
Feature: Grey Literature Survey on the Release Readiness Criteria of
Generative AI-based Software Products

A State-of-the-practice Release-readiness
Checklist for Generative AI-based Software
Products
Harsh Patel, Queen’s University, Canada

Dominique Boucher, PhD, National Bank of Canada, Canada

Emad Fallahzadeh, PhD, Queen’s University, Canada

Ahmed E. Hassan, PhD, Queen’s University, Canada

Bram Adams, PhD, Queen’s University, Canada

Abstract—This paper investigates the complexities of integrating Large Language
Models (LLMs) into software products, with a focus on the challenges encountered
for determining their readiness for release. Our systematic review of grey literature
identifies common challenges in deploying LLMs, ranging from pre-training and fine-
tuning to user experience considerations. The study introduces a comprehensive
checklist designed to guide practitioners in evaluating key release readiness aspects
such as performance, monitoring, and deployment strategies, aiming to enhance
the reliability and effectiveness of LLM-based applications in real-world settings.

G enerative AI, especially Large Language
Models (LLMs), are increasingly being inte-
grated into software products [1], marking a

significant shift in how companies approach product
development and release. This integration is driven by
tangible improvements in user productivity and creativ-
ity. Additionally, the substantial economic potential of
generative AI is noteworthy, with an estimated contribu-
tion of $2.6 trillion to $4.4 trillion annually to the global
economy, according to McKinsey’s report1.

However, determining the release-readiness of
these products is increasingly complex. This involves
ensuring compliance with user and safety require-
ments, passing quality assurance checks, evaluating
model performance, ethical considerations, and the
potential impact on users. Companies must also nav-
igate evolving AI legislation across countries, further
complicating the release process.

Many challenges of ensuring production-readiness

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

1https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/the-economic-potential-of-generative-
ai-the-next-productivity-frontier

of generative AI products are similar to traditional AI-
based systems, including non-determinism and testing
difficulties. These challenges highlight the need for
release checklists—formal lists of evaluation criteria to
determine if a product is ready for release to end users.

Several studies have explored release-readiness
for traditional AI-based software, drawing on indus-
try experiences like Google’s testing rubric [2], which
emphasizes reliability with a 28-test scoring system
for assessing ML system production readiness. Zinke-
vich [3] presents a guide on ML system development
best practices, spanning integration to feature engi-
neering. Microsoft’s production checklist [4] aids teams
in evaluating ML model production readiness, focusing
on performance, metrics, data quality, integration, and
ethical considerations. Unlike these works, our study
develops a release-readiness checklist specifically for
generative AI-based software products.

Determining when generative AI-based software
products are ready for release poses a more complex
challenge. LLMs inherit typical ML concerns around
data dependency and model unpredictability and face
unique issues such as ensuring contextually accurate
and unbiased language understanding, managing the
evolving scope of human language, and addressing the

Month Published by the IEEE Computer Society Publication Name 1

FEATURE

ethical implications of their responses [12]. Companies
have begun sharing their processes and experiences
through blogs and industry conferences, contributing
to a growing body of “grey literature” on the subject.

This paper synthesizes a release checklist for gen-
erative AI-based products. Unlike traditional AI check-
lists, our checklist is compiled from 65 grey literature
sources across 44 organizations, identifying key re-
lease challenges. Our results will enable future au-
tomation of release-readiness evaluation steps.

METHODOLOGY
Our systematic grey literature review follows a similar
approach for search construction as used by earlier
work [13], and aims at capturing the breadth of dis-
cussions surrounding the deployment of LLMs in pro-
duction environments. We started from a base query,
i.e., “generative ai release checklist”, which covers the
seminal resources in the field such as the “LLMs in
Production Conference” [5] and the influential blog
posts of Matt Bornstein [14] and Chip Huyen [6]. We
then split the query into three parts (1. “generative ai”,
2. “release” and 3. “checklist”) and included synonyms
or related words to improve the coverage of grey
literature, yielding the resulting search query:
("generative ai" | "large language

models" | llms | "foundation models"

| chatgpt | "conversational ai") AND

(release | production | deployment |

monitoring | observability | operations)

AND (checklist | checks | guardrails

| considerations | requirements |

practices | patterns | challenges |

methods | risks)

Our search covered the period from June 1, 2018,
the release date of GPT-1 by OpenAI, to September 1,
2023, the start of our survey.
Inclusion criteria of our search:
• Literature must be authored by or associated with

organizations focused on the field of generative
AI.

• Content should specifically discuss LLMs in pro-
duction settings.

• Accessibility to the full text without restrictions.
The exclusion criteria:
• Product announcements, advertisements, and de-

mos.
• News articles.
• Non-English literature.
• Duplicates.
• Literature that mentions LLM production without

detailing the techniques used.

• Articles behind paywalls.

Our search yielded 522 million results, but rele-
vance dropped after the top 100. We collected the
top 100 results and augmented them with targeted
searches for the top 10 companies in generative AI and
LLMs, as recognized by sources like State of AI [10]
and Gartner [11]. This approach netted 1,100 results,
narrowed down to 35 through our criteria, plus 30 more
from snowball sampling.

The first and third authors developed a taxonomy
for release-readiness challenges and solutions using a
grey literature sample. They independently coded 20%
of the sample, then merged their taxonomies to form a
consensus. This taxonomy was reapplied to re-code
the initial sample, with comparisons for consistency
and conflict resolution. Krippendorff’s Kappa score of
0.917 indicated high inter-rater reliability (> 0.8) [15].
This agreement allowed the first author to code the
remaining 80% of the sources. The findings were
organized into a mindmap of release-readiness chal-
lenges and solutions, complemented by references.
Workshops were conducted with the team to refine the
mindmap into a checklist, incorporating team feedback.

Our replication package2 includes the resulting
mind map to visually organize the findings, the col-
lected notes for each grey resource we reviewed and
an online repository of references for further explo-
ration. We refer to online references in this paper with
the notation “O«number»”.

RESULTS: CHALLENGES
Figure 1 lists the 31 identified release challenges
related to generative AI, and their prevalence in the
grey sources. Note that the latter measures the number
of “mentions” of these challenges in the grey sources,
which is not necessarily equal to the actual frequency
of challenges in practice (companies may use specific
strategies or face challenges without necessarily dis-
cussing them in public media). The top five challenges
discussed are:

1) Reliability: Ensuring that LLMs consistently de-
liver accurate and coherent responses, avoiding
hallucinations, which are instances where the
model generates incorrect or nonsensical informa-
tion.

2) Deployment Resource Management: Optimizing
computational resources for LLMs in production to
improve cost, latency, and performance.

2https://github.com/SAILResearch/replication-24-harsh-
generative-ai-release-readiness-checklist

2 Publication Title Month 2024

FEATURE

3) Managing Embeddings: Handling the creation,
storage, and update of text documents’ vector rep-
resentations to improve semantic understanding
and response relevance.

4) Pre-deployment Evaluation: Conducting com-
prehensive testing to ensure LLMs’ consistency,
unbiasedness, and safety across demographics
before release.

5) Prompt-centric Orchestration: Effectively de-
signing and managing prompts to utilize LLMs’ full
potential, addressing task decomposition, external
tool integration, and sensitive information protec-
tion for privacy and security.

RESULTS: RELEASE-READINESS
CHECKLIST

This section presents a release-readiness checklist for
LLM-based software, derived from our grey literature
findings. It follows the software lifecycle stages shown
in Figure 1’s flowchart, highlighting key challenges
at each stage. The checklist provides checkpoints
for assessing an LLM-based product’s readiness and
identifies improvement areas, including references and
effective practices for each challenge. Checklist items
are labeled with "C" followed by a number (e.g., C1,
C2, C3), with subpoints (e.g., C1.1, C1.2) detailing
specific actions. Practitioners should implement these
practices or suitable adaptations for each relevant chal-
lenge. Note that these grey literature suggestions re-
quire further evaluation and verification, as they might
not be concrete solutions.

C1. When pretraining a new LLM:
C1.1 Check if your LLM needs to be trained using

sensitive/private data provided by others. [O43]
This consideration is crucial for ensuring privacy
compliance and the ethical use of data. If direct
data sharing is required, it is recommended to use
Federated Learning (FL). FL shares models with
clients to train on their data locally, ensuring the
data never leaves the source device. The updated
model parameters are then aggregated from all
clients, incorporating the collective insights while
maintaining data privacy.

C1.2 Partition the training process across multiple ac-
celerators (e.g., GPUs or other devices) to speed
up training. [O28][O42]
Distributed platforms for LLM workloads, such
as Ray, are essential for enabling parallelization
and acceleration, especially when incorporating
advanced techniques like FL.

C1.3 Anonymize data. [O43]
To ensure data privacy while still using it for train-
ing purposes, it is recommended to anonymize the
data before it is sent or used elsewhere. Use tools
like Gretel.ai, Private AI, and Tonic.ai to alter or
remove identifying information. Complement these
automated processes with manual checks to catch
any nuances that automation might miss, thus
preventing the association of data with individuals.

C1.4 Mitigate training data poisoning risks.
[O26][O27][O29]
Attackers may deliberately introduce misleading
information into training datasets, causing LLMs
to learn from biased or incorrect data. Verify the
sources of external training data used by your
organization and maintain detailed records of
its origins, similar to the methods used in the
Software Bill of Materials (SBOM). For more
information on emerging AI and data SBOM
scenarios, please refer to the SPDX specs3.

C2. When fine-tuning an LLM:
In addition to the checklist items related to pre-training,
fine-tuning also requires the following items.

C2.1 Minimize unsafe behaviours or align the
loss function to complex human values.
[O2][O25][O29][O58]
This is achieved by integrating instruction fine-
tuning with reinforcement learning through
Reinforcement Learning with Human Feedback
(RLHF). This approach uses human preferences,
such as pairwise comparisons, to train a
reward model, ensuring AI actions are ethical,
appropriate, and aligned with human expectations,
thereby enhancing the safety and reliability of AI
applications.

C2.2 Utilize efficient fine-tuning processes to improve
training efficiency. [O2][O6][O9]
As models grow in size, full fine-tuning on pro-
sumer hardware becomes impractical, and stor-
ing separate fine-tuned models for each task is
costly due to their large size. Parameter Efficient
Fine-Tuning (PEFT) methods address these chal-
lenges by fine-tuning only a few additional param-
eters while freezing most of the pre-trained LLM’s
parameters. This approach significantly reduces
computational and storage costs and mitigates
issues like catastrophic forgetting observed in full
fine-tuning.

3https://fossa.com/blog/spdx-3-0/,2023

Month 2024 Publication Title 3

FEATURE

FIGURE 1. Frequency of challenges in our grey literature results (The numbers in the flowchart indicate the number of challenges
associated with each stage of the LLM lifecycle)

C3. When doing prompt engineering:
C3.1 Consider different prompt construction methods.

[O1][O4][O7][O10][O24][O47]
Exploring methods like Zero-shot, where the
model tackles a task with no prior examples,
Few-shot, where a few examples are provided
for context, Chain-of-Thought (CoT) prompting,
which encourages step-by-step reasoning, Self-
Consistency, which selects the most accurate
response from multiple outputs, and Tree-of-
Thought4, which structures reasoning as a tree
with multiple branches, can significantly enhance
LLM effectiveness. Crafting precise prompts with
clear instructions or questions and integrating con-
textual inputs or examples also improves response
quality and relevance.

C3.2 Utilize known practices to im-
prove reliability and hallucinations.
[O1][O2][O3][O4][O7][O9][O13][O14][O18][O19]
[O22][O24][O26][O34][O36][O38][O40][O44][O46]
[O47][O57][O60][O63]
Ensuring consistent outputs for identical inputs
is crucial for user trust in LLMs, which can
exhibit non-deterministic behavior. Solutions
include model-based evaluation or self-evaluation

4This technique is not present in our mindmap.

techniques, such as OpenAI Evals, where an
LLM assesses its own outputs for consistency,
reliability, and ethical appropriateness. Another
method is self-consistency and multiple
prompting, generating multiple responses for
the same input and determining the final output
through majority voting or LLM selection using
APIs like OpenAI’s. Guardrails are also essential
to ensure outputs are coherent, accurate, factual,
and free from harmful content, safeguarding
against adversarial inputs; examples include
Guardrails.ai, NeMo, Guidance, and rellm.

C3.3 Bridge knowledge gaps by enriching prompts with
relevant context. [O38][O47][O55][O56][O63]
LLMs can sometimes make incorrect assump-
tions to fill knowledge gaps, leading to halluci-
nations. These knowledge gaps often arise from
insufficient context or ambiguous prompts. Utiliz-
ing Retrieval-Augmented Generation (RAG) tech-
niques addresses this issue by providing richer
context for prompts. By grounding model re-
sponses in factual content and supplying addi-
tional context to clarify ambiguous terms or refer-
ences, RAG significantly reduces the occurrence
of hallucinations and improves response accuracy.

4 Publication Title Month 2024

FEATURE

C3.4 Utilize vector stores5 and embedding
models6 to store, search, and update
vector representations7 of language data.
[O2][O5][O7][O9][O10][O11][O14][O17][O33][O36]
[O38][O44][O55][O60][O61][O63]

Vector stores and embedding models are
essential for managing and querying vector
representations of language data, enabling
efficient retrieval of relevant information (see
Section C3.3) and reducing hallucinations.
Embeddings represent critical implementation
decisions impacting RAG techniques, which
rely on effective data management to provide
enriched context for prompts. Platforms like
Weaviate, Pinecone, and pgvector for vector
stores, along with embedding models from
OpenAI, Huggingface, and Cohere, play a crucial
role in creating, storing, and updating vector
representations of language data, ensuring more
accurate and contextually relevant responses.

C3.5 Employ efficient context-retrieval techniques to
overcome LLM context length limit. [O1][O4][O38]
Large models like GPT-4 see performance decline
near their context window limit, affecting both in-
ference time and accuracy. Implementing chunk-
ing strategies to deliver the most relevant docu-
ments or segments enhances retrieval efficiency.
Additionally, applying contextual compression to
condense and summarize key facts increases the
density of useful information within the LLM’s con-
text window. However, these methods can some-
times produce invalid or incomplete results, so
verification is necessary.

C3.6 If your application is used by untrusted users,
it is crucial to address adversarial inputs.
[O2][O4][O18][O19][O34][O26][O29][O40][O54]
[O57]
LLMs must be safeguarded against prompts
intended to manipulate model output.
Implementing clear instructions within prompts
is a fundamental defensive strategy. Utilizing
Guardrails (see Section C3.2) and adapting SQL
injection defense strategies by parameterizing

5Vector stores are specialized databases optimized for
storing and querying high-dimensional vectors, allowing for
efficient similarity searches and retrieval.

6Embedding models are machine learning models that
convert data, such as words or sentences, into dense vector
representations that capture semantic meaning.

7Vector representation refers to the numerical encoding of
data into a multi-dimensional space, where similar items are
positioned close to each other.

prompt components to separate instructions from
inputs further enhances security.

C3.7 Ensure prompts’ compatibility across changes to
the underlying LLM (e.g., migrating from GPT-3.5
to GPT-4) and reproducibility across changes to
the prompt itself. [O1][O19]
In prompt engineering, prompts for older models
often need revisions for new versions, unlike tradi-
tional software updates. Therefore, unit-testing all
prompts with evaluation examples before model
changes is crucial. Temperature settings ensure
consistent outputs but reduce creativity. Prompt
versioning is essential for tracking the impact of
changes, requiring versioning and performance
monitoring. Using prompt templates offers a scal-
able way to craft prompts, incorporating instruc-
tions, few-shot examples, or action sequences
tailored for language models.

C3.8 Incorporate practices to en-
sure content safety and privacy.
[O1][O2][O4][O5][O9][O18][O24][O26][O27][O38]
[O40][O57][O60]
Review and adjust prompts to mitigate risks in
third-party LLM-generated content, especially
after RLHF fine-tuning (see Section C2.1). This
helps prevent harmful or sensitive information
and ensures compliance with ethical and privacy
standards. Implement profanity detection models
like the PyPI module "profanity-check" to
filter inappropriate language. Use LLMs to
evaluate responses for inappropriate content, and
integrate PII masking solutions like LangChain
or LLamaIndex, along with PII detection tools
such as Microsoft/presidio or Azure services, to
enhance content safety and privacy measures.

C3.9 Consider reusing prompts, decomposing
large tasks into smaller ones, utilizing
external tools, or chaining prompts. [O7][O10]
[O11][O17][O36][O38][O40][O44][O55][O61][O62]
Prompt orchestration enhances LLM effectiveness
by reusing prompts, simplifying problems,
integrating external tools, and sequencing
prompts for multi-step tasks. Frameworks like
LangChain and LlamaIndex excel in managing
prompt chaining, API interactions, contextual
data retrieval, and memory across LLM calls.
They also use thought decomposition methods
such as CoT, Tree of Thought, or ReAct to break
down complex tasks into manageable sub-tasks,
improving systematic reasoning and response
generation.

C3.10 Ensure responses are highly constrained
using types, templates, and constraints.

Month 2024 Publication Title 5

FEATURE

[O61][O62][O63]
In systems combining LLMs with other
components, maintaining response clarity is
essential. Constrained decoding mitigates
prompt injection risks by enforcing token-level
constraints, thus enhancing security (LMQL).
Unlike guardrails, it controls each output step for
validity. For more details and examples, visit the
prompting guide website8.

C4. Pre-deployment evaluation ensuring that
a model’s performance matches safety and
security criteria for application deployment.

C4.1 Evaluate your application’s performance pre-
deployment. [O2][O5][O6][O9][O12][O15][O17]
[O19][O35][O36][O38][O55][O56][O58]
Measure model performance against benchmarks
to ensure standards. Use A/B testing to compare
responses and prompt designs in real-world
scenarios. For classification tasks and extractive
QA, apply metrics like recall, precision, and
PRAUC. For tasks without clear answers, such
as translation or summarization, use BLEU,
ROUGE, or semantic similarity measures like
BERTScore. Conduct human evaluations to
capture nuances missed by automated metrics.
Perform Penetration Tests and Red Teaming to
identify biases or issues, leveraging resources
like Anthropic’s adversarial simulations9. Develop
task-specific benchmarks with Eval Driven
Development (EDD) for tasks like summarization
or dialogue, focusing on metrics that reflect each
task’s unique aspects to ensure relevance and
effectiveness. Use frameworks like G-Eval for
LLM self-evaluation to enhance transparency and
interpretability in assessments.

C4.2 Consider implementing practices to ensure acces-
sibility and foster end-user trust in your applica-
tion. [O2][O42]
For comprehensive guidance on creating human-
centric AI interactions, consult AI UI/UX guidelines
from industry leaders like Microsoft10, Google11,
and Apple12.

8https://www.promptingguide.ai
9https://github.com/anthropics/hh-rlhf
10https://www.microsoft.com/en-

us/research/publication/guidelines-for-human-ai-interaction/
11https://pair.withgoogle.com/guidebook/
12https://developer.apple.com/design/human-interface-

guidelines/machine-learning

C5. LLM-related Deployment Considerations
C5.1 Consider whether a commercial or open-

source LLM deployment suits your needs.
[O9][O19][O26][O27][O29][O33][O36][O37][O41]
This decision parallels the choice between
commercial and open-source software, weighing
factors such as ease of deployment, support
options, cost considerations, and flexibility
for innovation. Commercial LLMs streamline
deployment and provide robust support, focusing
on application development despite higher costs
and potential trade-offs in flexibility. In contrast,
open-source LLMs require more technical
expertise and infrastructure investment but offer
extensive customization opportunities and cost
efficiency, backed by a vibrant community for
ongoing development and issue resolution. While
prototyping and pre-deployment activities might
involve experimentation with more expensive,
state-of-the-art models like the latest GPT
versions, the final deployment decision should
balance cost and performance for sustainable
operation.

C5.2 Optimize your application for latency,
cost, and resource efficiency. [O2][O3][O4]
[O5][O9][O17][O19][O20][O24][O27][O28][O32]
[O33][O36][O38][O41][O47][O60][O63][O64]
When choosing third-party LLMs, balance the
evolving costs and impacts of token size with
the advantages of cloud scalability versus the
security benefits of on-premise deployment.
Implement semantic caching to minimize
latency and computational overhead by reusing
responses through efficient similarity algorithms.
Employ techniques such as model compression,
quantization, pruning, and distillation to enhance
memory efficiency and computational speed.
Model compression reduces the model size
without significantly sacrificing performance,
quantization converts parameters from high-
precision to lower precision to save memory
and computation, pruning eliminates less critical
model parts, and distillation transfers knowledge
from a larger model to a smaller one while
maintaining performance. Additionally, it is worth
considering the trade-off between using a longer
prompt with a larger model versus fine-tuning a
smaller model to achieve similar performance, as
this can impact both cost and latency. Ensure
hardware configurations (GPUs, TPUs, CPUs)
match processing, memory, and storage needs.
Explore smaller, specialized LLMs for specific

6 Publication Title Month 2024

FEATURE

tasks and deploy memory optimization and
distributed inference methods, including data and
tensor parallelism. Techniques like FlashAttention
and PagedAttention can help reduce memory
usage and improve responsiveness. Lastly,
optimize request scheduling to manage variable
latency and ensure seamless user interactions
with LLM-powered applications.

C6. Post-deployment monitoring to set up
feedback loops and improve application
performance.

C6.1 Monitor for prompt injection attacks.
[O7][O16][O18][O26][O38][O40]
Detecting adversarial prompt inputs post-
deployment is crucial to prevent manipulation
of the LLM’s outputs and avoid unintended
interactions. Utilize an adversarial prompt
detector like "rebuff" to identify and filter such
inputs, leveraging LLMs’ capabilities in specialized
tasks like knowledge generation [8] and self-
verification [9]. Additionally, analyze text similarity
between known attacking prompts and current
inputs to detect and mitigate potential threats
effectively.

C6.2 Monitor the application for model resource usage.
[O3][O9][O26][O32][O35][O63]
Continuously assess model performance, re-
source consumption, and cost efficiency to fine-
tune operations post-deployment. Keep track of
LLM token count and utilization to ensure cost-
effective operation. Regularly monitor system re-
sources such as CPU, GPU, and memory usage to
uphold performance standards and make adjust-
ments as needed. Potential LLM performance as-
sessing metrics like total-tokens-per-second and
time-to-first-token were not mentioned in the grey
resources.

C6.3 If your application is publicly exposed, consider
implementing solutions to prevent DDoS attacks.
[O3][O8][O25]
Implement API rate limiting and use Captcha
mechanisms to safeguard user experience and
deter misuse by regulating access effectively.

C6.4 Monitor the application for model drift.
[O1][O10][O16][O35][O38][O42][O43]
This involves addressing performance decline
due to shifts in data distribution or user interaction
patterns by monitoring input and output data. Use
historical performance data as a benchmark to
identify and address drift in model behavior or
data distribution. Evaluate discrepancies between

expected and actual prompts to adapt and
refine LLM interactions based on real-world use.
Implement concept drift detection strategies and
cluster analysis using embeddings (see C3.4) to
identify and correct drift issues post-deployment.

C6.5 Ensure your context-retrieval system serves the
most "relevant" documents. [O14][O38]
This requires ensuring that the context-retrieval
system accurately matches user queries with rel-
evant documents, especially for unique or specific
requests. Measure query density to evaluate if the
vector store accurately represents user queries
and adjust as needed to improve data relevance.
Significant drift in query density indicates that the
vector store lacks closely related data. Utilize rank-
ing metrics to assess and enhance the precision
of the search and retrieval process, ensuring users
receive the most pertinent information.

C6.6 Evaluate the context provided to the LLM by the
application. [O58]
Context evaluation is crucial in LLM applications
to ensure response credibility, focusing on how
the LLM uses the prompt, guiding information,
and its knowledge base to generate accurate and
relevant outputs. Implement secondary LLMs for
cross-evaluation of context relevance, quantifying
response integrity. Critically assess how LLMs
use context to ensure factual accuracy and ap-
propriateness, verifying the LLM’s understanding
of the topic and the accuracy and relevance of
referenced or provided information.

C6.7 Continuously assess the necessity of content up-
dates for the context-retrieval system. [O38]
If the LLM fails to answer certain queries, it may
indicate a need to update the vector store (see
C3.4). To address this, track the frequency of
LLM failures to respond to prompts to establish
a rejection metric.

C6.8 Verify the relevance of LLM responses.
[O16][O35][O56][O58]
This entails regularly checking whether LLM
outputs align with expected topics and maintain
appropriate sentiment in relation to the end
user. Track changes in LLM response sentiment
to ensure consistency with expected topics,
tone, and relevance for appropriate interactions.
Ensure responses remain pertinent to predefined
topics (e.g., politics). Analyze semantic similarity
between queries and responses to confirm the
LLM accurately addresses user intents.

C6.9 Ensure fairness. [O35][O40][O42][O43]
LLMs can inherit and propagate biases from their
training data, so organizations need to track and

Month 2024 Publication Title 7

FEATURE

measure these biases using fairness metrics that
vary by domain, such as gender, race, or other
unintentional biases. One solution is to use sen-
timent scores (see C6.8). Additionally, assess the
model’s performance across various demographic
groups; for example, measure gender bias by
comparing performance across different genders.
Combine toxicity classifiers with sentiment analy-
sis (see C6.8) to identify and mitigate harmful con-
tent in LLM outputs, ensuring they are unbiased,
safe, and respectful.

C6.10 Monitor the application for model latency.
[O10][O11][O32][O35][O36][O42][O57][O63]
Maintaining latency within acceptable limits is
essential for ensuring a positive user experience
and operational efficiency in LLMOps. Utilize
observability tools to detect high-latency prompts
by analyzing API latency metadata, enabling
targeted optimizations to improve response times.

C6.11 Monitor the application for bad model responses.
[O35][O40]
Occasionally, LLMs may generate unwanted out-
puts. It is crucial to consider both implicit and ex-
plicit user feedback as pivotal indicators for moni-
toring, particularly negative or confused reactions.

THREATS

External Validity
Our checklist may not cover all nuances of LLM
readiness due to the rapid advancements in the field
since our survey. Despite this, the core challenges
and solutions remain relevant. Consider the checklist
a foundational tool for practitioners to build upon and
adapt to the changing LLM technology landscape.

Internal Validity
Our checklist was created by a team of human coders,
which may introduce bias. We attempted to mitigate
this by using an established empirical methodology.

CONCLUSION
This paper investigates the release readiness of soft-
ware products integrated with LLMs, synthesizing a
comprehensive checklist to guide practitioners in eval-
uating their LLM products’ readiness for release. As
the generative AI landscape rapidly evolves, this check-
list underscores the need for ongoing adaptation and
community engagement to ensure the responsible and
effective use of LLMs in software development.

ACKNOWLEDGMENTS
We are grateful to Mitacs and the National Bank of
Canada for their support for our research.

REFERENCES
1. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L.,

Luo, X., Lo, D., Grundy, J. & Wang, H. Large language
models for software engineering: A systematic litera-
ture review. ArXiv Preprint ArXiv:2308.10620. (2023)

2. Breck, E., Cai, S., Nielsen, E., Salib, M. & Sculley,
D. The ML test score: A rubric for ML production
readiness and technical debt reduction. 2017 IEEE
International Conference On Big Data (Big Data). pp.
1123-1132 (2017)

3. Zinkevich, M. Rules of machine learning: Best
practices for ML engineering. URL: Https://developers.
Google. Com/machine-learning/guides/rules-of-ml.
(2017)

4. ISE, M. ML model production checklist - Engineering
Fundamentals Playbook — microsoft.github.io.
(https://microsoft.github.io/code-with-engineering-
playbook/machine-learning/ml-model-checklist/,0),
[Accessed 21-02-2024]

5. Community, M. LLMs in Production Conference -
Event | MLOps Community — home.mlops.community.
(https://home.mlops.community/public/events/llms-in-
production-conference-2023-04-13,0), [Accessed
21-02-2024]

6. Huyen, C. Building LLM applica-
tions for production — huyenchip.com.
(https://huyenchip.com/2023/04/11/llm-
engineering.html,0), [Accessed 21-02-2024]

7. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi,
E., Narang, S., Chowdhery, A. & Zhou, D. Self-
consistency improves chain of thought reasoning in
language models. ArXiv Preprint ArXiv:2203.11171.
(2022)

8. Liu, J., Liu, A., Lu, X., Welleck, S., West, P., Bras,
R., Choi, Y. & Hajishirzi, H. Generated knowledge
prompting for commonsense reasoning. ArXiv Preprint
ArXiv:2110.08387. (2021)

9. Weng, Y., Zhu, M., He, S., Liu, K. & Zhao, J. Large
language models are reasoners with self-verification.
ArXiv Preprint ArXiv:2212.09561. (2022)

10. Benaich, N. & Capital, A. State of AI Report 2023
— stateof.ai. (https://www.stateof.ai/,0), [Accessed 28-
02-2024]

11. Gartner Generative AI: What Is It, Tools,
Models, Applications and Use Cases.
(https://www.gartner.com/en/topics/generative-ai,0),
[Accessed 28-02-2024]

8 Publication Title Month 2024

FEATURE

12. Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S. & Others Gpt-4 technical
report. ArXiv Preprint ArXiv:2303.08774. (2023)

13. Raulamo-Jurvanen, P., Mäntylä, M. & Garousi, V.
Choosing the right test automation tool: a grey lit-
erature review of practitioner sources. Proceedings
Of The 21st International Conference On Evaluation
And Assessment In Software Engineering. pp. 21-30
(2017)

14. Bornstein, M. & Radovanovic, R. Emerg-
ing Architectures for LLM Applications.
(https://a16z.com/emerging-architectures-for-llm-
applications/,2023), [Accessed 01-03-2024]

15. Krippendorff, K. Testing the reliability of content anal-
ysis data. The Content Analysis Reader. pp. 350-357
(2009)

Harsh Patel is currently pursuing a Master’s degree at
Queen’s University, focusing on Software Engineering
for Artificial Intelligence (SE4AI). His research primarily
explores the release readiness of ML-based software
products, with a special emphasis on post-deployment
model recycling strategies. These strategies are de-
signed to enable the efficient reuse of outdated models
while maintaining their readiness for release. Harsh
brings three years of software engineering experience
to his research, having proficiency in technologies like
Splunk, Python, JavaScript, Docker, and ReactJS. He
is committed to advancing the integration of AI in
software development processes. Contact him at pa-
tel.h@queensu.ca

Dominique Boucher, PhD is currently Senior Direc-
tor, Conversational AI Technologies at National Bank
of Canada where he is responsible for the deployment
of NBC dialogue systems. His main interests revolve
around the use of conversational interfaces to help op-
timize business processes. He has been in the speech
recognition and conversational AI industry for more
than 25 years and holds a PhD from the University of
Montreal.

Emad Fallahzadeh, PhD is a Postdoctoral Re-
searcher at Queen’s University in the Software Analysis
and Intelligence Lab, specializing in mining software
repositories. His research interests involve applying
machine learning techniques and large language mod-
els to address various software engineering challenges.
He is a member of the Association for Computing
Machinery (ACM) and has contributed to numerous
research endeavors in the field of software engineering,
including publications in the International Conference
on Software Engineering (ICSE) and the Foundations
of Software Engineering (FSE) conference proceed-
ings. Contact him at emad.fallahzadeh@queensu.ca

Ahmed E. Hassan, PhD is the NSERC/RIM Indus-
trial Research Chair in Software Engineering for Ultra
Large Scale systems at Queen’s University, Canada.
He spearheaded the organization and creation of the
Mining Software Repositories (MSR) Conference and
its research community. He co-edited special issues of
the IEEE Transactions on Software Engineering and the
Journal of Empirical Software Engineering on the MSR
topic. Early tools and techniques developed by his team
are already integrated into products used by millions
of users worldwide. His industrial experience includes
helping architect the Blackberry wireless platform at
RIM, and working for IBM Research at the Almaden
Research Lab and the Computer Research Lab at
Nortel Networks. He is the named inventor of patents
in several jurisdictions around the world, including the
United States, Europe, India, Canada, and Japan. He
is a member of the IEEE.

Bram Adams, PhD is a full professor at Queen’s
University. His research interests include software re-
lease engineering (pre- and post-AI) and mining soft-
ware repositories. His work has received the 2021
Mining Software Repositories Foundational Contribu-
tion Award. In addition to co-organizing the RELENG
International Workshop on Release Engineering from
2013 to 2015 (and the 1st/2nd IEEE Software Special

Month 2024 Publication Title 9

FEATURE

Issue on Release Engineering), he co-organized the
first editions of the SEMLA event on Software Engineer-
ing for Machine Learning Applications. He has been PC
co-chair of SCAM 2013, SANER 2015, ICSME 2016
and MSR 2019, and ICSE 2023 software analytics area
co-chair. He is a Senior IEEE Member. Contact him at
bram.adams@queensu.ca

10 Publication Title Month 2024

	METHODOLOGY
	RESULTS: CHALLENGES
	RESULTS: RELEASE-READINESS CHECKLIST
	THREATS
	External Validity
	Internal Validity

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Harsh Patel
	Dominique Boucher, PhD
	Emad Fallahzadeh, PhD
	Ahmed E. Hassan, PhD
	Bram Adams, PhD

