions (e.g., developer team
size) on understanding the delay of patch releases w.r.t the disclo-
sure date in order to reduce such delay, especially for delegated vul-
nerabilities. We investigate several dimensions (e.g., product types, assignor)
and observe the similarity and difference across the CNAs. For example, the
CNAs often release fixes for self-assigned vulnerabilities within 30 days be-
fore the disclosure date, while they have an inconsistent pace for delegated
vulnerabilities, from -30 days up to ⩾ 90 days (RQ2). Given the increasing
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number of vulnerabilities and software supply chain attacks, and the fact that
a vulnerability disclosed without any available fix indicates the highest risk, a
shorter delay of patch releases w.r.t. the disclosure date reduces the chance of
vulnerability exploits at a large scale.

In addition, more research is required for vulnerabilities in the
operating-system and hardware types of product. The delay Diffpd of
releasing fixes for delegated vulnerabilities in the operating-system type of
product is longer than that of the application type of product, by a median
of 4 days (RQ2). However, for the application type of product, the median is
minus 1 day (fix available before disclosure), compared to plus 3 days (after
disclosure) for the operating-system type of product. Furthermore, the lower
the severity level of a vulnerability in the operating-system type of product,
the longer the delay (Diffpd) of releasing fixes is. While a large number of
prior studies has been conducted on application vulnerabilities [20, 22, 25, 36],
vulnerabilities in operating systems (e.g., Windows, Debian) are explored
less commonly, even though operating-system vulnerabilities impact an order
of magnitude more users than application-type ones. Furthermore, software
providers often do not provide updates for all affected operating system ver-
sions, due to end-of-life (EOL) [17].

Finally, a large number (5,339) of multi-affected vulnerabilities affect both
operating-system and application types of products. These vulnerabilities are
extremely severe, with a median base score of 9.3, median exploitability score
of 8.6 and a median impact score of 10. As such, the delay of releasing fixes
in a median of 4 days after the disclosure date leads to a large impact on a
victim system. More research should dive into detection tools for such a kind
of vulnerability or techniques to secure operating systems.

6.3 CNAs

The existing CNAs should consider designing a different disclosure
process for delegated vulnerabilities, compared to self-assigned vul-
nerabilities. First, affected software vendors have a potential delay of becom-
ing aware of delegated vulnerabilities, compared to self-assigned vulnerabili-
ties. Second, although delegated vulnerabilities account for a minority (<50%)
of vulnerabilities in each of the studied CNAs except Google (Figure 5), they
are more severe than self-assigned vulnerabilities. Delegated vulnerabilities in
the application and operating-system types of products have a median CVSS
score of 7.5 and 7.1, respectively, i.e., both are high-severity. Moreover, the
results in RQ2 indicate that the delay Diffpd of releasing fixes for delegated
vulnerabilities in the operating-system type of product is a median of 3 days up
to more than 90 days after the disclosure date. This gives attackers a large win-
dow to exploit delegated vulnerabilities because the fixes are not yet available,
even though the public is aware of these vulnerabilities. Furthermore, given
the increasing number of software supply chains and the number of software
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Fig. 15: The number of CNAs in the CVE program.

vendors in a software supply chain, such a large window implies a potential
large scale of losses.

Due to the increasing number of vulnerabilities in recent years and a large
number (>15k) of vulnerabilities in recent years,24 many new CNAs have
joined the CVE program to share efforts of assigning and disclosing vulner-
abilities. Figure 15 indicates that the number of CNAs doubled twice, from
2017 to 2018 and from 2020 to 2022. Since the CVE program does not specify
general guidelines of vulnerability disclosure for CNAs, each CNA discloses
vulnerabilities based on its own background knowledge and policy. As such,
given the high-risk of delegated vulnerabilities, a new CNA may disclose a vul-
nerability earlier/later than it should be. In addition, even the delay of patch
releases for delegated vulnerabilities is a median of 1 day before disclosure,
there exists a high chance of vulnerability exploitation due to the inconsistent
pace of patch releases across the affected vendors, i.e., patch incoherence.

The concept of coordinated vulnerability disclosure (CVD) should be widely
broadcast to ensure the security of affected products. The software security-
related communities, including researchers, companies and governments, have
been devoted to deriving best practices for multi-party coordination of fixing
vulnerabilities, given today’s era of widespread open-source reuse. However, it
takes time to develop practices across software projects, companies, organiza-
tions and countries, and to start applying them. For example, the European
Union Agency for Cybersecurity (ENISA) reported that the notion of CVD
remains fragmented in the 2023 report25, even though the European Cyber
Resilience Act was published in September, 2022.26 Our results identify traces
of such fragmentation as there exist Diffpd inconsistency and a large delay of
patch releases across CNAs.

24 https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/
cvss-severity-distribution-over-time
25 https://www.enisa.europa.eu/news/coordinated-vulnerability-disclosure-towards-a-common-eu-approach
26 https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://www.enisa.europa.eu/news/coordinated-vulnerability-disclosure-towards-a-common-eu-approach
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
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Our results could be taken into account when developing CVD best prac-
tices. For example, Table 4 indicates that most of the studied CNAs release
the fixes for the largest (bold) number of multi-affected vulnerabilities (both
self-assigned and delegated) 30 days before the disclosure (-30∼0 days). There-
fore, for a given vulnerability, an affected vendor should be able to release the
fix within 30 days after the disclosure of the vulnerability (0∼30 days). There
might be some exceptional policies, such as, for a given vulnerability, a vendor
having more than 5 variants of the affected products should release the fixes
for all affected variants within 90 days after the disclosure (see Figure 12).

7 Threats to Validity

7.1 Internal Validity

We calculate the delays Diffpd and Diffpp based on the collected security advi-
sories from tenable.com because the open-source vulnerability database (OS-
VDB) was shutdown permanently in 2016.27 Although tenable.com might
miss some security advisories, our data set includes 82% of the 39,409 collected
vulnerabilities (cf. Section 4.2) that affected application and operating-system
types of products (i.e., software-related products) to provide insightful infor-
mation of current practices that are used by top companies. We encourage
future studies to explore other data sources to generalize our results.

We only study the application and operating-system types of products
according to the CPE configurations in RQ2 and RQ3, due to the lack of se-
curity advisories related to hardware type of vulnerabilities in tenable.com.
However, vulnerabilities in the hardware type of product are also severe in
the context of software supply chains. For example, attackers gained complete
control via the Starbleed (CVE-2019-14626)28 vulnerability in FPGA (Field
Programmable Gate Arrays) chips, which can be found in many safety-critical
applications. In addition, as the CPE configurations only include the product
type (e.g., “application” type) of an affected product, we cannot classify the
affected product into finer-grained categories using the provided data. One
way we tried to obtain finer-grained category data is by mining an existing
database of open-source projects, i.e., OpenHub. While OpenHub did con-
tain a statistically representative sample of 130 (4%) out of the studied 3,349
application-type products by exact name matching, this sample was biased
in several ways. For example, 8 out of the 130 products have recorded data
about their organizations and these 8 products were published by 3 vendors.
The 8 products account for 4.2% of the studied vulnerabilities that affected the
application-type products in our dataset. Moreover, OpenHub only lists open-
source products, while our study includes application-type products from both
open-source and commercial vendors. Due to the aforementioned reasons, we

27 https://www.securityweek.com/osvdb-shut-down-permanently
28 https://nvd.nist.gov/vuln/detail/CVE-2019-14626

tenable.com
tenable.com
tenable.com
https://www.securityweek.com/osvdb-shut-down-permanently
https://nvd.nist.gov/vuln/detail/CVE-2019-14626
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encourage future work to explore more data sources to have a comprehensive
analysis of application-type products.

Another internal threat to validity is that our study focuses on vulnera-
bilities with a valid CVE ID and excluded those (9,836) with an invalid CVE
ID.29 These CVE IDs with an invalid status may still correspond to vulner-
abilities to a certain extent, but were invalid due to a variety of reasons. For
example, one CVE should be split into several CVEs to reflect the risks of
these CVEs, or the definition of a CVE is controversial from different CNAs,
ending up with a dispute status.

7.2 External Validity

These practices shed light into the deeper understanding of how fast the CNAs
react to vulnerabilities, but we cannot claim that our results generalize to all
other CNAs that are not studied in this work. Therefore, we acknowledge that
future studies are required to add more data sources and reach more general
conclusions.

8 Conclusion

In this work, we investigate the efficiency of vulnerability coordination and fix
releases w.r.t the disclosure date from a set of 39,409 vulnerabilities and the top
13 CNAs that have played several roles in multi-party coordination on fixing
vulnerabilities. Using the dataset, we analyze influential factors of vulnerability
fix releases and disclosure, including the assignor of a vulnerability, affected
product types and the number of affected vendors. In addition, we extensively
measure the efficiency of patch releases and patch coherence in the multi-party
coordination.

Our findings have revealed that the size of the window of vulnerability
exploitation in the CNAs is usually small (with fixes released before the dis-
closure), but large for delegated vulnerabilities in operating-system products
and multi-affected vulnerabilities affecting both operating-system and appli-
cation products (with fixes released after disclosure). Additionally, the patch
coherence for vulnerabilities varies from a median of 35 days up to more than
one year, due to weaknesses and pairs of the affected CNAs.

These insights indicate that the window size of potential vulnerability ex-
ploitation for a given vulnerability in a vulnerable product is not significantly
large. However, given the poor patch coherence and the context of software
supply chains, both software vendors and users are still at high-risk for a
long period. CNAs could design better disclosure policies for various kinds
of vulnerabilities and a better fix release process. Researchers could investi-
gate additional practices to improve such policies and processes, such as ways

29 https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_
issues.html

https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html
https://cve.mitre.org/cve/list_rules_and_guidance/correcting_counting_issues.html
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to patch vulnerable products that are affected by vulnerabilities that already
have an available fix.

Data Availability Statement

The data that support the findings of this study are available on the CVE [2]
and tenable.com30 websites.
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