
Feature: Hermeticity of Artifact-based Build Technologies

On Build Hermeticity in Bazel-based Build
Systems
Shenyu Zheng, Queen’s University, Canada

Bram Adams, PhD., Queen’s University, Canada

Ahmed E. Hassan, PhD., Queen’s University, Canada

Abstract—A hermetic build system manages its own build dependencies, isolated
from the host file system, thereby securing the build process. Although, in recent
years, new artifact-based build technologies like Bazel offer build hermeticity as a
core functionality, no empirical study has evaluated how effectively these new build
technologies achieve build hermeticity. This paper studies 2,439 non-hermetic
build dependency packages of 70 Bazel-using open-source projects by analyzing
150 million Linux system file calls collected in their build processes. We found
that none of the studied projects has a completely hermetic build process, largely
due to the use of non-hermetic top-level toolchains. 71.9% of these are Linux
utility toolchains that in principle could be managed by Bazel, while 38.1% are
programming language-related toolchains introduced by the default configuration
of key Bazel build rules. Furthermore, we evaluate the risks of non-hermetic
build dependencies when building projects on new machines or within CI.

Modern software systems rely on a large number
of dependencies (i.e., libraries and build tools) during
compilation, many of which are open-source projects,
making the build system an ideal target for supply
chain attacks [1] [2] [4]. To secure the build process,
the Supply-chain Levels for Software Artifacts (SLSA)
framework1, based on Google’s internal processes,
stipulates that an ephemeral, isolated and hermetic
build environment is needed to achieve the highest
level of supply chain security [1].

A hermetic build system, therefore, by downloading
and managing all necessary toolchains and libraries
at the build tool level, ensures a self-contained build
environment that isolates (secures) the builds from
changes to the dependencies (libraries and toolchains)
installed on the host operating system. Hermeticity
also lays the foundation for reproducible builds, i.e.,
builds that produce identical outputs when given the
same set of inputs and build environment [3], and it
is an important precondition for reliable parallel and
incremental builds (in addition to other preconditions,

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

1https://slsa.dev/spec/v1.0/

like the need to carefully manage the build outputs of
previous builds).

Despite its importance, implementing a hermetic
build system is non-trivial. Traditional file-based (e.g.,
Make) and task-based (e.g., Maven) build technolo-
gies do not have built-in support for build isolation,
meaning that changes external to the build system
can influence the build results [5]. This lack of isola-
tion also makes it challenging to enforce dependency
management as access to undeclared dependencies
cannot be tracked by the build system [13], lead-
ing to non-deterministic and inconsistent build results.
Furthermore, while these build technologies are of-
ten capable of managing libraries, they often do not
support managing toolchains, requiring developers to
continuously maintain their build systems to adapt to
new environments [11].

An alternative solution is for developers to use
external tools such as continuous integration (CI),
Infrastructure-as-Code (IaC), or functional package
manager (e.g., Nix, Guix) tools to create a fully man-
aged and consistent environment for the build process
[13]. However, since these tools are external to build
tools, the specification of the entire build environ-
ment typically is spread across multiple configuration

Month Published by the IEEE Computer Society Publication Name 1

FEATURE

files (e.g., requirements.txt + Dockerfile + Jenkinsfile),
which results in additional build comprehension and
maintenance effort.

In recent years, a new family of artifact-based
build system technologies (e.g., Bazel2, Pants) has
emerged, introducing an innovative approach for en-
hancing build performance and correctness, as well
as facilitating build hermeticity. Contrary to traditional
build systems like Make and Maven, artifact-based
systems like Bazel require developers to define what
artifacts and dependencies need to be built or installed
without specifying how, leaving the build system to
manage task configuration, scheduling, and execution.
Consequently, the build system has full control over
the build process and knowledge of build dependen-
cies, ensuring deterministic builds and enabling build
hermeticity [14].

Despite artifact-based build technologies’ claim of
hermetic builds, it remains uncertain how effectively
they are able to achieve this goal. In fact, a recent study
[8] shows how developers are abandoning modern
build technologies like Bazel as their perceived ben-
efits do not outweigh their maintenance costs. Recent
studies trying to understand this phenomenon mostly
studied Bazel’s build performance [14] and mainte-
nance overhead [8]. Moreover, while Bazel employs
different strategies to ensure the hermeticity of the
builds (e.g., performing builds in a sandbox), their ef-
fectiveness relies on the underlying build rules. These
rules, especially when they are either customized by
developers or obtained from the community, may not
be hermetic. Therefore, understanding the hermeticity
of Bazel builds in practice becomes crucial in aiding
developers’ decision-making regarding the adoption of
Bazel.

This paper first performs a dynamic analysis of
150 million filesystem calls gathered during the Bazel
build processes of 70 open-source projects to assess
the hermeticity of these builds. For those projects
exhibiting non-hermetic builds, we investigate whether
the non-hermetic build dependencies are instead doc-
umented outside the Bazel specification files, i.e.,
Dockerfiles or CI configuration files. Subsequently, we
explore the causes of non-hermeticity, offering insights
for developers on improving build hermeticity. Lastly,
we evaluate the potential impact of non-hermeticity
in practice, by examining the risks of non-hermetic
dependencies being installed on new machines or
being unexpectedly updated by CI environments.

Despite Bazel’s promises, our results show that

2https://bazel.build/

none of the studied projects exhibited a completely
hermetic build process. In addition, while 28.57% of
projects employ external tools to manage build de-
pendencies not handled by Bazel, their management
approach still lacks hermeticity. We also found that
non-hermetic build dependencies may not be pre-
installed on new build environments and could expe-
rience unexpected updates within popular third-party
CI environments. Bazel users aiming to improve build
hermeticity should closely examine the default (often
non-hermetic) configuration of their Bazel build rules.
As Linux utility toolchains are often overlooked and not
managed by Bazel, developers should use hermetic
build rules such as toolchain_utils and rules_tar to
manage them.

Analyzing the Hermeticity of Bazel
Builds

This section explains how we collected the data on
Bazel build hermeticity for the three research ques-
tions, while question-specific analyses are discussed
in the results section. In our previous study [14], we
identified 70 non-trivial buildable Bazel projects. As
illustrated in Fig 1, we use the strace command to
record the Linux file system calls made in the build
processes of these 70 projects. Then, we analyzed
the file system calls to identify whether the accessed
packages were managed by Bazel or by the underlying
host. The experiments were performed on a Debian
11 server with 8 vCPUs and 32 GB memory. The
replication package is available online34.

Collect Linux File System Calls
As large projects can take hours to build and produce
extremely large strace logs, we limited the range of
tracked system calls to the subset related to file oper-
ations. To ensure our selection was representative, we
focus on the strace file operation system calls that
are among the top 100 most frequently used system
calls, as identified by Tsai et al. [10]. Since we want to
identify the files created, read, modified or executed by
the build process, we focused on the most frequently-
used IO-related system calls (e.g., open, read), while
we excluded file system calls that ignore file contents,
e.g., stat and getcwd. To enhance the accuracy of
our results, we also included variations of the selected
system calls (e.g., openat).

3https://github.com/SAILResearch/replication-24-shenyu-
bazel_hermeticity

4https://zenodo.org/doi/10.5281/zenodo.13324236

2 Publication Title Month 2024

https://github.com/SAILResearch/replication-24-shenyu-bazel_hermeticity
https://github.com/SAILResearch/replication-24-shenyu-bazel_hermeticity
https://zenodo.org/doi/10.5281/zenodo.13324236

FEATURE

70 Bazel
projects

Build each project and
record Linux �le system calls

Strace Record Linux
�le system calls

Build
Process

Access �les

Project A

Parse strace logs

Identify build dependency packages

Collect �le system calls

150 million Linux �le
system calls

system_call_name(args...) return_code

..
.

system_call_name(args...) return_code
system_call_name(args...) return_code

Bazel-managed �les

Other �les

8832
hermetic
packages

54
hermetic

toolchains

679
non-hermetic

toolchains

1760
non-hermetic

packages

strace logs

Remove failed system calls
by examing their return codes

Extract paths from
system call args

Identify hermetic (Bazel-managed) build
dependency packages by path

Identify non-hermetic (Debian packages) build
dependency packages by the apt-�le command

Identify if packages are executables run
by the build system in the build process

Executables

Others

FIGURE 1. The process of analyzing the hermeticity of Bazel builds.

The traced system calls listed below resulted in
150 million file system calls during the build process
across the 70 projects.

strace ... -e trace=creat,open,openat,

rename,renameat, mkdir,mkdirat,rmdir,

link,linkat,symlink,symlinkat,

unlink,unlinkat,read,readv,write,

writev,execve,execveat ...

Identify Build Dependency Packages
To evaluate the hermeticity level, we then identified
the build dependencies (i.e., toolchains and libraries)
accessed in the build process and classified them
into non-hermetic (installed on the host system via
operating system packages) and hermetic (installed
in Bazel-managed directories by Bazel).

As shown in Figure 1, we first employed a script to
extract the names, return codes, and the associated

files of file system calls from the strace logs. In the
build process, Bazel searches through multiple paths
to locate packages, leading to Linux file system calls
for non-existent files. To filter out such system calls,
we only include file system calls that were successful,
as identified by a return code other than -1. Then,
according to the extracted paths, we categorized their
associated files into two groups as described below.

• Hermetic (Bazel-managed) files - Files situated in
the directory $HOME/.cache/bazel or projects’
own directories are deemed hermetic since Bazel
manages these files in the build process.

• Non-hermetic (Unmanaged) files - Other files that
are not managed by Bazel.

In total, we identified 11,602,678 hermetic and 46,775
non-hermetic files accessed in the build process of the
70 Bazel projects.

As non-hermetic dependencies are usually in-

Month 2024 Publication Title 3

FEATURE

stalled via operating system packages, we mapped
non-hermetic files to operating system packages,
specifically Debian Linux packages, due to the
widespread use of Debian-based Linux distribution in
CI platforms (for example, the only available Linux
distribution for the GitHub Actions runner is the
Debian-based Ubuntu distribution). We executed the
apt-file search command to identify the specific
non-hermetic Debian Linux packages linked to 30,844
non-hermetic files.

Hermetic dependencies, which are
installed by Bazel, are stored in the directory
$HOME/.cache/bazel/.../external/<package

name>5. Therefore, we retained 9,931,674 hermetic
files located in such directories and identified their
corresponding package names, while the remaining
1,671,004 files, which were mostly source code files
or Bazel-created temporary files, were excluded from
the analysis.

Once we had separated hermetic and non-hermetic
build dependency packages, we proceeded to classify
them based on their associated file system calls. Pack-
ages that have any file associated with a file system
call that is execve or execveat were categorized as
toolchains, whereas all others were identified as li-
braries.

Notably, some non-hermetic dependencies are only
installed because they are transitively required by an-
other dependency. Therefore, for each project, we em-
ployed the apt-cache depends command to query
the transitive dependencies of non-hermetic packages
and construct a dependency graph for these packages.
The packages at the root node of the graph are top-
level dependencies, while others are transitive depen-
dencies.

Analyze If the Non-Hermetic Build
Dependencies Are Externally Managed
Considering that developers might employ external
tools to handle their non-hermetic dependencies,
we further analyzed whether these dependencies
are managed by Docker and CI tools, given their
widespread use in managing the build environment.
To accurately identify the non-hermetic dependencies
specified in Dockerfiles and CI configuration files, we
employed a script to search all files containing the
names of the non-hermetic packages. We then manu-
ally inspected the identified files to determine whether
they were Dockerfiles or CI configuration files and to

5https://bazel.build/remote/output-directories

check if the non-hermetic dependencies were installed
within these files. Additionally, for each identified non-
hermetic dependency, we manually checked whether
developers specified the version number in the config-
uration files when installing them.

RQ1. How Hermetic are Bazel
Builds?

Achieving a completely hermetic build is hard,
even with artifact-based build system technologies
like Bazel. In our case study, we examined 70 Bazel
projects and identified a total of 11,325 build depen-
dency packages used during the build process. Among
these, 8,886 were hermetic packages (8,832 libraries
and 54 toolchains), and 2,439 were non-hermetic pack-
ages (1,760 libraries and 679 toolchains). Fig 2 (a)
shows the percentage of projects that exhibit non-
hermetic/hermetic Bazel build processes, as well as
the number of packages, categorized as toolchains or
libraries, that are managed (hermetic) and not man-
aged (non-hermetic) by Bazel. The median numbers
of non-hermetic libraries and toolchains across the
projects are 21 and 9, respectively, compared to 51
and 0 for hermetic ones.

While Bazel and related build technologies like
Pants claim build hermeticity as one of their main
fortes, none of the projects analyzed in the dataset
demonstrate a fully hermetic build process. Notably,
the total number of non-hermetic toolchains is sig-
nificantly higher compared to hermetic ones (Mann-
Whitney U test at α = 0.01), with a large Cliff’s Delta
effect size (0.984). In the case of libraries, although the
total number of non-hermetic libraries is significantly
lower than hermetic libraries, its median still reaches
a notable 21 non-hermetic libraries used in the build
process.

The non-hermetic top-level toolchains are the
major source of non-hermeticity. Among the 2,439
non-hermetic dependency packages, around 81.6%
of them are transitive dependencies. Additionally, as
shown in Fig 2 (a), the number of non-hermetic top-
level toolchains is significantly higher than that of non-
hermetic top-level libraries, with medians of 5 and 1,
respectively. In fact, 54.3% of projects depend on non-
hermetic top-level libraries in the build process, com-
pared to 98.6% using non-hermetic top-level toolchains
(numbers not shown in the figure). This suggests that
the usage of non-hermetic top-level toolchains might
contribute most to the access of host system resources
in the build process.

Bazel users rarely employ external tools to
manage the non-hermetic top-level build depen-

4 Publication Title Month 2024

FEATURE

Hermetic

100% 0%

Non-hermetic

Total number of packages (libraries/toolchains) accessed in the
build process across the non-hermetic projects (Log(n+1)).

Log10 (Count + 1)

Library

Toolchain

Non-hermetic (Top-Level)

Non-hermetic (Transitive)

Non-hermetic (All)

Hermetic

Employed

71.4% 28.6%

Not Employed

�e number of top-level non-hermetic build
dependencies (libraries/toolchains) that

are externally managed by other tools.

Non-hermetic (Top-Level) External-Managed (Top-Level)

Library

Toolchain

Count

CircleCI

GitHub
Actions

0

5

10

15

20

25

0

5

10

15

20

25

Co
un

t
Co

un
t

Library LibraryToolchain Toolchain

Non-hermetic (Top-Level) Non-hermetic (Transitive)

20.04 22.04

(a) Projects that exhbit non-hermetic builds

(b) Projects employing external tools to manage
non-hermetic build dependency packages

(c) Number of non-hermetic packages across the studied projects
categorized by their prevalence

(d) �e median number of updates of non-hermetic
packages in CI runner images across the studied projects

FIGURE 2. (a) The percentage of hermetic/non-hermetic projects, and the total number of libraries/toolchains accessed in the
build process across the non-hermetic projects (Log(n+1)). (b) The percentage of projects that external tools manage their non-
hermetic build dependencies, and the total number of non-hermetic top-level build dependencies that are externally managed
by other tools. (c) The number of non-hermetic packages categorized by their Debian Priority - Default Installed (Debian Priority:
Required, Important, and Standard), Optional (Debian Priority: Optional) across the 70 projects. (d) The distribution of a median
number of updates of build dependencies within the Ubuntu 20.04 and 22.04 runner images for GitHub Actions and CircleCI.

Month 2024 Publication Title 5

FEATURE

dencies; when they do, developers often omit
dependency version constraints. Fig 2 (b) illustrates
the percentage of non-hermetic projects employing
external tools (e.g., Docker, CI services) to manage
the non-hermetic top-level build dependencies. While
28.6% of projects in the dataset also employ other
tools to control their non-hermetic top-level libraries
and toolchains used in the build, their number of non-
hermetic libraries and toolchains is still significantly
higher than the number of externally managed ones.
This suggests that these projects are losing track of a
substantial number of non-hermetic top-level libraries
and toolchains.

Furthermore, among those 28.6% of projects that
use external tools to control non-hermetic build depen-
dencies, 70% of them do not specify the versions of
those dependencies in their Dockerfiles or CI config-
uration files. This can also lead to non-hermeticity, as
these projects will resort to using the latest available
version of these toolchains and libraries in the build
process, which could vary from build to build. For
example, while chipsalliance/verible installs their build
toolchain dependency g++ by running apt install

build-essential in their CI builds, as there is no
version control, the version of g++ used in the build
process changes across builds.

For developers: Even with tools like Bazel, build
hermeticity does not come for free. As non-hermetic
top-level toolchains are a major source of non-
hermeticity, only exacerbated by transitive dependen-
cies, techniques like Software Bill of Materials (SBoM)
can provide visibility into the full dependency tree,
helping migrate non-hermetic transitive dependencies.
Furthermore, when utilizing external dependency man-
agement tools like Docker, it is essential to specify the
versions of these dependencies.

RQ2. What are the reasons for
non-hermetic build dependencies?

Only 37.1% of projects are configured to use
hermetic toolchains in their build configura-
tion files. To further understand the reasons be-
hind non-hermetic dependency packages, particularly
non-hermetic top-level toolchains, we manually ana-
lyzed each project’s WORKSPACE.bazel and MOD-
ULE.bazel files, which define the external dependen-
cies for Bazel. We examined whether the top-level
toolchains of the project were specified, and analyzed
their configuration by searching for the names of the
toolchains. We found that only 37.1% of projects are
configured to use hermetic toolchains, and that none
of these manage all their toolchains with Bazel.

Additionally, we observed that all hermetic
toolchains are programming language-related (e.g.,
JDK, Python), whereas more general Linux utility
toolchains (e.g., Tar, Grep) are often overlooked, with
71.9% of the 394 non-hermetic top-level toolchains
representing utilities. Although these utility toolchains
are common in Linux installations, recent attacks
targeting these tools (e.g., the XZ Utils backdoor6)
demonstrate that leaving them unmanaged can
expose projects to significant security threats.

Non-hermetic programming language-related
toolchains are introduced by the default configu-
ration of official Bazel build rules Although Bazel
provides explicit support to manage toolchains for
major programming languages, 38.1% of the identi-
fied non-hermetic top-level toolchains are program-
ming language-related toolchains. One major reason
for build processes’ direct access to host system re-
sources is the non-hermetic default configuration of
certain official build rules.

For instance, the default configurations of the offi-
cial rules_cc and rules_python build rules use the host-
installed toolchains. While the rules_java build rule by
default compiles a code base using a Bazel-managed
JDK, it executes and tests said code base using a
locally installed JDK, therefore the resulting binaries
also depend on what is installed on the machine.

Although these default configurations are non-
hermetic, few developers override them. Among the
13 projects using the rules_python build rule, only 1
project changed the default configuration to use Bazel
to download and manage Python in the build process.
The impact of the default configuration can be more
obvious when we compare the rules_python build rule
to the rules_go build rule, which, by default, uses a
hermetic Go SDK. Out of the 24 projects that use
the rules_go build rule, only 1 project changed the
configuration to use a non-hermetic host-installed Go
SDK.

For the 37.1% of projects that use her-
metic toolchains in their build process, 15.4%
(4/26) of them have their hermetic toolchains ac-
cessing non-hermetic files, still leading to non-
hermeticity. Even if developers use Bazel to manage
their toolchains, it may still introduce non-hermeticity.
For example, in the case of jesec/rtorrent, CMake is
executed using Bazel during the build process, but the
underlying Make invoked by CMake is host-installed.
Another factor contributing to the non-hermeticity
of "hermetic" toolchains is cache files associated

6https://en.wikipedia.org/wiki/XZ_Utils_backdoor

6 Publication Title Month 2024

FEATURE

with toolchains. We observed 3 instances such as
bazelbuild/starlark accessing Cargo’s caches, bazel-
build/rules_jvm_external accessing yarn’s caches, and
lowRISC/opentitan accessing pip’s caches in the build
process, with all of the accessed cache files being
stored on the host machines.

For developers: Despite Bazel’s claim of provid-
ing hermetic builds, achieving this requires substantial
effort from developers. Since the default configura-
tions of build rules such as rules_cc and rules_python
are non-hermetic, developers must manually override
them to use Bazel-managed toolchains. Additionally,
while Linux utility toolchains are often overlooked,
developers should use hermetic build rules such as
toolchain_utils and rules_tar to manage them within
build configuration files.

RQ3. What is the impact of build
hermeticity?

Projects contain a median of 12 non-hermetic de-
pendencies that are not by default included in the
standard Debian installation, leading to potentially
inconsistent build results or even failures when
the projects are built on new machines. In Debian,
each package has a priority value, which is used to
control if it is included in standard Debian installations.
Packages with the Required, Important, or Standard
priority are installed by default in the standard instal-
lation, while those with the Optional priority are only
installed at the specific request of users. To measure
the impact of non-hermetic dependencies in Bazel on
rebuildability when building on different machines, we
employed a script to classify these dependencies as
default or non-default installations according to their
Debian priority.

As illustrated in Fig 2 (c), although the number
of default-installed build dependencies is significantly
higher than the number of optional ones, the latter
number still reaches a median of 12 across the 70 stud-
ied projects, whereas the median number for default-
installed ones is 18. Additionally, non-hermetic top-
level toolchains, identified in RQ1 as a major source of
non-hermeticity, show a median count of 2 for optional
non-hermetic top-level toolchains.

For developers: Developers risk build failures and
higher maintenance efforts when working on systems
lacking optional non-hermetic build dependencies. Fur-
thermore, since optional dependencies require explicit
installation and updates by developers, as there is
often a lag between a package being released to
repositories and being updated in Linux distributions
or Docker images [9], there is a higher likelihood of

inconsistencies in the versions of build dependencies
installed across systems. This issue becomes more
pronounced when using Bazel across various plat-
forms.

Bazel users may face unexpected changes in
their non-hermetic build dependencies within CI
environments. The median numbers of updates for
top-level libraries are 11 and 9 for the Ubuntu 20.04
and 22.04 GitHub Actions runner images, respectively,
and 3.5 and 3.0 for CircleCI. In CI settings, non-
hermetic dependencies that are neither managed by
Bazel nor externally, have to be supplied by pre-
installed packages on CI platforms, enabling the build
to proceed successfully. While such builds appear to
be hermetic, the pre-installed packages in the CI envi-
ronment fall outside the control of developers. Changes
to these pre-installed packages by the CI vendor can
result in unexpected build failures.

To understand the potential impact of such an
issue, we conducted further analysis on the two most
popular CI services on GitHub, i.e., GitHub Actions and
CircleCI [7]. Specifically, we examined the frequency
of updates for the non-hermetic dependencies of the
70 projects installed in the Ubuntu 20.04 and 22.04
runners of the two CI services. For GitHub Actions,
the packages installed on runners are specified in
their README files7. We employed a script to analyze
the commit history of README files for Ubuntu 20.04
and 22.04 runners to identify the version changes of
installed packages over the last three years. In the
case of CircleCI, we retrieved all the tags of their base
Docker images for Ubuntu 20.04 and 22.04 runners,
executing the apt list -installed command with
the container created by each image to extract the
history of the installed package versions. Fig 2 (d)
illustrates the distribution of the median number of
updates of build dependencies across both Ubuntu
20.04 and 22.04 runner images on GitHub Actions and
CircleCI.

Despite non-hermetic top-level toolchains being
identified as a primary source of non-hermeticity, the
median update counts for these toolchains in the
Ubuntu GitHub and CircleCI runner images for ver-
sions 20.04 and 22.04 are relatively low (0, 1, 0 and
0.5, respectively), although the maximum number of
updates can reach up to 17. On the other hand, the
update counts for non-hermetic libraries were higher,
with median counts of 11 and 9 for top-level libraries
in the 20.04 and 22.04 Ubuntu GitHub runner images,

7https://github.com/actions/runner-
images/blob/main/images/ubuntu/Ubuntu2004-Readme.md

Month 2024 Publication Title 7

FEATURE

and 3.5 and 3.0 for the CircleCI images, respectively,
while 2, 2, 1, and 1 for transitive libraries in the same
respective runner images.

For developers: While Bazel’s incremental build
feature is a major selling point [8], promising significant
build time reduction [14] [15], unexpected/uncontrolled
changes to non-hermetic build dependencies could
lead to incorrect build results and performance down-
grade for incremental builds due to build cache inval-
idation. Although the update counts for non-hermetic
build dependencies in CI runner images may seem
low, when build failures or performance downgrades
occur, diagnosing and addressing these issues can be
complex, as such updates often go unnoticed due to
the CI environment not being under their control and
the inherent complexity of debugging CI builds [12].

LIMITATIONS
As our findings are specific to Bazel-based artifact-
based build systems, we plan to extend our research
to both other artifact-based and task-based build sys-
tems on more projects. Additionally, files accessed by
system calls were mapped to Debian packages and
Bazel-managed packages to evaluate the hermeticity
of Bazel. As Bazel might employ different approaches
to achieve build hermeticity outside of Linux, such as
Windows or MacOS, we also plan to conduct a broader
evaluation on other platforms.

CONCLUSION
Our research indicates that complete build hermeticity
was not achieved in any of the Bazel projects we exam-
ined, largely due to the default configuration of the build
rules. Furthermore, we found that the non-hermetic
dependencies may not be included by default in the
standard Debian installation, risking build failures on
new build machines. Developers might also encounter
unanticipated updates to their non-hermetic depen-
dencies within CI environments, potentially leading to
inconsistencies in builds or a decline in performance,
as these dependencies can be inadvertently changed
by the CI vendors. For developers, although artifact-
based build technologies like Bazel offer rich features
to enhance build hermeticity, it is important to go
beyond their default configuration.

REFERENCES
1. Enck, W. & Williams, L. Top five challenges in software

supply chain security: Observations from 30 industry

and government organizations. IEEE Security & Pri-
vacy. 20, 96-100 (2022)

2. Fourné, M., Wermke, D., Enck, W., Fahl, S. & Acar,
Y. It’s like flossing your teeth: On the importance and
challenges of reproducible builds for software supply
chain security. 2023 IEEE Symposium On Security
And Privacy (SP). pp. 1527-1544 (2023)

3. Randrianaina, G., Eddine Khelladi, D., Zendra, O. &
Acher, M. Options Matter: Documenting and Fixing
Non-Reproducible Builds in Highly-Configurable Sys-
tems. 2024 IEEE/ACM 21st International Conference
On Mining Software Repositories (MSR). pp. 654-664
(2024)

4. Butler, S., Gamalielsson, J., Lundell, B., Brax, C.,
Mattsson, A., Gustavsson, T., Feist, J., Kvarnström,
B. & Lönroth, E. On business adoption and use of re-
producible builds for open and closed source software.
Software Quality Journal. 31, 687-719 (2023)

5. Lamb, C. & Zacchiroli, S. Reproducible builds: In-
creasing the integrity of software supply chains. IEEE
Software. 39, 62-70 (2021)

6. Bajaj, R., Fernandes, E., Adams, B. & Hassan, A. Un-
reproducible builds: time to fix, causes, and correlation
with external ecosystem factors. Empirical Software
Engineering. 29, 11 (2023,11)

7. Golzadeh, M., Decan, A. & Mens, T. On the rise
and fall of CI services in GitHub. 2022 IEEE Inter-
national Conference On Software Analysis, Evolution
And Reengineering (SANER). pp. 662-672 (2022)

8. Alfadel, M. & McIntosh, S. The Classics Never Go Out
of Style: An Empirical Study of Downgrades from the
Bazel Build Technology. 2024 IEEE/ACM 46th Inter-
national Conference On Software Engineering (ICSE).
pp. 1017-1017 (2024)

9. Zerouali, A., Mens, T., Decan, A., Gonzalez-Barahona,
J. & Robles, G. A multi-dimensional analysis of tech-
nical lag in Debian-based Docker images. Empirical
Software Engineering. 26, 19 (2021)

10. Tsai, C., Jain, B., Abdul, N. & Porter, D. A study
of modern linux api usage and compatibility: What
to support when you’re supporting. Proceedings Of
The Eleventh European Conference On Computer
Systems. pp. 1-16 (2016)

11. Shridhar, M., Adams, B. & Khomh, F. A qualitative
analysis of software build system changes and build
ownership styles. Proceedings Of The 8th ACM/IEEE
International Symposium On Empirical Software Engi-
neering And Measurement. pp. 1-10 (2014)

12. Santolucito, M., Zhang, J., Zhai, E., Cito, J. & Piskac,
R. Learning CI configuration correctness for early
build feedback. 2022 IEEE International Conference
On Software Analysis, Evolution And Reengineering
(SANER). pp. 1006-1017 (2022)

8 Publication Title Month 2024

FEATURE

13. Maudoux, G. & Mens, K. Correct, efficient, and tai-
lored: The future of build systems. IEEE Software. 35,
32-37 (2018)

14. Zheng, S., Adams, B. & Hassan, A. Does using
Bazel help speed up continuous integration builds?.
Empirical Software Engineering. 29, 110

15. Randrianaina, G., Tërnava, X., Khelladi, D. & Acher,
M. On the benefits and limits of incremental build
of software configurations: an exploratory study. Pro-
ceedings Of The 44th International Conference On
Software Engineering. pp. 1584-1596 (2022)

Shenyu Zheng is currently pursuing a Master’s de-
gree at Queen’s University, focusing on build systems.
His research primarily explores the performance and
correctness of modern artifact-based build systems,
within a CI context. Contact him at 22sz3@queensu.ca

Dr. Ahmed E. Hassan is the NSERC/RIM Indus-
trial Research Chair in Software Engineering for Ultra
Large Scale systems at Queen’s University, Canada.
He spearheaded the organization and creation of the
Mining Software Repositories (MSR) Conference and
its research community. He co-edited special issues of
the IEEE Transactions on Software Engineering and the
Journal of Empirical Software Engineering on the MSR
topic. Early tools and techniques developed by his team
are already integrated into products used by millions
of users worldwide. His industrial experience includes
helping architect the Blackberry wireless platform at
RIM, and working for IBM Research at the Almaden
Research Lab and the Computer Research Lab at
Nortel Networks. He is the named inventor of patents
in several jurisdictions around the world, including the
United States, Europe, India, Canada, and Japan. He
is a member of the IEEE.

Dr. Bram Adams is a full professor at Queen’s Uni-
versity. His research interests include software release
engineering (pre- and post-AI) and mining software
repositories. His work has received the 2021 Min-
ing Software Repositories Foundational Contribution
Award. In addition to co-organizing the RELENG Inter-
national Workshop on Release Engineering from 2013
to 2015 (and the 1st/2nd IEEE Software Special Issue
on Release Engineering), he co-organized the first
editions of the SEMLA event on Software Engineering
for Machine Learning Applications. He has been PC
co-chair of SCAM 2013, SANER 2015, ICSME 2016
and MSR 2019, and ICSE 2023 software analytics area
co-chair. He is a Senior IEEE Member. Contact him at
bram.adams@queensu.ca

Month 2024 Publication Title 9

	Analyzing the Hermeticity of Bazel Builds
	Collect Linux File System Calls
	Identify Build Dependency Packages
	Analyze If the Non-Hermetic Build Dependencies Are Externally Managed

	RQ1. How Hermetic are Bazel Builds?
	RQ2. What are the reasons for non-hermetic build dependencies?
	RQ3. What is the impact of build hermeticity?
	LIMITATIONS
	CONCLUSION
	REFERENCES
	REFERENCES
	Biographies
	Shenyu Zheng
	Dr. Ahmed E. Hassan
	Dr. Bram Adams

