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Context: Cloud-based black-box model deployment faces challenges related to latency and privacy due 
to data transmission across Wide Area Networks. On the other hand, Mobile-based black-box deployment 
prioritizes privacy at the expense of higher latency due to limited computational resources. To address 
these issues, Edge AI enables the deployment of black-box models across Mobile, Edge, and Cloud devices 
using a wide range of operators able to distribute a model’s components, terminate inference early, or even 
quantize a model’s computations, offering latency and privacy benefits. Existing surveys classify Edge AI 
model inference techniques into eight families, including Quantization, Early Exiting, and Partitioning, 
but they often treat these operators in isolation, overlooking their potential synergies and practical 
integration in real-world scenarios. Deciding what combination of operators to use across the Edge AI 
tiers to achieve specific latency and model performance requirements is still an open question for MLOps 
Engineers. Objective: This study aims to empirically assess the accuracy vs inference time trade-off 
of different b lack-box E dge A I d eployment s trategies, i .e., c ombinations o f d eployment o perators and 
deployment tiers. Method: In this paper, we conduct inference experiments involving three deployment 
operators (i.e., Partitioning, Quantization, Early Exit), three deployment tiers (i.e., Mobile, Edge, Cloud) 
and their combinations on four widely-used Computer-Vision models to investigate the optimal strategies 
from the point of view of MLOps developers. The analysis is conducted in a containerized environment 
using CUDA for Cloud GPU acceleration and ONNX for model interoperability, covering a wide range of 
network bandwidths. Results: Our findings suggest that Edge deployment using the hybrid Quantization
+ Early Exit operator could be preferred over Non-Hybrid operators (Quantization/Early Exit on Edge, 
Partition on Mobile-Edge) when faster latency is a concern at medium accuracy loss. However, when 
minimizing accuracy loss is a concern, MLOps Engineers should prefer using only a Quantization operator 
on Edge at a latency reduction or increase, respectively over the Early Exit/Partition (on Edge/Mobile-
Edge) and Quantized Early Exit (on Edge) operators. In scenarios constrained by Mobile CPU/RAM 
resources, a preference for Partitioning across Mobile and Edge tiers is observed over Mobile deployment. 
For models with smaller input data samples (such as FCN), a network-constrained Cloud deployment can
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also be a better alternative than Mobile/Edge deployment and Partitioning strategies. For models with
large input data samples (ResNet, ResNext, DUC), an Edge tier having higher network/computational
capabilities than the Cloud/Mobile tier can be a more viable option than Partitioning and Mobile/Cloud
deployment strategies. Smaller input data-sized models like FCN fit well in the Cloud, even with low
bandwidth (≤10 Mbps). Larger input data-sized models, like ResNe(x)t and DUC, need more bandwidth
(≥50 Mbps) for Cloud latency convergence. Partitioned-based strategies for large intermediate-sized
models like FCN and DUC also need at least 50 Mbps for latency convergence. Overall, the Cloud tier
performs better than the Edge and Mobile tiers for Non-Partitioning operators when the MEC bandwidth
is at least 50 Mbps. However, its latency performance declines in lower bandwidth scenarios. Furthermore,
Mobile-Edge Partitioning-based strategies are a better alternative compared to Mobile-Cloud and Edge-
Cloud alternatives.

Keywords Edge AI · Deployment Strategies · Inference Latency · Model Performance

1 Introduction

Artificial Intelligence (AI) on the Edge (also “Edge Intelligence” or “Edge AI”) [129], an interdisciplinary
field derived from Edge computing and AI, receives a tremendous amount of interest from both the
industry and academia. This is primarily due to its low latency, privacy preservation, and potential
independence from network connectivity. Edge AI leverages widespread Edge resources instead of relying
solely on Cloud or Mobile, leading to more efficient AI insights for inference and training tasks. For
example, in our experiments, we consider inference tasks in a typical Edge AI environment involving
an Edge device (tier) near a resource-scarce Mobile device (tier) and a resource-abundant Cloud device
(tier) far from the Edge device (tier).

Traditional monolithic deployments such as deploying large AI models entirely on a Cloud or a Mobile
tier affect the overall performance in terms of Key Performance Indicators (KPIs). For example, deploying
entire AI models on the Cloud provides faster computation in model inference due to the available
GPU resources. However, it leads to high transmission latency, monetary cost, and privacy leakage
when transmitting large amounts of input data across the Wide-Area Network (WAN) to a centralized
data center for AI applications (e.g., real-time video analytics). On-device inference, running entire AI
applications on the Mobile tier to process the input data locally, provides data privacy protection but
suffers from high computation latency because many AI applications require high computational power
that significantly outweighs the capacity of resource-constrained Mobile tiers [104].

Edge computing essentially pushes Cloud-like services to network Edge servers that are in closer
proximity to Mobile tiers and data sources [110]. This offers several benefits compared to the traditional
Cloud-based paradigm (i.e., low transmission latency, data privacy protection, and low monetary cost)
and the Mobile-based paradigm (i.e., faster computational latency). However, this comes at the expense
of increased computational latency compared to the Cloud and a higher data privacy threat compared
to the Mobile.

Various operators for Edge AI model inference are proposed to address the above challenges faced
by monolithic Mobile, Edge, and Cloud deployments. Zhou et al. [129] provide a detailed survey on
seven major families of deployment operators. Among the three model optimization operator families,
Model Compression includes operators like Weight Pruning, Knowledge Distillation, and Quantization
to reduce computation and storage; Model Partition provides computational offloading across the tiers
and latency/energy-oriented optimization; and Model Early-Exit performs partial DL model inference at
Early Exit points, trading accuracy for speed. Among the other families, Edge Caching focuses on reusing
previous results of the same inference task for faster response, Input Filtering detects differences between
inputs to avoid redundant computation, Multi-Tenancy supports scheduling multiple DL-based tasks in
a resource-efficient manner, and Model Selection uses Input-oriented, accuracy-aware optimization.

Currently, MLOps Engineers continuously experiment with different combinations of operators to find
an optimal balance in latency and model prediction performance. White-box operators require substantial
time for re-training or fine-tuning a model by changing weights and structure. This demands a deep
understanding of the internal workings of the model, including its architecture, parameters, and training
process. Furthermore, the resulting model may behave unpredictably compared to previously tested
versions. In contrast, black-box operators allow quicker adaptation to models without requiring an in-
depth understanding of their internal architecture or parameters. These operators apply transformations
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to pre-trained models and are often favored in scenarios where model transparency is limited, especially
in DNN models.

Given black-box Edge AI operators, the challenge becomes: 1) Where (on which tiers) to deploy mod-
els in an Edge AI setting; and 2) How to post-process models using operators to make them compatible
with those tiers. The combination of a choice of tier and operator forms an Edge AI deployment strategy.
While there are many deployment operators and tiers, MLOps Engineers currently rely on trial and error
to find the best configuration. Hence, this study initiates a catalog of empirical data to eventually enable
recommendation systems that assist MLOps Engineers in deciding the most appropriate deployment
strategy for their context.

The main contribution of this study is an in-depth empirical comparison between competing Edge
AI deployment strategies to suggest recommendations for deploying DNN models for MLOps Engineers.
Specifically, we compare strategies mapping common black-box deployment operators, including the
Identity operator (which serves as a baseline with no model transformation), Partitioned, Early Exit,
Quantized, and their combinations (Quantized Early Exit [QE] and Quantized Early Exit Partitioned
[QEP]) to three common deployment tiers (i.e., Mobile, Edge, and Cloud) and their combinations in an
Edge AI environment. Second, for each of the Edge AI deployment strategies, we evaluate the end-to-end
(round-trip) latency in an Edge AI setup (Mobile, Edge, and Cloud tiers). Third, we focus on measur-
ing the latency of deployment strategies across a wide range of varying input (i.e., image) sizes using
sequential inference requests. Our study analyzes the optimal trade-off in terms of inference latency and
accuracy among competing Edge AI deployment strategies. We address the following research questions:

– RQ1: What is the impact of monolithic deployment in terms of inference latency and accuracy across
the considered tiers?

– RQ2: What is the impact of the Quantized operator in terms of inference latency and accuracy within
and across the considered tiers?

– RQ3: What is the impact of the Early Exit operator in terms of inference latency and accuracy within
and across the considered tiers?

– RQ4: What is the impact of the Partitioned operator in terms of inference latency and accuracy
across the considered tiers?

– RQ5: What is the impact of hybrid operators in terms of inference latency and accuracy within and
across the considered tiers?

– RQ6: What is the impact of network bandwidth variations on the deployment strategies in terms of
inference latency?

Answering these research questions guides MLOps Engineers and researchers in the AI field to better
understand and assess the impact of how and where black-box models are deployed in an Edge AI
environment. The results of this paper provide valuable insights for MLOps Engineers debating the most
feasible choices for performing inferences in Edge AI contexts.

The assessment in this study simulates an Edge AI deployment architecture for interconnected Mo-
bile, Edge, and Cloud tiers using Docker containers. These containers provide a lightweight and consistent
environment for realistic hardware specifications and network conditions. Network conditions, including
bandwidths between tiers, are emulated using Linux Traffic Control. AI inference experiments utilize
ONNX runtime executors tailored to the hardware limitations of the tiers, processing .onnx models after
applying specific operators. Input data consists of larger-sized image samples to evaluate system scalabil-
ity under computationally demanding scenarios. Accuracy measurements are also performed within each
tier using the full validation dataset. This setup enables a comprehensive analysis of inference latency
and accuracy across various deployment strategies under realistic conditions.

Our empirical evaluation reveals that black-box deployment strategies significantly impact inference
latency and accuracy across Edge AI tiers. We find that hybrid strategies, particularly Quantization +
Early Exit on Edge, offer the best latency-accuracy trade-off when a medium accuracy loss is acceptable.
When accuracy preservation is paramount, Quantization alone on Edge outperforms other configurations.
In resource-constrained mobile environments, Mobile-Edge Partitioning provides preferable latency over
full Mobile deployments. Moreover, Cloud deployment becomes effective for small input models even at
lower bandwidths (≤ 10 Mbps), whereas larger input models require ≥ 50 Mbps for performance parity.
Moreover, network bandwidth plays a critical role in shaping optimal deployment strategies.

The rest of this paper is structured as follows. Section 2 discusses the background of the study. Sec-
tion 3 presents prior works in this field. Section 4 explains the approach, including subjects, experimental
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Fig. 1: Graphical overview of Single-tier (Mobile, Edge, Cloud) and Multi-tier (Mobile-Edge, Edge-Cloud)
Edge AI deployment Strategies

setup, metrics for evaluating model performance, motivation and approach for each research question,
and data analysis. Section 5 describes the results for the five research questions. Section 6 discusses the
results and compares the results of the RQs. Section 7 proposes the threats to the validity of the paper,
followed by the conclusion in Section 8.

2 Background

2.1 Deep Learning Architecture

The architecture of a Deep Learning (DL) model is composed of layers that transform the input data
using mathematical operations to produce an output. Layers are organized sequentially to form a Deep
Neural Network (DNN) architecture [55]. The resulting computational graph represents the flow of data
and computations through a neural network, i.e., a representation of how the layers are connected and
how data moves from one layer to another. Each layer is a node in the graph, and the connections between
nodes (Edges) show the data flow. A node encapsulates the entire computation performed by that layer,
including all its individual elements. However, the individual elements within a layer, such as neurons,
weights, biases, activation functions, and other internal components, are not explicitly represented as
separate nodes in the graph. This graph structure allows frameworks to efficiently execute forward and
backward passes (propagation) during training and inference processes.

During the training process, the forward pass computes predictions and loss, while the backward
pass computes gradients for weight updates to minimize the loss. During the inference process, only
the forward pass is used to make predictions or generate output based on input data. Weights are
the learnable parameters associated with the layers in the model. These parameters are learned during
training to optimize the model’s performance. Activations are the intermediate outputs produced by
layers as data flows through the computational graph [2].

2.2 Monolithic Edge AI deployment

The traditional deployment of an entire model on Mobile or Cloud (as shown in Figure 1) for inference
has some important limitations. For example, deploying the entire AI model on a Mobile device leads
to slower computation, whereas on the Cloud it leads to higher transmission latency and potential data
privacy threats. Various researchers experiment with ways to deploy models on the Edge (as shown in
Figure 1) due to its closer proximity to the Mobile device and faster computational capabilities than a
Mobile device [36,64]. However, Edge devices/servers are often smaller and less powerful than centralized
servers or Cloud resources, which limits their processing power. To address these limitations, there is a
need for alternative deployment strategies (i.e., Model Partitioning, Model Compression, Model Early
Exiting) that aim to mitigate these challenges.
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2.3 Multi-tier Edge AI Partitioning

The Multi-tier Edge AI deployment strategy partitions (splits) an AI model between Edge-Cloud and
Edge-Mobile tiers, respectively, as shown in Figure 1). This overcomes the limitations of traditional
deployment strategies by enhancing data privacy, increasing computation efficiency, reducing memory
requirements, improving scalability, and providing a flexible architecture that can be easily adapted to
different use cases and deployment scenarios.

To illustrate the applicability of this approach, consider a real-time traffic monitoring and incident
detection system within a Mobile-Edge-Cloud infrastructure. Cameras mounted on traffic lights, vehi-
cles, and drones continuously capture high-definition video feeds of a busy intersection. These video
streams are transmitted to an Edge server located nearby, which processes the footage in real-time using
lightweight Computer Vision models. The Edge server detects key objects such as vehicles, pedestrians,
and potential road hazards, enabling immediate actions like adjusting traffic signals or issuing warnings
for approaching vehicles when pedestrians are detected.

Simultaneously, the Cloud aggregates data from multiple Edge servers across the city, providing a
centralized platform for large-scale analysis. By applying Deep Learning (DL) models, the Cloud identifies
traffic patterns, predicts congestion zones, and optimizes traffic management strategies. These insights are
then used for long-term planning, such as predicting rush hour congestion or adjusting traffic light timings
across multiple intersections. This scenario exemplifies how Multi-tier Edge AI Partitioning can optimize
resource usage and enhance system performance by distributing computational tasks appropriately across
Mobile, Edge, and Cloud tiers.

The key insight is the observation that most of the strategies used to enable Partitioned model
inference across, for example, Mobile and Edge devices, operate on the computation graph underlying
modern DL architectures [32]. Such graphs express the different elements of neural networks, as well as
the calculations performed while traversing edges in the graph. By finding the right edges to split, one
can implement model Partitioning, effectively obtaining two or more sub-graphs.

Overall, model Partitioning is a powerful strategy for optimizing the deployment of DNN models on
resource-constrained devices. This family of Edge AI operators partitions models across the tiers of an
Edge AI Environment:

– Mobile-Edge Partition: The Mobile device receives the input data, performs inference on the first half
of the model, and then sends the intermediate output to the Edge device. Afterward, the Edge device
performs inference on the second half of the model using the received intermediate output from the
Mobile device. Finally, the Edge device sends the final output back to the Mobile device.

– Mobile-Cloud Partition: The Mobile device receives the input data, performs inference on the first
half of the model, and sends the intermediate output to the Cloud device via the Edge device. Then,
the Cloud device performs inference on the second half of the model using the received intermediate
output from the Edge device. Finally, the Cloud device sends the final output back to the Mobile
device via the Edge device.

– Edge-Cloud Partition: The Mobile device first receives the input data and sends it to the Edge device
as it is. Then, the Edge device performs inference on the first half of the model using the received
input data and sends the intermediate output to the Cloud device. The Cloud device further performs
inference on the second half of the model using the received intermediate output from the Edge device.
Finally, the Cloud device sends the final output back to the Edge device, which in turn sends it back
to the Mobile device.

2.4 ONNX Run-time for inference

ONNX (Open Neural Network Exchange)1 is a standard format built to represent inter-operable AI
models that run on a variety of hardware platforms and devices. The core of the ONNX model is the
computational graph, which represents the structure and computations of the model. The computational
graph consists of nodes that represent individual operations or layers in the model. The nodes take input
tensor(s), perform the specified operation, and produce output tensor(s). The nodes have attributes that

1 https://onnx.ai/
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define the type of operation, input and output tensors, and any parameters or weights associated with
the operation.

The ONNX Runtime2 is a high-performance inference Engine for deploying ONNX models to pro-
duction for real-time AI applications. It is optimized for deployment on various devices (i.e., Mobile,
Edge, and Cloud) and hardware platforms (i.e., CPUs, GPUs, and specialized accelerators). We consider
ONNX as the subject models’ format and the ONNX Run-time as an inference Engine for this study.

ONNX Runtime Execution Providers are a set of plug-ins that enable the execution of ONNX models
on a wide range of hardware and software platforms. The ONNX Run-time supported Execution Providers
studied and considered as a back-end for hardware acceleration while performing model inference are the
CUDA Execution Provider, which uses GPU for computations, and the default CPU Execution Provider,
which uses CPU cores for computation.

2.5 Intel Neural Compressor

Intel Neural Compressor (INC) is an open-source toolkit designed to optimize DL models for better
performance on Intel hardware. It provides a comprehensive set of features to enable Quantization,
Pruning, and other optimizations, making models run faster and consume less power without significant
loss in accuracy. INC tool is specifically designed to optimize neural networks for deployment on Intel
hardware, such as CPUs or FPGAs.

3 Related Work

In previous surveys [129,110,18,81], eight families of Edge AI model inference operators are discussed:
Model Compression (Quantization, Weight Pruning, Knowledge Distillation), Model Partition, Model
Early-Exit, Edge Caching, Input Filter, and Model Selection. Moreover, Matsubara et al. [74] conducted
a comprehensive survey of the various approaches for Partitioning, Early Exiting, and their combinations
with each other and with other operators (such as Bottleneck Injection, Pruning, and/or Knowledge
distillation). As summarized in Table 1, many studies focus on in-depth analysis of individual operators
or comparing two different operators. Only one study [73] considers three operators, suggesting that
there is limited research comparing a larger set of operators within the context of Edge AI. Evaluating
three (or more) operators allows for a more comprehensive analysis of their relative performances and
trade-offs, which is a focus point of our study.

Among the various kinds of operators, we focus on operators that correspond to model transforma-
tions, i.e., modifications in the structure, parameters, or behavior of ML models. This subset of operators
can be further categorized into white-box and black-box operators. In previous studies, the white-box op-
erators discussed are Model Pruning and Knowledge Distillation, and the black-box operator discussed is
Model Partitioning. Some of the operators like Model Quantization, Model Early Exiting, and Bottleneck
Injection can be performed in both black-box and white-box manner. In real-world scenarios, applying
white-box operators to ML models requires thorough domain expertise about their internal workings to
fine-tune or retrain them, due to which there is a practical need to focus on black-box operators that can
optimize models without fine-tuning or retraining. Therefore, we narrowed down our study to the black-
box operators (i.e., Model Partition, Model Early Exit, Model Quantization) and their combinations to
provide empirical data aimed at understanding how to optimize models robustly and tackle the chal-
lenges posed when deploying to heterogeneous Edge AI environments. Among the black-box operators,
we excluded the Bottleneck Injection operator as it focuses on intermediate data compression techniques
(such as lossless/lossy compression, clipping, etc) and does not inherently perform transformations on
the DNN models themselves, which is the goal of our study.

Table 1 compares the distinctive features of our study and previous studies. Among the ten studies
focusing on Non-Hybrid Partitioning operators, all of them were performed by black-box transformations,
which suggests that this operator requires no retraining or fine-tuning. Among the 25 Early Exit studies,
two studies were performed in a black-box manner, which shows that it is feasible to perform Early
Exiting without retraining or fine-tuning. Among 21 Quantization studies, the majority of them (16)
were performed in a black-box manner, indicating that this approach is more commonly used. In terms

2 https://github.com/microsoft/onnxruntime
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Table 1: Distinctive Features: Prior Work vs. Our Approaches

Ref. P E Q OO BT SS M E C ILA ID TD RoI AoA CaO

Our work ✓V ✓XV ✓XV ✓ ✓ ✓ ✓ ✓ S ✓ ✓ ✓ ✓
[120,20,80] ✓ ✓ ✓ ✓ ✓ A ✓ ✓
[50] ✓ ✓ ✓ ✓ S ✓ ✓
[43,62] ✓ ✓ ✓ ✓ A ✓ ✓
[48] ✓ ✓ ✓ ✓ S ✓
[88] ✓ ✓ ✓ ✓ ✓ A ✓ ✓
[59] L L ✓ ✓ ✓ S ✓ ✓
[127] ✓ ✓ ✓ A ✓ ✓
[10,25] ✓ BI ✓ ✓ S ✓ ✓ ✓
[24] ✓ BI ✓ ✓ S ✓ ✓
[14] ✓ BI ✓ ✓ ✓ ✓ ✓ ✓
[44] ✓ BI ✓ A ✓ ✓ ✓ ✓
[11,4] ✓ BI ✓ ✓ ✓ ✓ ✓
[99,47] ✓ BI ✓ ✓ ✓ ✓ ✓
[56] ✓ BI ✓ ✓ A ✓ ✓ ✓ ✓
[75,76,70,72,121] ✓ BI ✓ ✓ S ✓ ✓ ✓
[97] ✓ BI ✓ ✓ ✓ ✓ ✓
[71] ✓ BI ✓ ✓ A ✓ ✓ ✓ ✓
[33,34] ✓ ✓ ✓ ✓
[66] ✓ ✓ ✓ ✓ ✓
[91,111,119,118,108] ✓ ✓ ✓
[102,117,23] ✓ ✓ ✓
[116] ✓ S ✓ ✓ ✓
[128] ✓ S ✓ ✓
[113,9,106] ✓ S ✓ ✓ ✓
[85] ✓ PR S ✓ ✓ ✓ ✓
[82] I I ✓ ✓ A ✓ ✓ ✓
[107] I I ✓ ✓ ✓ ✓ ✓ ✓
[123] I I ✓ ✓ S ✓ ✓ ✓
[54] I I ✓ ✓ S ✓ ✓ ✓ ✓
[73] I I BI ✓ ✓ S ✓ ✓ ✓
[90,60] ✓ KD ✓ ✓ ✓
[65] ✓ KD ✓ ✓ ✓
[5,7,12,27,29,40,57,77,83,101] ✓ ✓ ✓ ✓
[30,45,126] ✓ ✓ ✓ ✓ ✓
[61] ✓ ✓ NM ✓ ✓ ✓
[26,100,96] ✓ ✓ ✓ ✓
[105] ✓ A ✓ ✓ ✓
[39] ✓ PR ✓ ✓ ✓

1 P: Partitioning, Q: Quantization, E: Early Exiting, X: Quantized Early Exit, V: Quantized Early Exit Partitioned, L: Combi-
nation of Partitioning and Quantization, I: Combination of Partitioning and Early Exiting, OO: Other Operators (BI: Bottleneck
Injection, PR: Pruning, KD: Knowledge Distillation), BT: Black-Box Transformations, SS: Simulated Setup (empty cell repre-
sents Real or Emulated Hardware Setup), M: Mobile, E: Edge, C: Cloud, ILA: inference Latency Approach (S: sequential, A:
Asynchronous, NM: Not Mentioned), ID: Image Data, TD: Textual Data, RoI: Range of Input Sizes (for latency evaluation),
AoA: Analysis of accuracy, CaO: Comparison across Operators, Empty cells of Mobile, Edge, and Cloud mean they are not an
Edge AI setup

of hardware setup, four of the previous studies consider simulated setup, indicating that it is feasible
to consider this kind of setup for testing the operator’s performance. In terms of Mobile, Edge, and
Cloud tiers, only two studies consider all three tiers, suggesting that this area of research is relatively
less explored. In terms of Mobile, Edge, and Cloud tiers, ILA, and RoI, no study considers sequential
inference of a range of inputs (with varying sizes) in an Edge AI setup (Mobile, Edge, and Cloud tiers),
which was explored in our study. In terms of input data, the majority of studies (64) consider image
data, indicating that this type of data is more commonly used for the mentioned operators.

In Table 1, there are limited studies (only two) that consider all three tiers (i.e., Mobile, Edge, and
Cloud) for Edge AI setup in their experiments. Considering all three tiers collectively provides a more
holistic view of real-world deployment scenarios with varying computational and network conditions.
Therefore, we considered all three tiers to ensure a comprehensive and versatile approach in our Edge
AI setup. Four prior studies [120,82,20,80] employ a simulated Edge AI setup instead of real hard-
ware, the former is more cost-effective and more accessible than real hardware, while also providing a
controlled environment, making it easier to isolate and micro-benchmark the latency performance of
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individual operators. On the other hand, while simulations can closely approximate the behavior of real
hardware, they may not replicate all the nuances and complexities of a real-world environment such as
hardware/network variability, power consumption, and real-time constraints.

Among the studies considering interconnected multi-tier networks, the majority (20) consider sequen-
tial inference in comparison to asynchronous inference (i.e., 9) for latency evaluation across the tiers. In
sequential inference, the inference tasks proceed in a step-by-step manner across the tiers of the network
and are dependent on each other (i.e., the next inference task waits for the completion of the previous
inference task). In asynchronous inference, the inference tasks across the tiers are performed concurrently
or independently from each other. We considered sequential inference as it allows us to isolate the per-
formance characteristics of individual operators in a controlled environment. In other words, it allows
for uncovering a more deterministic impact of input data sizes and network/computational resources
of heterogeneous Mobile, Edge, and Cloud tiers on the operators’s latency performance, similar to how
micro-benchmarks operate.

The majority of the prior studies focus on image data instead of textual or speech data as input
for inference of these black-box operators due to its prevalence in real-time deployment scenarios. Image
data is often more complex and less interpretable than text or speech data, requiring more bandwidth for
transmission and more storage space than text or speech data typically due to its larger size. It requires
more computational resources to process possibly due to their usage in computationally intensive tasks
like object detection, image classification, and image segmentation. As a result, this is why CV models
are commonly studied in prior work, requiring image data as input for inference. As such, we narrowed
down the scope of the data and model in our study to the CV domain.

To conclude, our paper provides a novel empirical study of Edge AI deployment strategies, which
are mappings of the black-box operators (i.e., Partitioning, Early Exiting, Quantization), and their
combinations, onto Edge AI tiers (i.e., Mobile, Edge, and Cloud), and their combinations, to analyze
the optimal trade-off in terms of latency and accuracy in real-time deployment scenarios. The previous
studies, as mentioned in Table 1, combine Partitioning with either the Early Exiting [82,107,123,54,73] or
Quantization operator [59]. In our study, we went one step further and analyzed unexplored combinations
among these three operators, like Quantized Early Exit and Quantized Early Exit Partitioned. To our
knowledge, there is no comprehensive study in previous work (Table 1) on the comparative analysis of
these three black-box operators and their specific combinations in the context of Edge AI to decide which
operator is optimal in which deployment scenario. Secondly, our study in comparison to previous studies
(Table 1), evaluates the end-to-end (round trip) latency of the deployment strategies in an Edge AI
setup (Mobile, Edge, and Cloud tiers). The third contribution is our focus on measuring the latency of
deployment strategies across a wide range of varying input (i.e., image) sizes using sequential inference
requests (which have not been explored in previous studies). This contribution helps in analyzing the
impact of input data on the proposed deployment strategies.

Below, we discuss existing work related to the three operator families which we considered in our
study.

3.1 Partitioning

As explained in Section 2.3, the Model Partitioning operator performs black-box transformations splitting
a given model into head (1st half Partition) and tail (2nd half Partition) sub-models at a Partition point
such that the two sub-models, when feeding the output of the head into the input of the tail, produces
the same output as the original model. While in some studies [10,14], the Partitioning point is chosen
heuristically, in the majority of studies performing Model Partitioning [24,48,50,59,123,88,20,120,80,62,
43], various factors like computational load, network cost, energy consumption, input data sizes and/or
privacy risk are evaluated for each of the Partitioning points of the DNN models during deployment
across the Edge AI environment to inform the selection. There is no generalized optimal Partition point,
as it varies for models with different architectures [74]. Therefore, in our study, we simplified our approach
by considering equal-size (MB) Partitioning to do a fair evaluation of each of the subjects considered in
our study.

Many of the CV models (i.e., AlexNet, VGG 11/16/19, DenseNet, ViT, NiN, ResNet 18/34/50/56,
GoogLeNet, AgeNet, GenderNet, Inception-v3, BNNs, eBNNs) considered in previous studies [120,20,
80,50,62,43,48,88,59,127,10,24,107,123,54] for model Partitioning based on black-box transformations
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have weak accuracy performance and model complexity within reach of resource-constrained Mobile tiers.
However, in our study, more accurate and complex state-of-the-art CV models are considered (such as
Wide ResNet-101, ResNext-101, FCN, and DUC) to analyze the latency vs accuracy trade-off in an Edge
AI environment with heterogeneous Mobile, Edge, and Cloud tiers.

The Bottleneck Injection (BI) operators have also been previously studied in combination with Model
Partitioning to reduce the transmission, computation, and energy costs across the Mobile, Edge, and
Cloud tiers. These introduce artificial bottlenecks to DNN models by compressing the intermediate
data, modifying the DNN architecture, and/or both. The Bottleneck Injection techniques that do not
involve re-training of DNN models include Intermediate Data Compression using Quantization, Tiling,
Clipping, Binarization, Entropy Coding, and Lossy/Lossless Compression, which are analyzed in a few
previous studies [10,24,14]. However, most of the BI operators require extensive re-training of models
as they modify the DNN architectures with Auto Encoders [25,44,11,99,56,47,121,4,97,71,75,76], Head
Network Pruning [47], and Head Network Distillation [70,72,73,4,97,71,75,76]. The mentioned black-box
and white-box BI operators may affect the accuracy performance due to intermediate data compression
and architectural modifications, respectively.

In our study, we treat the Partitioning operator as a black-box transformation of a model into two sub-
models (this number is commonly used in previous studies) that do not modify the input or intermediate
representations in the models (i.e., the final output will not change), hence, preserving the accuracy. This
is important, because the Bottleneck Injection operators can be costly and time-consuming (especially
the ones involving architectural modifications), and would change the known, possibly certified behavior
of an existing model.

3.2 Partitioning Approach

We considered the simple, but effective aspect of equal-size (MB) Partitioning to perform a fair eval-
uation of the subjects. Equal-sized Partitioning allows each Partitioned model to have a similar level
of complexity and workload, which can help to balance the computational load across the tiers of the
Edge AI Environment, ignoring the heterogeneity of tiers. This fairness can be crucial for assessing the
models objectively and avoiding biases introduced by variations in computational capabilities across tiers
or certain tiers being underutilized or overloaded, promoting efficient resource utilization. Moreover, due
to the variation in the structural properties of the subjects considered for CV tasks, this straightforward
approach might lead to a larger amount of intermediate data being transferred to the Mobile, Edge, and
Cloud network.

For each of the subjects (i.e., ResNet, ResNext, FCN, DUC) considered in our study, we observed
that the size of the sub-graphs of the computational graph gradually increases while traversing from the
input to the output node. As we progress through the sub-graphs, the receptive field (sensitive to the
region of the input image) of nodes expands, incorporating information from a larger context, which
often increases the size of the sub-graphs. This observation is consistent with the typical architecture of
DNNs, where lower layers capture low-level features, and higher layers combine these features to form
more complex representations. Therefore, choosing the Partition point(s) closer to the end might balance
the size between the two sub-models, as shown in the Partitioning examples in the Appendix.

So, with that in mind, Algorithm 1 inspects the ONNX computational graph of subjects traversing
from the end and heuristically selects the Partition point, i.e., node connection(s), that splits the model
into two nearly equal-sized sub-models. This algorithm is different from the Early Exit algorithm 2
because Partitioning focuses on finding the node connection(s) that can Partition the model into equal
sizes, which requires manually checking the sizes of Partitioned models in our study (proof-of-concept
algorithm). It deviates from the Early Exit approach, in which we find and skip identically structured
sub-graphs by analyzing their structures and input/output node dimension in ONNX computational
graphs.

The models were partitioned so that the connection(s) used for doing that connect the outputs of
the 1st half-Partitioned model to the input of the 2nd Half-Partitioned model. For ResNet and ResNext,
the connection as shown in Figure 18, available at the start of the 9th sub-graph (from the end), was
used as the Partitioning point, as it showed the lowest difference in size between the sub-models (i.e,
7-8 MB) (based on line 5 to 16 in algorithm 1). These sub-graphs are structured in a way such that
one of its branches contains the interconnected nodes and the other branch is a connection (without any
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interconnected nodes) that eventually merges at the end of the sub-graph. It is not feasible to use the
connections within the branches of these sub-graphs for Partitioning as it requires each of these branches
to have inter-connected nodes to cut the sub-graph.

The architecture of FCN consists of two main branches that extend from the input node and merge
at the last sub-graph located at the end. One of the branches consists of all the heavy-weight sub-graphs
and the other branch consists mainly of an elongated connection, i.e., a connection that spans across
the network without containing complex computations or heavy-weight sub-graphs (line 22 to line 23
in Algorithm 1). These two side branches merge into a sub-graph at the end, which computes the final
output. Therefore, the Partitioning of FCN requires cutting the connection within these two branches to
maintain the information flow, as shown in Figure 19. The first connection is situated at the start of the
forth sub-graph from the end within the heavy-weight side branch, and the other connection (within the
lightweight side branch) is situated just before the merge (line 24 in Algorithm 1). The variation in FCN’s
Partitioned model sizes is limited to 3MB (based on line 5 to 16 in Algorithm 1). As explained earlier
(for ResNet/ResNext), these sub-graphs lack interconnected nodes in one of their branches, making it
unfeasible to use their branches’ connections for Partitioning.

For DUC, the connection situated at the start of the forth and third sub-graph from the end shows sub-
models with 37 MB and 9MB variation, respectively (line 29 in Algorithm 1). The forth sub-graph from
the end contains inter-connected nodes within both its branches and, therefore, cutting the connection
within each of its branches can lead to an even more effective balance in size for DUC’s sub-models.
Therefore, we explored the connections within the branches of this sub-graph and Partitioned the DUC
model at the connections shown in Figure 20, which resulted in sub-models with around 1MB size
variation (based on line 30 to 40 in Algorithm 1). This shows that the challenges associated with equal-
size Partitioning might vary for models with different architectures and therefore manual analysis of their
computational graphs and Partitioned sub-model sizes is beneficial in such cases.

The manual splitting of the subject’s Identity models into two equally sized (in MB) sub-models
is performed using ONNX Python APIs. We use the extract model() function on each of the Identity
models to perform the following tasks: 1) Extract 1st half of the Partitioned model by traversing from
the input node to the Partition point; 2) Extract 2nd half of the Partitioned model by traversing from
the Partition point to the output node. At the Partition point, the output tensor name(s) of the 1st
half-Partitioned model is identical to the input tensor name(s) of the 2nd half-Partitioned model. The
1st half-Partitioned sub-model is used for inference in either the Mobile or Edge tier, while the 2nd
half-Partitioned sub-model is used for inference in either the Edge or Cloud tier.

3.3 Early Exiting

Early Exiting is another family of Edge AI deployment operators allowing DNN models to make early
predictions without having to wait until the entire computation process (full forward pass) is completed
by terminating the execution at Early Exits/Classifiers/Sub-branches [98]. The benefits of model Early
Exiting include faster inference speed, reduced energy consumption, and increased model efficiency at
the cost of lower accuracy performance. Implementing Early Exiting on a trained model improves the
model’s runtime performance, especially if the model was initially designed for high accuracy and not
optimized for efficiency.

In the majority of the previous studies, the Early Exits require re-training of the base models either by
joint training or separate training. In Joint training, the (Early) Exits are trained simultaneously with a
model [23,54,66,91,102,106,107,108,111,116,118,119,123,128] by defining a loss function for each of the
classifiers and minimizing the weighted sum of cross-entropy losses per sample. In contrast, in separate
training [65,73,117,113], model training is performed in the first stage then the training of the Early
Exits is performed, such that the pre-trained model parameters are frozen. There are some studies [33,
34] that perform Early Exiting by comparing the output of an Early Exit with the corresponding class
means using Euclidean distance. If the output of an Early Exit is not close enough to a class mean, the
execution continues and the same process is performed for the next Early Exit in the DNN model. In
other words, the Early Exiting is performed dynamically at inference in a black-box manner.

In our study, we achieve a similar effect of Early Exiting by performing manual and static modifica-
tions on the computational graphs of the subject models to short-circuit (skip) the similarly structured
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Algorithm 1 Equal-Size Partitioning of Subject models

1: Input: ONNX computational graph Gsubject for each subject model
2: Output: Equal-size Partitioned sub-models
3: Initialize Min Size Difference ∆min ←∞
4: Initialize Partition Point P ← null
5: function Partition(Ggraph, ∆min, P )
6: Reverse traverse Ggraph starting from the end
7: while not reached the beginning of Ggraph do
8: Use connection at the start of the current sub-graph Scurrent for Partitioning Ggraph

9: Calculate size difference ∆ of Partitioned sub-models
10: if ∆ < ∆min then
11: ∆min ← ∆
12: P ← connection at the start of Scurrent

13: end if
14: end while
15: return P,∆min

16: end function
17: function PartitionResNe(x)t(Gsubject, ∆min, P )
18: P,∆min ← Partition(Gsubject, ∆min, P )
19: return Partitioned sub-models of Gsubject using P based on ∆min

20: end function
21: function PartitionFCN(Gsubject, ∆min, P )
22: Select heavy-weight side branch Gheavy-weight

23: Select light-weight side branch Glight-weight

24: P ← Use one connection within the Glight-weight just before the merge for Partitioning Gsubject

25: P,∆min ← Partition(Gheavy-weight, ∆min, P )
26: return Partitioned sub-models of Gsubject using P based on ∆min

27: end function
28: function PartitionDUC(Gsubject, ∆min, P )
29: P,∆min ← Partition(Gsubject, ∆min, P )
30: Reverse traverse Gsubject starting from the end
31: while not reached the beginning of Gsubject do
32: if the side branches of the current Scurrent contain inter-connected nodes then
33: Select connections within the branches of the Scurrent for Partitioning
34: Calculate size difference ∆ of Partitioned sub-models
35: if ∆ < ∆min then
36: ∆min ← ∆
37: P ← connections within the Scurrent

38: end if
39: end if
40: end while
41: return Partitioned sub-models of Gsubject using P based on ∆min

42: end function

graph computations. The motivation behind this approach lies in the flexibility and customization it
offers in the ONNX framework to MLOps Engineers.

3.4 Early Exit Approach

In our study, the Early Exit process involves modifying the architecture of the pre-trained subjects to
include intermediate outputs and adding the necessary logic to allow the models to Exit Early at an
intermediate stage in the neural network, where this stage includes intermediate outputs that can be
used for prediction. We create Early Exit models by manually terminating the model early using ONNX
python APIs 3. Since the Early Exit mechanism damages the accuracy of inference, a relatively slower
Early Exit near the end of the DNN will gain better accuracy performance [106,123]. For this reason, we
traverse the ONNX computational graphs for all subjects in reverse order (line 4 to 6 in Algorithm 2),
i.e., starting from the end (output node) to check the sub-graphs having identical structures, then short-
circuiting them to create an Early Exit. Here, the sub-graph denotes a branch network of graphical
nodes.

This process takes into account specific considerations related to the model architecture of subjects
and the desired trade-off between accuracy and inference speed. When dealing with DNNs, each sub-graph

3 https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
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may have specific requirements for the dimensionality of its input and output nodes. If the subsequent sub-
graphs have different structures and dimensions, skipping them could lead to incompatible input/output
configurations, disrupting the overall flow of the computational process. In our case, the skipping of sub-
graphs on each of the subject architectures is based on their identical structure and input/output node
dimension. For each of the subjects, we skipped two identical consecutive sub-graphs while traversing
from the end (line 10 to 13 in Algorithm 2). Skipping more than two was not feasible due to the variation
in structure as well as the input/output node dimension of the sub-graphs preceding them (line 14 to 15
in Algorithm 2). Skipping only one sub-graph might not yield a significant speedup, as the reduction in
model size would be limited to 1.07x to 1.12x of the Identity models (line 15 to 17). However, by skipping
two consecutive sub-graphs, the model size can be reduced by 1.15x to 1.27x relative to the Identity
models (line 15 to 17), resulting in a more substantial speedup during inference. In the architectures
of these subjects (refer to example Figure 15 in appendix), there are other sub-graphs (more than two)
having identical structures. Skipping them could result in higher latency as they are placed at the early
stages of the graph, which are lighter in weight compared to the ones we selected. For them, skipping
a higher number of sub-graphs would be required to yield significant model size reduction and faster
latency performance. This would result in significant accuracy loss as these sub-graphs are positioned at
the earlier stages of the graph, which capture fundamental features or representations of the input data,
which are essential for accurate predictions.

Concretely, on the Identity model of each subject, Algorithm 2 first uses the extract model() function
to perform the following tasks: 1) Extract an Early Exit sub-graph having an input node at the start and
an Early Exit point at the end; 2) Extract a decision sub-graph having the Early Exit point at the start
and the output node at the end. The purpose of the decision sub-graph is to make the final prediction
based on the information available up to the Early Exit point. Then, we use the merge models() function
to merge the Early Exit sub-graph with the decision sub-graph. This effectively allows us to either execute
the entire model (i.e., the Identity model) or to skip the last two consecutive and identical sub-graphs (in
terms of structure and input/output node dimension), essentially Exit the model halfway. We provided
graphical illustrations of the Early Exit operation on the ONNX computational graphs of the subjects
in Figure 15 16 17.

Algorithm 2 Early Exit based on Sub-Graph Similarity

1: Input: ONNX computational graph for each subject model
2: Output: Modified computational graph with Early Exit
3: Initialize Max Size Difference ∆max ← 0
4: for each subject model do
5: Extract the ONNX computational graph Gsubject

6: Reverse traverse Gsubject starting from the end
7: Initialize skip count count← 0
8: while not reached the beginning of Gsubject do
9: Extract current sub-graph Scurrent

10: Extract preceding sub-graph Spreceding

11: if Scurrent has identical structure and input/output dimensions as Spreceding then
12: Remove Scurrent from Gsubject

13: Increment count by 1
14: Store the updated graph as Gearly exit

15: Compute size difference ∆← Size(Gsubject)− Size(Gearly exit)
16: if ∆ > ∆max then
17: Update ∆max ← ∆
18: end if
19: else if Scurrent does not have identical structure and input/output dimensions as Sprevious then
20: Break
21: end if
22: end while
23: end for
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3.5 Quantization

Quantization [35] is a member of the Model Compression family of Edge AI deployment operators, where
the neural network’s calculation reduces from full precision (i.e., 32-bit floating point format) to reduced
precision (e.g., 16-bit, 8-bit integer point format) to decrease both the computational cost and memory
footprint, making inference more scalable on resource-restricted devices [51]. As explained in previous
literature surveys [31,114], there are two popular Quantization approaches used in machine learning to
optimize DNNs for deployment on hardware with limited numerical precision, such as CPUs, GPUs, and
custom accelerators, i.e., QAT, and PTQ.

QAT incorporates Quantization into the training process itself. This is done using techniques such as
fake Quantization or simulated Quantization, which simulate the effects of Quantization on the weights
and activations during the forward and backward passes of training. The QAT Quantization method
involves training data and back-propagation for its fine-tuning process, which requires a full training
pipeline, which takes significant extra training time and can be computationally intensive when dealing
with large and complex neural networks [26,100,96,105,39]. In particular, the standard forward/back-
ward passes are executed on a model that uses floating-point precision, and the model parameters are
Quantized after each gradient update. By training the model to be more robust to Quantization, QAT
results in models that are more accurate after Quantization than PTQ. QAT typically involves two
stages: calibration, where the appropriate range of values for the weights and activations is determined,
and fine-tuning, where the model is trained with the Quantized weights and activations.

An alternative to the more resource-intensive QATmethod is PTQ. PTQ involves reducing the weights
and activations of a pre-trained model to lower integer bits, all without the need for fine-tuning (i.e., in a
black-box manner) [5,7,12,27,29,40,57,77,83,101,30,45,126,61]. This can be done using techniques such
as static or dynamic PTQ. In dynamic PTQ, the Quantization parameters are dynamically calculated
for the weights and activations of a model during runtime and are specific for each inference, while
for static Quantization, the Quantization parameters are pre-calculated using a calibration data set
and remain static during each inference. The advantage of PTQ lies in its low and often negligible
overhead. Unlike QAT, which relies on a substantial amount of labeled training data for retraining, PTQ
is advantageous in scenarios where data is limited or unlabeled. Moreover, we observed that 16 studies
considered the black-box Quantization (PTQ) and only 5 studies focused on white-box Quantization
(QAT) as shown in Table 1. This suggests that black-box Quantization is more common and is therefore
considered for evaluation in our study. We keep the pipeline more straightforward by performing Static
PTQ Quantization, which just requires representative data (i.e., validation set in our study) to compute
statistics such as mean and standard deviation of weights and activations.

3.6 Quantization Approach

In our study, we used an INC with ONNX Runtime (CPU) backend to perform static PTQ on the
subjects. Static PTQ uses a calibration dataset to determine the Quantization parameters, such as
scaling factors and zero points for the model. These parameters are essential for representing the floating-
point weights and activations of a model in lower-precision fixed-point formats, which are required for
Quantization. The calibration dataset is used to represent a representative subset of the input data that
the model is likely to encounter during inference. For each subject, its validation set is passed as the
calibration data to capture the data distribution and help identify appropriate Quantization parameters
for the model to maintain the desired level of accuracy.

The main advantage of using this technique is that it can lead to a significant reduction in memory
requirements and computation time while still maintaining model accuracy. This is especially important
in scenarios where the model needs to be deployed on resource-constrained devices, such as Mobile or
Edge devices. In static PTQ, the weights and activations of a pre-trained model are Quantized to a fixed
precision (i.e., 8-bit integers) by the INC.

3.7 Hybrid Approach

The RQ5 evaluates the impact of combining the three deployment operators (i.e., Quantization, Early
Exit, and Partitioning). We perform Early Exit on the Quantized models by skipping identically struc-
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tured sub-graphs from the end of the ONNX computational graphs, which is identical to the approach
of Early Exit in Identity models, as explained in RQ3 (Section 3.4). We provide graphical illustrations
of the Quantized Early Exit operation on the ONNX computational graphs of the subjects as shown in
Figures 21 22 23.

We manually Partition the Quantized Early Exit models into two nearly equal-sized sub-models to
generate the Quantized Early Exit Partitioned operator using a similar procedure as for the Partitioning
of Identity models in RQ4 (Section 3.2). Here, the second half-Partitioned model contains the Early Exit
operation, allowing it to make early predictions. The first-half and second-half Partitioned sub-models are
used for inference in Mobile/Edge and Edge/Cloud tier, respectively. We provided graphical illustrations
of the Quantized Early Exit Partitioned operator on the ONNX computational graphs of the subjects as
shown in Figures 24, 25, and 26.

4 Methodology

This section presents the methodology adopted to address the research questions (RQs) introduced
earlier. Our approach is grounded in the Goal/Question/Metric (GQM) paradigm [6], which provides
a structured framework for defining measurement goals, formulating relevant research questions, and
identifying appropriate metrics to assess the outcomes. By aligning our methodology with the GQM
model, we ensure that our evaluation is systematic, goal-driven, and traceable from high-level objectives
to concrete measurements.

4.1 Goal, Research Questions, and Metrics

The goal of the experiment is to analyze Edge AI deployment strategies to evaluate their impact on la-
tency and accuracy performance from the perspective of MLOps engineers. In this context, a deployment
strategy refers to a combination of operators and tiers. The operators include Identity, Quantization,
Early Exit, Quantized Early Exit, and Quantized Early Exit Partition. The tiers include Mobile, Edge,
Cloud, Mobile-Edge, Edge-Cloud, and Mobile-Cloud.

Table 2 summarizes how our overarching goal maps to each research question and the associated
evaluation metrics.

4.1.1 RQ1: What is the impact of Monolithic deployment in terms of inference latency and accuracy
across the considered tiers?

Motivation This question aims to empirically assess the possible differences in terms of inference per-
formance between the three tiers (i.e., Mobile, Edge, and Cloud) during the Monolithic deployment of
Identity models (i.e., models to which the Identity operator is applied, meaning no modification or opti-
mization is performed on the original model). In our study, Monolithic deployment on each tier involves
deploying an entire model, along with any necessary pre-processing, post-processing, and inference logic,
as a single unit. The goal of this research question is to analyze the impact of factors like computational
resources, network bandwidth, and input data on inference latency for the three Monolithic deployment
scenarios. The inference accuracy of Identity models is also computed as the baseline for analyzing the
performance in later RQs.

4.1.2 RQ2: What is the impact of the Quantization operator in terms of inference latency and accuracy
within and across the considered tiers?

Motivation This question evaluates the impact of the Quantization operator through two key compar-
isons. First, we compare the inference latency and accuracy of Quantized models against Identity models
within the same deployment tier (i.e., Mobile, Edge, and Cloud). Second, we analyze the effect of Quan-
tization across the three Monolithic tiers to examine its behavior in different deployment environments.
These comparisons are designed to empirically explore the trade-offs introduced by Quantization, par-
ticularly its potential to reduce latency while maintaining acceptable accuracy, thereby informing its
suitability for deployment in resource-constrained versus more capable environments.
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Table 2: GQM Mapping of Goals, Research Questions, and Metrics

Goal Research Question Metrics
Assess the baseline perfor-
mance of Identity models de-
ployed monolithically across
Mobile, Edge, and Cloud
tiers.

RQ1: What is the impact of Monolithic
deployment (Identity models) in terms of
latency and accuracy across tiers?

Inference latency (ms), Top-1 accuracy
(baseline)

Evaluate how Quantization
affects inference latency and
accuracy within and across
deployment tiers.

RQ2: What is the impact of Quantiza-
tion on latency and accuracy within and
across tiers?

Inference latency (ms), Top-1 accuracy,
relative latency reduction (%)

Analyze the effect of Early
Exit on latency and accuracy
in different deployment envi-
ronments.

RQ3: What is the impact of Early
Exit on latency and accuracy within and
across tiers?

Inference latency, Top-1 accuracy, num-
ber of early exits taken

Examine the effectiveness of
Partitioning in reducing la-
tency across multi-tier se-
tups.

RQ4: What is the impact of Partitioning
across tiers?

Inference latency, Latency difference vs.
Monolithic deployments

Assess the impact of hybrid
operators combining Quanti-
zation, Early Exit, and Parti-
tioning on latency and accu-
racy.

RQ5: What is the impact of hybrid oper-
ators (Quantized Early Exit, Quantized
Early Exit Partitioning)?

Inference latency, Accuracy, Trade-off
analysis (latency vs. accuracy)

Determine how network
bandwidth variation in-
fluences the latency of
deployment strategies.

RQ6: What is the impact of bandwidth
variation on deployment strategies?

Inference latency under 1, 10, 50, 100,
150, and 200 Mbps

4.1.3 RQ3: What is the impact of the Early Exit operator in terms of inference latency and accuracy
within and across the considered tiers?

Motivation To evaluate the impact of the Early Exit operator, we conduct two types of comparisons.
First, we compare Early Exit models with their Identity counterparts within the same deployment tier
(i.e., Mobile, Edge, and Cloud) to assess how introducing early exits affects latency and accuracy under
similar resource constraints. Second, we analyze how the Early Exit operator performs across the three
Monolithic tiers to understand its behavior in varying deployment environments. These comparisons are
motivated by the need to understand whether Early Exit can effectively reduce inference latency while
maintaining acceptable accuracy across different system configurations.

4.1.4 RQ4: What is the impact of the Partitioning operator in terms of inference latency and accuracy
across the considered tiers?

Motivation This research question compares the inference latency of multi-tier Partitioning strategies
(i.e., Identity models partitioned across Mobile-Edge, Edge-Cloud, and Mobile-Cloud) with that of Mono-
lithic Identity deployments (i.e., complete deployment of Identity models on Mobile, Edge, or Cloud). Ad-
ditionally, the Partitioned operator in the Mobile-Edge tier is compared with other operators—Identity,
Quantization, and Early Exit—in the Edge tier. This tier selection is based on their superior latency per-
formance relative to other combinations (e.g., Edge-Cloud or Mobile-Cloud for Partitioning, and Mobile
or Cloud for other operators).

These comparisons aim to empirically assess the effectiveness of the Partitioning operator in reducing
inference latency within Edge AI environments and to understand its relative benefits over monolithic
and alternative deployment strategies.

4.1.5 RQ5: What is the impact of hybrid Operators in terms of inference latency and accuracy within
and across the considered tiers?

Motivation This question compares the inference latency and accuracy performance of combined op-
timization strategies involving Quantization, Early Exit, and Partitioning. First, the Quantized Early
Exit (QE) hybrid operator is evaluated against Non-Partitioned operators (i.e., Identity, Quantization,
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and Early Exit) within each Monolithic tier (Mobile, Edge, and Cloud). Second, the Quantized Early
Exit Partitioned (QEP) operator is analyzed across Multi-tier setups (i.e., Mobile-Edge, Edge-Cloud,
and Mobile-Cloud) and compared with the QE operator deployed monolithically. Additionally, the QEP
operator in the Mobile-Edge tier is compared with Non-Hybrid operators (i.e., Identity, Quantization,
and Early Exit) in the Edge tier. These tier choices reflect configurations that show the most promis-
ing latency benefits based on prior observations (e.g., Mobile-Edge for QEP and Edge for non-hybrid
operators).

To assess performance degradation, the accuracy of QE is also compared against Non-Hybrid oper-
ators. Identity and QE were selected for Partitioning in this and the previous RQ (RQ4) due to their
representing the extremes of model size, enabling clearer latency contrasts across tiers. The decision also
aligns with prior studies that explored combining Partitioning with Quantization and Early Exit, as
discussed in Section 3.

These comparisons aim to empirically evaluate how integrating multiple model optimization operators
affects inference latency and accuracy in diverse deployment environments.

4.1.6 RQ6: What is the impact of bandwidth variations on the deployment strategies in terms of
inference latency?

Motivation This question aims to empirically assess the impact of network bandwidth variations on the
inference latency performance of various deployment strategies, including Identity, Quantization, Early
Exit, Partitioning, and hybrid operators, across the Mobile, Edge, and Cloud tiers.

To study this, we focus on experiments involving a single input data sample, where bandwidth is
treated as a key independent variable. We evaluate six commonly observed bandwidth levels—1 Mbps,
10 Mbps, 50 Mbps, 100 Mbps, 150 Mbps, and 200 Mbps—across both Mobile-Edge and Edge-Cloud
connections. These values were selected to reflect a range of realistic network conditions, from con-
strained (1 Mbps) to ideal (200 Mbps) scenarios, as typically encountered in mobile and edge computing
environments.

This setup allows us to isolate and measure the direct effect of bandwidth on inference latency under
each deployment strategy. By varying only the bandwidth while holding other factors constant, we can
better understand how network limitations influence latency and which deployment strategies are more
resilient to such variations.

4.2 Subjects Selection

A set of four pre-trained, state-of-the-art models from the ONNX Model Zoo 4 and Pytorch Imagenet
models store 5 is used as a suitable and representative sample of subjects for the experiment. Testing
too many models can be computationally expensive and time-consuming, especially when involving
techniques like Quantization, Early Exit, Partitioning, and their combinations. Previous benchmarking
studies [38] use a limited set of widely recognized models to evaluate methods. Therefore, using four
models aligns with this convention, providing sufficient statistical insights without overburdening the
study and strike a balance between variety and manageability. In this study, we focus on computer-
vision tasks as they often demand significant computational and network bandwidth resources during
deployment in real-world scenarios. To support the generality of the results, we ensure that the models
are heterogeneous in terms of architecture, size, scope, and data set. Furthermore, to obtain findings on
realistic models, we selected four large and complex image classification and segmentation models, as
shown in Table 3.

Image classification is a type of machine learning task where the goal is to assign a label or category
to an input image. This is achieved by training a model on a dataset of labeled images, then using that
model to predict the labels of new, unseen images [68]. Image segmentation is the process of dividing an
image into multiple segments or regions. The goal of image segmentation is to simplify and/or change the
representation of an image into something more meaningful and easier to analyze. The output of image
segmentation is a set of segments that collectively cover the entire image or a set of contours extracted
from the image [79].

4 https://github.com/onnx/models
5 https://pytorch.org/vision/main/models.html
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The ILSVRC (ImageNet Large Scale Visual Recognition Challenge) dataset is used for evaluating
the performance metrics of both the ResNet and ResNext subjects as it is widely used for training and
evaluating image classification models. As the network architecture of the ResNet and ResNext subjects
is similar, we use different versions of pre-trained weights for ResNet (i.e., IMAGENET1K V2) and
ResNext (i.e., IMAGENET1K V1) from the torchvision package to obtain a better generalization of our
results. We use the COCO (Common Objects in Context) and Cityscapes datasets for evaluating the
performance metrics of the FCN and DUC subjects, respectively. For the Image Classification subjects,
we exported the ResNet and ResNext models from torchvision.models subpackage to ONNX using the
torch.onnx.export() function. For the Image Segmentation subjects, we use the models from ONNX
Model Zoo.

Table 3: Subjects of the experiment

Model Name Model Size Parameters Scope Dataset

ResNet [122] 484MB 126.81M Image Classification ILSVRC 2012 [95]
ResNext [115] 319MB 83.35M Image Classification ILSVRC 2012 [95]
FCN [67] 199MB 51.89M Image Segmentation COCO 2017 [63]
DUC [109] 249MB 65.14M Image Segmentation CityScapes [16]

4.3 Experimental Variables

The experiment is structured using a factorial design comprising multiple independent and controlled
factors. Following guidelines from Wohlin et al. [112], we distinguish between independent factors, which
are actively varied during the experiment, and controlled factors, which are held constant to isolate the
effects of the independent ones. The responses (dependent variables) are latency and accuracy.

Independent Factors The primary independent factors include:

– Operator Configuration (5 levels): Quantization, Early Exit, Partitioning, Quantized Early Exit,
and Quantized Early Exit Partitioned.

– Deployment Tier (6 levels): Mobile, Edge, Cloud, Mobile-Edge, Edge-Cloud, and Mobile-Cloud.
– Network Bandwidth (6 levels): 1, 10, 50, 100, 150, and 200 Mbps (varied in experiments with

single input samples; fixed in others as described below).

In experiments involving multiple input samples, bandwidth is treated as a controlled factor and fixed
at 200 Mbps for Mobile-Edge and 1 Mbps for Edge-Cloud tiers to avoid confounding effects.

Controlled Factors (Fixed During the Experiment) Controlled factors are variables that are deliberately
kept constant across all experimental conditions to maintain internal validity and ensure that variations
in the dependent variables are attributable only to the independent factors. These include:

– Model Architecture: The same subject models (e.g., ResNet/ResNeXt, FCN, DUC) are used across
all configurations.

– Input Data and Preprocessing: Identical datasets and input transformations are applied across
all experimental runs.

– Deployment Tools: The ONNX runtime and Intel Neural Compressor are consistently used across
all experiments.

– Hardware Configuration: Hardware specifications (CPU, GPU, RAM) for Mobile, Edge, and
Cloud tiers are fixed. CPU for Mobile/Edge: Intel(R) Xeon(R) E7-4870 2.40GHz, CPU for Cloud:
Intel(R) Xeon(R) Platinum 8268, GPU: NVIDIA A100 GPU, RAM for Mobile: 4GB, RAM for Edge:
16GB, RAM for Cloud: 64GB RAM.

These controlled factors are considered constant design parameters in the experiment and not varied
across treatment conditions.
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Dependent Variables (Responses) The measured outcomes are:

– Inference Latency: Time in milliseconds to complete an end-to-end inference request, including
preprocessing, model computation, post-processing, and data transmission.

– Inference Accuracy: Evaluated using Top-1/Top-5 accuracy for classification models, and mIoU
for segmentation models.

4.3.1 Inference Latency

We define the inference latency as being based on the sum of pre-processing latency, model computational
latency, post-processing latency, and transmission latency. The pre-processing latency refers to the time
spent transforming input data to align with the requirements of the model. The model computational
latency refers to the time it takes to perform the forward pass of a neural network, which involves feeding
an input through the network, applying various mathematical operations, and producing an output. The
post-processing latency refers to the time spent refining and interpreting the model’s output after the
model’s forward pass. The transmission latency refers to the time it takes for data to travel from one
tier to another in an Edge AI network.

The inference latency is collected via a timer that is started right before the launch of an inference
test run and gets stopped when the model returns the output after successful execution. To that extent,
we employ the default timer from the timeit Python package for measuring inference latency. In the
results of the five research questions, we employed the term “speedup” to signify the extent by which
the median inference latency of a particular operator or tier is faster compared to the median inference
latency of another operator or tier. The median inference latency here is the median value among the
five repetitions, where each repetition involves running the inference test over 100 input data samples.

4.3.2 Accuracy

For different domain-specific models, the default accuracy metric varies. In our study, the employed
metrics for evaluating the accuracy of image classification subjects like ResNet and ResNext are Top1%
and Top5% accuracy, while the metric used for image segmentation subjects, like FCN and DUC, is
mIoU (Mean Intersection Over Union). The definition of the metrics used is as follows:

– Top5% and Top1% accuracy: Top5% accuracy measures the proportion of validation samples where
the true label is among the top 5 predictions with the highest confidence score. Top1% accuracy is a
more strict evaluation metric, as it measures the proportion of validation samples where the model’s
highest confidence prediction matches the true label. Both Top1% and Top5% accuracy are useful
metrics in image classification tasks and are often reported together to provide a more comprehensive
evaluation of the model’s performance. Therefore, in our study, we measure both metrics to gain a
better understanding of how well image classification models are performing.

– mIoU%: This is a commonly used metric for evaluating the performance of image segmentation
models. It measures the degree of overlap between the predicted segmentation masks and the ground
truth masks and provides a measure of how well the model can accurately segment the objects in
the image. The mIoU is calculated by first computing the Intersection over Union (IoU) for each
class between the predicted mask and the ground truth mask, which is defined as the ratio of the
intersection between the predicted and ground truth masks to their union. The IoU ranges from 0 to
1, with higher values indicating better overlap between the predicted and ground truth masks. The
mIoU is then calculated as the average of the IoU scores across all classes in the dataset.
The reason for using mIoU as an evaluation metric for image segmentation models is that it is sensitive
to both false positives (areas predicted as belonging to a class when they do not) and false negatives
(areas not predicted as belonging to a class when they should). This makes it a valuable metric for
evaluating the overall accuracy of a segmentation model and can help identify areas where the model
is performing poorly.
In general, the accuracy metrics were calculated by validating each subject model on its specific
validation data set, having varying sizes of images to get a more accurate and comprehensive picture
of their accuracy performance, as shown in Table 3. The ResNet/ResNext subject models have been
validated on the ILSVRC 2012 dataset (50k validation samples), while the FCN and DUC subject
models were validated on the COCO 2017 dataset (5k validation samples) and CityScapes leftImg8bit
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dataset (500 validation samples), respectively. We used “accuracy” as a common term in the RQ
results for the 4 subjects’ respective accuracy metrics.

Controlled Variables The following variables are held constant across experiments to ensure internal
validity and isolate the effects of the independent variables:

– Model Architecture: ResNe(x)t, FCN, and DUC.
– Input Data: Identical datasets and preprocessing are applied across all configurations.
– Framework/Tools: ONNX and Intel Neural Compressor.
– Hardware Configuration: CPU, RAM, and/or GPU of the respective Mobile, Edge, and Cloud

tiers.

All five operator configurations are applied uniformly to the subject models listed in Table 3, ensuring
a balanced experiment design in which each configuration is tested under equivalent conditions.

To ensure clarity regarding the experimental design across all research questions (RQs), we summarize
the independent, dependent, and controlled variables in Table 4, titled Summarization of Variables per
Research Question. This table outlines the factor levels and fixed conditions for each RQ, following
guidelines from Wohlin et al. [112], and serves as a reference for understanding how the experimental
variables are handled throughout the study.

Table 4: Summarization of Variables per Research Question

RQ Independent Variables Factor Levels [112] Controlled Variables

RQ1 Operator, Tier, Bandwidth 1 op × 3 tier Model Architecture, Input Data, Hardware Configs
RQ2 Operator, Tier, Bandwidth 1 op × 3 tier Model Architecture, Input Data, Hardware Configs
RQ3 Operator, Tier, Bandwidth 1 op × 3 tier Model Architecture, Input Data, Hardware Configs
RQ4 Operator, Tier, Bandwidth 1 op × 3 tier Model Architecture, Input Data, Hardware Configs
RQ5 Operator, Tier, Bandwidth 2 op × 3 tier Model Architecture, Input Data, Hardware Configs
RQ6 Operator, Tier, Bandwidth 5 op × 3 tier Model Architecture, Input Data, Hardware Configs

4.4 Hypotheses

To formally test our research questions, we define statistical hypotheses involving the mean inference
latency and accuracy across various deployment strategies. Below, we clarify the notation used in the
hypothesis formulations:

– µlatency(Op,Tier) denotes the mean inference latency when operator Op is applied in deployment
tier Tier.

– accuracy(Op,Tier) denotes the inference accuracy under the same conditions.
– Operator symbols (Op) refer to:

– Opid: identity (baseline operator)
– Opq: quantization
– Ope: early exit
– Opp: partitioning
– Opqe: quantized early exit (hybrid)

– Deployment tiers (Tier) include:
– m, e, c: monolithic deployments on mobile, edge, and cloud
– me, ec, mc: partitioned deployments across tiers

– BWi represents the available network bandwidth (in Mbps), with i ∈ {1, 10, 50, 100, 150, 200}.

Each null hypothesis (H0) assumes no statistically significant difference between the compared groups,
while the alternative hypothesis (HA) posits that at least one difference exists. The statistical hypotheses
corresponding to our research questions are listed below.
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RQ1: Is there a significant difference among the three Monolithic deployments in terms of inference
latency?

H0
11 : µlatency(Opid,Tierm) = µlatency(Opid,Tiere) = µlatency(Opid,Tierc)

HA
11 : ∃ i, j ∈ {m, e, c} such that µlatency(Opid,Tieri) ̸= µlatency(Opid,Tierj)

RQ1 (Monolithic Latency Comparison):

– H0
11: There is no significant difference in latency across mobile, edge, and cloud for the identity

operator.
– HA

11: At least one pair of tiers has significantly different latency.

RQ2: Does the Quantization operator affect inference latency and accuracy within and across tiers?

H0
21 : µlatency(Opq,Tierm) = µlatency(Opq,Tiere) = µlatency(Opq,Tierc)

HA
21 : ∃ i, j ∈ {m, e, c} such that µlatency(Opq,Tieri) ̸= µlatency(Opq,Tierj)

H0
22 : µlatency(Opq,Tierk) = µlatency(Opid,Tierk) ∀k ∈ {m, e, c}

HA
22 : ∃ k ∈ {m, e, c} such that µlatency(Opq,Tierk) ̸= µlatency(Opid,Tierk)

H0
23 : accuracy(Opq,Tierk) = accuracy(Opid,Tierk) ∀k ∈ {m, e, c}

HA
23 : ∃ k ∈ {m, e, c} such that accuracy(Opq,Tierk) ̸= accuracy(Opid,Tierk)

RQ2 (Quantization Effects):

– H0
21: Quantization latency is equal across monolithic tiers.

– HA
21: Latency differs across tiers for quantization.

– H0
22: Quantization does not change latency compared to identity within each tier.

– HA
22: Quantization changes latency compared to identity in at least one tier.

– H0
23: Quantization does not change accuracy compared to identity in any tier.

– HA
23: Accuracy is affected by quantization in at least one tier.

RQ3: Does the Early Exit operator impact inference latency and accuracy within and across tiers?

H0
31 : µlatency(Ope,Tierm) = µlatency(Ope,Tiere) = µlatency(Ope,Tierc)

HA
31 : ∃ i, j ∈ {m, e, c} such that µlatency(Ope,Tieri) ̸= µlatency(Ope,Tierj)

H0
32 : µlatency(Ope,Tierk) = µlatency(Opid,Tierk) ∀k ∈ {m, e, c}

HA
32 : ∃ k ∈ {m, e, c} such that µlatency(Ope,Tierk) ̸= µlatency(Opid,Tierk)

H0
33 : accuracy(Ope,Tierk) = accuracy(Opid,Tierk) ∀k ∈ {m, e, c}

HA
33 : ∃ k ∈ {m, e, c} such that accuracy(Ope,Tierk) ̸= accuracy(Opid,Tierk)
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RQ3 (Early Exit Effects):

– H0
31: Early exit latency is equal across monolithic tiers.

– HA
31: Latency differs across tiers for early exit.

– H0
32: Early exit does not change latency compared to identity in any tier.

– HA
32: Early exit affects latency in at least one tier.

– H0
33: Early exit does not affect accuracy compared to identity.

– HA
33: Accuracy changes due to early exit in at least one tier.

RQ4: Does the Partitioning operator affect inference latency across different deployment tiers?

H0
41 : µlatency(Opid,Tieri) = µlatency(Opid,Tierj) ∀i, j ∈ {me, ec,mc,m, e, c}

HA
41 : ∃ i, j ∈ {me, ec,mc,m, e, c} such that µlatency(Opid,Tieri) ̸= µlatency(Opid,Tierj)

RQ4 (Partitioning Effects):

– H0
41: Latency is equal across all deployment types (monolithic and partitioned).

– HA
41: At least one pair of deployment types shows a difference in latency.

RQ5: Do hybrid operators (e.g., Quantized Early Exit) impact inference latency and accuracy?

H0
51 : µlatency(Opqe,Tierm) = µlatency(Opqe,Tiere) = µlatency(Opqe,Tierc)

HA
51 : ∃ i, j ∈ {m, e, c} such that µlatency(Opqe,Tieri) ̸= µlatency(Opqe,Tierj)

H0
52 : µlatency(Opqe,Tierk) = µlatency(Opq,Tierk) ∀k ∈ {m, e, c}

HA
52 : ∃ k ∈ {m, e, c} such that µlatency(Opqe,Tierk) ̸= µlatency(Opq,Tierk)

H0
53 : accuracy(Opqe,Tierk) = accuracy(Opq,Tierk) ∀k ∈ {m, e, c}

HA
53 : ∃ k ∈ {m, e, c} such that accuracy(Opqe,Tierk) ̸= accuracy(Opq,Tierk)

RQ5 (Hybrid Operator Effects):

– H0
51: Latency for the hybrid operator (quantized early exit) is equal across monolithic tiers.

– HA
51: Latency differs across tiers for the hybrid operator.

– H0
52: Latency of the hybrid operator matches that of quantization in each tier.

– HA
52: Hybrid operator latency differs from quantization in at least one tier.

– H0
53: Accuracy remains unchanged between hybrid and quantization operator.

– HA
53: Accuracy differs between hybrid and quantization in at least one tier.

RQ6: What is the impact of bandwidth variations on the deployment strategies in terms of inference
latency?
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H0
61 : µlatency(Opx,Tierk,BWi) = µlatency(Opx,Tierk,BWj) ∀i, j ∈ {1, 10, 50, 100, 150, 200}

HA
61 : ∃ i, j ∈ {1, 10, 50, 100, 150, 200} such that µlatency(Opx,Tierk,BWi) ̸= µlatency(Opx,Tierk,BWj)

H0
62 : µlatency(Opx,Tierk,BWi) = µlatency(Opy,Tierk,BWi) ∀x, y ∈ {id, q, e, p, qe}

HA
62 : ∃x, y ∈ {id, q, e, p, qe} such that µlatency(Opx,Tierk,BWi) ̸= µlatency(Opy,Tierk,BWi)

H0
63 : µlatency(Opx,Tierk,BWi) ̸= µlatency(Opx,Tierl,BWi)

HA
63 : ∃ k, l ∈ {m, e, c,me,mc, ec} such that µlatency(Opx,Tierk,BWi) ̸= µlatency(Opx,Tierl,BWi)

RQ6 (Bandwidth Sensitivity):

– H0
61: Latency for a given operator and tier is invariant across bandwidth levels.

– HA
61: Latency changes with bandwidth for at least one operator-tier combination.

– H0
62: Different operators have similar latency under fixed bandwidth and tier.

– HA
62: Operator choice affects latency under a given bandwidth-tier setting.

– H0
63: Latency varies across tiers for a fixed operator and bandwidth.

– HA
63: There is a tier-level effect on latency at fixed bandwidth and operator.

4.5 Study Design

The experiment follows a nested factorial design [112] in which some levels of one factor (e.g., deployment
operator) are valid only for certain levels of another factor (e.g., deployment tiers). In our case: Parti-
tioning and Quantized Early Exit Partitioned are nested within Multi-tiers (Mobile-Edge, Edge-Cloud,
Mobile-Cloud) and Quantization, Early Exit, and Quantized Early Exit are nested within single tiers
(Mobile, Edge, Cloud). Thus, specific operator-tier combinations are selected based on feasibility and/or
practical relevance. This reduced testing scope makes the design a nested factorial design.

Table 5 summarizes the treatment combinations used in our study. For each research question (RQ),
it outlines the selected deployment operators, tiers, and corresponding bandwidth settings, along with
the sample size per treatment. This table provides a comprehensive view of how the nested factorial
design was instantiated across different deployment strategies and experimental conditions.

Table 5: Summarization of the treatment combinations. Legend - M: Mobile, C: Cloud, E: Edge, I:
Identity, Q: Quantized, E: Early Exit, P: Partition, QE: Quantized Early Exit, QEP: Quantized Early
Exit Partition

RQ Treatments (operators * tier * bandwidth) Sample size per treatment

RQ1 Identity (I) * [M,E,C] * [ME: 200 Mbps, EC: 1 Mbps] 100 range of inputs
RQ2 Quantized (Q) * [M,E,C] * [ME: 200 Mbps, EC: 1 Mbps] 100 range of inputs
RQ3 Early Exit (E) * [M,E,C] * [ME: 200 Mbps, EC: 1 Mbps] 100 range of inputs
RQ4 Partition (P) * [ME,EC,MC] * [ME: 200 Mbps, EC: 1 Mbps] 100 range of inputs

RQ5
Quantized Early Exit (QE) * [M, E, C, ME, EC, MC] * [ME: 200 Mbps, EC: 1 Mbps]
Quantized Early Exit Partition (QEP) * [M, E, C, ME, EC, MC] * [ME: 200 Mbps, EC: 1 Mbps]

100 range of inputs

RQ6 [I, Q, E, P, QE, QEP] * [M, E, C, ME, EC, MC] * [ME, EC: 1,10,50,100,150,200 Mbps] 1 single input

From the overall set of eight operator families for Edge AI inference discussed in Section 1, we
narrow down the scope of our study to delve deeper into strategies that can optimize models in a
black-box manner for deployment on resource-constrained and network-constrained Edge AI deployment
scenarios. In other words, the operators transform the models as-is instead of fine-tuning models (which
would invalidate prior model validation results). Among the model optimization operators, we selected
three operators based on their representativeness (i.e., capable of addressing different aspects of model
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optimization, such as improving inference speed, providing better data privacy, optimizing resource usage,
and reducing model size) and feasibility (i.e., the implementability of operators in black-box models).

Eventually, we selected one representative operator (i.e., Quantization) out of the three Model Com-
pression operators (i.e., Quantization, Weight Pruning, Knowledge Distillation) as they all focus on a
common goal of reducing the size and complexity of black-box models while preserving their accuracy
as much as possible. Using the Quantization operator in the ONNX Runtime framework offered by the
Intel Neural Compressor tool, Quantization can be performed by using the three widely used techniques
discussed earlier, i.e., Static PTQ, Dynamic PTQ, and QAT. Our study used static PTQ as dynamic
PTQ requires higher computational overhead during inference than static PTQ. QAT was excluded from
the selection as it involved re-training models [46], while we focused on post-processing black-box models.

Model Partitioning was selected as it provides computational load splitting across the tiers (i.e.,
Mobile, Edge, and Cloud) of an Edge AI environment during distributed inference, enabling more efficient
utilization of resources and providing scalable deployment of models. It also aims to provide better data
privacy than the Monolithic Edge and Cloud deployments by transmitting intermediate outputs rather
than the raw input data across the tiers of the Edge AI Environment.

The motivation for considering Early Exit as an operator is its aim to save computational resources
and reduce the time required to predict by Exit early during the forward pass of the neural network. This
would especially be valuable in scenarios where resources are constrained (i.e., Mobile and Edge tiers).
For example, drones performing real-time object detection or navigation in constrained environments
(e.g., disaster recovery or delivery scenarios) benefit from faster inferences through early Exit to make
immediate decisions.

These three operators and their combinations are configured on black-box models for inference, de-
pending on where the transformed (fragments of) black-box models will reside among the three tiers
of the Edge AI Environment. This strategic configuration is vital for achieving optimal performance,
minimizing latency, and improving the scalability of Edge AI deployment. By aligning these operators
with the unique characteristics and constraints of each tier, a more effective and adaptable Edge AI
ecosystem can be developed, catering to a wide range of use cases and scenarios.

We analyze the trade-off between two quantitative metrics, i.e., inference latency and inference accu-
racy. This analysis plays a crucial role in understanding the dynamic interplay between performance and
latency within the Edge AI Environment, guiding the selection of optimal strategies based on a deploy-
ment Engineer’s use cases and requirements. Some use cases might prioritize low latency at the expense
of accuracy, while others could emphasize accuracy even if it leads to slightly higher latency [129]. The
empirical data collected from deploying various operators on different tiers provides a quantitative basis
for evaluating this trade-off and serves as a foundation for our long-term objective (outside the scope
of this paper): the creation of recommendation systems to automatically suggest the most appropriate
operators and deployment strategies for specific use cases, aligning with desired latency and accuracy
requirements.

In our study, the deployment strategies are a mapping of deployment tiers to one or more deployment
operators. The deployment tiers are the physical locations for model deployments, which include three
Single-tier (i.e., Mobile, Edge, and Cloud) and three Multi-tier (i.e., Mobile-Edge, Edge-Cloud, Mobile-
Cloud) environments. The Single-tiers refer to the deployment of entire models on single computing tiers
to achieve Monolithic inference. The Multi-tiers refer to the deployment of Partitioned models across
multiple computing tiers to achieve distributed inference. The deployment operators refer to the specific
techniques that are applied to modify black-box models for efficient deployment and execution within the
Edge AI Environment. They can be categorized into singular operators and hybrid operators. Singular
operators are individual optimization techniques that are applied to models independently and hybrid
operators are combinations of singular optimization techniques.

We considered four singular deployment operators, i.e., Identity Operator (no modifications), Quanti-
zation Operator, Early Exit Operator, and Partition Operator, and two hybrid operators, i.e., Quantized
Early Exit and Quantized Early Exit Partitioned. We limited the hybrid operators to two as developing
and evaluating hybrid operators involves combining multiple singular operators, which can increase the
complexity of the study. By including a smaller set of hybrid operators, we can perform a more detailed
comparative analysis against singular operators.

We perform Partitioning and Early Exit manually to check their feasibility (implementation), since
automation across all types of models does not exist thus far. This feasibility analysis and the results
of our study will help MLOps Engineers determine whether it is worth investing time/resources for
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Fig. 2: Graphical illustration of Experimental Architecture for Edge AI

automating this in the future. For instance, the Early Exit criteria (i.e., skipping identically structured
sub-graphs) require close analysis of ONNX computational graphs of the subject models, as explained in
the Early Exit approach (Section 3.4). The Partitioning criteria (i.e., two equal-sized sub-models), require
manually checking the sizes of sub-models, while the connection(s) used for achieving this criterion vary
for subjects with varying architectures like ResNe(x)t, FCN, and DUC, as explained in our Partitioning
approach (Section 3.2). Given the heterogeneity of the studied models, right now there is no automated
tool that considers the mentioned criteria for these two operators across all models. To date, only one
paper [69], uses a genetic algorithm to evenly split models into diverse sub-models, but this was only
evaluated on the ResNet model of our study. As a consequence, we obtained Partitioning of Identity
models, Early Exit of Identity/Quantized models, and Partitioning of Quantized Early Exit models
through manual modifications. By executing these modified models in various deployment scenarios,
across Mobile, Edge, and Cloud tiers, we then collect empirical data to analyze how each operator, and
their combinations, perform under real-world conditions.

Previous studies [58,74] indicated that model Partitioning does not affect the inference accuracy,
it just sends the same intermediate results remotely instead of within the same tier. As the model’s
architecture inherently involves sequential processing, the Partitioning aligns well with this logic by
ensuring that data flows through each Partitioned model in a manner consistent with the original model’s
design, hence preserving accuracy. By default, the dimensions (width, height) of the model’s input node
of three subjects are fixed, i.e., (224, 224) for ResNet/ResNext and (800, 800) for DUC, while for one
subject (i.e., FCN), it is dynamic (dependent on the width and height of input data). Therefore, for
FCN, the intermediate data dimension/size varies for input data samples having varying widths/heights,
while for other subjects, it remains fixed.

4.6 Experimental Execution

4.6.1 Experimental Setup

We simulated an Edge AI deployment architecture for Mobile, Edge, and Cloud tiers interconnected with
each other as illustrated in Figure 2. This architecture is designed to support AI inference tasks in both a
Monolithic and distributed manner for various deployment operators. Based on previous studies [93,92],
we used Docker containers to simulate the hardware configurations of actual Mobile, Edge, and Cloud
tiers. Docker is an open-source containerization technology ensuring a consistent and easily portable
environment (or container) [78]. A docker container is a lightweight and portable package that includes
all the necessary dependencies, libraries, and configurations to run a software application [78]. Docker
provides a way to package and distribute applications in a standardized and portable format that can
run on any platform, including Cloud, on-premise, and Edge [89].

This study utilized an experimental setup that may not fully generalize to all configuration scenarios.
However, most configurations were selected based on prior studies to ensure comparability and validity.
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Additionally, we experimented with independent variables that we considered the most impactful, such as
network bandwidth and the selected models. We further discuss the impact of Docker containers, models,
operators, and GPU-specific execution providers in detail in the Discussion and Threats to Validity
sections (Section 6, Section 7). While both the Mobile and Edge tiers are simulated on a single server using
Docker containers, resource constraints (e.g., CPU, RAM) and network conditions are carefully emulated
to reflect the heterogeneous characteristics of these tiers. This setup enables a realistic evaluation of
multi-tier deployment strategies in a controlled and repeatable environment. However, we acknowledge
that certain hardware-specific characteristics, such as variations in physical device architectures, are
not captured in this setup, which is common in similar simulation studies [93]. In particular, the Docker
containers simulating Mobile and Edge tiers were configured with quad-core and octa-core CPUs (Intel(R)
Xeon(R) E7-4870 2.40GHz) along with 4GB RAM and 16GB RAM, respectively. These configurations
are based on previous studies [21,19]. We considered CPU-based Edge simulation to represent real-world
scenarios where Edge devices often do not have dedicated GPUs due to power, size, or cost constraints.
The Docker container simulating the Cloud was configured on a different server than the simulated
Mobile and Edge containers. The simulated Cloud container contains 16-core CPUs (Intel(R) Xeon(R)
Platinum 8268 CPU 2.90GHz), 64GB RAM, and an NVIDIA A100 GPU, these configurations are based
on previous studies [53,94]. The Cloud runs all inference experiments on its GPU using ONNX Runtime
with CUDA Execution Provider. Our simulated setup of Mobile, Edge, and Cloud Docker containers
closely mimics real-world hardware configurations as mentioned below:

– The mobile Docker container mimics a lightweight Laptop (such as HP Chromebook x360) that has
quad (4) core CPUs and 4 GB RAM 6.

– The edge container mimics a mini server (resource configuration of a server within a K8S Edge
Cluster), which has 8 CPU cores and 16 GB RAM [19].

– The cloud container mimics a virtual machine with 16 cores, 64 GB RAM, and a GPU (Nvidia-A100
as this is the only available GPU in our lab server) [53,94].

For the three simulated Docker containers, we use the python:3.9-slim image as a base, on top of which
we installed the necessary Python packages including a replica of the ONNX Run-time configuration (the
out-of-the-box installation of the ONNX Run-time Python package). Here, the simulated Mobile/Edge/-
Cloud device is a virtual representation of a physical Mobile/Edge/Cloud device created and operated
within a software-based simulation environment (i.e., Docker). The Docker simulations provide a flexible
and convenient way to configure and customize virtual environments that mimic various hardware spec-
ifications, network conditions, and software configurations of real-time deployment scenarios. Moreover,
the advantages of cost-effectiveness and controlled testing make Docker simulations an invaluable tool
for conducting inference experiments.

The simulated Mobile and Edge containers are interconnected to a common network bridge in Docker
to exchange API requests with each other. The Edge container further connects with the external, sim-
ulated Cloud container. We configured the Linux Traffic Control utility 7 inside each configured Docker
container for simulating Mobile-Edge and Edge-Cloud network bandwidths. After applying a given com-
bination of operators, we placed the resulting .onnx files for the subject models on the corresponding
simulated devices. The Flask Framework handles incoming and outgoing requests across Mobile, Edge,
and Cloud devices. Base64 encoding is used while transferring data across the devices as it allows the
data to be transmitted in a more reliable and universally readable format. For ResNet/ResNext and
FCN/DUC models, the final output that is transmitted across the Edge AI Environment is the predicted
label or the segmented image, respectively, which both have smaller sizes than the network bandwidths
of the Edge AI Environment.

Similar to earlier work, [84,125,103,28,3], an Edge-Cloud bandwidth of 1 Mbps was used for simulat-
ing the WAN transmission latency, and the Mobile-Edge bandwidth of 200 Mbps was used for simulating
the WLAN (Wireless Local Area Network) transmission latency. The selected bandwidth values aim to
represent typical network conditions found in WAN and WLAN environments. WAN connections are
prevalent for communicating between Edge and Cloud over large geographical distances and often have
lower bandwidth due to factors like network congestion and long-distance transmission. On the other
hand, WLAN connections commonly used for Mobile and Edge devices placed in closer proximity to

6 https://www.hp.com/in-en/shop/hp-chromebook-x360-14a-ca0504tu-678m6pa.html
7 https://man7.org/linux/man-pages/man8/tc.8.html
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each other, tend to provide higher bandwidth. We also studied across a range of bandwidths, which is
discussed in more detailed further below.

4.6.2 Operations done in preparation for each experiment

The entire validation set for running inference experiments is computationally expensive and time-
consuming, especially when dealing with resource-constrained and network-constrained scenarios. There-
fore, for analyzing the impact of input data on inference latency, we conducted the inference experiments
for the subjects using a representative subset of 100 image samples selected from their specific valida-
tion sets with a specific criterion: we ensured that these image samples had larger sizes compared to
the remaining validation set. Larger-sized images often present greater computational challenges due to
increased memory requirements and processing complexity [52]. By selecting larger-sized image samples,
the study can assess an upper bound for the inference latency performance and scalability of the models
under investigation in resource-constrained and network-constrained scenarios. The recommendation for
a minimum sample size of 100 is considered a typical number for the reliability of statistical analysis and
to draw meaningful conclusions [37].

We conducted six inference latency trials to analyze the effects of varying deployment strategies,
data sizes, and network bandwidths on inference latency across different scenarios. To ensure reliable
and reproducible results, we divided the trials into two stages: an initial inference experiment and a
final inference experiment. In the initial inference experiment, we performed 100 sequential runs on
input test samples of varying sizes as a cache warm-up phase. This step stabilized the cache memory
to mimic real-world continuous usage, where frequently accessed data populates the cache, as opposed
to operating from a cold start. After the warm-up phase, we carried out the final inference experiment,
which involved 500 sequential runs achieved through five repetitions on the same 100 input samples. These
repetitions enhanced statistical significance and captured variability typical of real-world repetitive tasks.
We logged the inference latency for each run in a text file and restarted the Mobile, Edge, and Cloud
Docker containers after each experiment. A 20-second delay ensured consistent and isolated environments,
further strengthening the reliability of our results.

To evaluate system performance under varying computational loads, we included models with different
input sizes in our experiments. This consideration is critical for high-performance applications. Input size
ranges across deployment strategies were as follows: ResNet/ResNeXt models ranged from 8 to 60 MB,
DUC models from 19 to 22 MB, and FCN models from 2 to 5 MB.

Recognizing the correlation between model input size and network bandwidth and their impact on
inference latency, we assessed the effect of Mobile-Edge and Edge-Cloud bandwidth variations. Based on
commonly adopted practices in prior studies [1,17,84,125,130], we selected bandwidth values of 1, 10,
50, 100, 150, and 200 Mbps. To isolate the effect of network bandwidth and control for input size, we
used the largest input sample in these experiments.

4.6.3 Measurement Procedure and Tools

As shown in Figure 3, our measurement infrastructure consists of 2 servers, i.e., We orchestrated the
latency experiments as follows: Server 1 acted as the orchestrator, managing communication with the
Cloud container on Server 2 (via the Mobile and Edge containers on Server 1), the Edge container
on Server 1 (via the Mobile container on Server 2), and the Mobile container. Server 1 initiated the
experiments and recorded raw latency data, storing the results in text files. We began each experiment
with round-trip latency tests for different deployment strategies. To ensure consistency, we restarted
the containers between subsequent deployment strategies and waited for 20 seconds to allow software
reinitialization. During latency measurement, Server 1 sent input data to the Mobile container, which
either processed the inference locally or offloaded computations to the Edge and Cloud containers. Once
the containers completed the inference, they returned the output (predictions) to Server 1, completing
the round trip.

We conducted inference latency experiments across a comprehensive set of configurations: twelve com-
binations of <Identity models(4), Monolithic tiers(3)>, twelve combinations of <Quantized models(4),
Monolithic tiers(3)>, twelve combinations of <Early Exit models(4), Monolithic tiers(3)>, twelve combi-
nations of <Partitioned models(4), Multi-tier setups(3)>, and twenty-four combinations of <Quantized
Early Exit models(4), Deployment tiers(6)>. We evaluated model accuracy for Identity, Quantized, Early
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Fig. 3: Graphical illustration of Measurement Infrastructure

Exit, and Quantized Early Exit operators using their respective validation datasets, as shown in Table 9,
and compared their accuracies.

We calculated the accuracy of the operators within each container using the complete validation
dataset, as outlined in Figure 3. For Identity, Quantization, Early Exit, and Quantized Early Exit oper-
ators, we independently evaluated accuracy within CPU-based Docker environments (Mobile, Edge) and
a GPU-based Docker environment (Cloud) to assess the impact of hardware on performance. This setup
provided a holistic evaluation of model generalizability across diverse platforms. Both Mobile and Edge
environments utilized the same Runtime Execution Provider (CPU) for inference and shared an Intel(R)
Xeon(R) E7-4870 processor (2.40GHz). However, they differed in CPU and memory configurations, al-
lowing us to perform a nuanced analysis of performance across varying hardware setups.

4.7 Data Analysis

The inference latency experiments’ results are analyzed using various statistical methods. Firstly, we use
the Shapiro-Wilks test and Q-Q plot for each deployment strategy to assess the normality of the inference
latency distribution and determine if parametric or non-parametric tests are appropriate for testing the
hypotheses. After observing from the Shapiro-Wilks test and Q-Q plot that the data does not conform
to a normal distribution, we employ the Kruskal-Wallis (KW) test [87] to compare the inference latency
distributions of independent groups (i.e., deployment strategies) based on two different dimensions (i.e.,
operator and tier dimension) and determine if there exists a significant difference among at least two of
the independent groups (hypothesis testing). Further, the Conover test, a non-parametric post-hoc test,
was used to perform pairwise comparisons of different deployment strategies across the tier and Operator
Dimensions. This test was chosen to identify significant differences between strategies after a significant
result was observed in the initial Kruskal-Wallis test. The Conover test’s robustness to non-normal data
ensures reliable comparisons of deployment strategies in scenarios where parametric assumptions may
not hold. The design approach for the KW and Conover statistical tests across the tier and operator
Dimension is illustrated in Table 6 and Table 7, respectively.
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Table 6: Design of KW and Conover statistical tests for inference latency comparison across the tier(T)
dimension, i.e., Mobile [M], Edge [E], Cloud [C], Mobile-Edge [ME], Edge-Cloud [EC], Mobile-Cloud
[MC] for RQ1, RQ2, RQ3, RQ4, and RQ5.

T
O

I Q E P QE QEP

M X
E X
C X
ME
EC
MC

(a) RQ1(X)

T
O

I Q E P QE QEP

M X
E X
C X
ME
EC
MC

(b) RQ2(X)

T
O

I Q E P QE QEP

M X
E X
C X
ME
EC
MC

(c) RQ3(X)

T
O

I Q E P QE QEP

M X
E X
C X
ME X
EC X
MC X

(d) RQ4(Y)

T
O

I Q E P QE QEP

M X,Y
E X,Y
C X,Y
ME Y
EC Y
MC Y

(e) RQ5(X) RQ5(Y)

Table 7: Design of KW and Conover test statistical tests for inference latency comparison across the
Operator(O) dimension, i.e., Identity (I), Quantized (Q), Early Exit (E), Partitioned (P), Quantized
Early Exit (QE), and Quantized Early Exit Partitioned (QEP) for comparison across 6 operators (RQ2,
RQ3, RQ4, RQ5)

T
O

I Q E P QE QEP

M X X X X
E
C
ME X X

(a) Comparison across 6 operators (RQ2, RQ3, RQ4,
RQ5)

T
O

I Q E P QE QEP

M
E X X X X
C
ME X X

(b) Comparison across 6 operators (RQ2, RQ3, RQ4,
RQ5)

T
O

I Q E P QE QEP

M
E
C X X X X
ME X X

(c) Comparison across 6 operators (RQ2, RQ3, RQ4,
RQ5)
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4.7.1 Tier Dimension

As shown in Table 6, to investigate if there is a statistically significant difference between the three
Monolithic deployment tiers (Single-tiers) in terms of inference latency of any of the Non-Partitioned
operators, we perform a KW test (α = 0.05) for each of the four Identity models in RQ1, four Quan-
tized models in RQ2, four Early Exit models in RQ3, and four Quantized Early Exit models in RQ5
by comparing their latency across the three Single-tiers (Mobile, Edge, Cloud). These four variants of
Identity, Quantized, Early Exit, and Quantized Early Exit models indicate for each of the subjects (i.e.,
ResNet, ResNext, FCN, and DUC). Moreover, to investigate if there is a statistically significant difference
between the Monolithic deployment strategies and Multi-tier Partitioning strategies, for each subject,
we conduct a KW test (α = 0.05) across the Identity and Partitioned models in RQ4. We also perform
this test across the Quantized Early Exit and Quantized Early Exit Partitioned models in RQ5, on their
inference latency performance when deployed in the three Single-tier and three Multi-tier environments,
respectively.

After observing significant differences (KW Test: p-value < 0.05), we further employ the Conover
post-hoc test [15]. For the pairwise comparisons having significant differences (Conover test: adjusted
p-value < 0.05), we evaluate Cliff’s delta effect size [13] to assess the inference latency ranking of tiers
based on the direction and magnitude of their difference in the corresponding RQs.

4.7.2 Operator Dimension

For each subject, to investigate if there is a statistically significant difference between the six operators
(Identity, Quantized, Early Exit, Partitioned, Quantized Early Exit, Quantized Early Exit Partitioned),
we perform the KW tests shown in Table 7. If there is a significant difference (KW Test: p-value <
0.05), we further employ post-hoc Conover tests [15]. For the pairwise comparisons having significant
differences (Conover test: adjusted p-value < 0.05), we used Cliff’s delta effect size [13] to analyze how
operators’ inference latency ranks by looking at how much they differ (magnitude) and which way (sign)
they differ in the corresponding RQs.

To evaluate the accuracy comparisons of the operators, we use the Wilcoxon Signed Rank Test [22]
to determine if there exists a significant difference for the Identity vs Quantized models in RQ2, Identity
vs Early Exit models in RQ3, Quantized vs Quantized Early Exit models in RQ4, and Early Exit vs
Quantized Early Exit models in RQ5. This test analyzes the differences between two paired groups, i.e.,
the accuracy measurements under two different operators for the same subjects (i.e., ResNet, ResNext,
FCN, DUC) and environments (i.e., Mobile, Edge, Cloud). Each group has 18 samples of accuracy
measurements, i.e., six accuracy metric values ([ResNet, ResNext] x [Top 1%, Top 5%] + [FCN, DUC] x
[mIOU%]) x 3 environments. In other words, in a particular operator’s group, we are concatenating the
accuracy metric(s), all of which are percentage values, of all four subjects, then comparing corresponding
accuracy metrics using paired statistical tests.

To avoid false discoveries, Bonferroni Correction [42] is applied to the p-value for each Wilcoxon test
comparing two operators by considering a p-value less than or equal to 0.0125 as statistically significant.
The adjusted significance level of 0.0125 is derived by dividing the conventional significance level (α =
0.05) by the number of multiple comparisons (four in our case, as each operator is compared four times).
After this correction, if a significant difference is observed between the two operators, we utilize Cliff’s
Delta effect size [13] to measure the magnitude/sign of their difference in corresponding RQs.

On the other hand, for the Shapiro-Wilks, Kruskal-Wallis, and Posthoc Conover tests, we compare
the obtained p-value with the significance level of alpha = 0.05. According to [41], we interpret effect size
as negligible (d < 0.147), small (0.147 ≤ d < 0.33), medium (0.33 ≤ d < 0.474), or large (d ≥ 0.474).
Negative values for d imply that, in general, samples from the distribution on the left member of the
pair had lower values. These findings, in combination with the box plots displaying the distributions,
will provide us with an additional understanding of the extent to which one deployment strategy differs
from another. In particular, we analyze the median in the box plots to evaluate how each deployment
strategy’s performance compares to the others.
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Fig. 4: Box plots of the measures collected for inference latency (seconds) from Mobile, Edge, and Cloud
tiers for Identity versions of Subjects

5 Results

5.1 What is the impact of monolithic deployment in terms of inference latency and accuracy across the
considered tiers? (RQ1)

5.1.1 Data Exploration

For the Identity models having large input data sizes (ResNet, ResNext, and DUC), the
Edge tier shows the lowest median inference latency of 5.64, 3.96, and 23.64 seconds,
respectively.

The box plots in Fig. 4 represent the inference latency distribution in the logarithmic scale of the
subject’s Identity models across the Mobile, Edge, and Cloud tiers. The Edge tier shows a 3.12x, 4.43x,
and 1.21x lower median inference latency (Table 26) compared to the Cloud tier for ResNet, ResNext, and
DUC Identity models, respectively, with a large effect size (Table 8). This is because of the Edge’s higher
network bandwidth capacity (200 Mbps) compared to Cloud (1 Mbps), which allows faster transmission of
large input data samples for ResNet/ResNext (8 to 60 Mb) and DUC (19-22 Mb) during Edge deployment.

In contrast, the FCN Identity model shows the lowest median inference latency of 3.76 seconds in the
Cloud tier, while the other 3 Identity models show the highest median inference latencies of 17.61, 17.61,
and 28.61 seconds, respectively, in the Cloud tier (Table 26). This is because the input data samples
for FCN are much smaller in size (2-5 Mb), which allows faster data transmission even in the network-
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constrained Cloud tier. Moreover, the Interquartile range (IQR) of the ResNet and ResNext is wider
compared to FCN and DUC in the Cloud, indicating a more significant variability around the median.
This is because the input data size range of ResNet and ResNext is around 17x higher compared to
FCN and DUC, so a higher spread of inference latency values is observed for ResNet and ResNext. This
behavior indicates that the input data sizes and network bandwidths play a critical role in the end-to-end
inference latency during Edge and Cloud deployment.

The Edge tier shows 1.83x lower average median inference latency compared to the Mobile tier
across the four Identity models. In particular, the Edge shows a drop of 3.30, 2.33, 15.10, and 21.81
seconds in median inference latency compared to Mobile for ResNet, ResNext, FCN, and DUC Identity
models, respectively, along with a large effect size (Table 8). These differences are possibly due to the
larger computational resources (CPU/RAM) of the Edge tier compared to the Mobile tier, due to which
the computations during model inference are faster in the Edge tier. In particular, Edge has 4x the
RAM and twice as many CPU cores as Mobile. The Cloud tier shows an 8.52 and 23.62 seconds drop in
median inference latency compared to both Mobile and Edge tiers, respectively only for the FCN Identity
model as the abundant computational resources of the Cloud (16x/4x RAM and 4x/2x CPU relative to
Mobile/Edge) and the lowest input data size range for the FCN subject (as mentioned earlier) accounts
for both faster model inference and data transmission.

The architectural complexity of models also plays a role in inference as among the 4 Identity models,
the DUC Identity model shows the highest median inference latency of 45.46, 23.64, and 28.61 seconds on
Mobile, Edge, and Cloud, respectively. The DUC Identity model has the highest number of graph nodes
(i.e., 355), which contributes to the higher architectural complexity in comparison to the other Identity
models (FCN: 260 graph nodes, ResNet/ResNext: 240 graph nodes). Here, the graph nodes represent
the total number of operations in the ONNX computational graph of a model.

5.1.2 Normality Test

Normality assessment was conducted using the Shapiro-Wilk test and visual inspection through QQ
plots. For each Identity model across all deployment tiers, the Shapiro-Wilk test resulted in p < 0.05,
rejecting the null hypothesis of normality, as shown in Table 26. This suggests that inference latency
distributions significantly deviate from normality.

Additionally, QQ plots showed heavy skewness and long tails across all subjects and tiers, as shown
in Table 27, further supporting the result of the Shapiro-Wilk test. As a result, non-parametric methods
were employed for statistical comparisons in the subsequent analysis.

5.1.3 Hypothesis Testing

Given the non-normal latency distributions, the Conover test (a post-hoc non-parametric multiple com-
parisons method) was used to evaluate significant differences between deployment tiers. Table 8 presents
p-values and Cliff’s Delta (δ) effect sizes for each pairwise comparison. All pairwise comparisons across
Mobile (M), Edge (E), and Cloud (C) showed statistically significant differences (p < 0.05). The Cliff’s
Delta effect sizes were consistently large (L), indicating strong practical significance.

After rounding off the decimal digits (up to 4 places) in the accuracy metric values, we observed that
for each subject, each of the 4 operators (i.e., Identity, Quantized, Early Exit, and Quantized Early Exit)
exhibits identical performance between Mobile and Edge tiers, as shown in Table 9. The main reason
seems to be the identical hardware (CPU processor) and software (packages) configuration of Mobile and
Edge-simulated Docker containers. Table 9 shows a summary of results for RQ1.

Summary of Research Question 1

Among the three monolithic deployment tiers, the Edge tier could be the preferred choice in
terms of latency in scenarios where models (ResNet, ResNext, DUC) have large input data size
requirements and the Mobile/Cloud tier has computational/bandwidth limitations. In contrast,
for models having smaller input data size requirements (FCN), Cloud deployment could be the
optimal choice over computationally constrained tiers (Mobile/Edge).
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Table 8: RQ1 results of the Cliff’s Delta effect size and Conover test p-value between Mobile (M), Edge
(E), and Cloud (C) deployment for It (Identity version of ResNet), Ix (Identity version of ResNext), If
(Identity version of FCN), and Id (Identity version of DUC).

Ix

It M E C

p δ p δ p δ
M - - 9.6e−221 L (0.9) 7.6e−187 -L (0.83)
E 4.0e−99 L (0.71) - - 0.0 -L (1.0)
C 2.9e−152 -L (0.86) 0 -L (0.92) - -

Id

If M E C

p δ p δ p δ
M - - 0.0 L (0.99) 0.0 L (1.0)
E 0.0 L (1.0) - - 0.0 L (1.0)
C 0.0 L (1.0) 0.0 -L (1.0) - -

1 In these, and later, tables, a Positive sign for the ith cell shows that the latency of column[i]<row[i], while a Negative
sign for the ith cell shows that the latency of column[i]>row[i].
2 In these, and later, tables, the L, M, S, and N symbols mean Large, Medium, Small, and Negligible effect size,
respectively.
3 In these, and later, tables, an empty cell means that the Cliff’s Delta effect size was not considered because the
pairwise comparison was not statistically significant based on the Conover test.

Table 9: Accuracy performance of Identity, Quantized, Early Exit, and Quantized Early Exit versions of
subjects within Mobile, Edge, and Cloud tiers.

Subject Operator Model Size
Top-1% Top-5% mIOU%

Mobile Edge Cloud Mobile Edge Cloud Mobile Edge Cloud

ResNet Identity 484 MB 82.52 82.520 82.522 96.008 96.008 96.008 - - -
ResNet Quantized 123 MB 82.148 82.148 82.164 95.792 95.792 95.814 - - -
ResNet Early Exit 380 MB 76.586 76.586 76.59 93.442 93.442 93.446 - - -
ResNet Quantized Early Exit 96 MB 75.392 75.392 75.346 93.034 93.034 93.024 - - -

ResNext Identity 319 MB 83.244 83.244 83.244 96.456 96.456 96.458 - - -
ResNext Quantized 81 MB 83.084 83.084 83.14 96.402 96.402 96.386 - - -
ResNext Early Exit 250 MB 77.276 77.276 77.284 93.92 93.92 93.924 - - -
ResNext Quantized Early Exit 64 MB 75.668 75.668 75.616 93.83 93.83 93.826 - - -

FCN Identity 199 MB - - - - - - 66.7343 66.7343 66.7348
FCN Quantized 50 MB - - - - - - 66.38 66.38 66.35
FCN Early Exit 164 MB - - - - - - 55.16 55.16 55.16
FCN Quantized Early Exit 42 MB - - - - - - 54.36 54.36 54.32

DUC Identity 249 MB - - - - - - 81.9220 81.9220 81.9223
DUC Quantized 63 MB - - - - - - 81.62 81.62 81.62
DUC Early Exit 215 MB - - - - - - 75.746 75.746 75.744
DUC Quantized Early Exit 54 MB - - - - - - 75.32 75.32 75.32

Table 10: Summary of results for Research Question 1

Model Best Tier Latency (s) Gain over Next Best Notes
ResNet Edge 5.64 3.12x faster than Cloud Large input size, bandwidth bottleneck in Cloud
ResNext Edge 3.96 4.43x faster than Cloud Similar to ResNet
DUC Edge 23.64 1.21x faster than Cloud Highest graph complexity
FCN Cloud 3.76 8.52s faster than Mobile Small input size enables fast Cloud performance

5.2 What is the impact of the Quantization operator in terms of inference latency and accuracy within
and across the considered tiers? (RQ2)

5.2.1 Data Exploration

In Mobile, the Quantized models show 1.17x higher and 1.27x lower average median in-
ference latency w.r.t Identity models for ResNet/Resnext and FCN/DUC, respectively. In
Edge, the Quantized models show 1.48x lower average median inference latency than the
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Fig. 5: Box plots of the measures collected for inference latency of Identity, Quantized, Early Exit,
and Quantized Early Exit models in monolithic tiers (Mobile[M], Edge[E], Cloud[C]) and Partitioned
Identity/Quantized Early Exit models in Mobile-Edge (ME) tier.

Identity models across all subjects. In Cloud, no significant difference was shown among
Quantized and Identity models across all subjects (except DUC).

As shown in Figure 5 (blue and orange box plots), the Quantized models show 1.15x to 1.19x higher
and 1.17x to 1.37x lower median inference latency compared to the Identity models (Table 27, Table 26)
in the Mobile tier, along with small to large effect sizes (Table 11). The generated Quantized models are
about 4x smaller than the Identity models of the subjects as shown in Table 9. Therefore, in an ideal
situation, the Quantized models should show faster latency in comparison to Identity models due to model
size reduction, as shown in FCN and DUC’s latency results. But, for the ResNet and ResNext subjects,
these models show slower latency, possibly due to their costly operations in the resource-constrained
Mobile tier, leading to their higher CPU/Memory utilization than Identity models. In the Edge tier, the
Quantized models show 1.20x to 1.64x lower median inference latency than the Identity models across
the four subjects, along with large effect sizes (Table 12). This shows that the Quantized models perform
faster than the Identity models in a high-resource environment (i.e., Edge).

During Cloud inference, the majority of graphical nodes (94.01% to 100%) are processed on the CUDA
Execution provider for the Identity models, while for the Quantized models, 53.82% to 86.52% of the
graphical nodes are processed on the CUDA Execution Provider and the remaining ones are processed on
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the CPU Execution Provider. Compared to Identity models, the percentage of graphical nodes that use
CUDA Execution Provider is lower for Quantized models, which might imply that Quantized models are
somewhat less optimized (or compatible) for GPU (i.e., CUDA) processing than Identity models. Among
the four subjects, the Quantized model of DUC shows the lowest percentage of the graphical nodes
(53.82%) placed on the CUDA Execution Provider, resulting in its significantly slower inference latency
than the DUC Identity model, for which all the graphical nodes are placed on the CUDA execution
provider. For the remaining three subjects (i.e., ResNet, ResNext, FCN), the Quantized models show
similar inference latency compared to the Identity models in the Cloud tier due to the higher percentage
of graphical nodes placed on the CUDA execution provider, i.e., 85.62% to 86.52% and 94.01% to 100%
for Quantized and Identity models, respectively, which is statistically significant (Wilcoxon Test: p-value
= 0.03, α = 0.05) along with large effect size (1.0).

The Quantized models show a small accuracy drop (<0.5%) across the four subjects in
comparison to Identity models.

In terms of accuracy, the Quantized models demonstrate a marginal accuracy drop of 0.05% down to
0.38% compared to the Identity models, as shown in Table 9, While conducting the Wilcoxon test, the
accuracy difference comes out to be statistically significant (p-value = 7.6e−6, α = 0.0125). However,
the effect size remains small (0.16). This trade-off suggests that Quantization is an effective operator for
achieving faster inference in Edge (based on previous findings) without significantly compromising the
accuracy performance.

When comparing Quantization across the three monolithic deployment tiers, the Quan-
tized models show 2.60x and 3.44x lower average median inference latency during Edge
deployment than their deployment in Mobile and Cloud, respectively.

The Quantized models across all subjects in the Edge exhibit 1.97x to 3.06x lower median inference
latency compared to their inference in the Mobile, as shown in Figure 5 (orange box plots), along with
large effect sizes (Table 14) due to its higher computational resources. For ResNet, ResNext, and DUC
subjects, the Quantized models in the Cloud demonstrate 1.58x to 6.61x higher median inference latency
than their inference in the Edge tier due to the higher impact of the large input data sizes of these
subjects on the transmission across the restricted Edge-Cloud network. However, the Quantized model
for the FCN subject exhibits 1.97x lower median inference latency in the Cloud tier compared to the
Edge tier with a large effect size (Table 14). This is due to the FCN’s small input data sizes leading to a
lower impact on data transmission across the restricted Edge-Cloud network. The reasoning behind these
findings is similar and explained briefly in the RQ1 findings (Section 5.1). Table 14 shows a summary of
results for RQ2.

5.2.2 Normality Test

The Shapiro-Wilk test and QQ plots were applied to assess the normality of latency distributions. For
most model-subject combinations, the null hypothesis of normality was rejected (p < 0.05), indicating
non-normal distributions of inference latency values(see Table 27). As a result, non-parametric methods
like the Conover and Wilcoxon tests were selected for hypothesis testing.

5.2.3 Hypothesis Testing

According to the Conover test, the null hypothesis that there is no significant inference latency difference
between the Quantized and Identity models was rejected for the DUC subject (2.0e−247, α = 0.05)
during Cloud deployment. The large effect size (Table 13) for DUC shows that its Quantized model
has a significantly higher distribution of inference latency magnitude compared to its Identity model.
Conversely, for the remaining three subjects (i.e., ResNet, ResNext, FCN), the null hypothesis cannot be
rejected, indicating that their Quantized models show similar or equivalent inference latency compared
to their Identity models.
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Table 11: Cliff’s Delta effect size and Conover Test p-value between IM, QM, EM, PME, QEM, and
QEPME versions of subjects for RQ2, RQ3, RQ4, and RQ5

Rx

Rt IM QM EM PME QEM QEPME

p δ p δ p δ p δ p δ p δ
IM - - 4.0e−9 -S (0.24) 4.4e−67 L (0.58) 2.8e−26 M (0.37) 3.0e−20 S (0.26) 3.9e−270 L (0.94)
QM 2.2e−23 -M (0.34) - - 1.7e−113 L (0.69) 2.6e−59 L (0.54) 3.2e−50 M (0.44) 0.0 L (0.96)
EM 9.1e−88 L (0.6) 5.8e−179 L (0.79) - - 2.3e−12 -S (0.25) 4.0e−17 -S (0.24) 5.3e−94 L (0.80)
PME 7.0e−94 L (0.63) 8.3e−187 L (0.83) - - 6.5e−157 L (0.87)
QEM 0.001 -N (0.12) 6.6e−12 S (0.29) 7.8e−114 -L (0.68) 1.3e−120 -L (0.71) - - 6.2e−171 L (0.85)

QEPME 2.8e−148 L (0.75) 9.8e−253 L (0.91) 5.2e−12 S (0.24) 8.3e−10 S (0.23) 2.5e−179 L (0.82) - -

DUC
FCN

IM QM EM PME QEM QEPME

p δ p δ p δ p δ p δ p δ
IM - - 8.1e−292 L (0.92) 6.8e−18 S (0.25) 6.2e−92 L (0.65) 0.0 L (0.99) 0.0 L (1.0)
QM 0.0 L (1.0) - - 1.0e−196 -L (0.77) 5.3e−83 -L (0.58) 2.2e−64 L (0.56) 2.0e−191 L (0.88)
EM 0.0 L (0.99) 7.7e−322 -L (0.93) - - 2.0e−34 M (0.38) 0.0 L (0.94) 0.0 L (0.99)
PME 0.0 -L (0.98) 0.0 -L (1.0) 0.0 -L (1.0) - - 3.7e−250 L (0.88) 0.0 L (0.99)
QEM 0.0 L (0.99) 1.2e−321 L (0.94) 0.0 L (0.98) 0.0 L (1.0) - - 9.5e−46 L (0.57)

QEPME 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0) 0.0 L (0.99) - -

1 IM, QM, EM, QEM denote Identity, Quantized, Early Exit, and Quantized Early Exit models in the Mobile tier.
2 PME and QEPME denote Partitioned and Quantized Early Exit Partitioned models in the Mobile-Edge tier.
3 L, M, S, and N refer to Large, Medium, Small, and Negligible effect sizes, respectively.
4 An empty p cell indicates the pairwise comparison was not statistically significant based on the Conover test.

Table 12: Cliff’s Delta effect size and Conover Test p-value between IE, QE, EE, PME, QEE, and QEPME

versions of subjects for RQ2, RQ3, RQ4, and RQ5

Rx

Rt IE QE EE PME QEE QEPME

p δ p δ p δ p δ p δ p δ
IE - - 3.8e−147 L (0.58) 9.3e−161 L (0.99) 2.9e−103 -L (0.83) 0.0 L (0.91) 0.0003 N (0.13)
QE 0.0 L (0.9) - - 0.0 -L (0.83) 1.0e−105 L (0.74) 2.7e−114 -L (0.55)
EE 3.6e−194 L (0.93) 7.5e−44 -L (0.69) - - 0.0 -L (1.0) 4.5e−94 L (0.81) 8.8e−127 -L (0.90)
PME 1.9e−74 -L (0.53) 0.0 -L (0.95) 0.0 -L (1.0) - - 0.0 L (0.99) 5.1e−135 L (0.87)
QEE 0.0 L (0.98) 5.3e−86 L (0.78) 4.4e−219 L (0.93) 0.0 L (1.0) - - 0.0 -L (0.90)

QEPME 4.6e−36 -M (0.42) 0.0 -L (0.93) 0.0 -L (0.99) 1.4e−9 S (0.23) 0.0 -L (0.99) - -

DUC
FCN

IE QE EE PME QEE QEPME

p δ p δ p δ p δ p δ p δ
IE - - 1.3e−302 L (0.92) 7.7e−14 S (0.25) 0.0 -L (0.98) 0.0 L (0.98) 6.2e−46 -L (0.48)
QE 7.9e−311 L (0.90) - - 5.9e−219 -L (0.83) 0.0 -L (1.0) 3.0e−36 L (0.5) 0.0 -L (0.97)
EE 3.9e−239 L (0.83) 2.2e−10 -S (0.25) - - 0.0 -L (0.98) 0.0 L (0.95) 2.1e−99 -L (0.57)
PME 0.0 -L (1.0) 0.0 -L (1.0) 0.0 -L (1.0) - - 0.0 L (1.0) 1.4e−185 L (0.99)
QEE 0.0 L (0.99) 4.8e−249 L (0.94) 3.1e−321 L (0.82) 0.0 L (1.0) - - 0.0 -L (1.0)

QEPME 6.4e−207 -L (1.0) 0.0 -L (1.0) 0.0 -L (1.0) 7.3e−166 L (1.0) 0.0 -L (1.0) - -

1 IE, QE, EE, QEE denote Identity, Quantized, Early Exit, and Quantized Early Exit models in the Edge tier.
2 PME and QEPME denote Partitioned and Quantized Early Exit Partitioned models in the Mobile-Edge tier.
3 L, M, S, and N refer to Large, Medium, Small, and Negligible effect sizes, respectively.
4 An empty p cell indicates the pairwise comparison was not statistically significant based on the Conover test.

Summary of Research Question 2

The Quantization operator could be the preferred choice over the Identity operator across the
four subjects when faster latency (1.48x) is a concern in the Edge tier, at a small accuracy loss
(<0.4%). Among the three monolithic deployment tiers, the Edge again is the most suitable
deployment tier for the Quantization operator when factors like large input data size and con-
strained computational (Mobile)/ network (Cloud) environment play a crucial role. In contrast,
Cloud deployment again is a better option for this operator when factors like small input data
sizes and constrained computational environments (Mobile/Edge) are important.
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Table 13: Cliff’s Delta effect size and Conover Test p-value between IC, QC, EC, PME, QEC, and QEPME

versions of subjects for RQ2, RQ3, RQ4, and RQ5

ResNext
ResNet

IC QC EC PME QEC QEPME

p δ p δ p δ p δ p δ p δ
IC - - 4.6e−257 L (0.95) 0.0 L (1.0)
QC - - 6.6e−257 L (0.95) 0.0 L (1.0)
EC - - 3.6e−257 L (0.95) 0.0 L (1.0)
PME 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0) - - 4.6e−257 -L (0.95) 1.3e−50 L (0.87)
QEC 0.0 -L (1.0) - - 0.0 L (1.0)

QEPME 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0) 0.0001 S (0.23) 0.0 L (1.0) - -

DUC
FCN

IC QC EC PME QEC QEPME

p δ p δ p δ p δ p δ p δ
IC - - 0.0 -L (1.0) 8.0e−298 -L (1.0)
QC 1.9e−289 -L (0.92) - - 0.0 -L (1.0) 1.9e−287 -L (1.0)
EC 0.02 -N (0.03) 1.4e−263 L (0.86) - - 0.0 -L (1.0) 5.5e−301 -L (1.0)
PME 0.0 -L (1.0) 3.1e−276 -L (1.0) 0.0 -L (1.0) - - 0.0 L (1.0) 2.6e−57 L (0.99)
QEC 8.9e−221 -L (0.85) 6.8e−10 S (0.20) 1.5e−196 -L (0.78) 0.0 L (1.0) - - 5.3e−296 -L (1.0)

QEPME 0.0 -L (0.94) 5.3e−16 -S (0.30) 0.0 -L (0.90) 6.3e−188 L (1.0) 3.8e−45 -M (0.42) - -

1 IC, QC, EC, QEC denote Identity, Quantized, Early Exit, and Quantized Early Exit models in the Cloud tier.
2 PME and QEPME denote Partitioned and Quantized Early Exit Partitioned models in the Mobile-Edge tier.
3 L, M, S, and N refer to Large, Medium, Small, and Negligible effect sizes, respectively.
4 An empty p cell indicates the pairwise comparison was not statistically significant based on the Conover test.

Table 14: RQ2 results of the Cliff’s Delta effect size and Conover test p-value between Mobile (M),
Edge (E), and Cloud (C) deployment of Quantized models (Qt, Qx, Qf, Qd denote Quantized versions
of ResNet, ResNext, FCN, and DUC respectively).

Qx

Qt M E C

p δ p δ p δ
M - - 3.3e−230 L (0.93) 6.5e−142 -L (0.74)
E 0.0 L (0.99) - - 0.0 -L (1.0)
C 0.0 -L (0.98) 0.0 -L (1.0) - -

Qd

Qf M E C

p δ p δ p δ
M - - 0.0 L (1.0) 0.0 L (1.0)
E 0.0 L (1.0) - - 0.0 L (0.99)
C 0.0 L (1.0) 0.0 -L (1.0) - -

1 A Positive sign for the ith cell shows that the latency of column[i] < row[i], while a Negative sign means column[i] >
row[i].
2 L, M, S, and N symbols denote Large, Medium, Small, and Negligible effect sizes, respectively.
3 Empty cells indicate non-significant comparisons based on the Conover test.

Model Best Tier Latency Change Accuracy Drop Notes
ResNet Edge 1.64x faster than Identity 0.37% Costly on Mobile; Cloud uses more CPU than GPU
ResNext Edge 1.59x faster than Identity 0.16% Same as ResNet; best in Edge, neutral in Cloud
FCN Cloud 1.97x faster than Edge 0.35% Small input size favors Cloud; ideal for low-bandwidth
DUC Edge 1.58x faster than Cloud 0.30% Cloud performance bottlenecked by GPU compatibility

Table 15: Summary of results for Research Question 2

5.3 What is the impact of the Early Exit operator in terms of inference latency and accuracy within
and across the considered tiers? (RQ3)

5.3.1 Data Exploration

In Mobile and Edge, the Early Exit models show a 1.15x and 1.21x lower average median
inference latency than the Identity models, respectively. In the Cloud, the Early Exit mod-
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els show no practically significant difference in inference latency compared to the Identity
models.

The Early Exit models show 1.05x to 1.25x and 1.08x to 1.32x lower median inference latency than
the Identity models (Table 28, Table 26) in the Mobile and Edge tiers, respectively, as shown in Figure 5
(blue and green box plots), along with small or large effect sizes (Table 11, Table 12). The utilization of
intermediate predictions in the Early Exit models allows it to leverage information from earlier stages
of the neural network, leading to model size reduction (1.15x to 1.27x) and faster inference compared to
the Identity models in restricted-constrained tiers (i.e., Mobile and Edge).

In Mobile, the Quantized models show 1.44x higher and 1.18x lower average median in-
ference latency w.r.t Early Exit models for ResNet/ResNext and FCN/DUC, respectively.
In Edge, the Quantized models show 1.23x lower average median inference latency than the
Early Exit models across the four subjects. In the Cloud, no significant inference latency
difference was shown among Quantized and Early Exit models across all subjects (except
DUC).

During Mobile deployment, the Quantized models for ResNet and ResNext subjects show 1.42x to
1.45x higher median inference latency than the Early Exit models, as shown in Figure 5 (orange and
green box-plots), along with large effect sizes (Table 11). In contrast, for FCN and DUC subjects, the
Quantized models show 1.05x to 1.31x lower median inference latency than the Early Exit models, along
with large effect sizes (Table 11). Even though the Quantized model sizes of the ResNet and ResNext
subjects are 3.08x lower than the Early Exit models, they still show slower latency results, possibly due
to the costly Quantization operations of these two subjects in a low-resource environment (i.e., Mobile)
similar to the reasoning discussed in RQ1 (Section 5.1) when comparing Quantized models with Identity
models in the Mobile tier.

In the Edge tier, the Quantized models show 1.03x to 1.51x lower median inference latency than
the Quantized models across the four subjects. In comparison to Early Exit models (Table 12), the
inference latency of Quantized models is similar (ResNet) or significantly faster with small (DUC) or
large (ResNext, FCN) effect sizes. This shows that in the Edge tier, the Quantized models are overall a
better option than the Early Exit models in terms of faster latency.

The Early Exit models cost a medium accuracy drop of 2.53% to 11.56% and 2.35% to
11.21% in comparison to Identity and Quantized models, respectively.

In terms of accuracy, the Early Exit models show a significant statistical difference (Wilcoxon Test:
p-value = 7.6e−6, α = 0.0125) with a medium effect size (0.38) in comparison to Identity and Quantized
models. As presented in Table 9, the Early Exit models reveal an accuracy drop ranging from 2.53% to
11.56% and 2.35% to 11.21% when compared with Identity and Quantized models. This finding suggests
that Early Exit models are less effective in accuracy performance relative to both Identity and Quantized
models. Based on this and previous findings, the Quantization operator can achieve faster inference while
maintaining a reasonably high level of accuracy, making it a preferred choice over the early exit operator.

When comparing Early Exiting across the three monolithic deployment tiers, the Early
Exit models show 1.92x and 2.90x lower average median inference latency during Edge
deployment than their deployment in Mobile and Cloud tiers, respectively.

The Early Exit models in the Edge outperform the ones on the Mobile tier by 1.69x to 2.29x in terms
of median inference latency, as shown in Figure 5 (green box plots), with large effect sizes (Table 16) due
to the higher computational resources of Edge. For ResNet, ResNext, and DUC subjects, the Early Exit
models in the Cloud tier exhibit 1.40x to 5.91x higher median inference latency compared to the Edge,
with large effect sizes (Table 16) due to the higher impact of the large input data sizes of these subjects
on the transmission across the restricted Edge-Cloud network during Cloud deployment. However, for
the FCN subject, the Early Exit model in the Cloud tier experiences a 3.03x lower median inference
latency compared to the Edge tier, with a large effect size (Table 16). This is due to the FCN’s small
input data sizes leading to a lower impact on data transmission across the restricted Edge-Cloud network
during Cloud deployment. The reasoning behind these findings is similar and explained briefly in the
RQ1 findings (Section 5.1). Table 16 shows a summary of results for RQ3.
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5.3.2 Normality Test

The Shapiro-Wilk test and QQ plots reveal non-normality across all configurations and deployment tiers
for latency data (Table 28), justifying the use of non-parametric tests such as the Conover test and Cliff’s
Delta for pairwise comparisons.

5.3.3 Hypothesis Testing

According to the Conover test, for ResNet, ResNext, and FCN, the null hypothesis that there is no
significant difference between the Early Exit and Identity model in the Cloud cannot be rejected, indi-
cating that the Early Exit models during Cloud deployment show similar or equivalent inference latency
compared to the Identity models. For the DUC subject, the null hypothesis was rejected, although with
a negligible effect size (Table 13), suggesting that the difference is likely not practically significant. The
main reason for not having a significant difference is the ample availability of computational resources
in the Cloud tier compared to resource-constrained Mobile and Edge tiers due to which the impact of
Early Exiting on subjects is not significant in comparison to the Identity models in the Cloud tier.

In the Cloud tier, the Quantized models show no statistically significant difference (according to the
Conover test) in inference latency in comparison to Early Exit models for all subjects (except DUC).
The reasoning for these findings is due to the lower compatibility of DUC’s Quantization nodes with the
CUDA Execution Provider during Cloud deployment, which is similar to those discussed briefly in the
first finding of RQ1 (Section 5.1) when comparing Quantized and Identity models in the Cloud tier.

Table 16: RQ3 results of the Cliff’s Delta effect size and Conover test p-value between Mobile (M), Edge
(E), and Cloud (C) deployment of Early Exit models (Et, Ex, Ef, and Ed denote Early Exit versions of
ResNet, ResNext, FCN, and DUC respectively).

Ex

Et M E C

p δ p δ p δ
M - - 0.0 L (1.0) 0.0 -L (0.98)
E 0.0 L (0.9) - - 0.0 -L (1.0)
C 0.0 -L (0.98) 0.0 -L (1.0) - -

Ed

Ef M E C

p δ p δ p δ
M - - 0.0 L (0.9) 0.0 L (1.0)
E 0.0 L (1.0) - - 0.0 L (1.0)
C 0.0 L (1.0) 0.0 -L (1.0) - -

1 A Positive sign for the ith cell shows that the latency of column[i] < row[i], while a Negative sign means column[i] >
row[i].
2 L, M, S, and N symbols denote Large, Medium, Small, and Negligible effect sizes, respectively.
3 Empty cells indicate non-significant comparisons based on the Conover test.

Summary of Research Question 3

Similar to RQ2, the Quantized operator could be the preferred choice when faster latency (1.23x)
is a concern in the Edge tier, at medium accuracy improvement (up to 11.21%) than the Early
Exit operator, which shows faster latency (1.21x) than the Identity models at medium accuracy
drop (up to 11.56%). Among the three monolithic deployment tiers, the Edge again is the most
suitable deployment tier for the Early Exit operator when factors like large input data size and a
constrained network(Cloud) environment play a crucial role. Cloud deployment is again a better
option for this operator when factors like small input data size and constrained computational
environments (Mobile/Edge) play a crucial role.
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Model Best Tier Latency Gain Accuracy Drop Notes
ResNet Edge 1.21x faster than Identity 11.56% No significant gain in Cloud; benefits from in-

termediate prediction on Edge
ResNext Edge 1.21x faster than Identity 10.77% Similar to ResNet; best used in constrained en-

vironments
FCN Cloud No significant gain 2.53% Cloud benefits due to small input size; no Edge

advantage
DUC Edge 1.08x–1.32x faster 6.80% Gains seen in Edge; Cloud gain negligible due

to GPU usage limits

Table 17: Summary of results for Research Question 3
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Fig. 6: Box plots of the inference latency measure for Multi-tier (Mobile-Edge [ME], Edge-Cloud [EC],
Mobile-Cloud [MC]) Partitioned strategies and Single-tier (Mobile [M], Edge [E], Cloud [C]) monolithic
deployment strategies

5.4 What is the impact of the Partitioned operator in terms of inference latency and accuracy across
the considered tiers? (RQ4)

5.4.1 Data Exploration

Among the three Multi-tier Partitioned strategies, the Mobile-Edge Partitioned strategy
shows 9.37x and 9.86x lower average median inference latency compared to Edge-Cloud
and Mobile-Cloud Partitioned strategies, respectively.
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The Mobile-Edge Partitioned strategy outperforms the Edge-Cloud and Mobile-Cloud Partitioned
strategies in terms of median inference latency as depicted in Figure 6 (blue, orange, and green box-
plots). In particular, it achieves a significant speedup, ranging from 1.37x to 24.17x and 1.74x to 24.95x
compared to the Edge-Cloud and Mobile-Cloud Partitioned strategies (Table 29), respectively, with large
effect sizes (Table 18).

The primary reason for this behavior is the impact of the size of intermediate data during transmis-
sion across the Edge-Cloud network. In the Edge-Cloud and Mobile-Cloud Partitioned strategies, the
intermediate results generated after the first half of inference need to be transmitted from the Edge tier
to the Cloud tier for the second half of inference. This transmission incurs additional latency, particu-
larly when the intermediate data size of subjects (i.e., 6.12Mb for ResNet/ResNext, 118.12 to 200Mb for
FCN, 781.25Mb for DUC) is larger than the limited Cloud network bandwidth (1 Mbps). Conversely, the
Mobile-Edge Partitioned strategy is less influenced by the size of the intermediate data due to the higher
Mobile-Edge network bandwidth (200 Mbps). Hence, the impact of the intermediate data size on infer-
ence latency is a crucial factor contributing to the observed performance advantage of the Mobile-Edge
Partitioned strategy.

On the other hand, the Edge-Cloud Partitioned strategy achieves a speedup ranging from 1.03x to
1.26x when compared to the Mobile-Cloud Partitioned strategy, as shown in Figure 6 (yellow and green
box-plots), along with small or large effect sizes (Table 18). These differences can be attributed to the
faster computational capabilities of the Edge-Cloud tier compared to the Mobile-Cloud tier.

Table 18: RQ4 Results of the Cliff’s Delta effect size and Conover test p-value between Mobile-Edge
(ME), Edge-Cloud (EC), and Mobile-Cloud (MC) Partitioned strategies

Px

Pt ME EC MC

p δ p δ p δ
ME - - 1.8e−117 L (0.77) 0.0 L (0.94)
EC 8.1e−192 L (0.98) - - 1.3e−148 L (0.96)
MC 0.0 L (0.99) 1.0e−90 L (0.99) - -

Pd

Pf ME EC MC

p δ p δ p δ
ME - - 0.0 L (1.0) 0.0 L (1.0)
EC 0.0 L (1.0) - - 4.4e−20 S (0.27)
MC 0.0 L (1.0) 0.0 L (1.0) - -

1 Pt, Px, Pf, Pd denotes Partitioned versions of ResNet, ResNext, FCN, and DUC models, respectively.
2 L, M, S, and N symbols denote Large, Medium, Small, and Negligible effect sizes, respectively.
3 Empty cells indicate non-significant comparisons based on the Conover test.

The Edge Identity deployment strategy shows a 1.63x lower average median latency than
the Mobile-Edge Partitioned strategy, which shows a 1.13x lower average median inference
latency compared to the Mobile Identity deployment strategy.

The Edge Identity deployment strategy outperforms the Mobile-Edge Partitioned strategy, exhibiting
a speedup ranging from 1.26x to 2.02x, as shown in Figure 6 (pink and dark blue boxplots), along with
large effect sizes (Table 19). One possible explanation for this behavior is tier heterogeneity. In the
Mobile-Edge deployment scenario, where distributed inference of partitioned models takes place, the
tiers involved possess varying computation capabilities. Consequently, the processing speeds may vary,
with slower tiers (such as Mobile) impacting the overall inference latency. This suggests that the use of a
Partitioned model may not be necessary for scenarios where a monolithic deployment tier, such as Edge,
is sufficiently capable of handling the computational load of the entire model.

In turn, the Mobile-Edge Partitioned strategy for all subjects (except DUC) achieves a speedup
ranging from 1.11x to 1.26x compared to the Mobile Identity deployment strategy, as shown in Figure 6
(dark blue and red box plots), along with medium to large effect sizes (Table 19). Given that the Mobile
tier in our study has the lowest computational resources compared to the more powerful Edge tier,
offloading half of the computational load to the Edge tier alleviates the burden on the Mobile tier,
resulting in reduced inference latency. These findings suggest that deploying partitioned models across
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resource-constrained tiers (i.e., Mobile and Edge) is more effective than deploying the entire model solely
on the Mobile tier, due to the distribution of computational load during inference. For the DUC subject,
the Mobile-Edge Partitioned strategy shows a 1.05x lower median inference latency than the Mobile
Identity deployment strategy, with a large effect size. This is possible because of the large intermediate
data size (781.25Mb) of the DUC model during distributed inference, which led to transmission overhead,
even across the high Mobile-Edge network bandwidth of 200 Mbps, leading to a slower latency than the
Mobile tier.

For ResNet/ResNext subjects, the Mobile-Edge, Edge-Cloud, and Mobile-Cloud strate-
gies show 2.85x, 1.65, and 1.36 lower average median latency, respectively compared to the
Cloud Identity deployment strategy. In contrast, in the case of FCN/DUC subjects, they
show a 3.84x, 49.98x, and 52.14x higher average median inference latency.

For ResNet/ResNext subjects, the Mobile-Edge, Edge-Cloud, and Mobile-Cloud Partitioned strategies
achieve a speedup of 2.18x to 3.52x, 1.58x to 1.73x, and 1.25x to 1.48x, respectively, compared to the
Cloud Identity deployment strategy, as illustrated in Figure 6, along with medium to large effect sizes
(Table 19). The lower intermediate data size (6.12 Mb) in comparison to the input data size (8 to 60 Mb)
of these two subjects speeds up their transmission across the Mobile, Edge, and Cloud tiers for the 3
Multi-tier Partitioned strategies. It suggests that Partitioned strategies can be a better alternative than
Cloud deployment for subjects having intermediate data sizes lower than the input data.

For FCN/DUC subjects, the Mobile-Edge, Edge-Cloud, and Mobile-Cloud Partitioned strategies ex-
hibit 1.67x to 6.01x, 40.38x to 59.59x, and 41.68x to 62.60x higher median inference latency, respectively,
than the Cloud Identity deployment strategy, with large effect sizes (Table 19). For DUC, the interme-
diate data size (781.25 Mb) is much higher in comparison to the input data size (19-22 Mb), which led
to its transmission overhead across both the Mobile-Edge (200 Mbps) and Edge-Cloud (1 Mbps) net-
works for the 3 Multi-tier Partitioned strategies. Conversely, for FCN, the intermediate data size varies
between 118.12 Mb to 200 Mb, which is still much higher than their input data size (2-5 Mb), leading
to transmission overhead. This is especially the case for the Edge-Cloud and Mobile-Cloud Partitioned
strategies, which require transmission across the constrained Edge-Cloud network (1 Mbps). For the
same subject, the slower latency of Mobile-Edge Partitioned than of Cloud deployment is majorly due to
the computational advantage of the Cloud compared to the Mobile-Edge tier. This suggests that Cloud
deployment can be a better alternative than Partitioned strategies for subjects having input data sizes
smaller than the intermediate data. Moreover, for the FCN subject, which has the smallest input data
sizes among the four subjects, its Cloud Identity deployment strategy also shows faster latency than its
Mobile/Edge Identity deployment strategies, as explained in RQ1 findings (Section 5.1).

The Edge Early Exit/Quantized deployment strategy shows 1.96x/2.41x lower average
median latency than the Mobile-Edge Partitioned strategy at a medium/small accuracy
loss.

The Edge Early Exit/Quantized deployment strategy shows lower median inference latency than the
Mobile-Edge Partitioned strategy, ranging from 1.67x to 2.35x/ 1.87x to 2.44 across the four subjects,
as shown in Figure 5 (blue, orange, green box-plots), along with large effect sizes (Table 12). In terms
of accuracy, the Early Exit and Quantized operators show medium (2.53% to 11.56%) and small (0.05%
to 0.38%) accuracy loss relative to Identity (or Partitioned) models as stated in RQ2 and RQ3 findings.
This indicates that the Quantized and Early Exit operators at the Edge tier are a better alternative than
the Partitioned operator at the Mobile-Edge tier in scenarios where sacrificing a small to medium level
of accuracy may be acceptable to achieve faster latency. Table 19 shows a summary of results for RQ4.

5.4.2 Normality Test

To assess the applicability of parametric statistical tests, the Shapiro-Wilk test was conducted for each
subject-model pair across ME, EC, and MC strategies. In all cases, p-values were less than 0.05, indicating
deviations from normality (Table 29). This conclusion was further supported by the Q-Q plots (Table 30),
which displayed noticeable divergence from the expected linear pattern. Therefore, non-parametric tests
were employed in subsequent analyses.

41



5.4.3 Hypothesis Testing

All partitioning strategies (ME, EC, MC) differ statistically and practically in how they affect model
performance in terms of pairwise comparisons using the Conover test, as shown in Table 18.

Table 19: RQ4 results of the Cliff’s Delta effect size and Conover test p-value between Multi-tier (Mobile-
Edge [ME], Edge-Cloud [EC], Mobile-Cloud [MC]) Partitioned Strategies and Single-tier (Mobile [M],
Edge [E], Cloud [C]) Monolithic Strategies.

Pt

It M E C

p δ p δ p δ
ME 2.0e−36 -M (0.37) 9.4e−112 L (0.83) 0.0 -L (0.95)
EC 3.5e−29 L (0.54) 0.0 L (0.96) 2.0e−221 -L (0.95)
MC 1.8e−267 L (0.73) 0.0 L (1.0) 1.1e−12 -M (0.33)

Px

Ix M E C

p δ p δ p δ
ME 9.0e−77 -L (0.63) 9.1e−12 L (0.53) 0.0 -L (1.0)
EC 2.9e−36 L (0.68) 7.9e−266 L (0.82) 4.2e−241 -L (1.0)
MC 8.3e−211 L (0.74) 0.0 L (0.84) 1.7e−52 -L (0.76)

Pf

If M E C

p δ p δ p δ
ME 2.0e−103 -L (0.65) 1.0e−269 L (0.98) 0.0 L (1.0)
EC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)
MC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)

Pd

Id M E C

p δ p δ p δ
ME 0.0 L (0.98) 0.0 L (1.0) 0.0 L (1.0)
EC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)
MC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)

1 Pt, Px, Pf, Pd denote Partitioned versions of ResNet, ResNext, FCN, and DUC respectively.
2 It, Ix, If, Id denote Identity versions of ResNet, ResNext, FCN, and DUC respectively.
3 A Positive sign for the ith cell means latency of column[i] < row[i], and Negative means column[i] > row[i].
4 L, M, S, and N symbols mean Large, Medium, Small, and Negligible effect sizes, respectively.
5 Empty cells (not shown) would indicate non-significant results based on the Conover test (p > 0.05).

Summary of Research Question 4

The Edge Identity/Early Exit/Quantized deployment strategy shows faster latency
(1.63x/1.96x/2.41x) at no/medium/small accuracy loss than the ME Partitioned strategy, which
exhibits faster latency (1.13x) compared to the Mobile Identity deployment strategy (1.13x),
EC/MC Partitioned strategy (9.37x/9.86x), and Cloud Identity deployment strategy (2.85x for
ResNet/ResNext) in deployment scenarios where factors like input/intermediate data size and
computational/network resources play a crucial role.
In scenarios where the subjects have smaller input data sizes (i.e., FCN) such that their trans-
mission across the bandwidth-constrained Cloud tier is not a major concern, their monolithic
Cloud Identity deployment is much more effective than their Multi-tier Partitioned strategies and
Edge/Mobile Identity deployment strategies.
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Model Best Partitioning Tier Latency Gain Notes
ResNet Mobile-Edge 1.13x faster than Mobile 9.37x faster than EC, 9.86x faster than MC; Edge

Identity is still faster (1.63x)
ResNext Mobile-Edge 1.13x faster than Mobile Similar trend as ResNet; large intermediate data

size limits EC/MC strategies
FCN Cloud Cloud outperforms ME Small input size makes Cloud preferable over any

partitioned strategy
DUC Edge Edge Identity faster (1.96x) Intermediate data too large (781MB) to benefit

from partitioning

Table 20: Summary of results for Research Question 4

5.5 What is the impact of Hybrid operators in terms of inference latency and accuracy within and
across the considered tiers? (RQ5)

5.5.1 Data Exploration

5.5.2 Quantitative Analysis of Quantized Early Exit operator on monolithic deployment tiers

In Mobile, for two subjects (FCN/DUC), the Quantized Early Exit models show 1.45x,
1.13x, and 1.35x lower average median inference latency than the Identity, Quantized, and
Early Exit models, respectively. In Edge, for all subjects, the Quantized Early Exit models
show 1.75x, 1.17x, and 1.45 lower average median inference latency than the Identity,
Quantized, and Early Exit models, respectively. In Cloud, the Quantized Early Exit models
show no significant difference from the Identity, Quantized, and Early Exit models for all
subjects (except DUC).

In the Mobile tier, for FCN and DUC, the Quantized Early Exit models show 1.29x to 1.62x and
1.16x to 1.54x lower median inference latency than the Identity and Early Exit models, respectively
(Figure 5) along with large effect sizes (Table 11, Figure 29, Figure 26, Figure 28). Conversely, for the
ResNet/ResNext subject, the Quantized Early Exit models show 1.07x lower/1.05x higher (small effect
sizes) and 1.11x (negligible effect size)/1.33x (large effect size) higher median inference latency than the
Identity and Early Exit models, respectively. Even though the Quantized Early Exit models have 4.61x
to 5.04x and 3.90x to 3.98x lower size than the Identity and Early Exit models respectively, still they
show slower latency for ResNet, ResNext, or both during Mobile deployment, which indicates that these
two subjects’ Quantization Operations are costly in lower Memory/CPU environments, as mentioned
in RQ2 findings (Section 5.2). Moreover, the Quantized Early Exit models show 1.09x to 1.28x lower
median inference latency than the Quantized models across the four subjects, with small to large effect
sizes. This is possibly due to the addition of early exiting, which reduces computations during inference
in comparison to a Quantized variant without any early exit similar to RQ3 findings (Section 5.3).

During Edge deployment, across the four subjects, the Quantized Early Exit models exhibit 1.36x to
1.97x, 1.13x to 1.20x, 1.17x to 1.82x lower median inference latency than the Identity, Quantized, and
Early Exit models, respectively, as depicted in Figure 5, with large effect sizes (Table 12). This suggests
that the Quantized Early Exit models exhibit greater robustness on the Edge tier in comparison to the
Mobile tier. The higher computational resource on the Edge tier is likely a contributing factor to this
outcome.

For the DUC subject, the Quantized Early Exit models show slower latency than the Identity and
Early Exit models with large effect sizes (Table 13). We believe that this is due to the lowest percentage
of graphical nodes processed with the CUDA Execution Provider for DUC during Cloud deployment,
similar to the reasoning explained briefly for the RQ2 results (see first finding in Section 5.2). For the
same subject, the Quantized Early Exit model shows faster latency than the Quantized model, but with
a small effect size, possibly due to the minor influence of Early Exiting.

The Quantized Early Exit models show a medium drop in accuracy relative to Identity,
Quantized, and Early Exit models.

In Table 9, an accuracy drop of 2.62% to 12.41%, 2.56% to 12.02%, 0.09% to 1.66% is observed when
comparing the performance of the Quantized Early Exit models with the Identity, Quantized, and Early
Exit models, respectively. These accuracy differences are statistically significant (Wilcoxon Test: p-value
= 7.6e−6, α = 0.0125), with medium effect sizes. For applications prioritizing real-time inference in the
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Edge tier and willing to accept a medium decrease in accuracy compared to the Identity, Quantized, and
Early Exit models, the utilization of a Hybrid (Quantized Early Exit) model may be a suitable choice.

When comparing Quantized Early Exit across the three monolithic deployment tiers, the
Quantized Early Exit models during Edge deployment show 2.63x and 3.89x lower average
median inference latency than their deployment in Mobile and Cloud tiers, respectively.

The Quantized Early Exit models in the Edge tier demonstrate 2.03x to 2.90x lower median inference
latency compared to the Mobile tier as shown in Figure 5 (red box plots), with large effect sizes (Table 21)
due to Edge’s higher computational resources. Among the Edge and Cloud tiers, the Quantized Early
Exit model’s median inference latency under-performs by 1.77x to 7.69x during Cloud deployment for
three subjects (i.e., ResNet, ResNext, DUC), along with a large effect size (Table 21). This is due to
the higher impact of large input data sizes of these subjects on the transmission across the restricted
Edge-Cloud network during Cloud deployment. Conversely, for the FCN subject, the Quantized Early
Exit model exhibits 1.93x lower median inference latency in the Cloud tier compared to the Edge tier,
with a large effect size (Table 21). Similarly, this is due to FCN’s small input data sizes, leading to a
lower impact on data transmission across the constrained Edge-Cloud network during Cloud deployment.
The reasoning behind these findings is similar to and explained briefly in the RQ1 findings (Section 5.1).

Table 21: RQ5 Results of the Cliff’s Delta effect size and Conover test p-value between Mobile (M), Edge
(E), and Cloud (C) deployment for Quantized Early Exit models

QEx

QEt M E C

p δ p δ p δ
M - - 2.5e−304 L (0.99) 9.4e−260 -L (0.91)
E 0.0 L (1.0) - - 0.0 -L (1.0)
C 0.0 -L (1.0) 0.0 -L (1.0) - -

QEd

QEf M E C

p δ p δ p δ
M - - 0.0 L (1.0) 0.0 L (1.0)
E 0.0 L (1.0) - - 0.0 L (0.97)
C 8.7e−316 L (0.97) 0.0 -L (1.0) - -

1 QEt, QEx, QEf, and QEd denote Quantized Early Exit versions of ResNet, ResNext, FCN, and DUC, respectively.
2 L, M, S, and N symbols denote Large, Medium, Small, and Negligible effect sizes, respectively.
3 Empty cells indicate non-significant comparisons based on the Conover test.

5.5.3 Quantitative Analysis of Quantized Early Exit Partitioned Strategy and its Comparison with
monolithic deployment Strategies

Across the three Multi-tier Quantized Early Exit Partitioned strategies, the Mobile-Edge
Quantized Early Exit Partitioned strategy shows an 8.51x and 9.04x lower average median
inference latency than Edge-Cloud and Mobile-Cloud Quantized Early Exit Partitioned
strategies, respectively.

The Mobile-Edge Quantized Early Exit Partitioned strategy accounts for 1.73x to 15.65x and 2.21x
to 16.20x lower median inference latency than the Edge-Cloud and Mobile-Cloud Quantized Early Exit
Partitioned strategies, respectively (Figure 7), with large effect size (Table 22). On the other hand, the
Edge-Cloud Quantized Early Exit Partitioned strategy shows 1.04x to 1.28x lower median inference
latency than the Mobile-Cloud Quantized Early Exit Partitioned strategy as shown in Figure 7, along
with small or large effect sizes (Table 22). This is due to similar reasons as explained in the RQ4 results
(see first finding in Section 5.4).

The Edge Quantized Early Exit deployment strategy shows 2.03x lower average median
inference latency than the Mobile-Edge Quantized Early Exit Partitioned strategy, which
shows 1.29x lower average median inference latency than the Mobile Quantized Early Exit
deployment strategy.
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Fig. 7: Box plots of the inference latency measure for Multi-tier Quantized Early Exit Partitioned strate-
gies and monolithic Quantized Early Exit deployment strategies involving 6 deployment tiers (i.e., Mobile-
Edge [ME], Edge-Cloud [EC], Mobile-Cloud [MC], Mobile [M], Edge [E], Cloud [C])

The Edge Quantized Early Exit strategy outperforms the Mobile-Edge Quantized Early Exit Par-
titioned strategy with large effect sizes (Table 23), exhibiting a speedup ranging from 1.85x to 1.94x,
as shown in Figure 7. In turn, the Mobile-Edge Quantized Early Exit Partitioned strategy shows 1.09x
to 1.47x lower median inference latency than the Mobile Quantized Early Exit strategy (large effect
sizes) as shown in Figure 7 and Table 23. In general, this suggests that distributed model deployment
across Mobile and Edge tiers can be an optimal choice compared to monolithic model deployment in
a resource-constrained environment (such as mobile) when faster inference is a concern at no accuracy
loss. This is due to similar reasons provided in RQ4 results (see second finding in Section 5.4).

For ResNet/ResNext, the Mobile-Edge, Edge-Cloud, and Mobile-Cloud Quantized Early
Exit Partitioned strategies show 3.41x, 1.82x, and 1.44x lower average median latency,
respectively than the Cloud Quantized Early Exit deployment strategy. In contrast, in the
case of FCN/DUC, they show 2.39x, 36.92x, and 38.28x higher average median inference
latency.

For ResNet and ResNext, the Mobile-Edge, Edge-Cloud, and Mobile-Cloud Quantized Early Exit
Partitioned strategies demonstrate a lower median inference latency of 3.12x to 3.70x, 1.80x to 1.84x,
and 1.40x to 1.48x, respectively than the Cloud Quantized Early Exit strategy as shown in Figure 7,
along with large effect sizes (Table 23). Conversely, for FCN and DUC, the same strategies exhibit a 1.04x
to 3.74x, 15.28x to 58.57x, and 15.91x to 60.65x higher median inference latency, along with medium to
large effect sizes (Table 23). A possible explanation for these results is similar to the RQ4 results (see
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Table 22: RQ5 Results of the Cliff’s Delta effect size and Conover test p-value between Mobile-Edge
(ME), Edge-Cloud (EC), and Mobile-Cloud (MC) for Quantized Early Exit Partitioned Strategies

QEPx

QEPt ME EC MC

p δ p δ p δ
ME - - 3.6e−305 -L (-0.97) 0.0 -L (1.0)
EC 0.0 -L (0.99) - - 7.0e−241 -L (1.0)
MC 0.0 -L (1.0) 1e−323 -L (1.0) - -

QEPd

QEPf ME EC MC

p δ p δ p δ
ME - - 0.0 -L (1.0) 0.0 -L (1.0)
EC 0.0 -L (1.0) - - 3.8e−16 -S (0.25)
MC 0.0 -L (1.0) 1.5e−268 -L (1.0) - -

1 QEPt, QEPx, QEPf, and QEPd denote Quantized Early Exit Partitioned versions of ResNet, ResNext, FCN, and
DUC, respectively.
2 L, M, S, and N symbols denote Large, Medium, Small, and Negligible effect sizes, respectively.
3 All p-values shown are statistically significant (p < 0.05); empty cells denote non-significant comparisons.

third finding in Section 5.4). Moreover, for the FCN subject, which has the lowest input data sizes among
the four subjects, its Cloud Quantized Early Exit deployment strategy also shows faster latency than
its Mobile/Edge Quantized Early Exit deployment strategies, as explained previously in RQ5 findings
(Section 5.5.1).

The Edge Identity/Quantized/Early Exit deployment strategy shows 1.17x/1.72x/1.42x
lower average median latency at medium accuracy gain when compared with Mobile-Edge
Quantized Early Exit Partitioned strategy, which shows 1.39x lower average median latency
than the Mobile-Edge Partitioned strategy at medium accuracy loss.

The Edge Identity/Quantized/Early Exit deployment strategies show 1x to 1.35x/ 1.61x to 1.88x/
1.24x to 1.59x lower median inference latency than the Mobile-Edge Quantized Early Exit Partitioned
strategy across the four subjects, as shown in Figure 5 (blue, orange, green, red box-plots), along with
medium to large effect sizes (Table 12). In terms of accuracy, the Identity, Quantized, and Early Exit
models show medium accuracy gain (i.e., 2.62% to 12.41%, 2.56% to 12.02%, 0.09% to 1.66%) relative to
Quantized Early Exit (or Quantized Early Exit Partitioned) models as stated previously in the second
finding of RQ5 (Section 5.5.2). This indicates that the Non-Hybrid operators (Identity, Quantized, and
Early Exit) at the Edge tier are a better alternative than the Hybrid Quantized Early Exit Partitioned
operator at the Mobile-Edge tier in scenarios where maximizing both latency and accuracy are of ut-
most importance. Moreover, the Mobile-Edge Quantized Early Exit Partitioned strategy shows 1.04x to
1.60x lower median inference latency with large effect sizes (Table 12) than the Mobile-Edge Partitioned
strategy but at a cost of medium accuracy loss (2.62% to 12.41%). Table 23 shows a summary of results
for RQ5.

5.5.4 Normality Test

The Shapiro-Wilk test and QQ plots (Table 30, Figure 31, Figure 32) suggest that latency data for most
deployment tiers and model variants deviate from normality. P-values are < 0.05 across all cases. This
non-normality validates the use of non-parametric tests (Conover and Cliff’s Delta).

5.5.5 Hypothesis Testing

According to the Conover test, the null hypothesis that there is no significant difference between Quan-
tized Early Exit and Identity, Quantized Early Exit and Quantized, Quantized Early Exit and Early
Exit models in the Cloud cannot be rejected for three subjects (i.e., ResNet, ResNext, FCN), indicating
their similar or equivalent latency performance in the Cloud. Due to the powerful computing resources
of the Cloud, the impact of the Quantized Early Exit models is not significant compared to the Identity,
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Table 23: RQ5 Results of the Cliff’s Delta effect size and Conover test p-value between Multi-tier (Mobile-
Edge [ME], Edge-Cloud [EC], Mobile-Cloud [MC]) Quantized Early Exit Partitioned Strategies and
Single-tier (Mobile [M], Edge [E], Cloud [C]) Quantized Early Exit strategies

QEPt

QEt M E C

p δ p δ p δ
ME 7.9e−228 -L (0.85) 3.7e−130 L (0.90) 0.0 -L (1.0)
EC 5.9e−12 M (0.35) 0.0 L (1.0) 0.0 -L (1.0)
MC 5.6e−319 L (0.78) 0.0 L (1.0) 6.3e−73 -L (0.65)

QEPx

QEx M E C

p δ p δ p δ
ME 1.0e−213 -L (0.82) 5.4e−287 L (0.99) 0.0 -L (1.0)
EC 7.7e−218 L (0.85) 0.0 L (1.0) 0.0 -L (1.0)
MC 0.0 L (0.98) 0.0 L (1.0) 1.4e−172 -L (0.80)

QEPf

QEf M E C

p δ p δ p δ
ME 1.1e−76 -L (0.57) 2.3e−290 L (1.0) 0.0 L (1.0)
EC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)
MC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)

QEPd

QEd M E C

p δ p δ p δ
ME 0.0 -L (0.99) 0.0 L (1.0) 4.2e−55 M (0.42)
EC 2.1e−277 L (1.0) 0.0 L (1.0) 0.0 L (1.0)
MC 0.0 L (1.0) 0.0 L (1.0) 0.0 L (1.0)

1 QEPt, QEPx, QEPf, QEPd denote Quantized Early Exit Partitioned versions of ResNet, ResNext, FCN, and DUC,
respectively.
2 QEt, QEx, QEf, QEd denote single-tier Quantized Early Exit versions of the same models.
3 L, M, S, and N denote Large, Medium, Small, and Negligible Cliff’s Delta effect sizes.
4 All p-values shown are significant (p < 0.05).

Quantized, and Early Exit models. However, for the DUC subject, the null hypothesis was rejected with
p-values of 8.9e−221, 6.8e−10 and 1.5e−196 (α =0.05) for Quantized Early Exit vs Identity, Quantized
Early Exit vs Quantized, and Quantized Early Exit vs Early Exit comparison, respectively, indicating
significant inference latency difference between them.

Summary of Research Question 5

The Quantized Early Exit operator shows 1.75x/1.17x/1.45 faster latency than the Identity/Quan-
tized/Early Exit operator in the Edge tier at medium accuracy loss (up to 12.41%/12.02%/1.66%).
The Edge deployment of Hybrid (Quantized Early Exit) and Non-Hybrid (Identity/Quan-
tized/Early Exit) operators show 2.03x and 1.17x/1.72x/1.42x faster latency at no accuracy loss
and medium (up to 12.41%/12.02%/1.66%) accuracy gain, respectively than the ME Quantized
Early Exit Partitioned strategy, which shows faster latency than the ME Partitioned strategy
(1.39x at medium accuracy loss), EC/MC Quantized Early Exit Partitioned (8.51x/9.04x), Mo-
bile Quantized Early Exit (1.29x), & Cloud Quantized Early Exit (3.41x for ResNet/ResNext)
strategies for scenarios influenced by input/intermediate data size of the subjects and computa-
tional/bandwidth resources of the Mobile, Edge, and Cloud tiers.
In scenarios where the subjects have smaller input data sizes (i.e., FCN) such that their transmis-
sion across the bandwidth-constrained Cloud tier is not a major concern, their monolithic Cloud
Quantized Early Exit deployment is much more effective than their Multi-tier Quantized Early
Exit Partitioned strategies and Edge/Mobile Quantized Early Exit deployment strategies.
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Table 24: Summary of results for Research Question 5

Model Best Tier Latency Gain Accuracy Drop Notes
ResNet Edge 1.75x vs Identity; 2.03x vs ME-QEP 12.41% Best performance on Edge. ME-QEP faster than

ME-Part (1.39x)
ResNext Edge 1.17x–1.72x vs Non-Hybrids; 2.03x vs ME-QEP 12.02% Similar trends to ResNet; large effect sizes in la-

tency gains
FCN Cloud 1.93x faster than Edge for QE 2.62% Cloud deployment preferable due to small input

size
DUC Edge 1.45x faster vs Early Exit; 2.03x vs ME-QEP 1.66% High input size favors Edge deployment; ME-QEP

adds moderate accuracy loss

5.6 What is the impact of network bandwidth variations on the deployment strategies in terms of
inference latency? (RQ6)

5.6.1 Data Exploration

Deploying smaller input data-sized models (FCN), is well-suited for Cloud tier with lower
bandwidth (≤10 Mbps). Larger input data-sized models (ResNe(x)t and DUC), perform
better in Cloud deployments having moderate to high bandwidth (≥50 Mbps).
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Fig. 8: Line graphs of the measures collected for inference latency vs network bandwidth of Cloud Identity
models.

Figure 8 shows the line graphs of the measures collected for the latency of Identity models in the Cloud
across the four subjects (i.e., FCN, ResNet, ResNext, DUC) for various network bandwidths. For the
other models (Quantized, Early Exit, and Quantized Early Exit), similar line graphs were observed and
therefore added to the replication package 8. As both Mobile-Edge and Edge-Cloud bandwidth increases,
latency tends to drop until either 50 or 100 Mbps, then stays constant. The latency performance gap
between the models narrows as the bandwidth increases, indicating the models perform more similarly
at higher bandwidth levels (≥100 Mbps). For all cases, a steep latency drop is observed initially when
bandwidth increases from 1 to 50 Mbps. Beyond 100 Mbps, the latency changes become steady.

8 https://github.com/SAILResearch/wip-24-jaskirat-black-box-edge-operators
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FCN (green line) consistently shows the lowest latency across all scenarios in the Cloud, indicating its
efficiency in handling workloads under varying bandwidth conditions when comparing the different plots
in a row. This is because the FCN’s input data size (5 Mb) is the smallest one across all the datasets.
This suggests that deploying models with small input sizes like FCN is ideal for Cloud deployment
even in bandwidth-constrained settings (≤10 Mbps), which complements the RQ1-5 findings for FCN-
based Cloud operators. ResNext and ResNet (blue and purple lines) models tend to have the highest
latency among the models, especially in low network bandwidth conditions (i.e., ≤10 Mbps), which again
aligns with the RQ1-5 findings. As the input data size of ResNe(x)t (i.e., 60 Mb) is much higher than
the network-constrained bandwidth (i.e.,≤10 Mbps), its latency is higher compared to other models at
≤10 Mbps. The DUC (orange line) demonstrates moderate latency compared to other models, such as
FCN and ResNe(x)t in network-constrained scenarios (i.e., 10 Mbps). The DUC and ResNe(x)t models’
latency performance reduces sharply as the bandwidth increases from 1 Mbps to 50 Mbps, eventually
reaching a plateau at 50 or 100 Mbps, indicating a steady state. The input data size of DUC (22 Mb) and
ResNe(x)t (60 Mb) exceeds the 10 Mbps bandwidth but falls below the 50 Mbps bandwidth (for DUC)
and is slightly above the 50 Mbps bandwidth (for ResNe(x)t). As a result, latency decreases progressively
for ResNe(x)t and DUC models as the bandwidth rises from 10 Mbps to 50 Mbps. This suggests that the
ResNe(x)t and DUC models are suitable for Cloud deployment that operates in scenarios with at least
moderate bandwidth availability (≥50 Mbps) across Mobile-Edge and Edge-Cloud networks, but might
not be ideal for constrained bandwidth settings (≤10 Mbps), which complements the RQ1-5 findings for
ResNe(x)t/DUC-based cloud models.
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Fig. 9: Line graphs of the measures collected for inference latency vs network bandwidth of Mobile-Cloud
Partitioned models.

For larger intermediate data-sized models (FCN, DUC), Partition-based strategies re-
quire ≥50 Mbps to achieve latency convergence. The Non-Partitioned models with large
input data sizes (ResNe(x)t) are suitable for Mobile and Edge deployments at ≥50 Mbps.

The Figure 9, 10, 11,and 12 show the line graphs of the measures collected for latency vs bandwidth
of Mobile-Cloud Partitioned, Mobile-Cloud Quantized Early Exit Partitioned, Edge-Cloud Partitioned,
and Edge-Cloud Quantized Early Exit Partitioned models across the four subjects (i.e., FCN, ResNet,
ResNext, DUC). For these Partitioned-based models, the top row shows the steady state of ResNe(x)t
latency when Edge-Cloud bandwidth is varied and the Mobile-Edge bandwidth is kept fixed, possibly
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Fig. 10: Line graphs of the measures collected for inference latency vs network bandwidth of Mobile-
Cloud Quantized Early Exit Partitioned models.
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Fig. 11: Line graphs of the measures collected for inference latency vs network bandwidth of Edge-Cloud
Partition models.

50



50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 1 Mbps

50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 10 Mbps

50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 50 Mbps

50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 100 Mbps

50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 150 Mbps

50 100 150 200

Edge-Cloud Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge BW: 200 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Edge-Cloud BW: 1 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Edge-Cloud BW: 10 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7
La

te
nc

y 
(lo

g(
s)

)
Edge-Cloud BW: 50 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Edge-Cloud BW: 100 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Edge-Cloud BW: 150 Mbps

50 100 150 200

Mobile-Edge Bandwidth

0

1

2

3

4

5

6

7

La
te

nc
y 

(lo
g(

s)
)

Edge-Cloud BW: 200 Mbps

Edge-Cloud Quantized EarlyExit Partitioned Models

FCN ResNet ResNext DUC

Fig. 12: Line graphs of the measures collected for inference latency vs network bandwidth of Edge-Cloud
Quantized Early Exit Partitioned models.

due to the lower influence of intermediate data size (6.12 Mb) on Edge-Cloud bandwidths, similar to the
observations in RQ4 and RQ5 findings (Section 5.4, 5.5.3) when analyzing Partitioning-based strategies.
Moreover, the steady line graph (top row) drops to lower latency as the Mobile-Edge bandwidth increases
from 1 to 50 Mbps. A sudden drop in latency is observed when increasing the Mobile-Edge bandwidth
from 1 to 50 Mbps at fixed Edge-Cloud bandwidths (bottom row) because the influence of input data size
(60 Mb) transmission decreases on the latency. For Mobile-Cloud Partitioned-based FCN models, the
latency gradually decreases with the increase in either Edge-Cloud bandwidth (top row) or Mobile-Edge
bandwidth (bottom row) and converges at 50 or 100 Mbps. However, for Edge-Cloud Partitioning-based
FCN models, the latency plateaus at 50 or 100 Mbps of Edge-Cloud bandwidth at fixed Mobile-Edge
bandwidths (top row), and the steady line graphs (bottom row) drops to lower latency as the Edge-Cloud
bandwidth increases from 1 to 100 Mbps. The reason is the low impact of intermediate data size (135
Mb) on latency at higher bandwidths (≥50 Mbps). These findings are complement to the RQ4 and RQ5
findings.

Figure 13 shows the line graphs of the measures collected for latency vs bandwidth of Mobile-Edge
(Partitioned, Quantized Early Exit Partitioned), Mobile/Edge (Identity, Early Exit, Quantized, and
Quantized Early Exit) deployment strategies. For DUC (orange line), the Mobile-Edge Partitioned-
based models show a sharp decrease in latency when Mobile-Edge bandwidth increases from 1 Mbps to
50 Mbps. In the same case, the Mobile/Edge (Identity, Early Exit, Quantized, Quantized Early Exit)
deployment strategies show a marginal drop in latency. The reason is the higher size of intermediate data
(781.25Mb) compared to the input data (22 Mb) of DUC and that’s why the latency of Partitioned-based
models across Mobile-Edge shows a sharp decrease as the bandwidth increases from 1 to 50 Mbps. For
the other subjects, i.e., FCN (green line), ResNet (purple line), and ResNext (blue line), the intermediate
data is not that significantly large compared to DUC; therefore, a smaller decrease in latency is shown
from 1 to 50 Mbps. For ResNe(x)t, the input data size is the highest (3x to 12x) compared to the other
subjects (FCN, DUC), which is why it shows a larger decrease in latency for the same interval when
models are deployed on Mobile and Edge tiers. For FCN, the trend is overall quite steady for the models
during Mobile and Edge deployment as the input data size is quite small (5 Mb) to make an impact on
the latency for various network bandwidths. These findings at low-bandwidth scenarios of Mobile-Edge

51



50 100 150 200
Mobile Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile Identity Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Edge Identity Models

50 100 150 200
Mobile Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile EarlyExit Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Edge EarlyExit Models

50 100 150 200
Mobile Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile Quantized Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Edge Quantized Models

50 100 150 200
Mobile Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile Quantized EarlyExit Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Edge Quantized EarlyExit Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge Paritioned Models

50 100 150 200
Mobile-Edge Bandwidth (Mbps)

0

1

2

3

4

5

6

7

8

La
te

nc
y 

(lo
g(

s)
)

Mobile-Edge Quantized EarlyExit Paritioned Models

FCN ResNet ResNext DUC

Fig. 13: Line graphs of the measures collected for inference latency vs network bandwidth of Mobile-Edge
Partitioned, Mobile-Edge Quantized Early Exit Partitioned, Mobile (Identity, Early Exit, Quantized,
Quantized Early Exit), and Edge (Identity, Early Exit, Quantized, Quantized Early Exit).
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(≤50 Mbps), complement the RQ1-5 findings of high Mobile-Edge bandwidth (i.e., 200 Mbps). Table 24
shows a summary of results for RQ6.

5.6.2 Normality Test

We conducted the Shapiro-Wilk normality test and examined QQ plots for each model variant and
bandwidth configuration. Contrary to typical expectations, the Shapiro-Wilk test results indicated that
the latency distributions for the majority of configurations did not significantly deviate from normality
(p > 0.05), as shown in Table 31, Table 32, Table 33, Table 34, Table 35, Table 36, Table 37, Table 38,
Table 48, Table 46, Table 47, Table 39, Table 40, Table 43, Table 44, Table 41, Table 42, and Table 45,
Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41, and
Figure 42. This suggests that latency data maintains a roughly symmetric distribution with minimal
skewness or outlier influence across diverse scenarios. These findings were visually corroborated by the
QQ plots, which showed points aligning closely with the reference line.

5.6.3 Hypothesis Testing

As shown from Table 49 to Table 154, for all model configurations, the Kruskal-Wallis p-value is extremely
small (p < 0.05), which indicates strong evidence against the null hypothesis. This suggests that there
are significant differences in latency across the different bandwidth conditions for each model. After
finding significance with the Kruskal-Wallis test, Conover’s pairwise post-hoc tests were used to pinpoint
which specific pairs of bandwidth values differ significantly when Mobile-Edge bandwidth is fixed and
Edge-Cloud bandwidth is varied, and when Edge-Cloud bandwidth is fixed and Mobile-Edge bandwidth
is varied. In both scenarios, Conover post hoc tests showed that models like ResNet, ResNeXt, FCN,
and DUC exhibited strong sensitivity to changes in the Edge-Cloud and Mobile-Edge bandwidths, with
most low vs. high bandwidth comparisons producing significant p-values (typically p < 0.05). In general,
the findings indicate that both the ME and the EC bandwidths significantly influence the latency of
the model, especially at lower bandwidth levels, while the performance differences diminish at higher
bandwidths (e.g., 100–200 Mbps), suggesting a saturation effect.

Summary of Research Question 6

Deploying models with small input data size (i.e., FCN) is ideal for Cloud deployment with
bandwidth-constrained settings (≤10 Mbps). ResNe(x)t and DUC models with large input data
size are suitable for Cloud deployment that operate in scenarios with at least moderate band-
width availability (≥50 Mbps) but might not be ideal for constrained bandwidth settings (≤10
Mbps). For models with lower intermediate data size (i.e. ResNe(x)t), the Edge-Cloud/Mobile-
Cloud Partitioned-based strategies have no impact of intermediate data on latency across network
bandwidth variations.
For models with higher intermediate data size (i.e., FCN, DUC), the Edge-Cloud/Mobile-Cloud
Partitioned-based strategies either converge at higher bandwidths (≥100 Mbps for FCN) or
doesn’t converge (for DUC). For Mobile-Edge Partitioned based strategies, all the subjects con-
verge at 50 Mbps (except DUC, which converges at 100 Mbps due to higher intermediate data
size). For ResNe(x)t, the input data is the largest (3 to 12x) compared to the other subjects
(FCN, DUC), which is why it shows a larger decrease in latency at 50 Mbps for Mobile and Edge
deployments before plateauing.

6 Discussion

6.1 Interpretation of Results

Among the three Monolithic deployment tiers, the Edge tier consistently demonstrates significantly
faster inference latency performance for each operator examined in the respective research questions
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Model Ideal Bandwidth (Mbps) Best Tier Latency Behavior Notes
ResNet ≥ 50 Edge/Cloud High drop from 1–50 Mbps Input size (60MB) leads to latency reduction as

bandwidth improves
ResNext ≥ 50 Edge/Cloud Large decrease, then plateaus Cardinality increases memory usage; sensitive to

bandwidth change
FCN ≤10 Cloud Stable across bandwidths Small input/intermediate size makes it

bandwidth-resilient
DUC ≥100 Edge Sharp drop, then plateau Huge intermediate size (781MB); converges at 100

Mbps

Table 25: Summary of results for Research Question 6

(i.e., Identity operator in RQ1, Quantized operator in RQ2, Early Exit operator in RQ3, and Quantized
Early Exit operator in RQ5). This outcome underscores the significance of deployment operators involved
in the Edge tier compared to Mobile and Cloud tiers when facing computational limitations, network
bandwidth constraints, and large input data transmission. The Edge tier’s closer proximity to the Mobile
and higher computational resources allows faster processing and reduced transmission latency, resulting
in improved inference latency performance.

In the Cloud tier, the comparisons between the Quantized operator and the Identity operator (RQ2)
as well as between the Quantized Early Exit operator and the Early Exit/Identity operator (RQ5) do not
show any significant difference (Conover Test) for any subjects, except DUC. The main challenge is the
inability of the CUDA execution provider in the ONNX Runtime inference Engine to fully support the
CUDA kernels used for the quantized graphical nodes during Cloud deployment. The unavailability of
the CUDA kernel for the nodes of the Quantized/Quantized Early Exit models leads to their execution
being run on the CPU instead. This introduces some overhead due to the lower processing power of
the CPU compared to the CUDA. Future research efforts can delve into solutions for optimizing the
Quantization in a GPU-based Cloud environment. One solution might be to modify the model structure
and its operations to avoid nodes that lack CUDA kernels. Techniques such as operator fusion, where
multiple operations are combined into a single operation, could be beneficial [8]. Another solution could
be to develop custom CUDA kernels for the nodes of the Quantized/Quantized Early Exit models that
currently lack them. This would require a deep understanding of both CUDA programming and the
specific operations performed by the incompatible nodes. Utilizing other GPU-specific execution providers
like TensorRT instead of CUDA was not considered due to the reasoning provided in Section 7.

On Cloud, the comparisons between the Early Exit and Identity operator (RQ3) as well as be-
tween the Quantized Early Exit and Quantized operator (RQ5) show no significant difference for the
Resnet/ResNext/FCN subject and even if the difference is significant (in the case of DUC) based on the
post-hoc test, the effect size remains negligible to small. This suggests that the advantages provided by
these specialized operators in terms of speedup may be less pronounced in Cloud deployments, where
computational resources are typically more abundant. In the above scenarios, the use of the Identity
operator alone may be sufficient, and incorporating specialized operators like Quantization, Early Exit
or their combinations may not yield significant benefits in terms of improving latency.

Among the three multi-deployment tiers (Mobile-Edge, Edge-Cloud, and Mobile-Cloud), the Mobile-
Edge tier consistently exhibits faster latency performance for each operator examined in their respective
research questions (i.e., Partition operator in RQ4 and Quantized Early Exit operator in RQ5). The key
contributing factor to the Mobile-Edge tier’s superiority is the higher network bandwidth it offers, which
facilitates faster transmission of intermediate outputs during distributed inference. The Mobile-Edge
distributed inference consistently shows faster latency performance than stand-alone Mobile inference
for Identity models in RQ4 and Quantized Early Exit models in RQ5 due to the computational load
distribution. The Partitioning of Identity/Quantized Early Exit models should ideally not influence the
accuracy drops as it aims to divide the model into smaller components without altering the computations
or operations performed, as stated in [74]. In other words, the computations within the Partitioned models
are consistent with the original model’s computations. The models considered in previous studies for CV
tasks are relatively small (i.e, lower size) and less complex, which potentially resulted in findings that
Mobile deployment is a better alternative than Mobile-Edge Partitioning (Kang et al [50]). However,
in our study, where complex models are considered as the subjects, Partitioning across the Mobile and
Edge is a better alternative than doing the local computing of the whole model on a resource-constrained
Mobile tier, especially when faster latency is a concern at no accuracy loss.
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This study considers multiple dimensions, including operators, data models, network bandwidth, and
tiers, requiring us to control one parameter at a time to analyze its impact on the others. In RQ1–RQ5,
we fixed the network bandwidth at 1 Mbps for Mobile-Edge and 200 Mbps for Edge-Cloud to exam-
ine the effects of different operators and data models. This choice was deliberate, as these values are
commonly used (as discussed in Section 4), whereas RQ6 explored a range of bandwidths to assess how
variations influence latency performance. The results from RQ1–RQ5 indicate that operators (Identity,
Quantized, Early Exit, and Quantized Early Exit) exhibit better latency performance on Edge compared
to Cloud, primarily due to the Edge tier’s higher bandwidth (200 Mbps vs. 1 Mbps) and the impact of
input data transmission size. In RQ6, a similar relative performance was observed when Mobile-Edge
and Edge-Cloud bandwidths were ≤ 50 Mbps; however, when bandwidth exceeded 50 Mbps, the Cloud
tier outperformed the Edge tier. Furthermore, RQ6 results show that Mobile-Edge Partitioning-based
strategies consistently outperform both Mobile-Cloud and Edge-Cloud Partitioning-based strategies, rein-
forcing findings from RQ4 and RQ5. Additionally, Mobile-Edge Quantized Early Exit Partitioning-based
models demonstrate superior latency performance compared to Mobile-Edge Partitioned models, further
confirming that bandwidth constraints significantly impact partitioned strategies, as previously observed
in RQ4 and RQ5.

We examine how network bandwidth variations, explored in RQ6, influence the outcomes of RQ1–RQ5.
Under the constrained 1 Mbps Cloud bandwidth assumed in RQ1–RQ5, the Edge tier consistently pro-
vides superior latency performance (RQ1–RQ3). However, when the Cloud bandwidth increases to 50
Mbps or more (RQ6), the Cloud tier becomes the optimal choice, emphasizing the significant role of net-
work capacity. In RQ4, Mobile-Edge partitioning is most efficient under the 1 Mbps Cloud bandwidth,
but at higher bandwidths, Edge-Cloud partitioning outperforms it by combining fast data transfer with
Cloud computation. In RQ5, QE on Edge and QEP on Mobile-Edge perform best under low Cloud
bandwidth, whereas at >50 Mbps, QE on Cloud emerges as the fastest monolithic strategy, and QEP
on Edge-Cloud becomes the most effective hybrid strategy, surpassing Mobile-Edge setups. Mobile-Edge
bandwidth also plays a critical role in the effectiveness of partitioned strategies such as Mobile-Edge
Partitioned and Mobile-Edge QEP. While these strategies perform well under the 200 Mbps assumption
used in RQ1–RQ5, their performance deteriorates when the Mobile-Edge bandwidth is reduced (e.g.,
1–50 Mbps), as the cost of transmitting large intermediate data offsets the benefits of distributed infer-
ence. Likewise, models such as DUC, which generate large intermediate outputs, show poor performance
under constrained Mobile and Mobile-Edge bandwidth conditions, but perform significantly better when
bandwidth exceeds 100 Mbps.

In the accuracy vs latency scattered plots (Figure 14) of the deployment strategies when evaluated
on a range of input samples, we can see that for ResNet, ResNext, and DUC, the Edge Quantized Early
Exit (E - Quantized Early Exit) deployment strategy (light red scattered points) is Pareto-dominated
by other strategies in terms of latency. Whereas, for FCN, the Cloud Quantized (C - Q) deployment
strategy (dark brown scatter point) is Pareto-dominated by other strategies in terms of all objectives
(i.e., latency and accuracy).

The significant presence of outliers in the box plots of ResNext on Edge (Figure 4) is possibly due to
the higher memory usage while achieving inference latency measurements on Edge. This is primarily due
to its cardinality-based architecture, which provides better accuracy than Resnet at the cost of increased
computational and memory requirements 9. Here is a detailed breakdown of the outliers in the latency
results of ResNext on Edge:

1. Cardinality in ResNext: ResNeXt introduces the concept of cardinality, which refers to the number
of parallel paths or branches in a block. Each ResNeXt block splits the input into multiple branches,
processes them independently, and then aggregates the results. While this improves representational
power and flexibility, it increases:
– Intermediate activations: Each branch produces its own intermediate feature maps, increasing the

total memory required to store these activations during forward and backward passes.
– Parameter storage: Each branch has its own convolutional layers, leading to a greater number

of weights to store in memory. For larger cardinalities, more parameters are distributed across
branches. This increases the memory required to store weights and biases.

2. Aggregation of Branch Outputs

9 https://www.ikomia.ai/blog/resnext-cnn-cardinality-efficiency-explained
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Fig. 14: Scattered plots of the measures collected for latency vs accuracy of the deployment strategies
when evaluated on a range of input samples.

– After processing through the branches, ResNeXt aggregates their outputs (usually by summation).
This process temporarily requires additional memory to store the outputs of all branches before
combining them.

– In ResNet, this step is simpler since there is only a single path per block, avoiding this additional
memory overhead.

3. Wider Representations: ResNeXt achieves greater representational power by increasing cardinality
rather than depth or width. While this improves accuracy, it also:
– Increases the size of intermediate tensors: Wider representations mean larger activation maps,

which consume more memory.
– Requires storing gradients: During back-propagation, the gradients of these wider activations must

also be kept in memory, further increasing the memory demand.
4. Redundant Memory Usage in Backpropagation: During training, intermediate activations are stored

for gradient computation. In ResNext:
– Each branch has its own set of activations that must be retained.
– The memory required for these intermediate results grows linearly with the cardinality.

5. Suboptimal Hardware Utilization: Many hardware accelerators are optimized for simpler, sequential
architectures like ResNet. The parallel branch design in ResNext can lead to inefficiencies in memory
allocation and access, indirectly contributing to higher memory usage.

These outliers, which represent higher inference latencies, narrow the gap between the Edge and
Cloud latency of ResNext, thereby reducing the perceived advantage of Edge in specific scenarios. In
particular, these outliers on Edge indicate that under memory-constrained conditions caused by ResNext
cardinality-based architecture, Edge may experience occasional latency spikes, which could undermine its
advantage over Cloud. The majority of data points and the median on Edge tightly cluster below Cloud’s
latency median, emphasizing the general trend of lower inference on Edge. For latency comparison, as
we considered the median, which itself is outlier-insensitive, the presence of outliers does not necessarily
affect the overall conclusions. This suggests that Edge indeed is a preferable choice over Cloud for
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ResNext. Moreover, while comparing the distribution of Edge and Cloud latency of Resnext, we see a
large effect size (Table 8) indicating a statistically significant difference.

6.2 Comparison with Existing Literature

In previous studies (Table 1), the resolution of input data size is relatively small as they are validated only
on small-scale datasets such as MNIST and CIFAR datasets, and/or they did not explicitly analyze the
impact of high-resolution images (from Image Net, COCO, and CityScapes datasets) on the end-to-end
latency evaluation of operators in Mobile, Edge, and Cloud tiers. Eshratifar et al. [24] suggest that using
either local computing only or Cloud computing only is not an optimal solution in terms of inference
latency in comparison to model Partitioning. However, the key issue is that they considered a single image
for the end-to-end sequential inference across the Mobile-Cloud tier, without exploring the variation of
input data sizes. In our study, the impact of multiple and varying image sizes on end-to-end latency
was explored, which resulted in more generalized findings. Based on our results, the subjects having
low-resolution images (such as FCN) may favor network-constrained Cloud deployment in comparison to
multi-tier Partitioning strategies and Mobile/Edge deployment, as the impact on transmission overhead
for smaller-sized images reduces, and the Cloud, as usual, has better computational capabilities. For
subjects (i.e., ResNet, ResNext, DUC) having large-sized image samples, Edge deployment is a better
alternative than multi-tier Partitioning strategies and Mobile/Cloud deployment.

Prior work [24,48,50,59,123,88,20,120,80,62,43] explores factors such as the computational load,
network cost, energy consumption, and/or privacy risk for each of the DNN Partitioning points in an
Edge AI setup to dynamically decide the optimal Partition point, and stated that the model Parti-
tioning operator achieves significant latency speedup i.e., latency reduction compared to traditional
Mobile and/or Cloud deployment, similar to our findings, i.e., Mobile-Edge distributed inference of Par-
titioned/Quantized Early Exit models is a better alternative than resource-constrained Mobile deploy-
ment of Identity/Quantized Early Exit models. When comparing the multi-tier distributed strategies of
Partitioned/Quantized Early Exit models with the Cloud deployment of Identity/Quantized Early Exit
models in RQ4/RQ5, the intermediate data size and input data size play a crucial role. For FCN and
DUC, the intermediate data size of their Partitioned/Quantized Early Exit variants is larger than their
input data sizes, correlating with faster Cloud inference than distributed inference. Conversely, for ResNet
and ResNext, the intermediate data size of their Partitioned/Quantized Early Exit variants is smaller
than their input data sizes, correlating with faster-distributed inference than Cloud inference. Different
Partition points (specific graphical node connections (s) within the neural network architecture where
the model is divided or split into two sub-models) might have different intermediate data sizes, and their
impact on the latency might vary. However, in our study, we limited our research to a single Partition
point, as the goal was to create equal-size Partitioned models (which require a single Partition point).
Although our Partitioning approach simply and fairly splits the models statically into two sub-models
to have equal sizes, one running at the Mobile/Edge, and the other one in the Edge/Cloud, it requires
manual analysis of the ONNX computational graphs of the subject models, which varies in terms of
graph complexity and architecture design. In terms of subject models considered for model Partitioning,
previous studies performed their experiments on lightweight CV models, which are less complex and less
accurate than the heavy-weight state-of-the-art CV models considered in our study.

In previous studies performing Early Exit [23,54,66,91,102,106,107,108,111,116,118,119,123,128,
65,73,117,113], there is a trade-off between accuracy and latency. This trade-off in Early Exit comes
from the fact that exiting earlier in the network can reduce latency but may also result in less accurate
predictions. This is because the early layers in a DNN generally extract low-level features, while the
later layers extract high-level features that are more task-specific. Therefore, an early exit at early layers
might miss important high-level features, leading to a decrease in accuracy. On the other hand, waiting
for the network to reach the later layers can increase the accuracy but also increase the latency. In our
case, the Early Exit was performed in the later stage of the models, which showed faster latency than the
original model but at a medium accuracy loss. One of the reasons for this significant accuracy loss is that
the Early Exit approach in our study is based on the condition of manually short-circuiting identically
structured sub-graphs on pre-trained models. This means that the early exits are added in a black-box
manner on pre-trained models without retraining them, which contributes to this accuracy loss. Previous
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studies perform DNN Early Exit that requires training of the models, which results in better accuracy
performance for Early Exit even in earlier stages of the model.

As stated in previous studies [59,5,7,12,27,29,40,57,77,83,101,30,45,126,61], the Quantization op-
erator in our study also shows a small (not significant) accuracy drop in comparison to the original
model. In addition to that, we also compared the Quantization operator’s performance with other op-
erators like Early Exit and Quantized Early Exit operators, concluding that during Edge deployment,
the Quantization can be used in scenarios where the least accuracy drop is of utmost importance w.r.t
the original model, at the benefit of faster latency than Early Exit and the cost of slower latency than
Quantized Early Exit operators.

6.3 Implications for the Practitioners

In terms of effort, the use of an automated tool like Intel Neural Compressor for applying the Quantization
operator suggests a streamlined and automated process for Edge AI model deployment. This implies
that, right now, the Quantization process can be performed without manual effort and intervention,
as a tool automates the necessary modifications to achieve model Quantization. Yet, while applying
Quantization to models from the ONNX Model ZOO and torchvision.models subpackage, we observed
that some of the models contain unsupported ONNX operations that are not listed in the supported
ONNX schema10, due to which the model may not be feasible for Quantization without additional
modifications or workarounds. For instance, while converting models from Pytorch to ONNX format,
the converted ONNX models can include custom layers or operations that are specific to the Pytorch
framework and hence lack Quantization support in ONNX.

On the other hand, applying the Early Exit operator on Identity/Quantized models and the Partition-
ing operator on Identity/Quantized Early Exit models currently requires manual analysis of the ONNX
computational graphs using the Netron Visualizer tool 11 and manual modifications of the neural network
using ONNX Python APIs. We observed that performing these deployment operators on ONNX models
from other classes (e.g., textual inference task), was not always feasible due to the complex architecture
of the ONNX computational graph. The complex architecture of such models includes various layers,
connections, and branching structures that can make it difficult to identify suitable Partition points or
early exit points. In such cases, applying these operators might require significant manual analysis and
modifications of the model’s computational graph, which can be time-consuming and error-prone. Below
are the crucial points that highlights why the results are helpful for MLOps and in which cases:

Empirical Foundation for Deployment Choices The study delivers data-backed insights on how
different black-box deployment operators (Quantization, Early Exit, Partitioning) and their combinations
affect latency and accuracy across Mobile, Edge, and Cloud tiers. MLOps engineers often struggle with
trial-and-error deployment tuning—this study systematically removes the guesswork by evaluating 20+
configurations in controlled, realistic environments.

Our study offers a concrete empirical foundation to assist MLOps engineers in selecting appropriate
deployment strategies for black-box models across heterogeneous Edge AI environments. For instance,
when aiming to reduce latency under moderate accuracy constraints, Quantized Early Exit (QE) on
Edge emerges as a promising solution due to its effective balance between performance and compu-
tational cost. Conversely, when preserving accuracy is critical, using Quantization alone on Edge is
preferable, as it delivers latency benefits with minimal accuracy degradation compared to Early Exit or
QE. In resource-constrained Mobile environments, Mobile-Edge Partitioning outperforms pure Mobile
deployment by offloading heavy computation to nearby Edge tiers, reducing latency without sacrificing
output fidelity. Additionally, the results show that Cloud deployment remains viable for smaller input
models even under low-bandwidth conditions (≤10 Mbps), while larger models require at least 50 Mbps
for latency convergence. These insights can help MLOps teams systematically evaluate the trade-offs be-
tween latency, accuracy, and resource constraints, avoiding ad hoc trial-and-error tuning and promoting
informed, performance-aware deployment strategies.

Black-Box Compatibility The operators analyzed require no model re-training, which is ideal for
real-world, production-grade MLOps settings where models are often closed-source or externally sourced.
This makes the findings highly actionable across industries.

10 https://github.com/onnx/onnx/blob/main/docs/Operators.md
11 https://github.com/lutzroeder/netron
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Towards a Foundational Dataset for Recommendation Systems The empirical results of the
study provide valuable insights into the latency and accuracy performance of operators across and within
tiers under various deployment scenarios. As such, we believe that the results could inspire work related
to the automation of these operators and can be used as a foundation for developing recommendation
systems for Edge AI operators. In particular, the results serve as core training data for automated systems
such as AGI-based recommendation engines that learn optimal AI deployment strategies. This includes
input-output mappings for a wide range of models, operators, tiers, and network conditions—allowing
autonomous adaptation in real-time environments.

However, we recognize that our current insights are derived from a simulated and controlled testbed,
which may not capture all real-world heterogeneities (e.g., hardware variation, dynamic workloads). As
such, we do not position our results as directly prescriptive but rather as a knowledge base from which
data-driven heuristics could eventually be extracted and validated in real environments. To ensure trust
and transparency, any future recommendation system must be accompanied by interpretable explana-
tions, and its performance must be benchmarked against real-world deployment scenarios. Until such
validation is achieved, we encourage practitioners to rely on the detailed experimental conditions we
provide in this study to assess contextual relevance to their own settings.

While this study focuses primarily on latency and accuracy trade-offs, our observations about memory-
boundedness suggest the importance of tracking CPU utilization, memory footprint, network throughput,
and energy consumption. These system-level metrics are highly relevant for environmentally-conscious
deployments and for fine-grained performance optimization. Future work will expand the current bench-
marking pipeline to include these metrics, which are already partially accessible via Docker container
statistics and external energy profiling tools (e.g., Intel RAPL, NVIDIA SMI). Doing so will allow us to
further align Edge AI deployment strategies with sustainability goals.

In the Future, we plan to extend our testbed with tools like cgroups, perf, and powerstat to collect
metrics such as CPU usage, RAM consumption, and energy draw during inference. This will support a
multi-objective evaluation of deployment strategies, including carbon footprint and energy cost, critical
variables in real-world AI systems design.

Versatile B2B Applicability These results are not just academic—they can be directly applied
in any B2B use case where AI models are deployed in an Edge AI Infrastructure (e.g., manufacturing,
healthcare, smart cities, autonomous vehicles, and more).

7 Threats to Validity

Below, we discuss threats to the study validity and the strategies we applied to mitigate these threats,
based on literature guidelines [112].

Construct Validity : One possible threat is the mono-operation bias caused by having only one factor of
computational configuration (RAM/CPU), Early Exiting point, and the Partitioning point. The Mobile-
Edge network bandwidth of 200 Mbps and Edge-Cloud network bandwidth of 1 Mbps were used to
simulate the close and distant proximity of Mobile-Edge and Edge-Cloud environment, respectively,
based on earlier work [84,125,103,28,3] for testing deployment strategies on a range of samples in RQ1-
5. We further expand our analysis to include additional experiments evaluating deployment strategies
on a single largest input sample under a broader range of commonly used bandwidth settings (1, 10,
50, 100, 150, and 200 Mbps) across both Mobile-Edge and Edge-Cloud networks [1,17,130,17,84,125]
in RQ6. The additional findings in RQ6 results (Section 5.6) allow us to provide a more comprehensive
understanding of the latency performance trade-offs under varying bandwidth conditions and emphasize
the impact of bandwidth on deployment strategies. The computational simulations of Mobile, Edge, and
Cloud tiers are also based on previous studies [19,21,53,94]. Variations in the computational resources
can impact the end-to-end inference latency for the deployment strategies.

One of the key limitations of our study is the use of Docker containers for simulating resource-
constrained tiers (Mobile, Edge) on a common server and resource-abundant tier (Cloud) on a separate
server in our experimental setup. We recognize that a distributed setup using multiple physical machines
would provide additional realism. Our Docker-based simulated experimental setup was designed to ensure
the reproducibility of our results. While we acknowledge that this approach may not fully replicate
the complexities and challenges faced in real-world distributed MLOps deployment infrastructure, our
primary objective was to provide a controlled and consistent environment for testing and validating our
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deployment strategies. This methodology aligns with prior research, as highlighted in Table 1 of the
Related Work section (Section 3), where similar simulated setups have been employed. By adopting this
approach, we establish a reproducible framework that can serve as a foundation for future studies. We
further test a comprehensive range of network bandwidths ensuring our evaluation aligns with the diverse
characteristics of real-world deployments.

However, our decision to use Docker containers on a single machine was intentional and driven by
the following considerations:

– Prototyping a Unified Baseline for MLOps: MLOps engineers often start by testing their pipelines
in controlled environments to ensure baseline functionality before scaling to distributed systems.
Our choice mirrors this natural progression, ensuring that our findings are directly relevant to the
foundational stages of MLOps pipeline development.

– Reproducibility as a Scientific Priority: One of the key challenges in evaluating MLOps tools and
strategies is achieving reproducibility across studies. A single-machine Docker-based setup provides
a stable and standardized environment, reducing variability and enabling others to replicate our
work with minimal dependencies or hardware constraints. This step is crucial in building trust and
validating methods within the community.

– Cost-Effective Innovation: MLOps research is inherently resource-intensive. By leveraging a Docker-
based approach, we reduced the financial and logistical overhead of deploying experiments on dis-
tributed physical systems. This resource efficiency allowed us to focus on developing innovative in-
sights into key MLOps challenges, with the understanding that future work can build on these foun-
dations in more distributed contexts.

– Alignment with MLOps Practices: Docker-based setups are widely used in MLOps workflows, par-
ticularly during the prototyping phase (Table 1 in Related Work Section). Our approach aligns with
this practice, ensuring the immediate applicability of our results to real-world scenarios.

The limitations of the considered simulated setup:

– Clock Speed and Thermal Factors: Docker provides a valuable feature for setting resource constraints,
enabling the simulation of specific configurations like the number of CPU cores and available RAM.
To further strengthen the study, it’s worth noting that certain hardware-level characteristics, such as
clock speed variations and thermal management, may differ from real-world systems.

– GPU Utilization and Variability: The study’s cloud simulation utilizes an NVIDIA A100 GPU, which
is a state-of-the-art piece of hardware. However, to enhance the study’s applicability to real-world
scenarios, it might be beneficial to consider the diversity of GPUs typically deployed in actual cloud
environments, such as the T4, V100, or even older hardware. This could provide a more comprehensive
understanding of performance across different cloud setups.

Influence of these limitations on the study findings:

– Limited Real-World Representation: The results might not fully capture the nuances of actual hard-
ware behaviors, such as clock speed variations or thermal management, which are significant in
real-world settings.

– Performance Variability: Differences in computational and hardware characteristics may lead to out-
comes that do not align perfectly with what would be observed on diverse real-time systems.

In a previous study [93], Docker containers running on a server are used to simulate several resource-
constrained tiers in a realistic IOT framework. This is similar to what we did for simulating the resource-
constrained tiers (i.e., Mobile and Edge) in our study. In real-world scenarios, variations in hardware
across different Edge/Mobile devices are possible and may impact the generalizability of our simulated
setup. Simulating the impact of multiple factors is very costly as it involves running numerous exper-
iments, each taking considerable time to complete and requiring significant computational resources.
While we acknowledge the importance of diverse deployment scenarios having different computation-
al/network configurations of Mobile, Edge, and Cloud tiers, the specific experimental setup was chosen
strategically to provide a focused exploration of a typical Edge AI environment having a resource-scarce
Mobile device, an Edge device’s closer proximity, and higher computational capacity w.r.t Mobile device,
together with a resource-abundant Cloud device with network constraints.

In our study, we focus on Early Exit at a single stage of the neural network. However, it is important
to note that early exiting at multiple stages of the network can result in varying accuracy performance.
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Early exiting at a later stage may yield higher accuracy but slower inference due to more processing
required before making predictions. On the other hand, the early exit at an earlier stage may provide
faster inference but with lower accuracy since the predictions are made based on less processed infor-
mation. The detailed explanation for selecting the early exit criteria is mentioned in the RQ3 approach
(Section 3.4), and requires manual inspection of the subjects’ ONNX computational graphs. Similarly,
for Partitioning, we considered the Partition point that leads to equal-sized sub-models for effective
and fair load distribution across the tiers involved in distributed inference. Our study acknowledges the
limitations associated with this simplified model Partitioning approach. We recognize that real-world
scenarios often entail more complex Partitioning strategies as mentioned in related work (Section 1),
especially when dealing with intricate model architectures, such as Partitioning at each of the layers
of DNN models and analyzing their impact on various factors like computational, transmission, and/or
energy cost.

In our study, the decision to adopt a simplified approach stems from the need for a fair evaluation of
the subject models. By manually inspecting the ONNX computational graphs of the DNN models, we aim
to establish a baseline understanding of the challenges and dynamics involved in equal-size Partitioning
of the DNN models with varying and complex architectures, specifically in the ONNX framework. The
manual insights of the computational graphs of the subjects will assist MLOps Engineers in understanding
the factors involved in constructing an automated tool to dynamically decide the optimal Partition point
to achieve equal-size sub-models for subjects with varying architectures. This approach might have an
adverse impact on the transmission of intermediate data during distributed inference across the Mobile,
Edge, and Cloud tiers, as shown for two of the subjects (FCN, DUC) in our study. Different Partition
points may have different intermediate data sizes which can yield latency benefits during distributed
inference across Mobile, Edge, and Cloud tiers in scenarios where the intermediate data size is lower
than the input data size, as shown (ResNet and ResNext) in our study.

Conclusion Validity We considered the Static PTQ approach over the Dynamic PTQ approach due
to its faster inference capabilities. Dynamic PTQ requires additional computational overhead during
inference because of the dynamic recalibration process in which the model’s weights and activations are
recalibrated based on the input data’s statistics during inference. On the other hand, Static PTQ involves
quantizing the model’s weights and activations only once during the model conversion phase, without
the need for recalibration during inference. Since the quantization parameters are precomputed and do
not change during inference, the quantization process is much simpler and requires fewer computations
during inference.

Internal Validity : The risk of how history might affect the inference latency results of the deployment
strategies is reduced by performing all measurements in the same Edge AI environment, using the same in-
frastructure. To maintain uniformity and minimize variations, we developed automated scripts to execute
the inference experiments for the deployment strategies sequentially, one after another. Before starting
an inference experiment, we took the necessary step of restarting the Docker containers to eliminate any
potential residual effects from the previous inference experiment. In our experiments, we considered se-
quential inference (i.e., 1 request at a time) instead of parallel inference (i.e., multiple requests at a time).
Sequential inference allows us to efficiently utilize the available resources for each deployment strategy,
ensuring a more accurate representation of their true inference latency performance [124], similar to how
micro-benchmarks operate. The goal of our study was not load testing [49], where the focus would be
on measuring the system’s ability to handle multiple concurrent inference requests. Performing parallel
inference may lead to resource contention, which could obscure the true impact of deployment strategies.
Similarly, the Scalability aspects, such as the impact of increasing the number or complexity of models
deployed simultaneously in a real-world setting, are not explored, as they are outside the scope of this
study, since our micro-benchmarks will not focus on system-level measurements.

It is worth mentioning that the ONNX Run-time inference Engine may perform worse on the first
input received than on subsequent inputs during inference experiments of deployment strategies, mainly
because of a required warm-up inference. To remove such bias, we used a trial inference experiment. For
each deployment strategy, a trial experiment of 100 inference runs is performed sequentially to reach
a steady state of the cache, then the final inference experiment of 500 runs = 100 (input samples)
x 5 (repetitions) is performed sequentially (and repeatedly) without any cool-down period between
subsequent runs to simulate the scalability of each deployment strategy. Note that the relatively high
standard deviation in the inference latency measure for each deployment strategy might have been caused
by having 5 repetitions per sample run; this potential source of bias can be mitigated by increasing the
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number of such repetitions. In our study, it is costly to do this due to the computational and transmission
overhead caused by factors like large model size and input/intermediate data transmission.

Input size is a potential threat to internal validity, as it can significantly affect both latency and
resource usage across models. To address this, we carefully selected 100 large-size input samples from
the validation dataset for the multi-input trial experiments. This selection aimed to evaluate the impact
of varying input sizes on latency, as described in Section 4.6. Additionally, for the single-input trial
experiments, we used the largest input sample available to assess latency across different deployment
strategies and network conditions. Testing with larger input sizes allowed us to evaluate how well the
simulated environment can handle heavier computational workloads, simulating real-world scenarios such
as medical imaging, video games, and high-resolution photography. This approach also helped assess the
scalability of the system and identify potential bottlenecks, such as increased latency due to memory,
processing power, or bandwidth limitations. By carefully considering and controlling for input size in our
experimental setup, we aimed to minimize its potential confounding effects on the results.

External Validity : The selection of the subjects might constitute another potential threat as it was
performed manually. Thus, the selected set of subjects could not be regarded as an accurate represen-
tation of the whole population. The first iteration in this process consisted of choosing a set of subjects
from the ONNX Zoo and PyTorch Models, initially aiming to have two representatives from each class
(i.e., the inference task). However, we observed a lack of already trained models from some of the classes
and what is more, most of the models were not feasible for Partitioning/Early Exiting due to the complex
ONNX graph architectures, or for Quantization due to some operations or layers in the ONNX graph ar-
chitectures that may not have Quantization support in the neural compressor tool. As a result of that, we
ended up with a selection of four subject models, from the CV category. This threat is reduced by aiming
to diversify the inference tasks they performed (i.e., Image Classification and Image Segmentation).

The majority of the previous studies, as shown in Table 1, focus on CV tasks for the operators due to
their major impact on various factors like computational load and data transmission during deployment
in an Edge AI environment. Therefore, the choice of CV domain for subject models and datasets is quite
common. However, we do acknowledge that different types of models (e.g., Natural Language Processing
and Speech Recognition) may exhibit different behaviors in response to deployment strategies. In our
study, we limited the scope of our study to three black-box operators, i.e., Partition, Quantization, and
Early Exiting, as these are most commonly used, which do limit the comprehensiveness of the studied
operators. Overall, the selection of subjects (datasets/models) and deployment operators is one of the
external threats concerning this study. This threat can be mitigated in the future by repeating the
experiment on other domain-specific subjects (e.g. Natural Language Processing, Speech Recognition)
and white-box operators (e.g., Quantization Aware Training, Weight Pruning, Knowledge distillation)
as mentioned in Table 1.

The effectiveness and compatibility of the Intel Neural Compressor tool for Quantization might vary
for different models or frameworks (i.e., ONNX), affecting the reproducibility of the study in different en-
vironments (i.e., CPU, GPU). In our results, for some subjects like ResNet and ResNext, their Quantized
and Quantized Early Exit models show slower latency performance than Identity and Early Exit models
in resource-constrained environments (i.e., Mobile). Yet, for other subjects (like FCN and DUC), their
Quantized and Quantized Early Exit models show faster latency performance than Identity and Early
Exit models in the same environment. Conversely, in high-resource environments (i.e., Edge), all subjects’
Quantized and Quantized Early Exit models show faster latency than the Identity and Early Exit mod-
els. This shows that for different subjects the compatibility of this tool (i.e., Intel Neural Compressor)
for Quantization might vary in terms of latency performance in computationally varying environments.
Moreover, this tool might show different latency or accuracy behavior for models in different formats
(such as Pytorch and Tensorflow). Moreover, the visual analysis of the computational graphs might vary
with different models, frameworks, or visualization tools.

Among the GPU-specific Execution Providers (e.g., CUDA and TensorRT), we selected CUDA for our
GPU-based environment (i.e., Cloud) due to its notable inference benefits1213 over TensorRT. Nonethe-
less, relying on CUDA introduces certain limitations. Framework-specific optimizations, hardware-specific
dependencies, and differences in precision or ecosystem support could affect the generalizability of our

12 https://developer.nvidia.com/blog/end-to-end-ai-for-nvidia-based-pcs-cuda-and-tensorrt-execution-providers-in-onnx-
runtime
13 https://github.com/chaiNNer-org/chaiNNer/discussions/2437
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results. For example, TensorRT, while optimized for high-performance inference, may outperform CUDA
in scenarios with static model execution graphs. Furthermore, CUDA’s dependency on NVIDIA GPUs
limits our findings, potentially biasing performance outcomes compared to hardware like AMD or ARM-
based systems.

Despite these constraints, there were several reasons for this choice. First, CUDA is faster to initialize
as it evaluates only small network building blocks during its exhaustive search, leveraging the cuDNN
inference library for granular neural network operations. This makes CUDA more versatile in handling
inference tasks with varying sizes, easier to use, and less demanding in terms of setup. In contrast,
TensorRT evaluates entire graphs and explores all execution paths, which can take several minutes for
large ONNX models. Additionally, TensorRT’s allocation of workspace memory for intermediate buffers
leads to higher memory usage, and its frequent engine recomputation for varying input sizes—such as in
our study involving diverse image sizes—can result in slower performance. Thus, alternative providers
like TensorRT were deemed suboptimal for our specific requirements.

Instead of using actual devices, we used Docker containers for simulating the hardware and network
configurations of physical Mobile, Edge, and Cloud devices to create real-time deployment scenarios. The
Docker simulations allow flexibility by easily configuring the network/hardware settings. Setting up and
maintaining actual devices can be expensive and require more experience, especially for simulating dif-
ferent configurations and deployment scenarios. Docker containers provide a cost-effective way to create
virtual environments that closely mimic the behavior of real hardware and network bandwidth configura-
tions without the need for additional physical resources. The latest versions of all the tools and packages
were employed on the simulated devices in the experimental setup (Section 4). The generalization fac-
tor can be improved by replicating the experiment on different hardware and network configurations of
the devices. In other words, real-world deployment considerations, such as network variability, security
implications, or dynamic Edge environments, should be considered for generalization.

In our study, we computed the inference accuracy performance independently on multiple representa-
tive deployment tiers (i.e., Mobile, Edge, Cloud) for four different types of accuracy-sensitive operators
(i.e., Identity, Quantized, Early Exiting, and Quantized Early Exiting) to provide valuable insights into
the model’s generalizability across different hardware targets, specifically CPUs and GPUs. The ONNX
models are designed to be hardware-agnostic and can be deployed on various hardware devices with-
out significant modifications. This allows the models to achieve consistent accuracy performance across
different deployment environments, as long as the hardware supports the necessary operations and com-
putational capabilities.

We applied the operators to the subjects in ONNX format and performed the inference of the trans-
formed models using the ONNX Runtime Engine due to optimized deployment performance benefits,
as suggested by previous studies [86,38]. The feasibility of scripting black-box transformations using
Python ONNX APIs was another reason for considering subject models in ONNX format, instead of
other formats (like Pytorch and Tensorflow).

8 Conclusions and Future Work

Deploying black-box models (DNNs) efficiently in an Edge AI setting introduces unique challenges for
MLOps Engineers and software practitioners. The black-box models require specific considerations for
optimization in resource-constrained and network-constrained deployment scenarios. This paper aims to
be an important stepping stone in the field of MLOps, in particular for the deployment of black-box
models, to evaluate the benefits and trade-offs of Edge AI deployment strategies involving mappings of
<operators, tiers>, by evaluating their performance in terms of quantitative metrics like latency and ac-
curacy. While previous works focused on exploring and addressing individual operators (i.e., Partitioned,
Early Exit, Quantization), our study has systematically compared the individual operators and their
unexplored combinations in an Edge AI Environment using empirical data of four major CV subjects
for testing the various deployment strategies.

The MLOps Engineers could prefer Mobile-Edge distributed inference when faster latency is a con-
cern in deployment scenarios where the mobile tier has strict resource (CPU/RAM) requirements. For
models with smaller input data size requirements, their deployment at the Cloud tier with limited net-
work bandwidth capacity can also be a better alternative than Model Partitioned across Mobile, Edge,
and Cloud tiers and Mobile/Edge deployment. For models with large input data size requirements, Edge
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deployment can be a priority over Model Partitioned and Mobile/Cloud deployment in scenarios where
the Edge has higher computational/network capabilities than the Mobile/Cloud. Among the studied
operators, the Edge deployment of the Quantized Early Exit operator could be the preferred choice over
the Edge deployment of the Early Exit/Quantized operator and Mobile-Edge deployment of the Par-
tition operator when faster latency is a requirement at medium accuracy loss. In contrast, for MLOps
Engineers having requirements of the minimal accuracy loss w.r.t the original model, the Edge deploy-
ment of the Quantized operator could be the preferred choice at the benefit of faster latency over the
Edge/Mobile-Edge deployment of the Early Exit/Partition operator and the cost of slower latency over
the Edge deployment of Quantized Early Exit operator. Deploying Non-Partitioned models with small
input data size (i.e., FCN) is ideal for Cloud deployment even in bandwidth-constrained settings (≤10
Mbps). Whereas, deploying the Non-Partitioned models with large input data size (ResNe(x)t, DUC) is
suitable for Cloud deployment with moderate bandwidth availability (≥50 Mbps). For models with higher
intermediate data sizes (i.e., FCN, DUC), the Partition-based strategies need higher bandwidths (≥50
Mbps) for latency convergence. For Non-Partitioned models with large input data sizes (ResNe(x)t), the
Mobile and Edge deployment latencies converge at 50 Mbps. In general, the Cloud tier outperforms the
Edge and Mobile tier for the Non-Partitioning operators when MEC bandwidth is at least 50 Mbps, but
remains suboptimal under lower bandwidth conditions. Additionally, Mobile-Edge Partitioning-based
strategies latency performance consistently exceeds Mobile-Cloud and Edge-Cloud alternatives.

Our study focuses on the impact of network bandwidth variations across Mobile-Edge and Edge-
Cloud environments, as this is a critical factor for latency performance evaluation. However, system-level
factors such as CPU/memory usage, network throughput, and energy consumption were not included
in our current analysis. These factors may also influence overall latency performance and merit further
investigation. While we scoped this study to specifically analyze the effects of network bandwidth, future
work could incorporate these additional variables to provide a more holistic evaluation of system perfor-
mance under varying resource constraints. The provided empirical results for these operators on the four
Image Classification and Segmentation subjects give valuable insights into the speed and performance of
operators across and within tiers under various deployment scenarios, which could inspire work related
to the automation of these operators for future studies in the field of MLOps. Additionally, the empirical
approach employed in our study, and the empirical results obtained, can be used as a foundation for
developing recommendation systems for Edge AI operators.
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Appendices
Appendix A Graphical Illustrations of Manual Operators
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Fig. 22: Graphical Illustration of Quantized Early Exit for FCN

O
ut

pu
t

Decision Sub Graph

Sub Graph1

Skipping Sub Graph1 and Sub Graph2

Merging Early Exit Sub Graph with Decision Sub Graph

...

...E
ar

ly
 E

xi
t S

ub
 G

ra
ph

Su
m

Q
ua

nt
iz

eL
in

ea
r

Q
Li

ne
ar

C
on

v

Q
Li

ne
ar

C
on

v

Su
m

R
el

u

Q
ua

nt
iz

eL
in

ea
r

Q
Li

ne
ar

C
on

v
Q

Li
ne

ar
C

on
v

Q
Li

ne
ar

C
on

v
Q

Li
ne

ar
C

on
v

Su
m

R
es

ha
pe

So
ftm

ax

Sub Graph2

R
el

u

Q
Li

ne
ar

C
on

v

D
eq

ua
nt

iz
eL

in
ea

r

D
eq

ua
nt

iz
eL

in
ea

r
D

eq
ua

nt
iz

eL
in

ea
r

D
eq

ua
nt

iz
eL

in
ea

r
D

eq
ua

nt
iz

eL
in

ea
r

Q
ua

nt
iz

eL
in

ea
r

Q
Li

ne
ar

C
on

v

Q
Li

ne
ar

C
on

v

Su
m

R
el

u

Q
Li

ne
ar

C
on

v

D
eq

ua
nt

iz
eL

in
ea

r

D
eq

ua
nt

iz
eL

in
ea

r
D

eq
ua

nt
iz

eL
in

ea
r

In
pu

t

Intermediate Layers
Early Exit Point: conv5_1

Fig. 23: Graphical Illustration of Quantized Early Exit for DUC
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Fig. 24: Graphical Illustration of Quantized Early Exit Partitioning for ResNet and ResNext
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Appendix B QQ Plots

Fig. 27: Graphical Illustration of QQ plots for RQ1 Deployment Strategies
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Fig. 28: Graphical Illustration of QQ plots for RQ2 Deployment Strategies
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Fig. 29: Graphical Illustration of QQ plots for RQ3 Deployment Strategies
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Fig. 30: Graphical Illustration of QQ plots for RQ4 Deployment Strategies
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Fig. 31: Graphical Illustration of QQ plots for RQ5 Deployment Strategies
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Fig. 32: Graphical Illustration of QQ plots for RQ5 Deployment Strategies
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Fig. 33: Graphical Illustration of QQ plots for RQ6 Mobile Identity Deployment Strategies

Fig. 34: Graphical Illustration of QQ plots for RQ6 Edge Identity Deployment Strategies
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Fig. 35: Graphical Illustration of QQ plots for RQ6 Mobile Quantized Deployment Strategies

Fig. 36: Graphical Illustration of QQ plots for RQ6 Edge Quantized Deployment Strategies
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Fig. 37: Graphical Illustration of QQ plots for RQ6 Early Exit Mobile Deployment Strategies

Fig. 38: Graphical Illustration of QQ plots for RQ6 Early Exit Edge Deployment Strategies
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Fig. 39: Graphical Illustration of QQ plots for RQ6 Quantized Early Exit Mobile Deployment Strategies

Fig. 40: Graphical Illustration of QQ plots for RQ6 Quantized Early Exit Edge Deployment Strategies

83



Fig. 41: Graphical Illustration of QQ plots for RQ6 Mobile-Edge Partition Deployment Strategies

Fig. 42: Graphical Illustration of QQ plots for RQ6 Mobile-Edge Quantized Early Exit Partition Deploy-
ment Strategies
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Appendix C Data Analysis and Normality Assessment

Table 26: Descriptive statistics of the latency for RQ1, including Shapiro-Wilk p-values and normality
assessment

Tier Model Operator Min Max Median Mean Std Shapiro-Wilk p Normal?
Mobile ResNet Identity 6.90 30.74 8.94 10.34 3.66 1.07× 10−27 No
Mobile ResNext Identity 4.76 41.58 6.31 8.27 5.54 3.66× 10−33 No
Mobile FCN Identity 21.91 53.66 27.39 28.78 4.73 5.30× 10−17 No
Mobile DUC Identity 42.53 47.89 45.46 45.48 0.69 5.21× 10−5 No
Edge ResNet Identity 4.89 12.90 5.64 6.10 1.28 9.59× 10−30 No
Edge ResNext Identity 3.19 45.67 3.97 5.56 4.69 8.59× 10−36 No
Edge FCN Identity 7.98 29.37 12.29 12.90 2.60 3.40× 10−22 No
Edge DUC Identity 17.93 25.11 23.65 23.05 1.50 9.40× 10−23 No
Cloud ResNet Identity 11.14 84.05 17.62 22.51 13.25 1.97× 10−26 No
Cloud ResNext Identity 11.19 83.89 17.61 22.49 13.21 2.04× 10−26 No
Cloud FCN Identity 3.24 7.83 3.77 3.89 0.55 8.64× 10−30 No
Cloud DUC Identity 27.55 31.34 28.62 28.85 0.89 5.86× 10−15 No

Table 27: Descriptive statistics of the latency for RQ2, including Shapiro-Wilk p-values and normality
assessment

Tier Model Operator Min Max Median Mean Std Shapiro-Wilk p Normal?
Mobile ResNet Quantize 6.76 23.09 10.67 11.37 3.34 1.88× 10−19 No
Mobile ResNext Quantize 5.22 15.49 7.29 7.92 1.89 5.74× 10−11 No
Mobile FCN Quantize 13.71 32.78 19.86 20.29 2.89 2.02× 10−11 No
Mobile DUC Quantize 36.16 41.47 38.70 38.81 1.00 2.32× 10−7 No
Edge ResNet Quantize 2.89 10.96 3.48 4.56 1.96 2.63× 10−13 No
Edge ResNext Quantize 2.19 7.02 2.67 2.83 0.66 1.50× 10−12 No
Edge FCN Quantize 5.47 16.53 7.49 7.95 1.78 6.52× 10−9 No
Edge DUC Quantize 17.15 21.42 19.59 19.50 0.65 1.79× 10−13 No
Cloud ResNet Quantize 11.16 83.96 17.64 22.49 13.21 1.98× 10−26 No
Cloud ResNext Quantize 11.17 83.85 17.66 22.49 13.21 2.04× 10−26 No
Cloud FCN Quantize 3.15 7.73 3.78 3.90 0.56 7.97× 10−30 No
Cloud DUC Quantize 29.60 36.28 31.00 31.24 1.00 2.01× 10−14 No

Table 28: Descriptive statistics of the latency for RQ3, including Shapiro-Wilk p-values and normality
assessment

Tier Model Operator Min Max Median Mean Std Shapiro-Wilk p Normal?
Mobile ResNet Early Exit 5.78 19.21 7.47 7.97 1.77 1.37× 10−12 No
Mobile ResNext Early Exit 4.00 22.47 5.02 5.61 2.00 1.42× 10−12 No
Mobile FCN Early Exit 17.19 48.63 26.02 26.74 4.86 2.22× 10−9 No
Mobile DUC Early Exit 38.88 46.83 40.90 40.99 0.72 7.85× 10−8 No
Edge ResNet Early Exit 3.75 5.79 4.40 4.44 0.31 6.44× 10−7 No
Edge ResNext Early Exit 2.46 4.63 2.99 3.05 0.31 1.58× 10−6 No
Edge FCN Early Exit 6.94 26.04 11.35 12.12 2.98 1.03× 10−11 No
Edge DUC EarlyExit 15.70 25.37 20.34 19.90 1.60 1.88× 10−12 No
Cloud ResNet Early Exit 11.17 83.95 17.55 22.51 13.23 1.95× 10−26 No
Cloud ResNext Early Exit 11.13 84.05 17.66 22.50 13.22 2.16× 10−26 No
Cloud FCN Early Exit 3.25 7.90 3.74 3.89 0.56 8.61× 10−30 No
Cloud DUC Early Exit 27.42 49.49 28.62 29.02 1.44 2.78× 10−9 No
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Table 29: Descriptive statistics of the latency for RQ4, including Shapiro-Wilk p-values and normality
assessment

Tier Model Operator Min Max Median Mean Std Shapiro-Wilk p Normal?
Mobile-Edge ResNet Partition 6.03 27.02 8.06 8.73 2.46 3.65× 10−11 No
Mobile-Edge ResNext Partition 4.09 17.42 5.00 5.42 1.33 4.03× 10−9 No
Mobile-Edge FCN Partition 18.35 36.01 22.66 23.77 3.44 2.11× 10−10 No
Mobile-Edge DUC Partition 45.49 49.93 47.81 47.75 0.63 2.79× 10−5 No
Edge-Cloud ResNet Partition 10.58 23.93 11.10 11.33 1.10 1.02× 10−7 No
Edge-Cloud ResNext Partition 9.73 11.68 10.18 10.22 0.25 3.19× 10−6 No
Edge-Cloud FCN Partition 175.07 308.50 224.46 235.73 34.07 7.53× 10−18 No
Edge-Cloud DUC Partition 1152.53 1159.75 1155.72 1155.91 1.45 2.39× 10−6 No
Mobile-Cloud ResNet Partition 12.29 28.26 14.02 14.62 2.17 5.18× 10−10 No
Mobile-Cloud ResNext Partition 10.69 31.60 11.88 12.34 1.67 3.23× 10−9 No
Mobile-Cloud FCN Partition 186.09 323.57 235.80 247.88 35.81 1.68× 10−11 No
Mobile-Cloud DUC Partition 1172.62 1244.12 1192.89 1200.53 17.37 5.87× 10−6 No

Table 30: Descriptive statistics of the latency for RQ5, including Shapiro-Wilk p-values and normality
assessment

Tier Model Operator Min Max Median Mean Std Shapiro-Wilk p Normal?
Mobile ResNet Quantize Early Exit 5.69 20.66 8.29 9.09 2.67 2.12× 10−9 No
Edge ResNet Quantize Early Exit 2.39 8.34 2.89 3.20 0.94 2.98× 10−4 No
Cloud ResNet Quantize Early Exit 11.18 83.95 17.60 22.50 13.22 3.24× 10−12 No
Mobile ResNext Quantize Early Exit 4.40 14.28 6.68 7.06 1.55 1.02× 10−6 No
Edge ResNext Quantize Early Exit 1.99 5.13 2.30 2.37 0.32 2.61× 10−4 No
Cloud ResNext Quantize Early Exit 11.17 83.98 17.67 22.50 13.21 2.97× 10−13 No
Mobile FCN Quantize Early Exit 12.22 26.65 16.85 17.33 2.67 9.52× 10−7 No
Edge FCN Quantize EarlyExit 4.57 16.45 6.22 6.63 1.51 3.13× 10−5 No
Cloud FCN Quantize Early Exit 3.30 7.82 3.76 3.89 0.56 2.14× 10−4 No
Mobile DUC Quantize EarlyExit 31.67 56.66 35.21 35.44 1.58 5.72× 10−8 No
Edge DUC Quantize Early Exit 15.35 33.97 17.30 17.24 1.26 3.18× 10−6 No
Cloud DUC Quantize EarlyExit 29.06 47.22 30.70 31.06 1.77 1.51× 10−7 No
Mobile-Edge ResNet Quantize Early Exit Partition 3.99 11.51 5.63 5.84 1.13 2.34× 10−6 No
Edge-Cloud ResNet Quantize Early Exit Partition 9.37 10.53 9.76 9.76 0.17 1.79× 10−5 No
Mobile-Cloud ResNet Quantize Early Exit 11.31 18.04 12.49 12.76 1.07 5.18× 10−7 No
Mobile-Edge ResNext Quantize Early Exit Partition 3.59 10.08 4.77 5.01 0.93 3.06× 10−7 No
Edge-Cloud ResNext Quantize Early Exit Partition 9.20 10.21 9.59 9.61 0.17 1.88× 10−5 No
Mobile-Cloud ResNext Quantize Early Exit Partition 10.79 15.80 11.93 12.09 0.72 2.31× 10−5 No
Mobile-Edge FCN Quantize Early Exit Partition 10.32 23.18 14.08 14.62 2.27 7.12× 10−6 No
Edge-Cloud FCN Quantize Early Exit Partition 173.28 298.98 220.38 231.49 33.28 1.31× 10−11 No
Mobile-Cloud FCN Quantize Early Exit Partition 178.66 308.73 228.21 239.51 34.31 2.93× 10−12 No
Mobile-Edge DUC Quantize Early Exit Partition 29.33 34.06 32.01 31.80 1.12 2.17× 10−5 No
Edge-Cloud DUC Quantize Early Exit Partition 466.66 472.78 469.10 469.26 0.95 3.11× 10−4 No
Mobile-Cloud DUC Quantize Early Exit Partition 485.44 512.84 488.60 490.17 4.92 4.81× 10−6 No

C.1 Hypothesis Testing
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Table 31: Descriptive statistics of the latency for RQ6 (Cloud Identity Models), including Shapiro-Wilk
p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Identity 1 1 250.811300 250.973800 250.938000 250.922300 0.059400 0.140800 Yes
Cloud ResNext Identity 1 1 250.588000 250.790100 250.698300 250.693400 0.068000 0.997600 Yes
Cloud FCN Identity 1 1 20.544300 20.689900 20.585200 20.610800 0.056400 0.411200 Yes
Cloud DUC Identity 1 1 91.961000 92.196400 92.038100 92.057300 0.084000 0.726200 Yes
Cloud ResNet Identity 1 10 175.653100 175.813400 175.794100 175.755700 0.063400 0.169900 Yes
Cloud ResNext Identity 1 10 175.091500 175.209100 175.101900 175.125300 0.044000 0.048200 No
Cloud FCN Identity 1 10 14.890900 15.124900 14.919300 14.968000 0.087300 0.165300 Yes
Cloud DUC Identity 1 10 65.639400 65.819800 65.797600 65.747900 0.075900 0.099100 Yes
Cloud ResNet Identity 1 50 168.998500 169.377200 169.140100 169.160200 0.122500 0.473600 Yes
Cloud ResNext Identity 1 50 168.204300 168.428100 168.295400 168.305100 0.071600 0.501400 Yes
Cloud FCN Identity 1 50 14.882500 14.896900 14.886800 14.888800 0.005200 0.695500 Yes
Cloud DUC Identity 1 50 63.523800 63.643000 63.608700 63.594900 0.039900 0.532100 Yes
Cloud ResNet Identity 1 100 168.511600 168.821100 168.690200 168.674200 0.098900 0.650300 Yes
Cloud ResNext Identity 1 100 167.912900 168.085800 167.966600 167.983600 0.062700 0.673700 Yes
Cloud FCN Identity 1 100 14.890600 15.223300 15.005500 15.031900 0.114700 0.847000 Yes
Cloud DUC Identity 1 100 63.032300 63.666900 63.527700 63.431300 0.229700 0.424000 Yes
Cloud ResNet Identity 1 150 168.479000 168.832100 168.591800 168.603300 0.127300 0.297600 Yes
Cloud ResNext Identity 1 150 167.900300 168.083400 168.005800 167.998700 0.058400 0.569500 Yes
Cloud FCN Identity 1 150 14.869000 15.099800 14.991200 14.985100 0.095000 0.328500 Yes
Cloud DUC Identity 1 150 63.292700 63.840300 63.641500 63.615900 0.202900 0.625800 Yes
Cloud ResNet Identity 1 200 168.599100 168.940100 168.758000 168.732600 0.125300 0.348400 Yes
Cloud ResNext Identity 1 200 167.799900 167.976600 167.861500 167.870300 0.059400 0.577400 Yes
Cloud FCN Identity 1 200 14.962100 15.113300 15.051600 15.042600 0.055500 0.816600 Yes
Cloud DUC Identity 1 200 63.509500 63.759100 63.584100 63.613000 0.091000 0.660800 Yes
Cloud ResNet Identity 10 1 99.538600 99.868200 99.708700 99.687300 0.124500 0.586900 Yes
Cloud ResNext Identity 10 1 98.620300 100.406200 99.836300 99.542200 0.671000 0.519700 Yes
Cloud FCN Identity 10 1 8.086800 8.277200 8.184300 8.187000 0.061100 0.750900 Yes
Cloud DUC Identity 10 1 36.810900 37.232300 37.017000 37.034800 0.151400 0.864200 Yes
Cloud ResNet Identity 10 10 23.034800 23.188800 23.075200 23.102400 0.058600 0.460400 Yes
Cloud ResNext Identity 10 10 22.942300 23.035700 23.015700 23.001500 0.032300 0.310800 Yes
Cloud FCN Identity 10 10 0.433000 0.864500 0.731900 0.677600 0.174400 0.322700 Yes
Cloud DUC Identity 10 10 7.203200 7.323000 7.281200 7.274300 0.044600 0.592500 Yes
Cloud ResNet Identity 10 50 16.419500 16.540800 16.431000 16.456100 0.044400 0.057600 Yes
Cloud ResNext Identity 10 50 16.175300 16.324900 16.296300 16.260400 0.060100 0.207800 Yes
Cloud FCN Identity 10 50 0.452000 0.886000 0.704200 0.660900 0.167400 0.512800 Yes
Cloud DUC Identity 10 50 5.271800 5.382500 5.300800 5.307900 0.039400 0.118600 Yes
Cloud ResNet Identity 10 100 16.003300 16.172300 16.047800 16.080000 0.065200 0.390700 Yes
Cloud ResNext Identity 10 100 15.749100 15.977700 15.828900 15.858200 0.079400 0.836600 Yes
Cloud FCN Identity 10 100 0.417000 0.776700 0.696800 0.654300 0.130200 0.265200 Yes
Cloud DUC Identity 10 100 5.197000 5.347900 5.306800 5.282100 0.062200 0.238900 Yes
Cloud ResNet Identity 10 150 15.917000 16.277800 16.116600 16.120500 0.122600 0.866100 Yes
Cloud ResNext Identity 10 150 15.879600 16.114100 15.992700 15.994100 0.094000 0.436800 Yes
Cloud FCN Identity 10 150 0.440600 0.826900 0.732400 0.657200 0.162200 0.171400 Yes
Cloud DUC Identity 10 150 5.204800 5.370900 5.260700 5.277000 0.062000 0.658500 Yes
Cloud ResNet Identity 10 200 16.036000 16.139800 16.066000 16.075300 0.037400 0.526800 Yes
Cloud ResNext Identity 10 200 15.840300 16.081000 15.925700 15.953800 0.092200 0.556400 Yes
Cloud FCN Identity 10 200 0.426300 0.780900 0.694900 0.658300 0.120800 0.057400 Yes
Cloud DUC Identity 10 200 5.275900 5.344800 5.286700 5.297500 0.024800 0.099300 Yes
Cloud ResNet Identity 50 1 86.160600 86.360300 86.289200 86.272900 0.073600 0.726000 Yes
Cloud ResNext Identity 50 1 85.487600 87.046400 85.585100 85.857200 0.598400 0.002700 No
Cloud FCN Identity 50 1 8.166200 8.349400 8.295700 8.262800 0.070800 0.404000 Yes
Cloud DUC Identity 50 1 32.816400 33.001700 32.895200 32.897000 0.072300 0.487400 Yes
Cloud ResNet Identity 50 10 9.701300 11.022000 9.730000 9.984800 0.518900 0.000400 No
Cloud ResNext Identity 50 10 9.435900 9.621000 9.500100 9.512300 0.063500 0.785100 Yes
Cloud FCN Identity 50 10 0.425700 0.902000 0.637800 0.622000 0.163600 0.622500 Yes
Cloud DUC Identity 50 10 3.152700 3.316800 3.167400 3.203400 0.062000 0.099600 Yes
Cloud ResNet Identity 50 50 2.997100 3.169400 3.133000 3.101700 0.062900 0.456300 Yes
Cloud ResNext Identity 50 50 2.885400 2.983100 2.910600 2.920100 0.033600 0.237900 Yes
Cloud FCN Identity 50 50 0.460300 0.502800 0.480000 0.477700 0.016100 0.440300 Yes
Cloud DUC Identity 50 50 1.107000 1.139400 1.117800 1.120700 0.012000 0.668000 Yes
Cloud ResNet Identity 50 100 2.588300 2.752500 2.639100 2.656700 0.066200 0.322700 Yes
Cloud ResNext Identity 50 100 2.397100 2.472700 2.436000 2.434400 0.024200 0.766100 Yes
Cloud FCN Identity 50 100 0.404300 0.459600 0.413800 0.425900 0.021100 0.298200 Yes
Cloud DUC Identity 50 100 1.046500 1.141100 1.081100 1.080000 0.034100 0.241100 Yes
Cloud ResNet Identity 50 150 2.637100 2.834200 2.722500 2.725900 0.069600 0.917100 Yes
Cloud ResNext Identity 50 150 2.377600 2.638000 2.488200 2.500700 0.101100 0.568100 Yes
Cloud FCN Identity 50 150 0.405300 0.491800 0.425400 0.439900 0.033100 0.399500 Yes
Cloud DUC Identity 50 150 1.061100 2.376000 1.113100 1.348700 0.514100 0.000500 No
Cloud ResNet Identity 50 200 2.694700 2.757700 2.719200 2.717600 0.022700 0.283400 Yes
Cloud ResNext Identity 50 200 2.470400 2.547900 2.500800 2.504200 0.031200 0.365500 Yes
Cloud FCN Identity 50 200 0.451700 0.507500 0.491400 0.487300 0.019700 0.399700 Yes
Cloud DUC Identity 50 200 1.104300 2.450200 1.144100 1.399600 0.525600 0.000400 No
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Table 32: Descriptive statistics of the latency for RQ6 (Cloud Identity Models), including Shapiro-Wilk
p-values and normality assessment (Part 2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Identity 100 1 84.889400 85.448300 85.044300 85.120300 0.195200 0.689300 Yes
Cloud ResNext Identity 100 1 84.101500 84.396900 84.220500 84.226400 0.099500 0.803300 Yes
Cloud FCN Identity 100 1 8.026500 8.216100 8.160500 8.143300 0.067000 0.573800 Yes
Cloud DUC Identity 100 1 32.770200 32.967400 32.891900 32.884200 0.065000 0.691600 Yes
Cloud ResNet Identity 100 10 8.324600 8.455700 8.402600 8.395100 0.043200 0.941600 Yes
Cloud ResNext Identity 100 10 8.099700 8.263700 8.215700 8.190300 0.062900 0.477900 Yes
Cloud FCN Identity 100 10 0.461600 0.843200 0.636500 0.647200 0.163500 0.204700 Yes
Cloud DUC Identity 100 10 3.149200 3.202900 3.179400 3.181300 0.019000 0.542100 Yes
Cloud ResNet Identity 100 50 1.704100 1.948600 1.802300 1.810200 0.078600 0.387800 Yes
Cloud ResNext Identity 100 50 1.526900 1.625700 1.596000 1.583700 0.034800 0.759300 Yes
Cloud FCN Identity 100 50 0.397000 0.477600 0.431600 0.439200 0.030200 0.628900 Yes
Cloud DUC Identity 100 50 1.033600 1.174800 1.072100 1.082700 0.052100 0.306500 Yes
Cloud ResNet Identity 100 100 1.369200 1.599200 1.401200 1.435200 0.085000 0.045100 No
Cloud ResNext Identity 100 100 1.112100 1.261600 1.193600 1.180000 0.054900 0.645100 Yes
Cloud FCN Identity 100 100 0.406100 0.473800 0.445300 0.439200 0.024600 0.777100 Yes
Cloud DUC Identity 100 100 1.048400 1.138600 1.073200 1.084900 0.032900 0.601700 Yes
Cloud ResNet Identity 100 150 1.364000 1.454100 1.402500 1.405100 0.029400 0.903000 Yes
Cloud ResNext Identity 100 150 1.201100 1.314500 1.293300 1.266900 0.045800 0.202800 Yes
Cloud FCN Identity 100 150 0.406800 0.524400 0.482800 0.477400 0.041000 0.686000 Yes
Cloud DUC Identity 100 150 1.050100 1.098000 1.066800 1.073100 0.018500 0.497300 Yes
Cloud ResNet Identity 100 200 1.332800 1.537900 1.387800 1.414400 0.068800 0.461000 Yes
Cloud ResNext Identity 100 200 1.105900 1.304900 1.206600 1.204700 0.067500 0.999700 Yes
Cloud FCN Identity 100 200 0.411400 0.542800 0.447400 0.462600 0.044200 0.446300 Yes
Cloud DUC Identity 100 200 1.064900 1.101700 1.083500 1.085700 0.013900 0.526200 Yes
Cloud ResNet Identity 150 1 85.010600 85.113000 85.055900 85.054700 0.038100 0.654100 Yes
Cloud ResNext Identity 150 1 84.182100 86.193200 84.399500 84.691300 0.755800 0.003400 No
Cloud FCN Identity 150 1 8.094800 8.313700 8.185400 8.188100 0.071200 0.507800 Yes
Cloud DUC Identity 150 1 32.750800 32.918300 32.817700 32.827600 0.053700 0.634400 Yes
Cloud ResNet Identity 150 10 8.383300 8.485700 8.446900 8.439400 0.040500 0.457800 Yes
Cloud ResNext Identity 150 10 8.146200 8.203400 8.191400 8.184700 0.021200 0.208300 Yes
Cloud FCN Identity 150 10 0.419600 0.907600 0.690400 0.663200 0.210800 0.179900 Yes
Cloud DUC Identity 150 10 3.042000 3.227500 3.179700 3.166600 0.065000 0.089000 Yes
Cloud ResNet Identity 150 50 1.765400 1.928600 1.787800 1.817600 0.061400 0.154000 Yes
Cloud ResNext Identity 150 50 1.558600 1.717500 1.596500 1.612400 0.054500 0.055600 Yes
Cloud FCN Identity 150 50 0.420500 0.518400 0.435200 0.447900 0.035700 0.009200 No
Cloud DUC Identity 150 50 1.051000 1.087000 1.072200 1.068700 0.013700 0.607300 Yes
Cloud ResNet Identity 150 100 1.410000 1.606700 1.499300 1.505000 0.078100 0.474000 Yes
Cloud ResNext Identity 150 100 1.182500 1.289100 1.205400 1.217200 0.038500 0.177300 Yes
Cloud FCN Identity 150 100 0.420800 0.482300 0.446100 0.443900 0.022700 0.344300 Yes
Cloud DUC Identity 150 100 1.056100 1.244800 1.089600 1.114000 0.067100 0.040400 No
Cloud ResNet Identity 150 150 1.257400 1.579300 1.335800 1.380500 0.108500 0.328200 Yes
Cloud ResNext Identity 150 150 1.129000 1.249700 1.210200 1.198600 0.041400 0.819900 Yes
Cloud FCN Identity 150 150 0.412600 0.491500 0.425300 0.439900 0.029800 0.241200 Yes
Cloud DUC Identity 150 150 1.068200 1.142900 1.091500 1.097500 0.026100 0.645000 Yes
Cloud ResNet Identity 150 200 1.301100 1.461500 1.409900 1.394100 0.053800 0.745400 Yes
Cloud ResNext Identity 150 200 1.104100 1.397100 1.231000 1.248900 0.108900 0.764400 Yes
Cloud FCN Identity 150 200 0.397900 0.513200 0.414800 0.438600 0.043100 0.245800 Yes
Cloud DUC Identity 150 200 1.055100 1.115200 1.088900 1.086800 0.024000 0.441500 Yes
Cloud ResNet Identity 200 1 84.711000 85.007800 84.900500 84.882800 0.096400 0.451900 Yes
Cloud ResNext Identity 200 1 84.187900 84.317700 84.282100 84.268100 0.049100 0.434700 Yes
Cloud FCN Identity 200 1 8.079400 8.217000 8.138800 8.143700 0.044100 0.724500 Yes
Cloud DUC Identity 200 1 32.767500 33.134900 32.949000 32.931700 0.134100 0.734900 Yes
Cloud ResNet Identity 200 10 8.409900 8.548800 8.461200 8.467000 0.051600 0.620300 Yes
Cloud ResNext Identity 200 10 8.099300 8.285200 8.274200 8.221900 0.075300 0.091800 Yes
Cloud FCN Identity 200 10 0.443100 0.911300 0.677500 0.631900 0.174800 0.340100 Yes
Cloud DUC Identity 200 10 3.000800 3.215200 3.196400 3.138100 0.084000 0.141800 Yes
Cloud ResNet Identity 200 50 1.791400 1.835400 1.813200 1.814200 0.018200 0.292300 Yes
Cloud ResNext Identity 200 50 1.549800 1.680500 1.628100 1.625300 0.042500 0.479600 Yes
Cloud FCN Identity 200 50 0.455400 0.514900 0.463200 0.474600 0.021800 0.145200 Yes
Cloud DUC Identity 200 50 1.086300 1.136200 1.111900 1.109500 0.017800 0.865400 Yes
Cloud ResNet Identity 200 100 1.427300 1.572200 1.491000 1.494300 0.046200 0.572600 Yes
Cloud ResNext Identity 200 100 1.223000 1.268800 1.239500 1.242200 0.015200 0.709600 Yes
Cloud FCN Identity 200 100 0.457500 0.524400 0.477900 0.489200 0.025300 0.496100 Yes
Cloud DUC Identity 200 100 1.080700 1.151900 1.093800 1.110100 0.027200 0.309500 Yes
Cloud ResNet Identity 200 150 1.313400 1.467000 1.428100 1.417600 0.055200 0.125700 Yes
Cloud ResNext Identity 200 150 1.206500 1.393700 1.268800 1.286000 0.061400 0.612700 Yes
Cloud FCN Identity 200 150 0.435700 0.496200 0.455500 0.459500 0.020000 0.335500 Yes
Cloud DUC Identity 200 150 1.080900 1.143000 1.127100 1.118800 0.022200 0.562600 Yes
Cloud ResNet Identity 200 200 1.398400 1.482100 1.452800 1.450100 0.028800 0.485900 Yes
Cloud ResNext Identity 200 200 1.212400 1.318300 1.223300 1.239500 0.040000 0.008300 No
Cloud FCN Identity 200 200 0.444200 0.512100 0.479900 0.476200 0.025700 0.650600 Yes
Cloud DUC Identity 200 200 1.123700 1.199400 1.143200 1.151700 0.028300 0.409700 Yes
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Table 33: Descriptive statistics of the latency for RQ6 (Cloud Quantized Models), including Shapiro-Wilk
p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Quantization 1 1 250.400700 251.653200 250.571700 250.943900 0.557000 0.048400 No
Cloud ResNext Quantization 1 1 250.425100 250.578600 250.491600 250.497000 0.051100 0.985900 Yes
Cloud FCN Quantization 1 1 20.501000 20.582400 20.552100 20.545700 0.029300 0.842600 Yes
Cloud DUC Quantization 1 1 93.663800 93.787000 93.762100 93.743800 0.044300 0.306500 Yes
Cloud ResNet Quantization 1 10 174.600800 174.713400 174.684400 174.672200 0.041300 0.421600 Yes
Cloud ResNext Quantization 1 10 174.505500 174.711000 174.567200 174.582000 0.069300 0.289900 Yes
Cloud FCN Quantization 1 10 13.887100 14.094800 13.992500 13.992500 0.089500 0.192200 Yes
Cloud DUC Quantization 1 10 65.712400 66.502200 65.849400 65.942100 0.286000 0.024500 No
Cloud ResNet Quantization 1 50 167.777700 168.636900 167.811200 167.995200 0.326900 0.008400 No
Cloud ResNext Quantization 1 50 167.698700 167.833500 167.797400 167.780700 0.045900 0.525100 Yes
Cloud FCN Quantization 1 50 13.892400 14.159100 14.084900 14.049200 0.089600 0.584400 Yes
Cloud DUC Quantization 1 50 63.773400 64.165500 63.864700 63.905500 0.135900 0.119500 Yes
Cloud ResNet Quantization 1 100 167.399500 167.618600 167.472400 167.498200 0.073100 0.803900 Yes
Cloud ResNext Quantization 1 100 167.304200 167.447800 167.325800 167.349400 0.051200 0.076400 Yes
Cloud FCN Quantization 1 100 13.877900 14.094000 13.896800 13.952700 0.084200 0.140100 Yes
Cloud DUC Quantization 1 100 63.903200 64.766600 64.576700 64.419300 0.339100 0.314100 Yes
Cloud ResNet Quantization 1 150 167.328200 167.572500 167.421900 167.436100 0.090800 0.718000 Yes
Cloud ResNext Quantization 1 150 167.298200 167.600500 167.402600 167.401400 0.109700 0.177000 Yes
Cloud FCN Quantization 1 150 13.861400 14.178100 14.017400 14.027800 0.107300 0.978600 Yes
Cloud DUC Quantization 1 150 63.756600 63.950000 63.796800 63.833300 0.078300 0.227500 Yes
Cloud ResNet Quantization 1 200 167.488400 167.700100 167.582500 167.572500 0.077700 0.456500 Yes
Cloud ResNext Quantization 1 200 167.299100 167.499700 167.407900 167.406000 0.064100 0.658500 Yes
Cloud FCN Quantization 1 200 13.892800 14.069400 13.959400 13.966700 0.060700 0.824000 Yes
Cloud DUC Quantization 1 200 63.877700 64.959700 63.960200 64.200500 0.400200 0.054700 Yes
Cloud ResNet Quantization 10 1 98.367400 98.491300 98.464600 98.447900 0.042400 0.139000 Yes
Cloud ResNext Quantization 10 1 98.239200 98.494600 98.465200 98.420600 0.092700 0.022200 No
Cloud FCN Quantization 10 1 7.437300 7.959100 7.585300 7.659800 0.213300 0.268800 Yes
Cloud DUC Quantization 10 1 37.213700 38.172800 37.288600 37.443100 0.366200 0.001700 No
Cloud ResNet Quantization 10 10 22.865900 23.025200 22.943300 22.937900 0.058000 0.783500 Yes
Cloud ResNext Quantization 10 10 22.792600 22.928200 22.824000 22.843500 0.048300 0.459700 Yes
Cloud FCN Quantization 10 10 0.409500 0.837500 0.744400 0.647800 0.185100 0.105400 Yes
Cloud DUC Quantization 10 10 8.661900 8.953200 8.783300 8.811300 0.102100 0.862000 Yes
Cloud ResNet Quantization 10 50 16.099300 16.222300 16.121600 16.146800 0.045800 0.354000 Yes
Cloud ResNext Quantization 10 50 15.913600 16.210300 16.094600 16.078200 0.096100 0.719800 Yes
Cloud FCN Quantization 10 50 0.367100 0.798700 0.785800 0.650300 0.180800 0.057500 Yes
Cloud DUC Quantization 10 50 6.953000 7.089500 7.060800 7.029100 0.056900 0.151300 Yes
Cloud ResNet Quantization 10 100 15.647400 15.815200 15.724400 15.720300 0.060800 0.745900 Yes
Cloud ResNext Quantization 10 100 15.540100 15.757300 15.643200 15.646600 0.068900 0.595700 Yes
Cloud FCN Quantization 10 100 0.360800 0.801900 0.730700 0.649500 0.167900 0.234100 Yes
Cloud DUC Quantization 10 100 6.814500 7.079200 6.978500 6.950500 0.106200 0.381900 Yes
Cloud ResNet Quantization 10 150 15.679300 15.841100 15.716000 15.744900 0.058800 0.508100 Yes
Cloud ResNext Quantization 10 150 15.625500 15.973700 15.827500 15.826900 0.125400 0.739400 Yes
Cloud FCN Quantization 10 150 0.363900 0.861900 0.597200 0.640200 0.175500 0.702100 Yes
Cloud DUC Quantization 10 150 6.747100 7.060000 6.876000 6.887900 0.119600 0.615600 Yes
Cloud ResNet Quantization 10 200 15.614200 16.080600 15.898600 15.894900 0.157700 0.532400 Yes
Cloud ResNext Quantization 10 200 15.614600 15.927000 15.739700 15.737300 0.107400 0.502200 Yes
Cloud FCN Quantization 10 200 0.360000 0.855200 0.636200 0.654000 0.185000 0.492400 Yes
Cloud DUC Quantization 10 200 7.084300 7.280900 7.188900 7.181600 0.065600 0.992600 Yes
Cloud ResNet Quantization 50 1 85.000100 85.200300 85.098700 85.096000 0.064200 0.767000 Yes
Cloud ResNext Quantization 50 1 84.896000 85.106400 84.993800 85.015700 0.076600 0.508100 Yes
Cloud FCN Quantization 50 1 7.375300 7.789700 7.705600 7.645100 0.150500 0.305200 Yes
Cloud DUC Quantization 50 1 33.058200 33.415300 33.342400 33.275800 0.139400 0.304600 Yes
Cloud ResNet Quantization 50 10 9.314400 9.429500 9.374100 9.373100 0.037200 0.935600 Yes
Cloud ResNext Quantization 50 10 9.290100 9.403000 9.325500 9.344000 0.046700 0.232800 Yes
Cloud FCN Quantization 50 10 0.405900 0.861400 0.663900 0.630900 0.190700 0.253000 Yes
Cloud DUC Quantization 50 10 4.637100 5.036500 4.774300 4.796400 0.130800 0.237500 Yes
Cloud ResNet Quantization 50 50 2.701900 2.799900 2.786000 2.772900 0.035900 0.007900 No
Cloud ResNext Quantization 50 50 2.738900 2.766900 2.758900 2.755000 0.009800 0.718600 Yes
Cloud FCN Quantization 50 50 0.386500 0.408900 0.398000 0.397400 0.009300 0.274900 Yes
Cloud DUC Quantization 50 50 2.579800 2.964200 2.857900 2.826600 0.129600 0.089700 Yes
Cloud ResNet Quantization 50 100 2.224600 2.279300 2.277500 2.264800 0.020800 0.016900 No
Cloud ResNext Quantization 50 100 2.179500 2.344500 2.236800 2.241400 0.058300 0.459100 Yes
Cloud FCN Quantization 50 100 0.365000 0.416600 0.397900 0.393800 0.017600 0.913400 Yes
Cloud DUC Quantization 50 100 2.766300 2.904700 2.809800 2.830700 0.050300 0.675300 Yes
Cloud ResNet Quantization 50 150 2.260000 2.310800 2.280700 2.283000 0.019100 0.709600 Yes
Cloud ResNext Quantization 50 150 2.200900 2.369300 2.244200 2.283300 0.071300 0.118400 Yes
Cloud FCN Quantization 50 150 0.356400 0.410800 0.396700 0.386500 0.021400 0.334600 Yes
Cloud DUC Quantization 50 150 2.710400 3.017900 2.847600 2.879300 0.116600 0.493700 Yes
Cloud ResNet Quantization 50 200 2.348400 2.409800 2.389400 2.383600 0.021300 0.829600 Yes
Cloud ResNext Quantization 50 200 2.286500 2.367900 2.304100 2.320100 0.029600 0.475900 Yes
Cloud FCN Quantization 50 200 0.381600 0.403000 0.388500 0.389600 0.007700 0.490900 Yes
Cloud DUC Quantization 50 200 2.594100 2.773300 2.713600 2.700900 0.062900 0.723800 Yes
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Table 34: Descriptive statistics of the latency for RQ6 (Cloud Quantized Models), including Shapiro-Wilk
p-values and normality assessment (Part 2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Quantization 100 1 83.696400 83.836400 83.746600 83.764300 0.053100 0.574500 Yes
Cloud ResNext Quantization 100 1 83.590100 83.726400 83.696400 83.682300 0.047500 0.052400 Yes
Cloud FCN Quantization 100 1 7.440400 7.782000 7.651500 7.612800 0.143000 0.233900 Yes
Cloud DUC Quantization 100 1 33.015700 34.681600 33.080300 33.389100 0.647000 0.000600 No
Cloud ResNet Quantization 100 10 7.975800 8.249700 8.104500 8.119500 0.095200 0.936600 Yes
Cloud ResNext Quantization 100 10 7.991900 8.205400 7.997400 8.045200 0.081500 0.006700 No
Cloud FCN Quantization 100 10 0.377600 0.832600 0.600400 0.605900 0.145000 0.733100 Yes
Cloud DUC Quantization 100 10 4.852500 5.001000 4.865900 4.914300 0.065800 0.040000 No
Cloud ResNet Quantization 100 50 1.420000 1.710600 1.519000 1.537900 0.101000 0.739900 Yes
Cloud ResNext Quantization 100 50 1.392100 1.624100 1.609500 1.529700 0.105300 0.026400 No
Cloud FCN Quantization 100 50 0.386900 0.829000 0.393700 0.501100 0.170200 0.014800 No
Cloud DUC Quantization 100 50 2.668900 2.774100 2.756200 2.731900 0.043300 0.164200 Yes
Cloud ResNet Quantization 100 100 0.963900 1.176400 1.008100 1.038000 0.075100 0.272700 Yes
Cloud ResNext Quantization 100 100 0.930400 0.978900 0.963000 0.956800 0.021100 0.148000 Yes
Cloud FCN Quantization 100 100 0.365000 0.403900 0.398800 0.389000 0.015500 0.176700 Yes
Cloud DUC Quantization 100 100 2.643500 2.759000 2.709900 2.711900 0.043200 0.527900 Yes
Cloud ResNet Quantization 100 150 1.006900 1.113000 1.069100 1.058800 0.043100 0.326000 Yes
Cloud ResNext Quantization 100 150 0.971900 1.307100 1.116500 1.132400 0.136000 0.376100 Yes
Cloud FCN Quantization 100 150 0.370800 0.417400 0.385400 0.392800 0.017000 0.647700 Yes
Cloud DUC Quantization 100 150 2.794500 3.068500 2.921300 2.922800 0.099600 0.863000 Yes
Cloud ResNet Quantization 100 200 0.994200 1.221100 1.070800 1.090800 0.073800 0.490900 Yes
Cloud ResNext Quantization 100 200 0.966300 1.210400 0.994700 1.058900 0.096900 0.163200 Yes
Cloud FCN Quantization 100 200 0.366900 0.436200 0.390000 0.393400 0.024100 0.530800 Yes
Cloud DUC Quantization 100 200 2.654700 2.842500 2.782400 2.759400 0.073300 0.456700 Yes
Cloud ResNet Quantization 150 1 83.772000 84.004700 83.814500 83.844500 0.082800 0.062900 Yes
Cloud ResNext Quantization 150 1 83.672000 83.896100 83.695800 83.732700 0.082900 0.011400 No
Cloud FCN Quantization 150 1 7.620500 7.801200 7.685900 7.689400 0.061700 0.409900 Yes
Cloud DUC Quantization 150 1 32.968500 33.263300 33.070700 33.095600 0.095700 0.551600 Yes
Cloud ResNet Quantization 150 10 7.917400 8.135800 8.103500 8.070400 0.078000 0.023100 No
Cloud ResNext Quantization 150 10 7.995500 8.101400 8.055000 8.054100 0.041700 0.474100 Yes
Cloud FCN Quantization 150 10 0.364700 0.838000 0.712100 0.627200 0.194500 0.233000 Yes
Cloud DUC Quantization 150 10 4.472400 4.901400 4.755600 4.723700 0.139600 0.371000 Yes
Cloud ResNet Quantization 150 50 1.413600 1.702500 1.496900 1.537900 0.101600 0.732500 Yes
Cloud ResNext Quantization 150 50 1.335100 1.571000 1.539300 1.498700 0.087300 0.102300 Yes
Cloud FCN Quantization 150 50 0.364300 0.396900 0.373800 0.377400 0.010900 0.540100 Yes
Cloud DUC Quantization 150 50 2.788400 3.874700 2.867100 3.062400 0.408800 0.003600 No
Cloud ResNet Quantization 150 100 1.021100 1.172500 1.088400 1.083700 0.055800 0.575900 Yes
Cloud ResNext Quantization 150 100 0.977900 1.130100 1.033200 1.039900 0.051900 0.731800 Yes
Cloud FCN Quantization 150 100 0.370400 0.428000 0.394000 0.396300 0.018600 0.712800 Yes
Cloud DUC Quantization 150 100 2.611600 2.786500 2.677000 2.699000 0.067900 0.468500 Yes
Cloud ResNet Quantization 150 150 0.989100 1.094500 1.025000 1.038200 0.036400 0.853800 Yes
Cloud ResNext Quantization 150 150 1.003300 1.054900 1.032100 1.029100 0.022300 0.179600 Yes
Cloud FCN Quantization 150 150 0.361200 0.424800 0.385700 0.387200 0.021400 0.674100 Yes
Cloud DUC Quantization 150 150 2.746400 2.962900 2.852300 2.846600 0.070000 0.748600 Yes
Cloud ResNet Quantization 150 200 0.997000 1.130800 1.033000 1.054600 0.053500 0.318800 Yes
Cloud ResNext Quantization 150 200 0.976200 1.013200 1.008600 0.998100 0.016500 0.051000 Yes
Cloud FCN Quantization 150 200 0.364100 0.434500 0.396700 0.394200 0.024000 0.738400 Yes
Cloud DUC Quantization 150 200 2.572100 2.972900 2.877100 2.814000 0.160800 0.274700 Yes
Cloud ResNet Quantization 200 1 83.667300 83.901500 83.791300 83.783000 0.091800 0.528600 Yes
Cloud ResNext Quantization 200 1 83.704300 83.804800 83.803400 83.783700 0.039700 0.000300 No
Cloud FCN Quantization 200 1 7.569400 7.881600 7.591200 7.647300 0.117700 0.002200 No
Cloud DUC Quantization 200 1 33.077500 33.176600 33.142800 33.132300 0.037400 0.626700 Yes
Cloud ResNet Quantization 200 10 7.973100 8.209400 8.117700 8.100700 0.076100 0.681200 Yes
Cloud ResNext Quantization 200 10 8.028200 8.131400 8.071100 8.076800 0.039700 0.603400 Yes
Cloud FCN Quantization 200 10 0.388200 0.920000 0.615900 0.639200 0.205800 0.582600 Yes
Cloud DUC Quantization 200 10 4.853800 6.270600 4.968300 5.206800 0.533800 0.001400 No
Cloud ResNet Quantization 200 50 1.464600 1.687400 1.481100 1.534100 0.085000 0.096400 Yes
Cloud ResNext Quantization 200 50 1.402800 1.675200 1.457700 1.512400 0.099600 0.432100 Yes
Cloud FCN Quantization 200 50 0.376300 0.423800 0.383600 0.393000 0.016900 0.221000 Yes
Cloud DUC Quantization 200 50 2.751500 2.969200 2.870800 2.865700 0.069100 0.516400 Yes
Cloud ResNet Quantization 200 100 1.108900 1.180500 1.118900 1.133400 0.026600 0.218100 Yes
Cloud ResNext Quantization 200 100 1.017400 1.290800 1.071700 1.110200 0.096600 0.204700 Yes
Cloud FCN Quantization 200 100 0.380200 0.445700 0.393400 0.401500 0.023200 0.126500 Yes
Cloud DUC Quantization 200 100 2.732200 3.537100 2.778400 2.920300 0.309400 0.001400 No
Cloud ResNet Quantization 200 150 1.099700 1.200000 1.125500 1.137000 0.034500 0.392200 Yes
Cloud ResNext Quantization 200 150 1.023500 1.199600 1.077800 1.104600 0.064400 0.659400 Yes
Cloud FCN Quantization 200 150 0.382800 0.414200 0.388200 0.396000 0.012800 0.172000 Yes
Cloud DUC Quantization 200 150 2.734300 2.887800 2.860600 2.841800 0.054800 0.022000 No
Cloud ResNet Quantization 200 200 1.117500 1.197100 1.151800 1.152800 0.031800 0.401800 Yes
Cloud ResNext Quantization 200 200 1.033300 1.140400 1.064300 1.079300 0.039300 0.641100 Yes
Cloud FCN Quantization 200 200 0.372300 0.436300 0.392500 0.396000 0.021500 0.192400 Yes
Cloud DUC Quantization 200 200 2.783500 2.976600 2.855100 2.879100 0.066600 0.826100 Yes
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Table 35: Descriptive statistics of the latency for RQ6 (Cloud Early Exit Models), including Shapiro-Wilk
p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet EarlyExit 1 1 250.631100 250.896600 250.798300 250.784900 0.086100 0.430800 Yes
Cloud ResNext EarlyExit 1 1 250.479000 250.769800 250.561200 250.606500 0.112900 0.429600 Yes
Cloud FCN EarlyExit 1 1 20.507800 20.638900 20.554400 20.567400 0.043500 0.852800 Yes
Cloud DUC EarlyExit 1 1 92.176000 92.219400 92.200700 92.200200 0.014000 0.563100 Yes
Cloud ResNet EarlyExit 1 10 175.241800 175.521500 175.409200 175.379600 0.108700 0.490700 Yes
Cloud ResNext EarlyExit 1 10 174.798400 175.024400 174.998700 174.944200 0.084400 0.197700 Yes
Cloud FCN EarlyExit 1 10 14.770600 14.874900 14.785400 14.805800 0.037700 0.187200 Yes
Cloud DUC EarlyExit 1 10 65.255900 65.606800 65.539100 65.481700 0.127600 0.328800 Yes
Cloud ResNet EarlyExit 1 50 168.593300 168.880000 168.642300 168.691300 0.100400 0.158500 Yes
Cloud ResNext EarlyExit 1 50 168.136000 168.308600 168.188400 168.209500 0.058100 0.723300 Yes
Cloud FCN EarlyExit 1 50 14.758900 14.830400 14.807500 14.806300 0.025500 0.157500 Yes
Cloud DUC EarlyExit 1 50 63.138300 63.556700 63.502900 63.437100 0.151500 0.012400 No
Cloud ResNet EarlyExit 1 100 167.982300 168.232900 168.059600 168.092500 0.099000 0.399100 Yes
Cloud ResNext EarlyExit 1 100 167.746000 167.793900 167.773500 167.769300 0.017600 0.752000 Yes
Cloud FCN EarlyExit 1 100 14.690400 14.872500 14.785700 14.769800 0.069400 0.460700 Yes
Cloud DUC EarlyExit 1 100 63.060900 63.679800 63.531100 63.480900 0.226100 0.156600 Yes
Cloud ResNet EarlyExit 1 150 168.082500 168.322900 168.234100 168.204900 0.087100 0.750900 Yes
Cloud ResNext EarlyExit 1 150 167.693800 167.910200 167.701700 167.758000 0.083800 0.058800 Yes
Cloud FCN EarlyExit 1 150 14.621600 14.887400 14.760900 14.766200 0.105000 0.461600 Yes
Cloud DUC EarlyExit 1 150 63.529100 63.749500 63.695100 63.661700 0.076000 0.549400 Yes
Cloud ResNet EarlyExit 1 200 168.050800 169.787500 168.125700 168.442200 0.673600 0.000700 No
Cloud ResNext EarlyExit 1 200 167.587900 167.904300 167.761400 167.776200 0.117400 0.479500 Yes
Cloud FCN EarlyExit 1 200 14.691200 14.896600 14.877500 14.833700 0.077600 0.096100 Yes
Cloud DUC EarlyExit 1 200 63.415800 63.853100 63.611100 63.603800 0.151400 0.821400 Yes
Cloud ResNet EarlyExit 10 1 99.046500 99.219700 99.096300 99.122300 0.061100 0.722000 Yes
Cloud ResNext EarlyExit 10 1 98.540500 98.846800 98.721400 98.707300 0.126800 0.292500 Yes
Cloud FCN EarlyExit 10 1 7.845000 9.895300 7.987700 8.330200 0.784400 0.001000 No
Cloud DUC EarlyExit 10 1 36.475200 38.203300 36.734500 36.956200 0.631400 0.009700 No
Cloud ResNet EarlyExit 10 10 23.039700 23.194700 23.104000 23.109500 0.049700 0.566600 Yes
Cloud ResNext EarlyExit 10 10 22.821700 22.948500 22.898900 22.889000 0.043500 0.959600 Yes
Cloud FCN EarlyExit 10 10 0.452300 0.877700 0.649800 0.668400 0.174500 0.333000 Yes
Cloud DUC EarlyExit 10 10 7.151700 7.203300 7.175500 7.175000 0.018500 0.858600 Yes
Cloud ResNet EarlyExit 10 50 16.260700 16.415400 16.284700 16.305800 0.056400 0.038700 No
Cloud ResNext EarlyExit 10 50 16.098100 16.291800 16.234100 16.219600 0.066100 0.381500 Yes
Cloud FCN EarlyExit 10 50 0.415300 0.775300 0.707500 0.657700 0.133300 0.198800 Yes
Cloud DUC EarlyExit 10 50 5.157000 5.239800 5.186500 5.195000 0.027500 0.861900 Yes
Cloud ResNet EarlyExit 10 100 15.916600 16.086500 15.962600 15.978900 0.064300 0.374400 Yes
Cloud ResNext EarlyExit 10 100 15.690000 15.986100 15.761500 15.796300 0.101300 0.237700 Yes
Cloud FCN EarlyExit 10 100 0.434900 0.899700 0.690200 0.665000 0.180300 0.565100 Yes
Cloud DUC EarlyExit 10 100 5.128100 5.853500 5.241500 5.334100 0.263700 0.014600 No
Cloud ResNet EarlyExit 10 150 15.797400 16.039900 15.954700 15.944100 0.084700 0.651700 Yes
Cloud ResNext EarlyExit 10 150 15.810800 16.025500 15.925900 15.922900 0.068000 0.426500 Yes
Cloud FCN EarlyExit 10 150 0.427600 0.810000 0.700900 0.646200 0.154100 0.313100 Yes
Cloud DUC EarlyExit 10 150 5.170400 5.293200 5.225100 5.232200 0.044500 0.865400 Yes
Cloud ResNet EarlyExit 10 200 15.908000 16.242400 16.214600 16.114400 0.138600 0.089200 Yes
Cloud ResNext EarlyExit 10 200 15.717300 16.042600 15.843400 15.861800 0.108100 0.909000 Yes
Cloud FCN EarlyExit 10 200 0.432600 0.816400 0.776500 0.658200 0.165200 0.063200 Yes
Cloud DUC EarlyExit 10 200 5.234600 5.358800 5.318500 5.307900 0.048000 0.463000 Yes
Cloud ResNet EarlyExit 50 1 85.645700 86.070000 85.822900 85.862100 0.143600 0.895500 Yes
Cloud ResNext EarlyExit 50 1 85.218400 85.681600 85.334800 85.372600 0.160500 0.077300 Yes
Cloud FCN EarlyExit 50 1 7.999100 8.158700 8.081700 8.080400 0.050500 0.395100 Yes
Cloud DUC EarlyExit 50 1 32.500800 32.752400 32.597500 32.616500 0.088400 0.923800 Yes
Cloud ResNet EarlyExit 50 10 9.540300 9.616700 9.557500 9.575200 0.029900 0.271000 Yes
Cloud ResNext EarlyExit 50 10 9.405500 9.483800 9.459200 9.449800 0.031800 0.307600 Yes
Cloud FCN EarlyExit 50 10 0.398900 0.880400 0.636900 0.609500 0.166500 0.762500 Yes
Cloud DUC EarlyExit 50 10 3.082000 3.128300 3.085300 3.099900 0.019800 0.061100 Yes
Cloud ResNet EarlyExit 50 50 2.910000 3.021600 2.973000 2.967200 0.049000 0.149100 Yes
Cloud ResNext EarlyExit 50 50 2.786300 2.831100 2.804900 2.810500 0.017100 0.451900 Yes
Cloud FCN EarlyExit 50 50 0.404500 0.496100 0.458100 0.449600 0.031800 0.895500 Yes
Cloud DUC EarlyExit 50 50 1.025400 1.069400 1.039500 1.046300 0.016000 0.665300 Yes
Cloud ResNet EarlyExit 50 100 2.464000 2.598000 2.505000 2.513700 0.048300 0.468100 Yes
Cloud ResNext EarlyExit 50 100 2.390600 2.549300 2.424000 2.448200 0.056500 0.368700 Yes
Cloud FCN EarlyExit 50 100 0.365000 0.444200 0.387500 0.394400 0.026400 0.100000 Yes
Cloud DUC EarlyExit 50 100 0.971400 1.002600 0.984600 0.986700 0.010700 0.978900 Yes
Cloud ResNet EarlyExit 50 150 2.525000 3.402500 2.577300 2.745000 0.331700 0.004500 No
Cloud ResNext EarlyExit 50 150 2.331200 2.454900 2.363900 2.380000 0.041600 0.461000 Yes
Cloud FCN EarlyExit 50 150 0.385400 0.504800 0.413000 0.428100 0.044700 0.342600 Yes
Cloud DUC EarlyExit 50 150 0.974100 1.017600 0.977100 0.992200 0.020700 0.014800 No
Cloud ResNet EarlyExit 50 200 2.572600 2.656500 2.597900 2.611900 0.034100 0.268200 Yes
Cloud ResNext EarlyExit 50 200 2.440000 2.505000 2.478300 2.474200 0.021800 0.977300 Yes
Cloud FCN EarlyExit 50 200 0.401000 0.506500 0.416100 0.442400 0.040500 0.236500 Yes
Cloud DUC EarlyExit 50 200 0.973800 1.068500 0.991300 1.001900 0.033900 0.020500 No
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Table 36: Descriptive statistics of the latency for RQ6 (Cloud Early Exit Models), including Shapiro-Wilk
p-values and normality assessment (Part 2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet EarlyExit 100 1 84.374000 84.566600 84.450600 84.460800 0.078500 0.344100 Yes
Cloud ResNext EarlyExit 100 1 83.999900 84.193700 84.113100 84.117300 0.071700 0.475600 Yes
Cloud FCN EarlyExit 100 1 7.946900 8.056000 7.993000 7.994000 0.035900 0.748500 Yes
Cloud DUC EarlyExit 100 1 32.493600 32.713100 32.518400 32.552000 0.081500 0.008600 No
Cloud ResNet EarlyExit 100 10 8.222800 8.377900 8.294100 8.295800 0.052100 0.993300 Yes
Cloud ResNext EarlyExit 100 10 8.049500 8.206800 8.164800 8.139700 0.054900 0.666100 Yes
Cloud FCN EarlyExit 100 10 0.382900 0.708300 0.657300 0.606700 0.119300 0.121100 Yes
Cloud DUC EarlyExit 100 10 2.921000 3.112100 3.106600 3.068300 0.074000 0.001500 No
Cloud ResNet EarlyExit 100 50 1.601800 1.822100 1.689300 1.685800 0.077600 0.420700 Yes
Cloud ResNext EarlyExit 100 50 1.447600 1.633300 1.559000 1.549300 0.060400 0.836000 Yes
Cloud FCN EarlyExit 100 50 0.480700 0.530800 0.502700 0.502300 0.018100 0.765400 Yes
Cloud DUC EarlyExit 100 50 0.995900 1.042100 1.024800 1.020100 0.019200 0.267600 Yes
Cloud ResNet EarlyExit 100 100 1.277400 1.365600 1.323800 1.316800 0.034000 0.462500 Yes
Cloud ResNext EarlyExit 100 100 1.111600 1.172700 1.129700 1.138000 0.020800 0.739900 Yes
Cloud FCN EarlyExit 100 100 0.373500 0.438200 0.391700 0.398500 0.022500 0.567700 Yes
Cloud DUC EarlyExit 100 100 0.957100 0.999900 0.976900 0.977800 0.013600 0.523100 Yes
Cloud ResNet EarlyExit 100 150 1.233500 1.308100 1.283600 1.270000 0.028800 0.352000 Yes
Cloud ResNext EarlyExit 100 150 1.084900 1.201100 1.112400 1.124900 0.039700 0.082800 Yes
Cloud FCN EarlyExit 100 150 0.383600 0.488000 0.385800 0.423500 0.048000 0.018900 No
Cloud DUC EarlyExit 100 150 0.951400 1.052300 1.014300 1.009000 0.033200 0.757000 Yes
Cloud ResNet EarlyExit 100 200 1.210700 1.393600 1.304900 1.289700 0.068600 0.504100 Yes
Cloud ResNext EarlyExit 100 200 1.054600 1.172400 1.109000 1.110600 0.039000 0.990900 Yes
Cloud FCN EarlyExit 100 200 0.381400 0.474900 0.396200 0.420700 0.041200 0.067700 Yes
Cloud DUC EarlyExit 100 200 1.004700 1.017600 1.009800 1.010600 0.005400 0.284100 Yes
Cloud ResNet EarlyExit 150 1 84.517200 84.663700 84.604900 84.592400 0.060500 0.291200 Yes
Cloud ResNext EarlyExit 150 1 84.018200 84.189600 84.046600 84.069000 0.062300 0.050000 Yes
Cloud FCN EarlyExit 150 1 7.859000 7.993400 7.910300 7.912600 0.045700 0.594900 Yes
Cloud DUC EarlyExit 150 1 32.439600 32.782800 32.650600 32.653800 0.120300 0.377100 Yes
Cloud ResNet EarlyExit 150 10 8.221000 8.336500 8.318400 8.296900 0.041000 0.191700 Yes
Cloud ResNext EarlyExit 150 10 8.078800 8.165500 8.144800 8.131800 0.030400 0.523800 Yes
Cloud FCN EarlyExit 150 10 0.401400 0.881600 0.652200 0.633700 0.195700 0.355500 Yes
Cloud DUC EarlyExit 150 10 2.912200 3.117700 3.070600 3.051100 0.073000 0.124100 Yes
Cloud ResNet EarlyExit 150 50 1.610000 1.703200 1.647400 1.656200 0.038700 0.267600 Yes
Cloud ResNext EarlyExit 150 50 1.413800 1.708900 1.583300 1.577400 0.112400 0.619500 Yes
Cloud FCN EarlyExit 150 50 0.376800 0.438000 0.396900 0.400700 0.020200 0.310600 Yes
Cloud DUC EarlyExit 150 50 1.005200 1.068800 1.034100 1.036500 0.020600 0.921500 Yes
Cloud ResNet EarlyExit 150 100 1.230200 1.406200 1.282800 1.300800 0.059100 0.577000 Yes
Cloud ResNext EarlyExit 150 100 1.060500 1.456700 1.126300 1.169400 0.146100 0.013400 No
Cloud FCN EarlyExit 150 100 0.382900 0.432600 0.414200 0.409800 0.019700 0.437800 Yes
Cloud DUC EarlyExit 150 100 0.947100 1.002400 0.981200 0.977000 0.019600 0.895700 Yes
Cloud ResNet EarlyExit 150 150 1.203600 1.317000 1.278700 1.273400 0.038800 0.506500 Yes
Cloud ResNext EarlyExit 150 150 1.089300 1.333500 1.113300 1.150900 0.091900 0.003500 No
Cloud FCN EarlyExit 150 150 0.390600 0.498700 0.424200 0.431800 0.040200 0.484000 Yes
Cloud DUC EarlyExit 150 150 0.961800 1.099400 1.006900 1.019400 0.048200 0.795800 Yes
Cloud ResNet EarlyExit 150 200 1.227300 1.315000 1.276500 1.272300 0.034800 0.466400 Yes
Cloud ResNext EarlyExit 150 200 1.103500 1.163800 1.137600 1.135900 0.024000 0.437600 Yes
Cloud FCN EarlyExit 150 200 0.375900 0.428300 0.395200 0.398600 0.018600 0.845800 Yes
Cloud DUC EarlyExit 150 200 0.947800 1.022200 1.000100 0.991800 0.025600 0.710500 Yes
Cloud ResNet EarlyExit 200 1 84.472200 84.641500 84.508800 84.543200 0.064800 0.368800 Yes
Cloud ResNext EarlyExit 200 1 83.944800 84.118500 84.088500 84.068100 0.062800 0.019400 No
Cloud FCN EarlyExit 200 1 7.908100 8.005000 7.985200 7.972500 0.033700 0.111100 Yes
Cloud DUC EarlyExit 200 1 32.160500 32.563800 32.491000 32.417900 0.141300 0.272800 Yes
Cloud ResNet EarlyExit 200 10 8.291700 8.419200 8.325300 8.336400 0.046800 0.335200 Yes
Cloud ResNext EarlyExit 200 10 8.114600 8.209300 8.182600 8.176000 0.034200 0.335800 Yes
Cloud FCN EarlyExit 200 10 0.440300 0.923300 0.655500 0.638400 0.175500 0.583200 Yes
Cloud DUC EarlyExit 200 10 2.951400 3.152000 3.111700 3.093600 0.072900 0.026900 No
Cloud ResNet EarlyExit 200 50 1.665200 1.757800 1.728900 1.721200 0.032500 0.660600 Yes
Cloud ResNext EarlyExit 200 50 1.500100 1.698300 1.568000 1.584600 0.068000 0.849700 Yes
Cloud FCN EarlyExit 200 50 0.409100 0.495100 0.423600 0.442300 0.032400 0.314200 Yes
Cloud DUC EarlyExit 200 50 0.970700 1.053200 1.020200 1.010500 0.030400 0.656500 Yes
Cloud ResNet EarlyExit 200 100 1.285100 1.389000 1.364100 1.341000 0.040000 0.319800 Yes
Cloud ResNext EarlyExit 200 100 1.132500 1.206900 1.182400 1.178700 0.026200 0.520800 Yes
Cloud FCN EarlyExit 200 100 0.392100 0.460200 0.399000 0.418300 0.028000 0.111700 Yes
Cloud DUC EarlyExit 200 100 0.950000 1.019000 0.970500 0.984400 0.027000 0.296700 Yes
Cloud ResNet EarlyExit 200 150 1.297200 1.380700 1.318600 1.326200 0.028500 0.064800 Yes
Cloud ResNext EarlyExit 200 150 1.120800 1.267800 1.177700 1.188600 0.049500 0.958000 Yes
Cloud FCN EarlyExit 200 150 0.395200 0.471300 0.421000 0.433500 0.029800 0.364000 Yes
Cloud DUC EarlyExit 200 150 1.055200 1.112200 1.067700 1.075600 0.019500 0.182800 Yes
Cloud ResNet EarlyExit 200 200 1.337500 1.434500 1.377100 1.379100 0.034600 0.812900 Yes
Cloud ResNext EarlyExit 200 200 1.166900 1.220300 1.194300 1.193200 0.018300 0.997000 Yes
Cloud FCN EarlyExit 200 200 0.394300 0.484200 0.451800 0.439100 0.034600 0.469700 Yes
Cloud DUC EarlyExit 200 200 1.020600 1.065300 1.044200 1.040700 0.016700 0.599900 Yes
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Table 37: Descriptive statistics of the latency for RQ6 (Cloud Quantized Early Exit Models), including
Shapiro-Wilk p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Quantized EarlyExit 1 1 250.453800 250.601900 250.505200 250.506700 0.054400 0.309100 Yes
Cloud ResNext Quantized EarlyExit 1 1 250.395100 250.589000 250.480500 250.470400 0.070300 0.396700 Yes
Cloud FCN Quantized EarlyExit 1 1 20.481200 20.594500 20.499800 20.528500 0.048500 0.101500 Yes
Cloud DUC Quantized EarlyExit 1 1 93.567000 93.859000 93.765000 93.743100 0.096500 0.398900 Yes
Cloud ResNet Quantized EarlyExit 1 10 174.457300 174.613600 174.599600 174.554900 0.065100 0.092500 Yes
Cloud ResNext Quantized EarlyExit 1 10 174.382300 174.611100 174.435200 174.468500 0.083600 0.453500 Yes
Cloud FCN Quantized EarlyExit 1 10 13.921600 14.087400 13.961900 13.982700 0.056700 0.319200 Yes
Cloud DUC Quantized EarlyExit 1 10 65.739000 66.422600 66.176000 66.099000 0.256600 0.650400 Yes
Cloud ResNet Quantized EarlyExit 1 50 167.660500 167.865300 167.789600 167.781800 0.068500 0.642900 Yes
Cloud ResNext Quantized EarlyExit 1 50 167.616100 167.899600 167.762700 167.748600 0.096700 0.936900 Yes
Cloud FCN Quantized EarlyExit 1 50 13.880900 13.992400 13.991400 13.948400 0.053300 0.009900 No
Cloud DUC Quantized EarlyExit 1 50 63.760900 64.512600 64.033500 64.103900 0.287100 0.595600 Yes
Cloud ResNet Quantized EarlyExit 1 100 167.272300 167.619900 167.410900 167.411800 0.125100 0.618000 Yes
Cloud ResNext Quantized EarlyExit 1 100 167.195900 167.487700 167.374200 167.373900 0.098900 0.418100 Yes
Cloud FCN Quantized EarlyExit 1 100 13.874200 14.086900 13.965500 13.964000 0.075000 0.773200 Yes
Cloud DUC Quantized EarlyExit 1 100 63.780300 64.570700 63.948600 64.105000 0.311300 0.297000 Yes
Cloud ResNet Quantized EarlyExit 1 150 167.273600 167.532100 167.427600 167.402400 0.102200 0.436900 Yes
Cloud ResNext Quantized EarlyExit 1 150 167.174200 167.403400 167.315100 167.312200 0.085900 0.508600 Yes
Cloud FCN Quantized EarlyExit 1 150 13.886100 14.090200 13.888200 13.943800 0.079700 0.037300 No
Cloud DUC Quantized EarlyExit 1 150 63.789500 64.608000 64.072900 64.090800 0.286600 0.371700 Yes
Cloud ResNet Quantized EarlyExit 1 200 167.337600 167.911400 167.514300 167.555200 0.191500 0.259100 Yes
Cloud ResNext Quantized EarlyExit 1 200 167.388800 167.543800 167.407800 167.430100 0.057900 0.014900 No
Cloud FCN Quantized EarlyExit 1 200 13.888500 14.080000 13.987400 13.988300 0.060800 0.503700 Yes
Cloud DUC Quantized EarlyExit 1 200 63.823700 65.379000 64.056400 64.300900 0.571200 0.101200 Yes
Cloud ResNet Quantized EarlyExit 10 1 98.106600 98.433100 98.299300 98.278700 0.106800 0.925400 Yes
Cloud ResNext Quantized EarlyExit 10 1 98.095900 98.387200 98.292500 98.266300 0.105100 0.722300 Yes
Cloud FCN Quantized EarlyExit 10 1 7.583000 7.711900 7.605600 7.624200 0.047900 0.165800 Yes
Cloud DUC Quantized EarlyExit 10 1 37.043900 37.188200 37.149900 37.135700 0.051100 0.420200 Yes
Cloud ResNet Quantized EarlyExit 10 10 22.766000 22.938500 22.826800 22.834800 0.065900 0.475000 Yes
Cloud ResNext Quantized EarlyExit 10 10 22.706400 22.837600 22.811800 22.791900 0.046400 0.255800 Yes
Cloud FCN Quantized EarlyExit 10 10 0.430800 0.815000 0.767200 0.655200 0.171400 0.048400 No
Cloud DUC Quantized EarlyExit 10 10 8.605600 8.847400 8.666100 8.703700 0.085700 0.599900 Yes
Cloud ResNet Quantized EarlyExit 10 50 15.970700 16.127700 16.048500 16.046700 0.060300 0.632300 Yes
Cloud ResNext Quantized EarlyExit 10 50 15.992900 16.118800 16.075600 16.063900 0.051400 0.308600 Yes
Cloud FCN Quantized EarlyExit 10 50 0.334200 0.873900 0.609700 0.616600 0.173900 0.845500 Yes
Cloud DUC Quantized EarlyExit 10 50 6.565900 6.855700 6.671000 6.702200 0.099400 0.906100 Yes
Cloud ResNet Quantized EarlyExit 10 100 15.629100 15.799800 15.663000 15.679200 0.062300 0.041600 No
Cloud ResNext Quantized EarlyExit 10 100 15.505400 15.871600 15.671800 15.676800 0.150100 0.336000 Yes
Cloud FCN Quantized EarlyExit 10 100 0.329100 0.813100 0.668400 0.634500 0.176500 0.448100 Yes
Cloud DUC Quantized EarlyExit 10 100 6.767300 6.926600 6.883300 6.867000 0.053200 0.192300 Yes
Cloud ResNet Quantized EarlyExit 10 150 15.623800 15.813900 15.707400 15.725500 0.072100 0.553300 Yes
Cloud ResNext Quantized EarlyExit 10 150 15.616000 15.943900 15.712100 15.757700 0.111500 0.728800 Yes
Cloud FCN Quantized EarlyExit 10 150 0.390600 0.805200 0.673700 0.645300 0.145000 0.586800 Yes
Cloud DUC Quantized EarlyExit 10 150 6.774900 6.969800 6.850400 6.852300 0.069800 0.608200 Yes
Cloud ResNet Quantized EarlyExit 10 200 15.672500 15.931900 15.778800 15.796900 0.105100 0.373700 Yes
Cloud ResNext Quantized EarlyExit 10 200 15.479400 16.045500 15.651700 15.700800 0.186200 0.170800 Yes
Cloud FCN Quantized EarlyExit 10 200 0.349300 0.823100 0.666700 0.644800 0.169400 0.498900 Yes
Cloud DUC Quantized EarlyExit 10 200 6.872800 7.026700 6.898000 6.925300 0.058800 0.221700 Yes
Cloud ResNet Quantized EarlyExit 50 1 84.867700 85.013300 84.968900 84.951300 0.051800 0.753100 Yes
Cloud ResNext Quantized EarlyExit 50 1 84.760600 84.953400 84.902700 84.882800 0.064700 0.144100 Yes
Cloud FCN Quantized EarlyExit 50 1 7.579300 7.890100 7.590500 7.664600 0.118200 0.027600 No
Cloud DUC Quantized EarlyExit 50 1 32.738100 33.563500 32.971000 33.038800 0.280600 0.259900 Yes
Cloud ResNet Quantized EarlyExit 50 10 9.275600 9.350300 9.345000 9.323400 0.031000 0.084600 Yes
Cloud ResNext Quantized EarlyExit 50 10 9.254500 9.362000 9.313700 9.314000 0.035800 0.900300 Yes
Cloud FCN Quantized EarlyExit 50 10 0.390000 0.807800 0.594800 0.630900 0.149900 0.540800 Yes
Cloud DUC Quantized EarlyExit 50 10 4.351700 4.668000 4.491700 4.505000 0.105200 0.992000 Yes
Cloud ResNet Quantized EarlyExit 50 50 2.703200 2.790900 2.781000 2.754000 0.039800 0.034700 No
Cloud ResNext Quantized EarlyExit 50 50 2.684300 2.735200 2.711300 2.710500 0.016200 0.684000 Yes
Cloud FCN Quantized EarlyExit 50 50 0.353400 0.396600 0.377200 0.378800 0.014800 0.590500 Yes
Cloud DUC Quantized EarlyExit 50 50 2.669100 2.749800 2.730100 2.712400 0.031100 0.328900 Yes
Cloud ResNet Quantized EarlyExit 50 100 2.191600 2.293900 2.226700 2.235600 0.033900 0.771700 Yes
Cloud ResNext Quantized EarlyExit 50 100 2.194800 2.269300 2.230300 2.235900 0.029500 0.385100 Yes
Cloud FCN Quantized EarlyExit 50 100 0.316200 0.388400 0.369600 0.355900 0.027900 0.389400 Yes
Cloud DUC Quantized EarlyExit 50 100 2.500400 2.653300 2.580200 2.590000 0.056600 0.495100 Yes
Cloud ResNet Quantized EarlyExit 50 150 2.194800 2.394800 2.354600 2.321900 0.070800 0.351100 Yes
Cloud ResNext Quantized EarlyExit 50 150 2.192800 2.273900 2.231600 2.227400 0.028800 0.687800 Yes
Cloud FCN Quantized EarlyExit 50 150 0.323700 0.397200 0.361700 0.362000 0.023400 0.635800 Yes
Cloud DUC Quantized EarlyExit 50 150 2.457900 2.573800 2.527900 2.518300 0.046400 0.410700 Yes
Cloud ResNet Quantized EarlyExit 50 200 2.234600 2.378400 2.334400 2.309900 0.058500 0.265300 Yes
Cloud ResNext Quantized EarlyExit 50 200 2.296500 2.354300 2.305100 2.322100 0.025400 0.055000 Yes
Cloud FCN Quantized EarlyExit 50 200 0.362000 0.394200 0.376500 0.376500 0.010700 0.914600 Yes
Cloud DUC Quantized EarlyExit 50 200 2.512600 2.576900 2.556700 2.547700 0.024400 0.548300 Yes
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Table 38: Descriptive statistics of the latency for RQ6 (Cloud Quantized Early Exit Models), including
Shapiro-Wilk p-values and normality assessment (Part 2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Cloud ResNet Quantized EarlyExit 100 1 83.645500 83.721600 83.691200 83.690100 0.028900 0.538600 Yes
Cloud ResNext Quantized EarlyExit 100 1 83.566600 83.630000 83.602100 83.602800 0.024200 0.546300 Yes
Cloud FCN Quantized EarlyExit 100 1 7.458900 7.951000 7.589300 7.647700 0.168300 0.481500 Yes
Cloud DUC Quantized EarlyExit 100 1 32.855900 33.045500 32.878600 32.906100 0.070900 0.012900 No
Cloud ResNet Quantized EarlyExit 100 10 8.016300 8.116500 8.018100 8.040700 0.038500 0.005400 No
Cloud ResNext Quantized EarlyExit 100 10 8.012700 8.087900 8.072100 8.057400 0.028700 0.372200 Yes
Cloud FCN Quantized EarlyExit 100 10 0.331300 0.792300 0.619100 0.624800 0.168000 0.310300 Yes
Cloud DUC Quantized EarlyExit 100 10 4.551200 4.773500 4.673500 4.672700 0.071200 0.566600 Yes
Cloud ResNet Quantized EarlyExit 100 50 1.407200 1.608700 1.594800 1.529500 0.091200 0.031300 No
Cloud ResNext Quantized EarlyExit 100 50 1.333600 1.687600 1.536000 1.514400 0.136300 0.600300 Yes
Cloud FCN Quantized EarlyExit 100 50 0.389300 0.632900 0.405300 0.455200 0.091600 0.021600 No
Cloud DUC Quantized EarlyExit 100 50 2.593800 2.754300 2.718200 2.698100 0.058400 0.325200 Yes
Cloud ResNet Quantized EarlyExit 100 100 0.974300 1.055400 1.015400 1.011200 0.028900 0.831300 Yes
Cloud ResNext Quantized EarlyExit 100 100 0.965600 1.016200 0.998800 0.995000 0.018000 0.781100 Yes
Cloud FCN Quantized EarlyExit 100 100 0.327600 0.376700 0.360200 0.353800 0.020300 0.266400 Yes
Cloud DUC Quantized EarlyExit 100 100 2.577600 2.731500 2.593900 2.640500 0.067400 0.054400 Yes
Cloud ResNet Quantized EarlyExit 100 150 0.977000 1.163200 0.999500 1.026100 0.069000 0.004100 No
Cloud ResNext Quantized EarlyExit 100 150 0.970500 1.102800 1.011900 1.016300 0.046600 0.209200 Yes
Cloud FCN Quantized EarlyExit 100 150 0.329300 0.400800 0.384200 0.376100 0.024400 0.058600 Yes
Cloud DUC Quantized EarlyExit 100 150 2.425400 2.540300 2.491700 2.489800 0.038400 0.900800 Yes
Cloud ResNet Quantized EarlyExit 100 200 0.975700 1.158700 1.002500 1.028700 0.066100 0.016300 No
Cloud ResNext Quantized EarlyExit 100 200 0.881100 1.081800 0.977500 0.967100 0.069000 0.706800 Yes
Cloud FCN Quantized EarlyExit 100 200 0.328600 0.391700 0.346500 0.355200 0.021700 0.709400 Yes
Cloud DUC Quantized EarlyExit 100 200 2.369000 2.605200 2.471200 2.483800 0.091500 0.581100 Yes
Cloud ResNet Quantized EarlyExit 150 1 83.632700 83.783100 83.702900 83.707200 0.048200 0.828000 Yes
Cloud ResNext Quantized EarlyExit 150 1 83.604500 83.879400 83.733100 83.760800 0.101700 0.488800 Yes
Cloud FCN Quantized EarlyExit 150 1 7.586200 7.785500 7.598700 7.637800 0.074900 0.008400 No
Cloud DUC Quantized EarlyExit 150 1 32.820200 32.957200 32.909800 32.899300 0.047600 0.832200 Yes
Cloud ResNet Quantized EarlyExit 150 10 7.999600 8.140900 8.076600 8.072500 0.050200 0.948300 Yes
Cloud ResNext Quantized EarlyExit 150 10 7.986300 8.078300 8.020500 8.026400 0.034300 0.688300 Yes
Cloud FCN Quantized EarlyExit 150 10 0.340900 0.872400 0.618200 0.639100 0.182200 0.824800 Yes
Cloud DUC Quantized EarlyExit 150 10 4.349400 4.597600 4.481000 4.485500 0.088000 0.882800 Yes
Cloud ResNet Quantized EarlyExit 150 50 1.396800 1.611000 1.597200 1.525300 0.097000 0.028800 No
Cloud ResNext Quantized EarlyExit 150 50 1.344600 1.679300 1.548400 1.532000 0.109500 0.801700 Yes
Cloud FCN Quantized EarlyExit 150 50 0.331500 0.383600 0.362100 0.357600 0.017900 0.939300 Yes
Cloud DUC Quantized EarlyExit 150 50 2.656000 2.862100 2.684000 2.729300 0.077400 0.231900 Yes
Cloud ResNet Quantized EarlyExit 150 100 0.988300 1.200300 1.022700 1.058500 0.076700 0.186700 Yes
Cloud ResNext Quantized EarlyExit 150 100 0.926600 0.991700 0.985100 0.968700 0.025400 0.158400 Yes
Cloud FCN Quantized EarlyExit 150 100 0.344100 0.416000 0.397200 0.386600 0.025500 0.634000 Yes
Cloud DUC Quantized EarlyExit 150 100 2.560200 2.605900 2.573500 2.582900 0.017700 0.301600 Yes
Cloud ResNet Quantized EarlyExit 150 150 0.996500 1.092700 1.032000 1.042100 0.036000 0.672200 Yes
Cloud ResNext Quantized EarlyExit 150 150 0.915100 1.002200 0.995800 0.973200 0.033300 0.121000 Yes
Cloud FCN Quantized EarlyExit 150 150 0.344300 1.202300 0.381500 0.644400 0.350800 0.076200 Yes
Cloud DUC Quantized EarlyExit 150 150 2.558200 2.758800 2.681100 2.672400 0.065800 0.737100 Yes
Cloud ResNet Quantized EarlyExit 150 200 0.934800 1.028200 1.000500 0.991200 0.032000 0.627800 Yes
Cloud ResNext Quantized EarlyExit 150 200 0.905000 1.002000 0.959800 0.951700 0.034000 0.878100 Yes
Cloud FCN Quantized EarlyExit 150 200 0.363300 0.408600 0.383900 0.383300 0.016900 0.687000 Yes
Cloud DUC Quantized EarlyExit 150 200 2.507500 2.877700 2.659900 2.710500 0.139700 0.425800 Yes
Cloud ResNet Quantized EarlyExit 200 1 83.585800 83.759600 83.689100 83.684600 0.057700 0.820800 Yes
Cloud ResNext Quantized EarlyExit 200 1 83.602900 83.763600 83.697700 83.690700 0.051300 0.487100 Yes
Cloud FCN Quantized EarlyExit 200 1 7.564800 7.783200 7.593200 7.643000 0.081000 0.229600 Yes
Cloud DUC Quantized EarlyExit 200 1 32.787800 33.072700 32.894100 32.889600 0.103500 0.263600 Yes
Cloud ResNet Quantized EarlyExit 200 10 8.082400 8.184800 8.094000 8.109000 0.038300 0.005500 No
Cloud ResNext Quantized EarlyExit 200 10 8.001300 8.338600 8.079400 8.112300 0.117200 0.065400 Yes
Cloud FCN Quantized EarlyExit 200 10 0.382100 0.791800 0.607500 0.629300 0.152000 0.420400 Yes
Cloud DUC Quantized EarlyExit 200 10 4.627000 4.772100 4.750300 4.722900 0.055000 0.212700 Yes
Cloud ResNet Quantized EarlyExit 200 50 1.409200 1.609400 1.459700 1.505700 0.083600 0.143800 Yes
Cloud ResNext Quantized EarlyExit 200 50 1.367600 1.618400 1.440800 1.494300 0.102100 0.186900 Yes
Cloud FCN Quantized EarlyExit 200 50 0.378200 0.393000 0.389000 0.386900 0.005600 0.510900 Yes
Cloud DUC Quantized EarlyExit 200 50 2.379600 2.563300 2.551100 2.503500 0.072700 0.100500 Yes
Cloud ResNet Quantized EarlyExit 200 100 1.086100 1.129700 1.096600 1.104500 0.015800 0.546200 Yes
Cloud ResNext Quantized EarlyExit 200 100 1.016500 1.160800 1.102500 1.084000 0.051600 0.643600 Yes
Cloud FCN Quantized EarlyExit 200 100 0.358600 0.396000 0.364500 0.373200 0.015000 0.191100 Yes
Cloud DUC Quantized EarlyExit 200 100 2.548500 2.762300 2.677500 2.644200 0.083600 0.284800 Yes
Cloud ResNet Quantized EarlyExit 200 150 1.095100 1.755100 1.118900 1.251400 0.253700 0.002700 No
Cloud ResNext Quantized EarlyExit 200 150 1.073100 1.100800 1.082300 1.084500 0.009000 0.369100 Yes
Cloud FCN Quantized EarlyExit 200 150 0.367300 0.429400 0.394000 0.394200 0.020900 0.851300 Yes
Cloud DUC Quantized EarlyExit 200 150 2.661000 2.761900 2.741700 2.716200 0.042500 0.117900 Yes
Cloud ResNet Quantized EarlyExit 200 200 1.052500 1.108800 1.103000 1.091600 0.020500 0.060400 Yes
Cloud ResNext Quantized EarlyExit 200 200 1.066200 1.209900 1.082900 1.106100 0.053100 0.023200 No
Cloud FCN Quantized EarlyExit 200 200 0.357500 0.415200 0.369300 0.374300 0.021200 0.041500 No
Cloud DUC Quantized EarlyExit 200 200 2.535900 2.796000 2.655300 2.653900 0.085100 0.860500 Yes
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Table 39: Descriptive statistics of the latency for RQ6 (Mobile-Cloud Partitioning Models), including
Shapiro-Wilk p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile-Cloud ResNet Partition 1 1 102.916000 106.020500 103.488400 103.799800 1.133300 0.018800 No
Mobile-Cloud ResNext Partition 1 1 101.801800 103.981500 102.142200 102.441900 0.781400 0.010700 No
Mobile-Cloud FCN Partition 1 1 414.219500 414.745900 414.467100 414.446800 0.177200 0.730600 Yes
Mobile-Cloud DUC Partition 1 1 2345.790600 2348.402400 2347.423700 2347.469400 0.950400 0.259300 Yes
Mobile-Cloud ResNet Partition 1 10 95.938800 97.674100 96.392500 96.576900 0.593800 0.339400 Yes
Mobile-Cloud ResNext Partition 1 10 94.309200 96.202800 94.839300 95.019500 0.663600 0.497800 Yes
Mobile-Cloud FCN Partition 1 10 236.611100 237.865300 236.801100 237.089300 0.499700 0.198900 Yes
Mobile-Cloud DUC Partition 1 10 1320.158700 1321.394500 1320.750300 1320.794000 0.514400 0.283100 Yes
Mobile-Cloud ResNet Partition 1 50 95.935100 98.195000 96.362800 96.618900 0.825100 0.078800 Yes
Mobile-Cloud ResNext Partition 1 50 94.391300 95.968900 94.583500 94.814600 0.588400 0.016000 No
Mobile-Cloud FCN Partition 1 50 221.648800 222.074500 221.893600 221.859700 0.166100 0.511800 Yes
Mobile-Cloud DUC Partition 1 50 1228.263200 1229.769000 1229.536100 1229.152400 0.641500 0.102500 Yes
Mobile-Cloud ResNet Partition 1 100 96.302300 97.760000 96.367400 96.706900 0.552800 0.031600 No
Mobile-Cloud ResNext Partition 1 100 94.302400 96.032700 94.545200 94.847700 0.614500 0.059800 Yes
Mobile-Cloud FCN Partition 1 100 219.886100 220.288000 219.991700 220.031500 0.146300 0.406100 Yes
Mobile-Cloud DUC Partition 1 100 1216.329400 1217.245800 1216.872700 1216.807900 0.333600 0.841500 Yes
Mobile-Cloud ResNet Partition 1 150 95.869200 96.437500 96.224800 96.211200 0.192800 0.589600 Yes
Mobile-Cloud ResNext Partition 1 150 94.517600 96.304100 94.682600 94.988500 0.663300 0.005200 No
Mobile-Cloud FCN Partition 1 150 218.561500 220.191800 219.396100 219.464200 0.648200 0.400000 Yes
Mobile-Cloud DUC Partition 1 150 1212.724800 1215.166700 1213.359800 1213.799300 0.973600 0.310700 Yes
Mobile-Cloud ResNet Partition 1 200 96.021600 98.944500 96.338500 97.157400 1.275700 0.063400 Yes
Mobile-Cloud ResNext Partition 1 200 94.589200 95.123600 94.934100 94.906000 0.206100 0.470200 Yes
Mobile-Cloud FCN Partition 1 200 218.780100 220.825200 219.600400 219.788400 0.862900 0.226000 Yes
Mobile-Cloud DUC Partition 1 200 1211.564700 1213.005200 1212.268200 1212.299600 0.548300 0.674800 Yes
Mobile-Cloud ResNet Partition 10 1 20.223100 20.861200 20.593400 20.595400 0.234300 0.647500 Yes
Mobile-Cloud ResNext Partition 10 1 18.931800 19.460000 19.079700 19.126100 0.176800 0.131400 Yes
Mobile-Cloud FCN Partition 10 1 228.099000 229.483600 228.767500 228.874100 0.504000 0.642900 Yes
Mobile-Cloud DUC Partition 10 1 1281.944500 1283.510500 1282.665900 1282.774600 0.576800 0.734400 Yes
Mobile-Cloud ResNet Partition 10 10 11.847900 12.668400 12.177800 12.195200 0.266800 0.489600 Yes
Mobile-Cloud ResNext Partition 10 10 10.825700 11.413800 11.077300 11.134000 0.203100 0.837800 Yes
Mobile-Cloud FCN Partition 10 10 52.209100 53.296700 52.508200 52.619200 0.365900 0.315500 Yes
Mobile-Cloud DUC Partition 10 10 262.632900 263.547800 262.910000 262.996900 0.331100 0.629100 Yes
Mobile-Cloud ResNet Partition 10 50 11.732200 13.421500 12.176500 12.419400 0.593900 0.638600 Yes
Mobile-Cloud ResNext Partition 10 50 10.745200 11.536600 11.270100 11.188000 0.262800 0.798900 Yes
Mobile-Cloud FCN Partition 10 50 35.981500 36.742600 36.104700 36.240300 0.273500 0.211300 Yes
Mobile-Cloud DUC Partition 10 50 171.751400 172.868100 172.386100 172.313900 0.380900 0.977600 Yes
Mobile-Cloud ResNet Partition 10 100 11.657600 12.950100 12.183200 12.310400 0.458000 0.852300 Yes
Mobile-Cloud ResNext Partition 10 100 10.618700 10.997700 10.898900 10.858600 0.127000 0.124100 Yes
Mobile-Cloud FCN Partition 10 100 33.629000 36.324000 35.014000 34.954300 0.867800 0.877000 Yes
Mobile-Cloud DUC Partition 10 100 160.411900 161.442900 160.754200 160.815600 0.359700 0.632000 Yes
Mobile-Cloud ResNet Partition 10 150 12.163000 12.375900 12.285300 12.274300 0.068600 0.831000 Yes
Mobile-Cloud ResNext Partition 10 150 10.742100 11.500300 11.003200 11.056100 0.253300 0.713500 Yes
Mobile-Cloud FCN Partition 10 150 33.324000 35.091600 33.922900 34.069500 0.616000 0.823500 Yes
Mobile-Cloud DUC Partition 10 150 156.848300 157.049600 156.926400 156.929800 0.071900 0.676100 Yes
Mobile-Cloud ResNet Partition 10 200 11.973300 12.734300 12.369700 12.428600 0.282400 0.390100 Yes
Mobile-Cloud ResNext Partition 10 200 10.665300 11.421700 10.996100 11.013400 0.240500 0.315900 Yes
Mobile-Cloud FCN Partition 10 200 34.128000 36.083700 34.566100 34.791300 0.677600 0.133700 Yes
Mobile-Cloud DUC Partition 10 200 154.858900 156.045900 155.177200 155.275600 0.410100 0.223100 Yes
Mobile-Cloud ResNet Partition 50 1 13.718600 16.871900 14.039500 14.574600 1.182200 0.024900 No
Mobile-Cloud ResNext Partition 50 1 12.234900 14.266200 12.626100 12.823100 0.739000 0.025300 No
Mobile-Cloud FCN Partition 50 1 213.175000 213.699500 213.657500 213.483500 0.244300 0.021400 No
Mobile-Cloud DUC Partition 50 1 1188.660500 1189.400900 1188.768500 1188.875400 0.266400 0.010200 No
Mobile-Cloud ResNet Partition 50 10 6.063400 6.411900 6.251500 6.234600 0.115500 0.973200 Yes
Mobile-Cloud ResNext Partition 50 10 4.678500 5.574200 4.724200 4.993100 0.368500 0.077800 Yes
Mobile-Cloud FCN Partition 50 10 38.130400 39.023600 38.596700 38.588300 0.330900 0.809400 Yes
Mobile-Cloud DUC Partition 50 10 174.142800 175.267400 174.189500 174.467400 0.430400 0.048400 No
Mobile-Cloud ResNet Partition 50 50 5.958000 6.595600 6.169500 6.215700 0.208200 0.272700 Yes
Mobile-Cloud ResNext Partition 50 50 4.494000 6.947000 4.729900 5.146700 0.907900 0.005400 No
Mobile-Cloud FCN Partition 50 50 22.716700 23.494600 23.197000 23.173900 0.254600 0.441300 Yes
Mobile-Cloud DUC Partition 50 50 87.108500 87.646000 87.385700 87.368800 0.175000 0.927600 Yes
Mobile-Cloud ResNet Partition 50 100 5.442600 6.339100 5.698200 5.846100 0.339800 0.503000 Yes
Mobile-Cloud ResNext Partition 50 100 4.046600 4.270400 4.164700 4.171400 0.081500 0.754700 Yes
Mobile-Cloud FCN Partition 50 100 16.577600 18.745700 18.110800 17.906500 0.734900 0.500300 Yes
Mobile-Cloud DUC Partition 50 100 67.286900 68.241500 67.415700 67.541000 0.354400 0.008000 No
Mobile-Cloud ResNet Partition 50 150 5.395300 6.113900 5.870600 5.819900 0.264300 0.648300 Yes
Mobile-Cloud ResNext Partition 50 150 3.877800 5.762600 4.407900 4.709300 0.657400 0.699400 Yes
Mobile-Cloud FCN Partition 50 150 17.790900 19.384300 18.665100 18.678000 0.555600 0.897500 Yes
Mobile-Cloud DUC Partition 50 150 62.766000 64.109500 63.367500 63.455400 0.449300 0.947500 Yes
Mobile-Cloud ResNet Partition 50 200 5.706300 6.443800 5.929100 5.971200 0.251300 0.196900 Yes
Mobile-Cloud ResNext Partition 50 200 4.310500 5.873000 4.747400 4.869400 0.547800 0.342500 Yes
Mobile-Cloud FCN Partition 50 200 20.803500 21.071900 20.886400 20.922400 0.106300 0.391700 Yes
Mobile-Cloud DUC Partition 50 200 61.632000 62.924000 61.924200 62.040800 0.457800 0.069200 Yes
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Table 40: Descriptive statistics of the latency for RQ6 (Mobile-Cloud Partitioning Models), including
Shapiro-Wilk p-values and normality assessment (Part 2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile-Cloud ResNet Partition 100 1 12.988600 14.480300 13.214300 13.525900 0.584200 0.213600 Yes
Mobile-Cloud ResNext Partition 100 1 11.592000 12.176900 11.859700 11.895200 0.196500 0.950400 Yes
Mobile-Cloud FCN Partition 100 1 208.887800 212.363100 211.248900 211.052100 1.168900 0.310900 Yes
Mobile-Cloud DUC Partition 100 1 1176.858800 1177.779900 1177.172800 1177.233700 0.299700 0.201000 Yes
Mobile-Cloud ResNet Partition 100 10 4.598200 6.102900 4.965300 5.100800 0.523700 0.112500 Yes
Mobile-Cloud ResNext Partition 100 10 3.356900 4.015000 3.768100 3.737400 0.213500 0.443000 Yes
Mobile-Cloud FCN Partition 100 10 33.835100 34.608000 34.336600 34.287700 0.269400 0.796200 Yes
Mobile-Cloud DUC Partition 100 10 154.320700 156.578600 155.163100 155.285000 0.760800 0.855600 Yes
Mobile-Cloud ResNet Partition 100 50 4.211900 5.956800 4.994900 5.072700 0.602600 0.986400 Yes
Mobile-Cloud ResNext Partition 100 50 3.656100 4.031300 3.742300 3.795100 0.127900 0.296300 Yes
Mobile-Cloud FCN Partition 100 50 18.873800 19.889000 19.516400 19.416500 0.364000 0.846900 Yes
Mobile-Cloud DUC Partition 100 50 66.170700 67.155800 66.668300 66.717700 0.380100 0.504500 Yes
Mobile-Cloud ResNet Partition 100 100 4.381400 7.574600 4.875600 5.561400 1.192400 0.285600 Yes
Mobile-Cloud ResNext Partition 100 100 3.359200 3.953200 3.747900 3.667700 0.232000 0.446600 Yes
Mobile-Cloud FCN Partition 100 100 16.670800 17.774500 17.083200 17.064000 0.398200 0.245200 Yes
Mobile-Cloud DUC Partition 100 100 54.580500 56.450900 56.180700 55.824700 0.666700 0.150800 Yes
Mobile-Cloud ResNet Partition 100 150 4.771900 6.386800 4.978300 5.359800 0.609000 0.226200 Yes
Mobile-Cloud ResNext Partition 100 150 3.489400 5.751400 3.847200 4.294400 0.848400 0.266000 Yes
Mobile-Cloud FCN Partition 100 150 16.797400 18.357800 17.559400 17.574100 0.514800 0.996300 Yes
Mobile-Cloud DUC Partition 100 150 51.238100 52.455600 52.200300 52.011500 0.417800 0.256400 Yes
Mobile-Cloud ResNet Partition 100 200 4.800800 5.325700 5.058900 5.059200 0.212000 0.405500 Yes
Mobile-Cloud ResNext Partition 100 200 3.519400 4.458800 4.246600 4.107300 0.325300 0.394500 Yes
Mobile-Cloud FCN Partition 100 200 16.369900 16.828300 16.535800 16.568100 0.186300 0.329900 Yes
Mobile-Cloud DUC Partition 100 200 49.297800 50.684000 50.204600 50.210200 0.506200 0.188200 Yes
Mobile-Cloud ResNet Partition 150 1 13.046500 14.453000 13.799600 13.754100 0.490000 0.982900 Yes
Mobile-Cloud ResNext Partition 150 1 11.960400 14.001100 12.205000 12.776000 0.868700 0.085800 Yes
Mobile-Cloud FCN Partition 150 1 210.106500 211.179400 210.762800 210.633400 0.411300 0.516100 Yes
Mobile-Cloud DUC Partition 150 1 1173.523600 1173.838100 1173.622800 1173.653200 0.125400 0.355600 Yes
Mobile-Cloud ResNet Partition 150 10 5.158200 5.482400 5.400400 5.350700 0.125000 0.409500 Yes
Mobile-Cloud ResNext Partition 150 10 3.578300 4.528900 3.675100 3.851400 0.351100 0.040500 No
Mobile-Cloud FCN Partition 150 10 33.366400 34.081600 33.459200 33.577300 0.258500 0.032000 No
Mobile-Cloud DUC Partition 150 10 150.510300 151.589900 150.827400 150.977200 0.425000 0.398000 Yes
Mobile-Cloud ResNet Partition 150 50 4.850500 5.116000 4.999900 4.999300 0.087800 0.835000 Yes
Mobile-Cloud ResNext Partition 150 50 3.410400 4.144800 3.858700 3.813700 0.277000 0.671400 Yes
Mobile-Cloud FCN Partition 150 50 17.320600 18.462800 17.974100 17.946000 0.466700 0.336200 Yes
Mobile-Cloud DUC Partition 150 50 62.421500 63.602800 63.206400 63.144900 0.395500 0.406200 Yes
Mobile-Cloud ResNet Partition 150 100 4.795500 7.023900 5.262600 5.469600 0.805800 0.056600 Yes
Mobile-Cloud ResNext Partition 150 100 3.365600 3.770900 3.465400 3.552200 0.156500 0.333200 Yes
Mobile-Cloud FCN Partition 150 100 15.301300 17.269500 16.877600 16.589700 0.698900 0.255100 Yes
Mobile-Cloud DUC Partition 150 100 49.664600 52.442300 51.352200 51.352200 1.017200 0.523100 Yes
Mobile-Cloud ResNet Partition 150 150 4.765300 5.140800 4.957000 4.976300 0.129500 0.784500 Yes
Mobile-Cloud ResNext Partition 150 150 3.349400 3.828300 3.740800 3.665700 0.173200 0.239300 Yes
Mobile-Cloud FCN Partition 150 150 14.635200 16.684000 15.857400 15.809300 0.683500 0.808200 Yes
Mobile-Cloud DUC Partition 150 150 46.332300 48.391300 47.505500 47.383300 0.689700 0.984500 Yes
Mobile-Cloud ResNet Partition 150 200 4.723600 5.470100 4.974100 5.040500 0.244900 0.623400 Yes
Mobile-Cloud ResNext Partition 150 200 3.467700 4.543700 3.672600 3.822800 0.374100 0.074700 Yes
Mobile-Cloud FCN Partition 150 200 15.725600 16.736500 16.483200 16.289500 0.384100 0.430700 Yes
Mobile-Cloud DUC Partition 150 200 44.461500 46.798600 46.036100 45.766900 0.806600 0.847200 Yes
Mobile-Cloud ResNet Partition 200 1 13.539000 14.398100 14.024800 14.040000 0.308800 0.684200 Yes
Mobile-Cloud ResNext Partition 200 1 11.824600 12.000200 11.927700 11.927000 0.062200 0.750100 Yes
Mobile-Cloud FCN Partition 200 1 209.791500 210.443600 210.078900 210.101900 0.239500 0.833900 Yes
Mobile-Cloud DUC Partition 200 1 1170.747500 1171.956000 1171.530200 1171.509500 0.427100 0.394100 Yes
Mobile-Cloud ResNet Partition 200 10 5.161900 7.594300 5.584500 6.217200 1.095600 0.053100 Yes
Mobile-Cloud ResNext Partition 200 10 3.904800 5.962100 4.064300 4.729400 0.907600 0.042600 No
Mobile-Cloud FCN Partition 200 10 35.054000 35.706200 35.445400 35.385500 0.237500 0.802900 Yes
Mobile-Cloud DUC Partition 200 10 147.327300 149.587100 148.977500 148.809300 0.833100 0.287600 Yes
Mobile-Cloud ResNet Partition 200 50 5.292400 6.252400 5.617800 5.756700 0.366200 0.516900 Yes
Mobile-Cloud ResNext Partition 200 50 4.111400 9.105200 4.344600 5.229200 1.940900 0.000700 No
Mobile-Cloud FCN Partition 200 50 19.709900 20.682200 20.458300 20.229700 0.418600 0.103400 Yes
Mobile-Cloud DUC Partition 200 50 60.022800 61.220900 60.861000 60.818300 0.433600 0.195300 Yes
Mobile-Cloud ResNet Partition 200 100 5.457900 5.683600 5.575900 5.580800 0.079300 0.914100 Yes
Mobile-Cloud ResNext Partition 200 100 3.716700 4.731500 4.530900 4.365500 0.355200 0.300100 Yes
Mobile-Cloud FCN Partition 200 100 17.941600 18.753000 18.178100 18.313500 0.310900 0.464000 Yes
Mobile-Cloud DUC Partition 200 100 48.972200 50.689600 49.919400 49.901500 0.592400 0.969300 Yes
Mobile-Cloud ResNet Partition 200 150 5.319500 6.359000 5.634900 5.700000 0.355300 0.305400 Yes
Mobile-Cloud ResNext Partition 200 150 3.870800 7.353000 4.788200 4.979400 1.260400 0.111000 Yes
Mobile-Cloud FCN Partition 200 150 17.368500 18.357200 18.074700 17.991200 0.335400 0.313800 Yes
Mobile-Cloud DUC Partition 200 150 45.967700 46.421200 46.382400 46.242500 0.190400 0.077100 Yes
Mobile-Cloud ResNet Partition 200 200 5.273800 5.724900 5.552900 5.522400 0.164800 0.799300 Yes
Mobile-Cloud ResNext Partition 200 200 4.186000 5.679500 4.375900 4.680500 0.569100 0.171800 Yes
Mobile-Cloud FCN Partition 200 200 16.608700 18.390300 18.004100 17.824600 0.624300 0.033600 No
Mobile-Cloud DUC Partition 200 200 43.975900 45.185700 44.495500 44.574900 0.454400 0.712500 Yes
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Table 41: Descriptive statistics of the latency for RQ6 (Edge-Cloud Partitioning Models), including
Shapiro-Wilk p-values and normality assessment

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Edge-Cloud ResNet Partition 1 1 177.165600 177.699900 177.330900 177.401100 0.181600 0.785400 Yes
Edge-Cloud ResNext Partition 1 1 176.452000 176.801900 176.702600 176.641400 0.134800 0.429400 Yes
Edge-Cloud FCN Partition 1 1 215.169000 217.434500 216.748200 216.606800 0.802000 0.419600 Yes
Edge-Cloud DUC Partition 1 1 1220.037700 1220.476800 1220.454200 1220.303300 0.200400 0.024400 No
Edge-Cloud ResNet Partition 1 10 170.128000 170.620100 170.422800 170.400300 0.165200 0.945000 Yes
Edge-Cloud ResNext Partition 1 10 168.870800 169.067200 169.001200 168.974500 0.074400 0.568100 Yes
Edge-Cloud FCN Partition 1 10 38.821300 40.080700 39.887400 39.649200 0.457300 0.223400 Yes
Edge-Cloud DUC Partition 1 10 191.065900 193.559100 193.258000 192.882100 0.933100 0.024200 No
Edge-Cloud ResNet Partition 1 50 170.059500 171.026700 170.240100 170.421400 0.348200 0.371900 Yes
Edge-Cloud ResNext Partition 1 50 168.794700 169.130500 169.031900 168.987100 0.122300 0.671600 Yes
Edge-Cloud FCN Partition 1 50 21.598400 23.493300 23.287100 22.925000 0.714400 0.089000 Yes
Edge-Cloud DUC Partition 1 50 99.661700 100.495500 100.200600 100.168700 0.312100 0.506100 Yes
Edge-Cloud ResNet Partition 1 100 170.067400 170.288900 170.212000 170.181000 0.087700 0.385000 Yes
Edge-Cloud ResNext Partition 1 100 169.100800 169.221600 169.198000 169.173100 0.049500 0.194800 Yes
Edge-Cloud FCN Partition 1 100 21.485600 22.687000 22.084700 22.056400 0.498500 0.292100 Yes
Edge-Cloud DUC Partition 1 100 86.115200 90.849700 89.776300 89.258500 1.683000 0.209400 Yes
Edge-Cloud ResNet Partition 1 150 170.170600 170.310900 170.244100 170.239200 0.058300 0.292400 Yes
Edge-Cloud ResNext Partition 1 150 168.940400 169.143300 168.990400 169.012700 0.068600 0.104800 Yes
Edge-Cloud FCN Partition 1 150 21.088000 21.898300 21.295400 21.430300 0.304800 0.495900 Yes
Edge-Cloud DUC Partition 1 150 82.222300 86.129800 84.585200 84.470600 1.300100 0.781100 Yes
Edge-Cloud ResNet Partition 1 200 170.181900 170.477000 170.250800 170.308800 0.115700 0.328300 Yes
Edge-Cloud ResNext Partition 1 200 168.870800 169.186900 168.984400 169.020100 0.108600 0.891200 Yes
Edge-Cloud FCN Partition 1 200 19.175800 21.886700 21.408000 21.067000 0.976300 0.054000 Yes
Edge-Cloud DUC Partition 1 200 84.746000 85.240600 85.054700 84.981100 0.183100 0.521600 Yes
Edge-Cloud ResNet Partition 10 1 26.233400 26.824400 26.631000 26.607500 0.200600 0.229400 Yes
Edge-Cloud ResNext Partition 10 1 25.289000 25.709200 25.455600 25.464800 0.154800 0.670000 Yes
Edge-Cloud FCN Partition 10 1 199.549900 202.295600 201.996500 201.536100 1.014400 0.020500 No
Edge-Cloud DUC Partition 10 1 1151.192600 1154.354800 1152.546500 1152.891900 1.119100 0.707500 Yes
Edge-Cloud ResNet Partition 10 10 17.808000 18.368500 18.045200 18.080600 0.185100 0.962800 Yes
Edge-Cloud ResNext Partition 10 10 17.179100 17.451000 17.206700 17.258200 0.101300 0.057200 Yes
Edge-Cloud FCN Partition 10 10 25.241600 25.611900 25.423000 25.431800 0.130500 0.960600 Yes
Edge-Cloud DUC Partition 10 10 136.999600 137.774400 137.349800 137.336800 0.255300 0.712400 Yes
Edge-Cloud ResNet Partition 10 50 17.799900 18.362600 18.121800 18.116700 0.209100 0.700600 Yes
Edge-Cloud ResNext Partition 10 50 17.049600 17.240600 17.176700 17.173200 0.070000 0.291300 Yes
Edge-Cloud FCN Partition 10 50 8.869700 10.225500 9.632100 9.598800 0.431600 0.478000 Yes
Edge-Cloud DUC Partition 10 50 45.461700 46.873700 46.205400 46.189200 0.449500 0.683500 Yes
Edge-Cloud ResNet Partition 10 100 17.879700 19.180900 18.095200 18.335000 0.476400 0.268700 Yes
Edge-Cloud ResNext Partition 10 100 17.030400 17.370800 17.075500 17.154500 0.129200 0.229100 Yes
Edge-Cloud FCN Partition 10 100 7.584100 8.254300 7.732000 7.797200 0.235700 0.051500 Yes
Edge-Cloud DUC Partition 10 100 34.332800 34.780600 34.571500 34.570400 0.155300 0.978000 Yes
Edge-Cloud ResNet Partition 10 150 17.700400 18.596300 18.109200 18.113400 0.286300 0.591400 Yes
Edge-Cloud ResNext Partition 10 150 17.235300 17.590800 17.264200 17.326600 0.133800 0.008000 No
Edge-Cloud FCN Partition 10 150 7.536100 7.936000 7.777000 7.747000 0.129500 0.808100 Yes
Edge-Cloud DUC Partition 10 150 30.679900 31.248300 30.870000 30.932600 0.219500 0.518600 Yes
Edge-Cloud ResNet Partition 10 200 17.832400 18.272200 18.054500 18.023000 0.161300 0.602000 Yes
Edge-Cloud ResNext Partition 10 200 16.959500 17.139700 17.107600 17.081200 0.064000 0.122700 Yes
Edge-Cloud FCN Partition 10 200 7.504100 8.872000 7.589700 7.852300 0.514000 0.004200 No
Edge-Cloud DUC Partition 10 200 28.800800 29.080600 28.950100 28.960700 0.098900 0.744800 Yes
Edge-Cloud ResNet Partition 50 1 12.974300 13.830200 13.387800 13.354000 0.305500 0.802200 Yes
Edge-Cloud ResNext Partition 50 1 11.857200 12.839000 12.120300 12.208500 0.337700 0.269100 Yes
Edge-Cloud FCN Partition 50 1 201.725000 202.501100 202.248900 202.131300 0.331700 0.165800 Yes
Edge-Cloud DUC Partition 50 1 1145.974900 1150.362800 1148.845900 1148.519900 1.546600 0.806400 Yes
Edge-Cloud ResNet Partition 50 10 4.859900 5.210600 4.976700 5.000000 0.132300 0.522200 Yes
Edge-Cloud ResNext Partition 50 10 3.901300 4.508400 4.098100 4.117700 0.211100 0.249600 Yes
Edge-Cloud FCN Partition 50 10 24.835200 25.435100 25.086900 25.098800 0.195900 0.764300 Yes
Edge-Cloud DUC Partition 50 10 129.552300 129.699500 129.669100 129.638700 0.055200 0.396800 Yes
Edge-Cloud ResNet Partition 50 50 4.700700 5.083300 4.785400 4.818300 0.138000 0.069200 Yes
Edge-Cloud ResNext Partition 50 50 3.994000 4.676800 4.069000 4.164400 0.258600 0.004600 No
Edge-Cloud FCN Partition 50 50 9.117900 10.544300 9.945700 9.832700 0.571400 0.406400 Yes
Edge-Cloud DUC Partition 50 50 41.089700 42.598800 42.025100 42.035400 0.535100 0.383000 Yes
Edge-Cloud ResNet Partition 50 100 4.496400 4.832800 4.633000 4.634800 0.113400 0.668300 Yes
Edge-Cloud ResNext Partition 50 100 3.774600 4.200300 3.862800 3.916700 0.146700 0.044900 No
Edge-Cloud FCN Partition 50 100 7.463800 8.351600 7.976300 7.851700 0.339900 0.331700 Yes
Edge-Cloud DUC Partition 50 100 30.247100 30.853800 30.327700 30.435500 0.220100 0.089100 Yes
Edge-Cloud ResNet Partition 50 150 4.478300 4.889700 4.773500 4.706600 0.143700 0.694000 Yes
Edge-Cloud ResNext Partition 50 150 3.750300 4.424100 3.913600 3.985600 0.234000 0.234900 Yes
Edge-Cloud FCN Partition 50 150 7.110900 7.890100 7.435100 7.490400 0.263600 0.975400 Yes
Edge-Cloud DUC Partition 50 150 26.449200 27.130000 26.887700 26.853200 0.240500 0.733000 Yes
Edge-Cloud ResNet Partition 50 200 4.733500 5.515800 4.877800 4.988900 0.287300 0.192400 Yes
Edge-Cloud ResNext Partition 50 200 3.738600 3.949400 3.886200 3.876400 0.076600 0.280400 Yes
Edge-Cloud FCN Partition 50 200 8.030800 8.323900 8.275500 8.197300 0.127900 0.074600 Yes
Edge-Cloud DUC Partition 50 200 24.442100 25.076000 24.970800 24.890200 0.228800 0.026100 No
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Table 42: Descriptive statistics of the latency for RQ6 (Edge-Cloud Partitioning Models), including
Shapiro-Wilk p-values and normality assessment

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Edge-Cloud ResNet Partition 100 1 11.814200 12.277900 12.103400 12.072300 0.156600 0.927500 Yes
Edge-Cloud ResNext Partition 100 1 10.581200 10.902300 10.690200 10.692800 0.114100 0.199700 Yes
Edge-Cloud FCN Partition 100 1 201.670200 202.270100 201.997700 201.987400 0.192600 0.797700 Yes
Edge-Cloud DUC Partition 100 1 1149.414100 1150.620000 1150.223600 1150.150000 0.400800 0.360600 Yes
Edge-Cloud ResNet Partition 100 10 3.222000 3.890300 3.431300 3.520300 0.244000 0.700800 Yes
Edge-Cloud ResNext Partition 100 10 2.394100 2.964700 2.589000 2.615800 0.188500 0.224500 Yes
Edge-Cloud FCN Partition 100 10 24.983100 25.816800 25.419900 25.357500 0.300600 0.717200 Yes
Edge-Cloud DUC Partition 100 10 128.297900 130.111200 129.436500 129.235500 0.640700 0.857100 Yes
Edge-Cloud ResNet Partition 100 50 3.277600 3.721200 3.407800 3.452800 0.147200 0.386300 Yes
Edge-Cloud ResNext Partition 100 50 2.458600 2.670600 2.543400 2.549600 0.072500 0.878700 Yes
Edge-Cloud FCN Partition 100 50 9.480300 9.887000 9.653600 9.659000 0.131400 0.590500 Yes
Edge-Cloud DUC Partition 100 50 40.642900 41.457800 41.140000 41.147400 0.286600 0.434000 Yes
Edge-Cloud ResNet Partition 100 100 3.237900 3.884400 3.471700 3.548100 0.268600 0.256000 Yes
Edge-Cloud ResNext Partition 100 100 2.210400 3.075800 2.453800 2.514700 0.295200 0.131200 Yes
Edge-Cloud FCN Partition 100 100 7.298600 8.456600 7.727700 7.835200 0.415300 0.854000 Yes
Edge-Cloud DUC Partition 100 100 30.225900 30.557600 30.415600 30.418100 0.125700 0.548000 Yes
Edge-Cloud ResNet Partition 100 150 3.225000 3.665300 3.565500 3.501800 0.152200 0.369300 Yes
Edge-Cloud ResNext Partition 100 150 2.307200 2.809000 2.572600 2.562700 0.159200 0.578900 Yes
Edge-Cloud FCN Partition 100 150 7.111500 8.116400 7.748100 7.733600 0.346900 0.445700 Yes
Edge-Cloud DUC Partition 100 150 25.238900 27.233500 26.655100 26.480600 0.698500 0.518900 Yes
Edge-Cloud ResNet Partition 100 200 3.368800 4.835000 3.731400 3.834200 0.528500 0.108400 Yes
Edge-Cloud ResNext Partition 100 200 2.478300 2.805600 2.624300 2.639900 0.122500 0.747800 Yes
Edge-Cloud FCN Partition 100 200 7.225100 7.747600 7.564900 7.475000 0.207500 0.281000 Yes
Edge-Cloud DUC Partition 100 200 24.494300 25.106500 24.983800 24.912100 0.214200 0.026400 No
Edge-Cloud ResNet Partition 150 1 11.818400 12.378900 11.924200 12.027400 0.206700 0.364000 Yes
Edge-Cloud ResNext Partition 150 1 10.513600 11.026800 10.706700 10.728300 0.185300 0.745700 Yes
Edge-Cloud FCN Partition 150 1 201.498200 202.784200 202.545400 202.243700 0.522900 0.188900 Yes
Edge-Cloud DUC Partition 150 1 1149.652100 1150.475400 1150.238400 1150.175200 0.278300 0.209700 Yes
Edge-Cloud ResNet Partition 150 10 3.276400 3.970400 3.291300 3.473300 0.269000 0.040200 No
Edge-Cloud ResNext Partition 150 10 2.460000 2.918500 2.481600 2.570200 0.175100 0.002400 No
Edge-Cloud FCN Partition 150 10 23.124400 25.967000 23.837600 24.328600 1.032600 0.573900 Yes
Edge-Cloud DUC Partition 150 10 129.321800 129.950300 129.660800 129.604600 0.236400 0.549800 Yes
Edge-Cloud ResNet Partition 150 50 3.223100 3.877500 3.308800 3.415300 0.240100 0.053400 Yes
Edge-Cloud ResNext Partition 150 50 2.382200 2.593900 2.520600 2.497100 0.071400 0.876400 Yes
Edge-Cloud FCN Partition 150 50 9.346900 9.820000 9.600100 9.576500 0.180800 0.628600 Yes
Edge-Cloud DUC Partition 150 50 41.021100 41.569300 41.193700 41.236400 0.184100 0.511100 Yes
Edge-Cloud ResNet Partition 150 100 3.298800 3.926000 3.411800 3.562300 0.242100 0.274100 Yes
Edge-Cloud ResNext Partition 150 100 2.525400 3.414100 2.650200 2.782500 0.328800 0.053000 Yes
Edge-Cloud FCN Partition 150 100 7.647200 8.277900 7.930000 7.900600 0.228200 0.506000 Yes
Edge-Cloud DUC Partition 150 100 30.053400 30.446800 30.209200 30.260100 0.159700 0.280200 Yes
Edge-Cloud ResNet Partition 150 150 3.274500 3.885600 3.372200 3.467400 0.216500 0.064400 Yes
Edge-Cloud ResNext Partition 150 150 2.390100 2.960100 2.512200 2.575400 0.208900 0.187900 Yes
Edge-Cloud FCN Partition 150 150 7.202400 7.761300 7.535500 7.498000 0.196300 0.943500 Yes
Edge-Cloud DUC Partition 150 150 26.246000 26.906900 26.730800 26.612700 0.292400 0.098400 Yes
Edge-Cloud ResNet Partition 150 200 3.224400 4.023400 3.536400 3.573100 0.258100 0.579800 Yes
Edge-Cloud ResNext Partition 150 200 2.374800 2.659000 2.445700 2.497900 0.110300 0.379500 Yes
Edge-Cloud FCN Partition 150 200 6.288200 8.279700 7.466100 7.371200 0.639100 0.654900 Yes
Edge-Cloud DUC Partition 150 200 23.514200 25.091800 24.861200 24.659100 0.578800 0.007600 No
Edge-Cloud ResNet Partition 200 1 11.701400 12.519400 12.011300 12.090100 0.289800 0.886200 Yes
Edge-Cloud ResNext Partition 200 1 10.543100 10.925700 10.651800 10.695700 0.138200 0.620200 Yes
Edge-Cloud FCN Partition 200 1 200.590900 202.387200 201.890600 201.725800 0.604600 0.212800 Yes
Edge-Cloud DUC Partition 200 1 1150.062600 1150.568600 1150.275000 1150.317300 0.192400 0.623900 Yes
Edge-Cloud ResNet Partition 200 10 3.540400 4.564600 3.659400 3.822000 0.375200 0.007300 No
Edge-Cloud ResNext Partition 200 10 2.472000 2.975900 2.742900 2.724300 0.168400 0.995600 Yes
Edge-Cloud FCN Partition 200 10 23.569200 25.553300 24.795400 24.722600 0.649600 0.564600 Yes
Edge-Cloud DUC Partition 200 10 128.851400 129.090400 128.924900 128.958500 0.088600 0.632600 Yes
Edge-Cloud ResNet Partition 200 50 3.581000 3.957300 3.636700 3.704400 0.138700 0.179100 Yes
Edge-Cloud ResNext Partition 200 50 2.728100 2.967400 2.765400 2.813900 0.088700 0.274900 Yes
Edge-Cloud FCN Partition 200 50 7.883200 10.522900 10.376100 9.826600 1.000200 0.017500 No
Edge-Cloud DUC Partition 200 50 41.171500 41.953000 41.259500 41.409600 0.288600 0.086300 Yes
Edge-Cloud ResNet Partition 200 100 3.610300 4.175000 3.674000 3.828700 0.244100 0.072800 Yes
Edge-Cloud ResNext Partition 200 100 2.686100 3.051900 2.710100 2.786200 0.138500 0.030400 No
Edge-Cloud FCN Partition 200 100 8.179700 8.689200 8.584000 8.476500 0.211900 0.171000 Yes
Edge-Cloud DUC Partition 200 100 30.226500 30.736000 30.541000 30.521600 0.175100 0.835700 Yes
Edge-Cloud ResNet Partition 200 150 3.408500 4.094900 3.595000 3.664900 0.229500 0.195900 Yes
Edge-Cloud ResNext Partition 200 150 2.563200 3.471400 2.872600 2.895100 0.311200 0.253500 Yes
Edge-Cloud FCN Partition 200 150 7.749500 8.175700 8.010800 7.992300 0.140100 0.756900 Yes
Edge-Cloud DUC Partition 200 150 26.481200 26.855800 26.745900 26.719600 0.131000 0.387900 Yes
Edge-Cloud ResNet Partition 200 200 3.501100 5.292100 3.665100 4.006300 0.659100 0.023500 No
Edge-Cloud ResNext Partition 200 200 2.643300 2.974300 2.724400 2.770200 0.111900 0.363400 Yes
Edge-Cloud FCN Partition 200 200 7.679700 8.732500 7.893300 8.036300 0.363800 0.106500 Yes
Edge-Cloud DUC Partition 200 200 23.036400 25.150400 24.187700 24.146300 0.736800 0.979300 Yes
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Table 43: Descriptive statistics of the latency for RQ6 (Mobile-Cloud Quantized Early Exit Partitioning
Models), including Shapiro-Wilk p-values and normality assessment (Part 1)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile-Cloud ResNet Quantized Early Exit Partition 1 1 102.331500 103.296800 103.018100 102.977900 0.349100 0.166100 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 1 1 101.765400 102.971600 102.479900 102.443200 0.392500 0.722000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 1 1 407.431000 408.659200 407.804800 407.905500 0.414200 0.464600 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 1 967.185700 968.940200 968.343300 968.077200 0.703600 0.322500 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 1 10 94.872800 95.313700 95.237400 95.137200 0.177500 0.203300 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 1 10 93.975200 94.600700 94.394500 94.358700 0.213800 0.541500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 1 10 230.248000 230.682800 230.307400 230.399600 0.162200 0.224400 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 10 553.993800 557.456500 556.336300 555.981300 1.312900 0.569800 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 1 50 94.703000 97.854700 94.852800 95.558700 1.190000 0.022500 No
Mobile-Cloud ResNext Quantized Early Exit Partition 1 50 94.230300 95.579600 94.839600 94.843500 0.440800 0.870800 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 1 50 214.066500 215.090300 214.488700 214.544900 0.431700 0.240400 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 50 518.981600 520.531000 519.456600 519.690400 0.549000 0.735600 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 1 100 94.702700 95.199700 94.921200 94.958300 0.200900 0.363300 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 1 100 94.503300 94.923100 94.756100 94.721600 0.137200 0.868000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 1 100 212.197400 213.305500 212.688900 212.701500 0.357100 0.728100 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 100 514.364800 516.351600 515.702200 515.464100 0.708400 0.799100 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 1 150 94.623800 97.278600 95.144000 95.485700 0.922400 0.033300 No
Mobile-Cloud ResNext Quantized Early Exit Partition 1 150 94.576500 95.718600 94.747900 94.920600 0.417500 0.075700 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 1 150 212.178300 212.704000 212.292200 212.428000 0.221100 0.110500 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 150 514.066900 515.265000 514.592300 514.558600 0.418000 0.644000 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 1 200 94.596800 98.456300 94.813000 95.511000 1.475900 0.001000 No
Mobile-Cloud ResNext Quantized Early Exit Partition 1 200 94.331000 95.008500 94.899100 94.816300 0.246100 0.011400 No
Mobile-Cloud FCN Quantized Early Exit Partition 1 200 211.597200 213.187400 212.387200 212.347300 0.523000 0.944600 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 1 200 512.180400 514.596100 513.477300 513.514000 0.951600 0.460400 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 1 18.968400 22.350500 19.273400 19.831500 1.265700 0.002400 No
Mobile-Cloud ResNext Quantized Early Exit Partition 10 1 18.994500 19.293200 19.142000 19.136200 0.113900 0.654100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 10 1 221.557300 222.042300 221.792000 221.784300 0.170900 0.942200 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 1 523.663200 525.189900 524.051900 524.240300 0.568500 0.447600 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 10 11.281400 12.088200 11.360500 11.580300 0.316100 0.154000 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 10 10 11.141400 11.933400 11.183200 11.364800 0.300300 0.039500 No
Mobile-Cloud FCN Quantized Early Exit Partition 10 10 45.214600 46.254200 45.795800 45.755100 0.350000 0.995700 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 10 115.255700 117.011900 116.662200 116.427400 0.613800 0.123100 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 50 11.737600 11.953600 11.822100 11.838700 0.086200 0.427900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 10 50 10.761300 11.375000 11.278500 11.204000 0.225200 0.015900 No
Mobile-Cloud FCN Quantized Early Exit Partition 10 50 29.970400 30.542000 30.325800 30.295400 0.192300 0.877900 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 50 77.775100 80.482300 79.054000 79.065600 1.078000 0.459000 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 100 11.448000 11.732600 11.503100 11.551100 0.099400 0.291000 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 10 100 10.755500 11.786500 11.269900 11.254300 0.327700 0.572500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 10 100 27.919600 28.929900 28.183600 28.279500 0.369800 0.368500 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 100 74.541500 76.477400 75.343900 75.597900 0.726100 0.466900 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 150 11.220500 11.967200 11.460600 11.541100 0.266200 0.781700 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 10 150 11.251000 11.635200 11.374100 11.411500 0.128500 0.714400 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 10 150 27.791800 28.541100 28.311000 28.222500 0.249100 0.665300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 150 72.263100 75.112600 73.406200 73.562600 1.022700 0.881600 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 10 200 11.226600 11.779700 11.528200 11.527500 0.182500 0.930200 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 10 200 10.668700 11.540900 11.243400 11.172300 0.283400 0.454800 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 10 200 27.420500 28.097500 27.615100 27.730000 0.269800 0.329600 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 10 200 72.115400 75.761600 73.931500 73.877800 1.255000 0.991300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 1 12.549000 13.344000 12.797700 12.847700 0.270700 0.398800 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 50 1 12.169600 12.485500 12.404500 12.347200 0.134000 0.161500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 1 205.492300 206.367500 206.064700 205.979000 0.343100 0.467100 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 50 1 484.717300 486.392500 485.471000 485.493500 0.534500 0.580200 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 10 5.154100 8.623800 5.284900 5.961500 1.334900 0.001200 No
Mobile-Cloud ResNext Quantized Early Exit Partition 50 10 4.642300 5.290200 4.996600 4.953700 0.226300 0.921300 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 10 30.027200 30.459100 30.091400 30.179000 0.157000 0.243600 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 50 10 82.112000 83.764400 83.351800 83.033500 0.628700 0.424400 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 50 5.095800 5.321500 5.179000 5.207900 0.081400 0.737900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 50 50 4.682100 5.079300 4.974100 4.918500 0.137500 0.628800 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 50 14.784000 15.295500 15.001000 15.050000 0.184100 0.782300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 50 50 47.238000 48.180200 47.448800 47.519300 0.344800 0.055300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 100 4.756100 5.322900 5.108600 5.081300 0.192300 0.862700 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 50 100 4.459200 4.912400 4.803700 4.724500 0.180000 0.309500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 100 12.266300 13.343100 12.378800 12.546700 0.402300 0.007000 No
Mobile-Cloud DUC Quantized Early Exit Partition 50 100 37.082000 37.831200 37.661800 37.512800 0.290200 0.351500 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 150 4.511000 5.621500 5.059600 5.085100 0.359300 0.896200 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 50 150 4.252200 5.106100 4.643900 4.658500 0.272600 0.709000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 150 11.638700 12.215900 11.986600 11.977400 0.211400 0.661300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 50 150 34.783500 36.672000 35.454000 35.528900 0.633500 0.502800 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 50 200 4.375300 7.077000 5.235600 5.471400 0.932000 0.727700 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 50 200 4.678300 5.142800 4.935500 4.932400 0.155000 0.949400 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 50 200 12.426700 12.895300 12.779400 12.723000 0.168000 0.440700 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 50 200 33.969600 34.973500 34.576400 34.462000 0.385300 0.524300 Yes
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Table 44: Descriptive statistics of the latency for RQ6 (Mobile-Cloud Quantized Early Exit Partitioning
Models), including Shapiro-Wilk p-values and normality assessment (Part2)

Tier Model Operator Mobile-Edge BW Edge-Cloud BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile-Cloud ResNet Quantized Early Exit Partition 100 1 12.042500 13.941300 12.427000 12.700600 0.674700 0.266600 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 100 1 11.598300 12.466600 11.860600 12.026400 0.350300 0.248500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 100 1 203.737400 204.396800 204.058000 204.102600 0.247200 0.594300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 1 480.772800 481.749800 481.072300 481.142600 0.330900 0.400100 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 100 10 3.773900 4.276200 4.081100 4.028900 0.183100 0.773900 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 100 10 27.148600 27.779600 27.687300 27.552100 0.234700 0.261200 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 10 69.464200 72.770800 72.015000 71.667400 1.138800 0.041900 No
Mobile-Cloud ResNet Quantized Early Exit Partition 100 50 4.014000 5.013200 4.428000 4.483300 0.346800 0.969900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 100 50 3.869100 4.316400 4.220500 4.174000 0.156600 0.035300 No
Mobile-Cloud FCN Quantized Early Exit Partition 100 50 11.745800 12.122800 12.019700 11.943200 0.144900 0.361000 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 50 33.979000 36.867200 36.570300 36.103100 1.082600 0.014500 No
Mobile-Cloud ResNet Quantized Early Exit Partition 100 100 4.046800 4.407900 4.181600 4.212200 0.124700 0.935800 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 100 100 3.469200 3.806900 3.514800 3.589900 0.127500 0.230500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 100 100 10.085100 10.603300 10.452900 10.370500 0.222900 0.150400 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 100 32.249300 33.477700 32.401000 32.627900 0.462000 0.114500 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 100 150 3.973600 4.503900 4.388900 4.269900 0.242300 0.053400 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 100 150 3.545600 4.354000 4.199800 4.048700 0.308500 0.323100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 100 150 9.819800 11.096600 10.292400 10.348300 0.421000 0.601100 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 150 28.182400 31.573400 30.191900 30.042000 1.083900 0.484000 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 100 200 4.281200 5.177200 4.295400 4.539800 0.350300 0.044200 No
Mobile-Cloud ResNext Quantized Early Exit Partition 100 200 3.700200 4.362700 3.789900 3.915300 0.252100 0.164000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 100 200 9.968600 10.583200 10.105700 10.172700 0.216700 0.158700 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 100 200 29.746100 31.065000 30.360500 30.407200 0.548700 0.289300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 1 11.949000 12.461400 11.994900 12.076300 0.193300 0.001900 No
Mobile-Cloud ResNext Quantized Early Exit Partition 150 1 11.057400 12.322800 11.575900 11.699500 0.446500 0.858500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 1 202.712100 205.165700 203.557800 203.674400 0.809500 0.263300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 1 478.547400 480.351100 479.063100 479.152200 0.631700 0.119400 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 10 3.992400 4.547300 4.322600 4.298800 0.185800 0.945900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 150 10 3.630000 4.017200 3.790800 3.826400 0.131600 0.908000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 10 26.051200 27.167200 26.799700 26.691400 0.371100 0.743200 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 10 70.353200 72.154600 70.836800 71.107500 0.621400 0.661900 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 50 4.088100 4.346400 4.103800 4.189900 0.113100 0.041700 No
Mobile-Cloud ResNext Quantized Early Exit Partition 150 50 3.700100 4.243900 3.915000 3.960800 0.217700 0.410100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 50 11.295100 11.621200 11.509400 11.486300 0.124200 0.537200 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 50 34.536000 35.712900 34.940200 35.106300 0.434100 0.647300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 100 4.203500 4.995000 4.224100 4.446800 0.310400 0.063300 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 150 100 3.427300 4.443900 4.041000 4.014000 0.341200 0.802000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 100 8.985000 10.125700 9.779300 9.686900 0.385400 0.459300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 100 27.784400 31.417500 29.482600 29.731000 1.465700 0.352500 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 150 3.987500 4.999200 4.361500 4.364300 0.364300 0.405400 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 150 150 3.541500 4.240600 3.936000 3.932000 0.232700 0.885500 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 150 9.327000 9.842900 9.421700 9.515100 0.196600 0.295900 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 150 26.963300 29.474900 28.872400 28.620200 0.886400 0.220600 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 150 200 3.857100 4.399700 4.214300 4.152300 0.190400 0.857500 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 150 200 3.645000 4.177400 4.135600 3.998200 0.202600 0.130300 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 150 200 9.151400 9.747000 9.539100 9.510700 0.206000 0.662300 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 150 200 26.985500 29.177300 29.029200 28.460300 0.872000 0.100300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 1 11.860500 14.516200 12.409300 12.795600 0.912000 0.167700 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 200 1 11.144100 11.813000 11.497600 11.445800 0.254200 0.539100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 200 1 202.773100 203.394600 202.994100 203.047200 0.245500 0.441000 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 1 476.675100 479.823300 478.255600 478.282200 1.010200 0.849000 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 10 4.600500 7.278900 4.770300 5.225300 1.028800 0.000900 No
Mobile-Cloud ResNext Quantized Early Exit Partition 200 10 3.806500 5.563900 4.277700 4.421000 0.597300 0.078100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 200 10 26.963600 28.346700 27.339500 27.526100 0.467800 0.582000 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 10 67.180200 69.849000 69.227100 68.839400 0.911200 0.367700 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 50 4.329800 4.777500 4.583200 4.586000 0.155900 0.823900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 200 50 4.052300 5.551300 4.380300 4.589400 0.510200 0.165100 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 200 50 11.681300 12.295600 11.986000 11.987900 0.199400 0.960500 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 50 33.971900 35.208100 34.665600 34.648800 0.427900 0.952900 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 100 4.594800 4.917300 4.722100 4.735500 0.103400 0.306900 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 200 100 4.171300 4.669600 4.399100 4.422100 0.182300 0.841000 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 200 100 9.886000 10.404100 10.231500 10.150600 0.207300 0.325000 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 100 29.745200 31.048000 30.442200 30.444800 0.478600 0.811400 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 150 4.323000 5.159000 4.560400 4.670500 0.298400 0.688000 Yes
Mobile-Cloud ResNext Quantized Early Exit Partition 200 150 4.169500 4.900700 4.258600 4.374500 0.271600 0.034400 No
Mobile-Cloud FCN Quantized Early Exit Partition 200 150 9.605000 11.294400 10.091200 10.275100 0.558000 0.324700 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 150 26.695100 29.177400 28.331900 28.028400 0.949300 0.555300 Yes
Mobile-Cloud ResNet Quantized Early Exit Partition 200 200 4.584000 6.469200 4.835100 5.084300 0.704300 0.012400 No
Mobile-Cloud ResNext Quantized Early Exit Partition 200 200 4.159000 5.115700 4.440400 4.515800 0.319600 0.178700 Yes
Mobile-Cloud FCN Quantized Early Exit Partition 200 200 9.558000 10.395800 9.871900 9.943200 0.276900 0.896200 Yes
Mobile-Cloud DUC Quantized Early Exit Partition 200 200 25.287100 28.347200 27.240200 26.933600 1.178500 0.555600 Yes
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Table 45: Descriptive statistics of the latency for RQ6 (Edge-Cloud Quantized Early Exit Partitioning
Models), including Shapiro-Wilk p-values and normality assessment

Tier Model Operator Edge-Cloud BW Mobile-Edge BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Edge-Cloud ResNet Quantized Early Exit Partition 1 1 176.072300 178.099300 176.186800 176.566500 0.772200 0.003500 No
Edge-Cloud ResNext Quantized Early Exit Partition 1 1 175.789300 176.090700 175.910300 175.931800 0.105800 0.942000 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 1 212.782700 213.123600 212.914500 212.961300 0.123000 0.625900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 1 528.544200 529.855700 529.665400 529.483500 0.478400 0.020200 No
Edge-Cloud ResNet Quantized Early Exit Partition 1 10 168.282300 168.614800 168.496800 168.479300 0.123200 0.615400 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 1 10 168.017800 168.524200 168.109700 168.189700 0.183100 0.236800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 10 35.587000 36.077100 35.794100 35.789300 0.164000 0.593900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 10 117.951900 118.866100 118.483400 118.457800 0.312100 0.951100 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 1 50 168.287000 168.500600 168.315200 168.374700 0.093300 0.067500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 1 50 168.042400 168.375800 168.116500 168.157500 0.114900 0.152900 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 50 19.790600 20.092200 19.929400 19.934300 0.100100 0.993600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 50 81.552700 82.481000 81.812400 81.908300 0.311100 0.350900 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 1 100 168.384900 170.201800 168.523900 168.821600 0.692800 0.001900 No
Edge-Cloud ResNext Quantized Early Exit Partition 1 100 167.941800 168.269100 168.028700 168.084800 0.122200 0.528100 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 100 17.576000 18.003200 17.786800 17.829700 0.159500 0.346600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 100 76.197600 77.173400 76.852400 76.718700 0.437800 0.094300 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 1 150 168.285900 169.725800 168.409700 168.639500 0.547500 0.003900 No
Edge-Cloud ResNext Quantized Early Exit Partition 1 150 168.000300 168.078600 168.074700 168.052200 0.031500 0.087700 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 150 17.395400 17.761700 17.429200 17.520300 0.142700 0.141600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 150 74.912600 76.034000 75.542500 75.533900 0.435100 0.534400 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 1 200 168.273800 169.084100 168.382700 168.507300 0.299700 0.049200 No
Edge-Cloud ResNext Quantized Early Exit Partition 1 200 168.046500 168.273300 168.169200 168.170700 0.078700 0.937800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 1 200 17.313600 17.702100 17.596300 17.533200 0.166600 0.150700 Yes
Edge-Cloud DUC Quantized Early Exit Partition 1 200 74.160100 75.337200 74.541400 74.588700 0.401700 0.240100 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 1 24.394300 25.138700 24.812000 24.727500 0.289100 0.385300 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 10 1 24.267000 24.624300 24.477100 24.470500 0.127700 0.817300 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 1 198.097600 198.183100 198.129900 198.139500 0.035000 0.307400 Yes
Edge-Cloud DUC Quantized Early Exit Partition 10 1 467.647800 469.172400 468.407400 468.359800 0.533200 0.939700 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 10 16.680400 16.898700 16.812900 16.790400 0.077100 0.864800 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 10 10 16.365300 16.567000 16.518100 16.498700 0.069500 0.093300 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 10 21.799200 22.260600 21.968700 22.004300 0.165100 0.850900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 10 10 62.368200 62.946200 62.597800 62.607000 0.199600 0.760900 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 50 16.597800 16.865800 16.712400 16.735300 0.089800 0.893400 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 10 50 16.363200 16.712300 16.535100 16.540400 0.111200 0.704700 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 50 6.101400 6.425600 6.209300 6.253600 0.111200 0.809500 Yes
Edge-Cloud DUC Quantized Early Exit Partition 10 50 25.878200 26.440300 26.225400 26.158900 0.208500 0.663700 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 100 16.469100 16.971600 16.837500 16.752400 0.188100 0.523900 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 10 100 16.332500 16.768600 16.647000 16.601000 0.164300 0.456400 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 100 4.032500 4.437500 4.327800 4.294100 0.137300 0.105200 Yes
Edge-Cloud DUC Quantized Early Exit Partition 10 100 20.558300 21.050600 20.886200 20.855900 0.177400 0.632100 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 150 16.659800 17.207100 16.707700 16.810800 0.203900 0.025500 No
Edge-Cloud ResNext Quantized Early Exit Partition 10 150 16.422900 16.597800 16.516100 16.520500 0.064400 0.719800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 150 3.509500 3.979300 3.940300 3.844500 0.174000 0.037700 No
Edge-Cloud DUC Quantized Early Exit Partition 10 150 19.345700 19.836000 19.795700 19.644000 0.210800 0.060900 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 10 200 16.612200 17.030100 16.808500 16.812200 0.135200 0.917000 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 10 200 16.412600 16.656100 16.564400 16.560600 0.082700 0.508600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 10 200 3.901100 4.527300 4.100400 4.207900 0.261200 0.196900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 10 200 18.581600 18.996600 18.873100 18.840900 0.155400 0.436200 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 1 11.177800 11.673400 11.358200 11.385000 0.160400 0.305400 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 1 10.876200 11.548200 11.118300 11.182200 0.251000 0.690600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 1 197.867300 198.113000 198.028100 198.017600 0.082900 0.467600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 50 1 463.040700 465.053200 464.569000 464.332900 0.687000 0.211900 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 10 3.400600 3.630900 3.480500 3.510800 0.082100 0.783000 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 10 3.280200 3.371900 3.294800 3.319900 0.039300 0.087600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 10 21.419500 21.715600 21.541000 21.543100 0.107700 0.691900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 50 10 56.471800 57.188300 56.863800 56.854000 0.268100 0.742200 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 50 3.364700 3.642000 3.450900 3.467200 0.095400 0.381800 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 50 3.177500 3.444700 3.269500 3.304400 0.110300 0.264700 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 50 6.343800 8.322200 6.456800 6.827000 0.752900 0.003300 No
Edge-Cloud DUC Quantized Early Exit Partition 50 50 21.542400 22.332400 21.965600 21.900800 0.275400 0.777300 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 100 3.316500 3.537700 3.387500 3.390600 0.080700 0.172300 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 100 2.998500 3.152800 3.040500 3.064000 0.064700 0.196600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 100 3.993000 4.500900 4.344100 4.299600 0.191100 0.515100 Yes
Edge-Cloud DUC Quantized Early Exit Partition 50 100 16.762400 17.473300 17.150800 17.175400 0.241500 0.652900 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 150 3.318600 3.425300 3.340700 3.352400 0.038600 0.130500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 150 3.057500 3.219300 3.120700 3.124200 0.053300 0.527400 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 150 3.546900 3.871300 3.787500 3.758100 0.110200 0.060000 Yes
Edge-Cloud DUC Quantized Early Exit Partition 50 150 15.052000 15.652800 15.416000 15.410100 0.205300 0.651600 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 50 200 3.168800 3.459900 3.185800 3.270700 0.116900 0.096800 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 50 200 3.212800 3.405300 3.349500 3.319800 0.070600 0.633500 Yes
Edge-Cloud FCN Quantized Early Exit Partition 50 200 4.055800 4.167900 4.133700 4.119500 0.037500 0.708700 Yes
Edge-Cloud DUC Quantized Early Exit Partition 50 200 14.842800 15.264800 15.183000 15.081000 0.193800 0.045600 No
Edge-Cloud ResNet Quantized Early Exit Partition 100 1 9.971400 10.344600 10.103100 10.124700 0.128100 0.772700 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 100 1 9.581700 9.932400 9.658200 9.730700 0.138100 0.295000 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 1 197.993500 198.264800 198.110200 198.104700 0.101100 0.542200 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 1 464.059400 464.793600 464.371600 464.410500 0.235300 0.731500 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 100 10 2.057400 2.486100 2.123100 2.184200 0.153800 0.020300 No
Edge-Cloud ResNext Quantized Early Exit Partition 100 10 1.818100 2.118000 1.926100 1.938100 0.098400 0.273300 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 10 21.303500 21.661700 21.602500 21.510200 0.141100 0.209500 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 10 56.414200 57.161300 56.777400 56.781200 0.236300 0.339800 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 100 50 1.983000 2.243500 2.108400 2.118000 0.087300 0.983200 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 100 50 1.843200 1.966200 1.854500 1.881600 0.045200 0.086500 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 50 5.925600 6.226100 6.000700 6.027900 0.106200 0.220900 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 50 21.069400 21.760000 21.481800 21.442700 0.229300 0.956000 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 100 100 2.028100 2.121300 2.096900 2.088200 0.031500 0.056900 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 100 100 1.736500 1.872100 1.820600 1.814100 0.043700 0.318100 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 100 3.978600 4.450200 4.363100 4.301400 0.166700 0.061300 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 100 16.872000 17.779200 17.259700 17.359300 0.350500 0.449400 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 100 150 2.138300 2.257400 2.167000 2.186500 0.040900 0.532700 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 100 150 1.803800 1.963900 1.884500 1.883800 0.056800 0.959900 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 150 3.706200 4.402900 3.979000 4.000300 0.225900 0.422600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 150 15.663500 16.546800 16.038200 16.098200 0.319200 0.868400 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 100 200 1.998000 2.252100 2.065400 2.100900 0.089300 0.640300 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 100 200 1.791000 1.946000 1.902000 1.872000 0.064300 0.192900 Yes
Edge-Cloud FCN Quantized Early Exit Partition 100 200 3.761100 4.310700 4.022900 4.030600 0.197800 0.920000 Yes
Edge-Cloud DUC Quantized Early Exit Partition 100 200 14.732800 15.333800 15.214300 15.132900 0.209200 0.114100 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 1 9.943800 10.413600 10.009800 10.087500 0.171800 0.089900 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 1 9.730800 10.027600 9.889000 9.901400 0.100600 0.678400 Yes
Edge-Cloud FCN Quantized Early Exit Partition 150 1 198.014500 198.384000 198.166700 198.166500 0.125000 0.668100 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 1 463.546700 465.223400 464.523500 464.445600 0.534900 0.552500 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 10 1.874200 2.210600 2.119200 2.091800 0.117600 0.292500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 10 1.819300 1.942800 1.844500 1.858900 0.043100 0.041000 No
Edge-Cloud FCN Quantized Early Exit Partition 150 10 21.179600 21.484500 21.305300 21.304500 0.112800 0.589800 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 10 55.868100 57.078100 56.550500 56.497600 0.389800 0.850200 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 50 2.022900 2.165600 2.118700 2.097300 0.053300 0.581500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 50 1.830900 2.007700 1.877600 1.915200 0.073800 0.160900 Yes
Edge-Cloud FCN Quantized Early Exit Partition 150 50 5.922600 6.684800 6.120100 6.204900 0.260700 0.361500 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 50 20.865800 22.047000 21.278900 21.343100 0.385100 0.201000 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 100 1.993400 2.267000 2.112000 2.110200 0.090000 0.631700 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 100 1.794200 2.149700 1.882600 1.925200 0.126900 0.446300 Yes
Edge-Cloud FCN Quantized Early Exit Partition 150 100 4.189700 4.594500 4.353100 4.370900 0.163600 0.371100 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 100 16.382000 17.384700 16.547600 16.721300 0.363300 0.219700 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 150 2.008800 2.340900 2.163700 2.181500 0.118300 0.899200 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 150 1.754100 2.028800 1.940100 1.898000 0.097200 0.722200 Yes
Edge-Cloud FCN Quantized Early Exit Partition 150 150 3.723500 4.301000 3.887500 3.942200 0.192600 0.237600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 150 14.868000 15.950900 15.443600 15.379200 0.382100 0.893000 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 150 200 2.096000 2.112800 2.101300 2.103300 0.007000 0.229500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 150 200 1.863300 2.006200 1.958400 1.945400 0.052000 0.729800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 150 200 3.731300 4.101800 3.850900 3.885900 0.138900 0.598700 Yes
Edge-Cloud DUC Quantized Early Exit Partition 150 200 14.630600 15.349800 15.081600 15.014800 0.276600 0.572400 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 1 9.849700 10.213300 9.938900 9.988700 0.124500 0.436800 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 200 1 9.723600 9.925800 9.778500 9.808900 0.073500 0.626600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 1 197.999000 198.491000 198.073100 198.158400 0.176100 0.124000 Yes
Edge-Cloud DUC Quantized Early Exit Partition 200 1 463.179800 464.375800 463.939100 463.894700 0.403400 0.630400 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 10 2.220700 3.818900 2.329600 2.611900 0.606200 0.002200 No
Edge-Cloud ResNext Quantized Early Exit Partition 200 10 1.847700 2.186600 1.993100 2.011500 0.138300 0.352600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 10 21.392500 21.750500 21.633500 21.599800 0.129400 0.734500 Yes
Edge-Cloud DUC Quantized Early Exit Partition 200 10 56.170100 56.959200 56.678800 56.599700 0.324900 0.292700 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 50 2.176200 2.442500 2.267400 2.284000 0.087500 0.426500 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 200 50 1.881900 2.170900 1.992600 2.035000 0.109600 0.444600 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 50 6.204000 6.486700 6.373400 6.370700 0.094600 0.620600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 200 50 20.751800 21.791000 21.061000 21.163200 0.343700 0.360300 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 100 2.167200 2.483400 2.299100 2.337400 0.122100 0.426000 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 200 100 1.906900 2.196700 2.091100 2.086800 0.100600 0.447700 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 100 4.372200 5.156100 4.518000 4.592800 0.290100 0.027500 No
Edge-Cloud DUC Quantized Early Exit Partition 200 100 16.774100 17.964600 17.422900 17.443000 0.426900 0.803100 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 150 2.159300 2.645500 2.281300 2.353200 0.166700 0.543100 Yes
Edge-Cloud ResNext Quantized Early Exit Partition 200 150 2.052500 2.168900 2.062800 2.092800 0.045400 0.140800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 150 4.059300 4.417400 4.115200 4.181800 0.133000 0.233600 Yes
Edge-Cloud DUC Quantized Early Exit Partition 200 150 15.030900 15.901100 15.354900 15.459500 0.324300 0.653600 Yes
Edge-Cloud ResNet Quantized Early Exit Partition 200 200 2.254300 2.913100 2.273400 2.407000 0.254000 0.001400 No
Edge-Cloud ResNext Quantized Early Exit Partition 200 200 1.896000 2.174900 2.066600 2.064400 0.093300 0.423800 Yes
Edge-Cloud FCN Quantized Early Exit Partition 200 200 4.041400 4.240000 4.127400 4.136200 0.067600 0.992200 Yes
Edge-Cloud DUC Quantized Early Exit Partition 200 200 14.292100 15.171900 14.844300 14.762000 0.311300 0.890400 Yes
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Table 46: Descriptive statistics of the latency for RQ6 (Mobile Identity, Quantized, Early Exit, and
Quantized Early Exit Models), including Shapiro-Wilk p-values and normality assessment

Tier Model Operator Mobile BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile DUC Identity 1 71.115000 74.498700 73.010600 72.844300 1.120600 0.984300 Yes
Mobile FCN Identity 1 28.255700 29.457500 28.442400 28.684100 0.433500 0.261700 Yes
Mobile ResNext Identity 1 87.602500 91.638800 87.776300 88.521100 1.561900 0.000900 No
Mobile ResNet Identity 1 89.913500 90.772700 90.368500 90.358200 0.285300 0.996600 Yes
Mobile FCN Identity 10 22.002100 23.293200 22.143100 22.428100 0.471300 0.135300 Yes
Mobile DUC Identity 10 44.163700 46.815700 45.393100 45.293500 0.963000 0.671900 Yes
Mobile ResNet Identity 10 14.399700 19.240200 14.958800 16.417200 2.158600 0.045500 No
Mobile ResNext Identity 10 12.193200 12.621600 12.331600 12.410500 0.167800 0.316500 Yes
Mobile ResNet Identity 50 7.872700 8.892800 8.323700 8.384400 0.331600 0.882000 Yes
Mobile ResNext Identity 50 5.620900 9.706100 6.016400 6.951100 1.594000 0.128800 Yes
Mobile DUC Identity 50 42.826200 43.954900 43.565400 43.404500 0.482800 0.167500 Yes
Mobile FCN Identity 50 20.496000 22.995200 22.480900 22.131200 0.857900 0.115100 Yes
Mobile ResNext Identity 100 4.930600 7.408600 5.292100 5.902100 0.968700 0.218600 Yes
Mobile ResNet Identity 100 7.236700 13.630400 8.056200 9.398600 2.457600 0.181300 Yes
Mobile DUC Identity 100 42.065000 42.907700 42.628300 42.582000 0.308600 0.542800 Yes
Mobile FCN Identity 100 21.986300 23.592700 22.690200 22.747800 0.534500 0.990200 Yes
Mobile ResNet Identity 150 7.683400 13.099500 8.200700 9.360500 2.068900 0.107000 Yes
Mobile ResNext Identity 150 5.007000 6.130000 5.409700 5.468800 0.408500 0.692700 Yes
Mobile DUC Identity 150 42.850000 44.303600 43.475400 43.510100 0.463200 0.376900 Yes
Mobile FCN Identity 150 20.984100 22.972900 22.608700 22.165300 0.790100 0.238700 Yes
Mobile DUC Identity 200 43.088100 44.017500 43.803300 43.643000 0.358900 0.373600 Yes
Mobile ResNext Identity 200 4.534800 6.230800 5.183300 5.202800 0.602500 0.595300 Yes
Mobile FCN Identity 200 21.599400 23.593000 22.489300 22.509200 0.721300 0.859400 Yes
Mobile ResNet Identity 200 7.857200 13.293600 9.801700 10.429600 2.097400 0.529900 Yes

Mobile DUC Quantization 1 65.947300 70.467900 67.639800 67.962400 1.457800 0.602400 Yes
Mobile ResNet Quantization 1 92.306200 100.395100 96.315100 96.620500 2.681800 0.926300 Yes
Mobile FCN Quantization 1 21.284200 24.089100 22.690700 22.585400 1.107300 0.463100 Yes
Mobile ResNext Quantization 1 88.486600 92.605700 90.079700 90.141100 1.394200 0.599500 Yes
Mobile ResNet Quantization 10 13.793900 24.414900 16.530900 17.586500 3.624500 0.208300 Yes
Mobile DUC Quantization 10 38.680400 41.244000 40.444000 40.250100 0.851200 0.318900 Yes
Mobile ResNext Quantization 10 13.710500 17.391100 14.305600 14.806000 1.347000 0.065500 Yes
Mobile FCN Quantization 10 13.811700 18.262300 15.010100 15.617300 1.592600 0.634200 Yes
Mobile ResNext Quantization 50 7.416300 11.190700 9.283500 9.164900 1.252900 0.928700 Yes
Mobile FCN Quantization 50 15.185200 15.792800 15.397500 15.410700 0.225200 0.399700 Yes
Mobile DUC Quantization 50 36.575700 38.422500 38.021600 37.789000 0.660600 0.266700 Yes
Mobile ResNet Quantization 50 7.711600 14.729400 8.682300 9.928000 2.510500 0.081500 Yes
Mobile FCN Quantization 100 13.675200 15.635900 14.530600 14.727100 0.705600 0.710700 Yes
Mobile ResNext Quantization 100 6.137000 9.684600 7.309100 7.504700 1.320500 0.497900 Yes
Mobile DUC Quantization 100 37.465400 38.488800 37.963100 37.938300 0.410600 0.402400 Yes
Mobile ResNet Quantization 100 7.673700 14.405600 9.305800 10.203200 2.539900 0.401200 Yes
Mobile ResNext Quantization 150 6.107700 9.894700 6.909800 7.626000 1.439300 0.383400 Yes
Mobile FCN Quantization 150 16.173900 16.930700 16.659300 16.602000 0.255400 0.881900 Yes
Mobile DUC Quantization 150 38.105000 39.038400 38.190500 38.423800 0.353700 0.151100 Yes
Mobile ResNet Quantization 150 7.922800 10.397700 8.989200 9.263300 0.891500 0.650200 Yes
Mobile DUC Quantization 200 37.184800 39.488900 38.389200 38.239900 0.916000 0.399600 Yes
Mobile FCN Quantization 200 14.900100 15.589900 15.384000 15.294700 0.234000 0.741000 Yes
Mobile ResNet Quantization 200 7.892600 11.711400 10.505400 10.137200 1.320700 0.761100 Yes
Mobile ResNext Quantization 200 6.401400 11.006300 7.573100 8.123400 1.554100 0.287800 Yes

Mobile DUC Early Exit 1 68.395500 69.322900 69.013700 68.873300 0.351900 0.519000 Yes
Mobile ResNet Early Exit 1 89.283200 90.316200 89.679800 89.757300 0.368300 0.888900 Yes
Mobile FCN Early Exit 1 25.204800 26.212700 25.715200 25.671900 0.338600 0.929200 Yes
Mobile ResNext Early Exit 1 86.795700 87.664700 87.302700 87.202400 0.305300 0.716600 Yes
Mobile ResNet Early Exit 10 13.613300 16.128100 14.977400 14.906600 0.860300 0.996400 Yes
Mobile DUC Early Exit 10 41.431500 42.313900 41.650000 41.795900 0.354700 0.284000 Yes
Mobile ResNext Early Exit 10 11.291900 12.102300 11.725700 11.747300 0.318000 0.446200 Yes
Mobile FCN Early Exit 10 18.397500 19.713100 19.198800 19.153800 0.430400 0.642700 Yes
Mobile ResNext Early Exit 50 4.790500 5.356400 5.093600 5.045000 0.202400 0.706500 Yes
Mobile FCN Early Exit 50 18.771800 20.483700 18.844600 19.162400 0.662400 0.001100 No
Mobile DUC Early Exit 50 38.768800 39.765600 39.110100 39.189800 0.339600 0.828600 Yes
Mobile ResNet Early Exit 50 7.180400 10.522200 8.021800 8.389700 1.127800 0.152000 Yes
Mobile FCN Early Exit 100 19.113800 20.489400 19.894400 19.773200 0.486300 0.846000 Yes
Mobile ResNext Early Exit 100 4.720000 7.391600 4.952700 5.417500 0.998000 0.007400 No
Mobile DUC Early Exit 100 37.735600 38.909200 38.365100 38.355100 0.377800 0.841300 Yes
Mobile ResNet Early Exit 100 6.067300 6.934600 6.392200 6.428600 0.281900 0.392500 Yes
Mobile ResNext Early Exit 150 4.410900 4.757500 4.432800 4.523900 0.137700 0.096900 Yes
Mobile FCN Early Exit 150 18.908200 19.695200 19.385200 19.309400 0.282000 0.848800 Yes
Mobile DUC Early Exit 150 36.997400 40.283600 38.498200 38.669900 1.111500 0.981900 Yes
Mobile ResNet Early Exit 150 6.175800 7.086500 6.526700 6.539400 0.327000 0.625600 Yes
Mobile DUC Early Exit 200 38.546900 39.799700 39.246100 39.230300 0.459200 0.807800 Yes
Mobile FCN Early Exit 200 16.442900 18.394100 18.232700 17.870900 0.723200 0.008800 No
Mobile ResNet Early Exit 200 5.775600 7.174100 6.226100 6.419600 0.495900 0.776400 Yes
Mobile ResNext Early Exit 200 4.285300 6.235400 4.326200 4.729200 0.756600 0.001400 No

Mobile DUC Quantized Early Exit 1 61.508900 64.918500 62.341700 62.725100 1.285200 0.334100 Yes
Mobile ResNet Quantized Early Exit 1 88.306300 93.709800 90.410200 91.062400 2.257100 0.226400 Yes
Mobile FCN Quantized Early Exit 1 18.593700 21.604800 19.576700 19.849500 0.986200 0.511700 Yes
Mobile ResNext Quantized Early Exit 1 88.402900 90.406300 88.514200 88.983600 0.754000 0.046600 No
Mobile ResNet Quantized Early Exit 10 14.007700 19.208300 15.813000 15.947900 1.841500 0.444300 Yes
Mobile DUC Quantized Early Exit 10 35.555000 38.220100 36.476100 36.500400 0.952600 0.272100 Yes
Mobile ResNext Quantized Early Exit 10 13.396400 16.106700 14.511500 14.483700 0.923400 0.554200 Yes
Mobile FCN Quantized Early Exit 10 12.250800 14.675700 12.831200 13.139300 0.875100 0.426000 Yes
Mobile ResNext Quantized Early Exit 50 6.885500 7.085600 7.015400 6.986400 0.070600 0.726600 Yes
Mobile FCN Quantized Early Exit 50 12.994100 14.173200 13.988700 13.732300 0.434200 0.301700 Yes
Mobile DUC Quantized Early Exit 50 32.126800 34.512600 34.308400 33.863200 0.881100 0.010900 No
Mobile ResNet Quantized Early Exit 50 7.111400 16.908700 11.803400 11.425500 3.345200 0.833800 Yes
Mobile FCN Quantized Early Exit 100 13.007800 13.987100 13.633500 13.594600 0.337000 0.683400 Yes
Mobile ResNext Quantized Early Exit 100 5.719800 7.696600 7.013700 6.812900 0.704900 0.834300 Yes
Mobile DUC Quantized Early Exit 100 31.821400 35.566700 34.162000 33.978200 1.212800 0.441600 Yes
Mobile ResNet Quantized Early Exit 100 6.801600 11.592200 8.314400 9.005100 1.947200 0.300100 Yes
Mobile ResNext Quantized Early Exit 150 5.431600 6.884800 6.105300 6.106300 0.487700 0.981900 Yes
Mobile FCN Quantized Early Exit 150 11.588000 13.100300 12.381200 12.388700 0.591300 0.533900 Yes
Mobile DUC Quantized Early Exit 150 30.422400 34.293400 32.947700 32.870400 1.338700 0.318500 Yes
Mobile ResNet Quantized Early Exit 150 6.610700 11.712300 9.299400 8.905600 1.762200 0.773400 Yes
Mobile DUC Quantized Early Exit 200 30.364200 34.808300 33.553900 33.165400 1.625000 0.451800 Yes
Mobile FCN Quantized Early Exit 200 12.861600 14.637200 13.999300 13.724300 0.654000 0.546400 Yes
Mobile ResNet Quantized Early Exit 200 6.714000 9.509900 7.406800 7.744900 0.961600 0.363200 Yes
Mobile ResNext Quantized Early Exit 200 5.099100 6.003500 5.613200 5.546800 0.346000 0.609500 Yes
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Table 47: Descriptive statistics of the latency for RQ6 (Edge Identity, Quantized, Early Exit, and Quan-
tized Early Exit Models), including Shapiro-Wilk p-values and normality assessment

Tier Model Operator Mobile BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Edge DUC Identity 1 80.387600 81.998600 81.988100 81.487500 0.656700 0.052400 Yes
Edge ResNet Identity 1 171.571600 174.023900 171.653300 172.105700 0.960200 0.000600 No
Edge FCN Identity 1 23.624200 24.588000 24.306000 24.256400 0.347500 0.262000 Yes
Edge ResNext Identity 1 169.594000 170.237400 169.697500 169.788000 0.238100 0.092600 Yes
Edge ResNet Identity 10 19.795400 20.116500 20.020600 19.983200 0.113800 0.727000 Yes
Edge DUC Identity 10 24.502600 25.953000 24.852500 25.179600 0.576700 0.243000 Yes
Edge ResNext Identity 10 18.092700 19.631900 18.243300 18.655300 0.617000 0.134300 Yes
Edge FCN Identity 10 10.303200 10.899200 10.510400 10.562700 0.201900 0.875900 Yes
Edge ResNext Identity 50 4.765300 5.320300 4.900400 4.944100 0.199700 0.137100 Yes
Edge FCN Identity 50 9.873000 10.905900 10.594000 10.406100 0.405400 0.343700 Yes
Edge DUC Identity 50 19.047700 20.562100 20.095200 20.014000 0.531400 0.364800 Yes
Edge ResNet Identity 50 6.801600 7.909800 6.978800 7.164000 0.393700 0.125000 Yes
Edge FCN Identity 100 9.331000 10.785500 10.294000 10.176900 0.555400 0.537400 Yes
Edge ResNext Identity 100 3.420200 4.103700 3.705400 3.804400 0.260000 0.337000 Yes
Edge DUC Identity 100 19.166500 23.449800 22.998200 22.100100 1.593000 0.114800 Yes
Edge ResNet Identity 100 5.186000 8.729800 7.196400 6.829000 1.302300 0.641000 Yes
Edge ResNext Identity 150 3.392000 5.625500 3.974500 4.135300 0.775800 0.080900 Yes
Edge FCN Identity 150 10.094400 10.863600 10.690900 10.606000 0.269900 0.160000 Yes
Edge DUC Identity 150 19.110600 23.287900 21.924700 21.415900 1.687200 0.337500 Yes
Edge ResNet Identity 150 5.166400 7.321900 5.299400 5.721800 0.814900 0.010500 No
Edge DUC Identity 200 18.175100 23.084000 19.987100 20.170600 1.781800 0.669000 Yes
Edge FCN Identity 200 10.465500 10.943800 10.778200 10.715400 0.168800 0.804400 Yes
Edge ResNet Identity 200 5.004700 5.817500 5.515500 5.437400 0.298600 0.766800 Yes
Edge ResNext Identity 200 3.502600 4.720400 3.743100 4.040000 0.514500 0.123700 Yes

Edge DUC Quantization 1 79.005600 80.234100 79.686500 79.710800 0.460600 0.595500 Yes
Edge FCN Quantization 1 18.748300 19.403300 18.921900 19.044900 0.248900 0.441800 Yes
Edge ResNext Quantization 1 169.004500 172.702300 169.090600 169.862800 1.432100 0.002600 No
Edge ResNet Quantization 1 169.599500 175.601200 169.909000 171.122400 2.270400 0.006900 No
Edge FCN Quantization 10 5.578500 6.089600 5.586600 5.690000 0.200300 0.000800 No
Edge DUC Quantization 10 21.886600 23.332400 22.759800 22.671100 0.482400 0.955600 Yes
Edge ResNet Quantization 10 18.377600 25.114000 20.404100 21.329900 2.831300 0.207300 Yes
Edge ResNext Quantization 10 17.300000 20.303200 17.412800 18.009700 1.151900 0.001800 No
Edge ResNet Quantization 50 4.886800 11.806100 11.006300 9.521800 2.637500 0.160000 Yes
Edge ResNext Quantization 50 4.307100 7.190400 6.018300 5.726600 1.215600 0.217600 Yes
Edge DUC Quantization 50 18.783600 19.283100 19.194600 19.090500 0.188500 0.327600 Yes
Edge FCN Quantization 50 5.370700 6.227000 5.488100 5.669400 0.321500 0.223600 Yes
Edge ResNext Quantization 100 2.695600 5.410300 2.709300 3.307900 1.058400 0.001600 No
Edge ResNet Quantization 100 3.408500 7.496400 3.908900 4.788500 1.597000 0.163200 Yes
Edge DUC Quantization 100 18.371800 20.276800 19.486800 19.388400 0.667800 0.954500 Yes
Edge FCN Quantization 100 5.170900 6.212800 5.482700 5.649900 0.392600 0.535900 Yes
Edge ResNet Quantization 150 3.401100 9.989900 3.517200 5.867000 2.947400 0.025900 No
Edge ResNext Quantization 150 2.767300 4.601500 2.808700 3.297600 0.707600 0.043900 No
Edge DUC Quantization 150 18.187000 19.315000 18.989200 18.806800 0.410700 0.637300 Yes
Edge FCN Quantization 150 5.419700 6.365600 5.521700 5.772200 0.378200 0.146600 Yes
Edge DUC Quantization 200 17.484700 20.007100 19.022800 18.902000 0.820600 0.722600 Yes
Edge ResNext Quantization 200 2.801600 4.813600 3.048800 3.374200 0.741100 0.034600 No
Edge FCN Quantization 200 5.361800 6.905700 5.774500 5.865100 0.545000 0.093500 Yes
Edge ResNet Quantization 200 3.207000 6.714600 3.764900 4.538800 1.353500 0.259400 Yes

Edge DUC Early Exit 1 77.682500 81.893500 81.324800 80.115000 1.943200 0.033000 No
Edge FCN Early Exit 1 22.221400 22.626300 22.443600 22.455300 0.144400 0.710700 Yes
Edge ResNext Early Exit 1 169.225900 169.691200 169.392800 169.414900 0.152100 0.336700 Yes
Edge ResNet Early Exit 1 170.401900 171.446900 170.590900 170.697800 0.382300 0.018900 No
Edge FCN Early Exit 10 8.013100 9.781600 9.064000 9.009400 0.571400 0.581000 Yes
Edge DUC Early Exit 10 21.072800 23.669800 22.421900 22.303500 0.885900 0.961900 Yes
Edge ResNet Early Exit 10 18.865200 19.910900 19.252000 19.303500 0.373900 0.777400 Yes
Edge ResNext Early Exit 10 17.623300 18.027900 17.792500 17.828200 0.166500 0.296300 Yes
Edge ResNet Early Exit 50 5.398500 6.318400 5.572300 5.694700 0.321300 0.046600 No
Edge ResNext Early Exit 50 4.221400 4.603000 4.329900 4.387500 0.139000 0.648800 Yes
Edge DUC Early Exit 50 20.453400 21.098900 20.657400 20.695000 0.232600 0.490000 Yes
Edge FCN Early Exit 50 8.972400 9.632500 9.465700 9.376400 0.261000 0.314000 Yes
Edge ResNext Early Exit 100 2.979200 3.693300 3.027900 3.242300 0.293900 0.087700 Yes
Edge ResNet Early Exit 100 4.174700 4.798600 4.304900 4.378100 0.225500 0.177000 Yes
Edge DUC Early Exit 100 20.329800 21.047600 20.708700 20.659300 0.253800 0.824300 Yes
Edge FCN Early Exit 100 8.573700 9.787000 9.456700 9.347300 0.422400 0.368600 Yes
Edge ResNet Early Exit 150 4.170800 5.426300 5.021900 4.907300 0.450200 0.728500 Yes
Edge ResNext Early Exit 150 2.696300 3.606600 3.283100 3.227100 0.295600 0.379100 Yes
Edge DUC Early Exit 150 20.535100 20.924300 20.827700 20.771300 0.142200 0.527800 Yes
Edge FCN Early Exit 150 8.381100 9.511600 9.136200 8.992100 0.478100 0.203300 Yes
Edge DUC Early Exit 200 17.536200 20.718600 20.261100 19.808300 1.167500 0.033900 No
Edge ResNext Early Exit 200 3.011500 4.404700 3.098800 3.540200 0.595000 0.058800 Yes
Edge FCN Early Exit 200 8.776200 9.667200 9.224600 9.169900 0.306000 0.776100 Yes
Edge ResNet Early Exit 200 4.090200 5.646600 4.554400 4.729400 0.581400 0.574000 Yes

Edge DUC Quantized EarlyExit 1 76.907400 78.591100 77.841400 77.901800 0.619500 0.548100 Yes
Edge ResNet Quantized EarlyExit 1 169.199900 173.201900 169.329100 170.346800 1.536200 0.043700 No
Edge FCN Quantized EarlyExit 1 18.198800 19.016800 18.385900 18.512600 0.295600 0.483800 Yes
Edge ResNext Quantized EarlyExit 1 168.696100 171.200700 169.097100 169.680900 1.023300 0.167500 Yes
Edge ResNet Quantized EarlyExit 10 17.686500 22.121100 17.897500 18.842200 1.691200 0.016800 No
Edge DUC Quantized EarlyExit 10 19.683700 21.502000 20.726700 20.659700 0.636500 0.958700 Yes
Edge ResNext Quantized EarlyExit 10 17.011500 17.281100 17.091800 17.124200 0.102400 0.527300 Yes
Edge FCN Quantized EarlyExit 10 4.508400 4.991500 4.590700 4.651200 0.172900 0.012500 No
Edge ResNext Quantized EarlyExit 50 3.705900 4.129200 3.914800 3.949600 0.152600 0.556200 Yes
Edge FCN Quantized EarlyExit 50 4.499900 4.706100 4.670500 4.632100 0.078900 0.266400 Yes
Edge DUC Quantized EarlyExit 50 16.879900 17.454700 17.136600 17.149500 0.189500 0.976400 Yes
Edge ResNet Quantized EarlyExit 50 4.090600 8.091500 4.201900 4.938000 1.577500 0.000300 No
Edge FCN Quantized EarlyExit 100 4.387600 5.212200 4.670500 4.708900 0.289800 0.609900 Yes
Edge ResNext Quantized EarlyExit 100 2.406300 3.112200 2.579900 2.660900 0.244800 0.329100 Yes
Edge DUC Quantized EarlyExit 100 15.102300 17.607900 16.685700 16.573000 0.814300 0.312900 Yes
Edge ResNet Quantized EarlyExit 100 2.803100 5.602400 4.316400 4.123200 1.114000 0.413300 Yes
Edge ResNext Quantized EarlyExit 150 2.401000 2.506000 2.479000 2.459900 0.046500 0.094700 Yes
Edge FCN Quantized EarlyExit 150 4.608200 4.951600 4.800900 4.782700 0.152000 0.131700 Yes
Edge DUC Quantized EarlyExit 150 16.661300 17.174900 17.051600 17.021000 0.188600 0.056500 Yes
Edge ResNet Quantized EarlyExit 150 3.071600 5.748900 3.796000 4.022700 0.988600 0.354400 Yes
Edge DUC Quantized EarlyExit 200 15.027100 16.362100 15.925500 15.868300 0.450200 0.213000 Yes
Edge FCN Quantized EarlyExit 200 4.547800 4.791900 4.639800 4.651700 0.083800 0.865300 Yes
Edge ResNet Quantized EarlyExit 200 2.914600 5.528800 3.263200 4.060600 1.151100 0.050700 Yes
Edge ResNext Quantized EarlyExit 200 2.337100 2.617100 2.462800 2.478500 0.109700 0.519500 Yes
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Table 48: Descriptive statistics of the latency for RQ6 (Mobile-Edge Partition and Mobile-Edge Quantized
Early Exit Partition Models), including Shapiro-Wilk p-values and normality assessment

Tier Model Operator Mobile-Edge BW Min Max Median Mean Std Shapiro-Wilk p Normal?

Mobile-Edge DUC Partition 1 1213.411300 1214.121900 1213.797800 1213.794600 0.231100 0.876800 Yes
Mobile-Edge ResNet Partition 1 96.984500 97.409300 97.117600 97.161500 0.141100 0.638100 Yes
Mobile-Edge FCN Partition 1 220.971700 222.211200 222.044500 221.699500 0.559600 0.045500 No
Mobile-Edge ResNext Partition 1 95.031800 96.405500 95.127400 95.382700 0.518500 0.008000 No
Mobile-Edge ResNet Partition 10 13.961100 14.395900 14.119000 14.155600 0.166200 0.591400 Yes
Mobile-Edge DUC Partition 10 157.121200 158.564800 157.462000 157.745000 0.566500 0.327100 Yes
Mobile-Edge ResNext Partition 10 11.621000 11.990700 11.708900 11.766000 0.138100 0.461300 Yes
Mobile-Edge FCN Partition 10 37.581600 38.422100 38.300600 38.178600 0.302600 0.009300 No
Mobile-Edge ResNext Partition 50 4.934200 6.907800 5.387300 5.664400 0.679200 0.347600 Yes
Mobile-Edge FCN Partition 50 22.086400 23.075500 22.141100 22.388100 0.376600 0.073700 Yes
Mobile-Edge DUC Partition 50 62.883300 64.117600 64.001700 63.810400 0.468700 0.005700 No
Mobile-Edge ResNet Partition 50 7.242300 8.545200 7.917600 7.824700 0.510800 0.420900 Yes
Mobile-Edge FCN Partition 100 18.180700 20.791000 20.005000 19.803300 0.913600 0.526100 Yes
Mobile-Edge ResNext Partition 100 4.597700 5.323900 4.700000 4.825500 0.271000 0.134900 Yes
Mobile-Edge DUC Partition 100 52.297700 53.008600 52.662700 52.663100 0.257000 0.903400 Yes
Mobile-Edge ResNet Partition 100 6.637300 7.886800 6.876000 7.158800 0.481800 0.302400 Yes
Mobile-Edge ResNext Partition 150 4.403900 5.414900 4.595000 4.739900 0.360400 0.181200 Yes
Mobile-Edge FCN Partition 150 18.407300 20.188200 19.364700 19.367900 0.574900 0.785500 Yes
Mobile-Edge DUC Partition 150 47.440100 49.001600 48.477200 48.413500 0.530200 0.359700 Yes
Mobile-Edge ResNet Partition 150 6.822700 7.887000 7.115400 7.186100 0.381500 0.248600 Yes
Mobile-Edge DUC Partition 200 44.827500 47.439200 46.791700 46.540800 0.948600 0.292100 Yes
Mobile-Edge FCN Partition 200 19.064900 19.832800 19.367000 19.414800 0.271400 0.916900 Yes
Mobile-Edge ResNet Partition 200 6.694100 7.796000 6.805400 7.118600 0.446000 0.124000 Yes
Mobile-Edge ResNext Partition 200 4.434300 4.582900 4.500700 4.505500 0.048000 0.897100 Yes

Mobile-Edge DUC Quantized Early Exit Partition 1 515.998400 516.711100 516.422600 516.412300 0.238500 0.737000 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 1 95.412400 95.708600 95.605400 95.604800 0.106200 0.232600 Yes
Mobile-Edge FCN Quantized Early Exit Partition 1 213.207400 214.498900 213.797400 213.813300 0.451900 0.967900 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 1 94.412500 95.303000 95.007600 94.963300 0.335600 0.442500 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 10 12.099200 12.377800 12.191700 12.215900 0.099400 0.766900 Yes
Mobile-Edge DUC Quantized Early Exit Partition 10 74.757100 76.610100 76.463800 75.970200 0.749800 0.107000 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 10 11.437500 11.875400 11.706900 11.669900 0.165100 0.672800 Yes
Mobile-Edge FCN Quantized Early Exit Partition 10 28.691300 30.174600 29.493100 29.477000 0.519500 0.967500 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 50 5.179400 5.791800 5.512500 5.482500 0.251500 0.327800 Yes
Mobile-Edge FCN Quantized Early Exit Partition 50 12.989900 13.980700 13.345200 13.476600 0.359200 0.718100 Yes
Mobile-Edge DUC Quantized Early Exit Partition 50 38.190100 39.405500 38.985700 38.917300 0.403400 0.517200 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 50 5.696700 6.297000 5.968400 5.937000 0.222500 0.444700 Yes
Mobile-Edge FCN Quantized Early Exit Partition 100 11.302200 12.838300 11.840500 11.916500 0.502900 0.237700 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 100 4.100600 4.808300 4.432600 4.430000 0.258200 0.841700 Yes
Mobile-Edge DUC Quantized Early Exit Partition 100 31.008100 35.741400 32.629600 33.340000 1.764000 0.575400 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 100 5.116100 6.008000 5.224500 5.407000 0.328500 0.149100 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 150 4.294800 4.791700 4.506700 4.558500 0.174000 0.771200 Yes
Mobile-Edge FCN Quantized Early Exit Partition 150 10.985400 11.912800 11.470600 11.451800 0.382900 0.319100 Yes
Mobile-Edge DUC Quantized Early Exit Partition 150 31.959400 33.530600 32.732900 32.790500 0.509200 0.807500 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 150 5.005700 5.796100 5.192800 5.264200 0.275900 0.074700 Yes
Mobile-Edge DUC Quantized Early Exit Partition 200 29.136400 31.192500 30.531400 30.227600 0.732900 0.734800 Yes
Mobile-Edge FCN Quantized Early Exit Partition 200 10.843200 11.599100 11.306400 11.230700 0.265200 0.893700 Yes
Mobile-Edge ResNet Quantized Early Exit Partition 200 5.106600 5.310700 5.203100 5.205800 0.088300 0.180500 Yes
Mobile-Edge ResNext Quantized Early Exit Partition 200 4.104500 4.716000 4.509200 4.447700 0.253500 0.261700 Yes

Table 49: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0028, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0008.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.016 0.001 0.001 0.378
50 vs 150 0.378 0.001 0.001 0.774
50 vs 200 0.001 0.001 0.001 0.924
100 vs 150 0.497 0.275 0.924 0.378
100 vs 200 0.631 0.631 0.037 0.275
150 vs 200 0.378 0.189 0.005 0.924
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Table 50: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0266, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0010.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.497 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.924
50 vs 150 0.924 0.001 0.001 0.378
50 vs 200 0.631 0.001 0.001 0.774
100 vs 150 0.631 0.497 0.071 0.924
100 vs 200 0.924 0.924 0.122 0.924
150 vs 200 0.497 0.378 0.497 0.497

Table 51: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0008, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.016 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.001 0.122
50 vs 150 0.189 0.001 0.001 0.631
50 vs 200 0.497 0.001 0.001 0.189
100 vs 150 0.497 0.189 0.497 0.378
100 vs 200 0.005 0.189 0.016 0.016
150 vs 200 0.071 0.774 0.924 0.189

Table 52: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0033, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0009.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.275 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.631
50 vs 150 0.189 0.001 0.001 0.924
50 vs 200 0.497 0.001 0.001 0.497
100 vs 150 0.122 0.924 0.037 0.631
100 vs 200 0.631 0.774 0.774 0.774
150 vs 200 0.631 0.774 0.275 0.275
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Table 53: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0120, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0005.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.497 0.001 0.001 0.001
10 vs 100 0.378 0.001 0.001 0.001
10 vs 150 0.189 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.122
50 vs 150 0.497 0.001 0.001 0.071
50 vs 200 0.378 0.001 0.001 0.275
100 vs 150 0.774 0.071 0.774 0.774
100 vs 200 0.497 0.037 0.774 0.774
150 vs 200 0.631 0.497 0.631 0.631

Table 54: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Mobile-Edge BW
= 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0137, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0004.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.631 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.378 0.001 0.001 0.001
10 vs 200 0.497 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.774
50 vs 150 0.189 0.001 0.001 0.631
50 vs 200 0.774 0.001 0.001 0.016
100 vs 150 0.071 0.037 0.189 0.631
100 vs 200 0.497 0.071 0.275 0.122
150 vs 200 0.631 0.378 0.378 0.189

Table 55: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0057, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0008.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.071 0.001 0.001 0.774
50 vs 150 0.189 0.001 0.071 0.189
50 vs 200 0.016 0.001 0.001 0.924
100 vs 150 0.774 0.924 0.071 0.275
100 vs 200 0.924 0.071 0.378 0.631
150 vs 200 0.275 0.001 0.378 0.378
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Table 56: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0309, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0011.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.631 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.774 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.924
50 vs 150 0.924 0.001 0.001 0.924
50 vs 200 0.631 0.001 0.001 0.497
100 vs 150 0.924 0.189 0.631 0.631
100 vs 200 0.774 0.037 0.378 0.924
150 vs 200 0.924 0.378 0.497 0.774

Table 57: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0020, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.016 0.001 0.001 0.001
10 vs 200 0.189 0.001 0.001 0.001
50 vs 100 0.071 0.001 0.001 0.122
50 vs 150 0.122 0.001 0.001 0.001
50 vs 200 0.631 0.001 0.001 0.497
100 vs 150 0.774 0.774 0.774 0.924
100 vs 200 0.189 0.497 0.071 0.275
150 vs 200 0.122 0.631 0.497 0.005

Table 58: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0010, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0007.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.037 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.378 0.001 0.001 0.924
50 vs 150 0.189 0.001 0.001 0.378
50 vs 200 0.005 0.001 0.001 0.189
100 vs 150 0.631 0.189 0.497 0.631
100 vs 200 0.016 0.189 0.071 0.275
150 vs 200 0.037 0.631 0.122 0.497
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Table 59: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0039, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.189 0.001 0.001 0.001
10 vs 150 0.037 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.275 0.001 0.001 0.122
50 vs 150 0.924 0.001 0.001 0.774
50 vs 200 0.378 0.001 0.001 0.497
100 vs 150 0.275 0.275 0.122 0.122
100 vs 200 0.275 0.275 0.924 0.016
150 vs 200 0.189 0.378 0.037 0.189

Table 60: Pairwise Conover post-hoc p-values for RQ6 (Cloud Identity Models) with Edge-Cloud BW =
200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0033, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.071 0.001 0.001 0.001
10 vs 150 0.016 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.189 0.001 0.001 0.001
50 vs 150 0.189 0.001 0.001 0.016
50 vs 200 0.497 0.001 0.001 0.924
100 vs 150 0.378 0.774 0.631 0.924
100 vs 200 0.378 0.189 0.378 0.001
150 vs 200 0.275 0.122 0.774 0.001

Table 61: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0130, ResNet = 0.0002, ResNext = 0.0001, DUC = 0.0004.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.275 0.001 0.001 0.631
50 vs 150 0.774 0.001 0.001 0.005
50 vs 200 0.275 0.122 0.001 0.275
100 vs 150 0.924 0.071 0.497 0.122
100 vs 200 0.122 0.497 0.924 0.774
150 vs 200 0.275 0.497 0.774 0.378
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Table 62: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0286, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.924 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.631 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.275
50 vs 150 0.774 0.001 0.001 0.275
50 vs 200 0.378 0.001 0.001 0.005
100 vs 150 0.774 0.774 0.071 0.924
100 vs 200 0.774 0.275 0.275 0.275
150 vs 200 0.924 0.189 0.275 0.037

Table 63: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0018, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.001 0.001 0.001
10 vs 100 0.005 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.189 0.001 0.001 0.001
50 vs 100 0.016 0.001 0.001 0.001
50 vs 150 0.378 0.122 0.001 0.001
50 vs 200 0.774 0.001 0.001 0.071
100 vs 150 0.275 0.071 0.037 0.924
100 vs 200 0.037 0.037 0.275 0.774
150 vs 200 0.378 0.774 0.005 0.774

Table 64: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0012, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.071 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.001 0.016
50 vs 150 0.016 0.001 0.001 0.774
50 vs 200 0.001 0.001 0.001 0.631
100 vs 150 0.497 0.189 0.275 0.122
100 vs 200 0.497 0.497 0.122 0.001
150 vs 200 0.774 0.774 0.774 0.924
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Table 65: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0047, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.189 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.005 0.001
50 vs 150 0.378 0.001 0.001 0.497
50 vs 200 0.774 0.001 0.001 0.016
100 vs 150 0.497 0.631 0.924 0.189
100 vs 200 0.497 0.631 0.497 0.275
150 vs 200 0.275 0.924 0.378 0.497

Table 66: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Mobile-Edge BW
= 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0031, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.037 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.189 0.001 0.001 0.071
50 vs 150 0.774 0.001 0.001 0.001
50 vs 200 0.631 0.001 0.001 0.189
100 vs 150 0.378 0.774 0.924 0.001
100 vs 200 0.275 0.275 0.631 0.001
150 vs 200 0.924 0.037 0.631 0.005

Table 67: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0013, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.378 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.016 0.001 0.001 0.275
50 vs 150 0.001 0.001 0.001 0.497
50 vs 200 0.005 0.001 0.001 0.016
100 vs 150 0.037 0.071 0.275 0.275
100 vs 200 0.497 0.189 0.275 0.071
150 vs 200 0.189 0.122 0.497 0.037
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Table 68: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0308, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.924
50 vs 150 0.774 0.001 0.001 0.189
50 vs 200 0.774 0.001 0.001 0.497
100 vs 150 0.774 0.924 0.631 0.497
100 vs 200 0.924 0.275 0.275 0.189
150 vs 200 0.631 0.275 0.071 0.189

Table 69: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0004, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0004.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.005 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.016 0.001 0.001 0.122
50 vs 150 0.016 0.001 0.001 0.497
50 vs 200 0.774 0.001 0.001 0.071
100 vs 150 0.001 0.924 0.631 0.275
100 vs 200 0.016 0.275 0.631 0.631
150 vs 200 0.037 0.016 0.924 0.189

Table 70: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0010, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0009.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.005 0.001 0.001 0.001
10 vs 100 0.005 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.016 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.275
50 vs 150 0.378 0.001 0.001 0.497
50 vs 200 0.071 0.001 0.001 0.631
100 vs 150 0.631 0.497 0.378 0.774
100 vs 200 0.189 0.378 0.037 0.924
150 vs 200 0.497 0.275 0.122 0.631
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Table 71: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0029, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.016 0.001 0.001 0.001
10 vs 200 0.016 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.497
50 vs 150 0.631 0.001 0.001 0.497
50 vs 200 0.497 0.001 0.001 0.001
100 vs 150 0.378 0.924 0.774 0.924
100 vs 200 0.631 0.005 0.037 0.001
150 vs 200 0.774 0.037 0.122 0.071

Table 72: Pairwise Conover post-hoc p-values for RQ6 (Cloud Early Exit Models) with Edge-Cloud BW
= 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0013, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.275 0.001 0.001 0.122
50 vs 150 0.071 0.001 0.001 0.924
50 vs 200 0.774 0.001 0.001 0.122
100 vs 150 0.497 0.774 0.378 0.275
100 vs 200 0.497 0.037 0.005 0.001
150 vs 200 0.122 0.001 0.001 0.005

Table 73: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0146, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.631 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.631 0.001 0.001 0.001
50 vs 100 0.189 0.001 0.001 0.016
50 vs 150 0.774 0.001 0.001 0.497
50 vs 200 0.189 0.001 0.001 0.071
100 vs 150 0.378 0.378 0.924 0.005
100 vs 200 0.631 0.189 0.378 0.497
150 vs 200 0.378 0.071 0.631 0.016
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Table 74: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0313, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.774 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.378
50 vs 150 0.924 0.001 0.016 0.071
50 vs 200 0.774 0.001 0.005 0.005
100 vs 150 0.774 0.631 0.071 0.497
100 vs 200 0.774 0.122 0.275 0.001
150 vs 200 0.924 0.122 0.189 0.001

Table 75: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0016, ResNet = 0.0000, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.005 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.631
50 vs 150 0.631 0.001 0.001 0.924
50 vs 200 0.275 0.001 0.001 0.122
100 vs 150 0.631 0.275 0.378 0.497
100 vs 200 0.497 0.001 0.071 0.005
150 vs 200 0.924 0.001 0.631 0.037

Table 76: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0055, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.378 0.001 0.001 0.001
10 vs 100 0.037 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.497
50 vs 150 0.189 0.001 0.001 0.001
50 vs 200 0.378 0.001 0.001 0.378
100 vs 150 0.631 0.378 0.016 0.001
100 vs 200 0.774 0.189 0.016 0.275
150 vs 200 0.924 0.631 0.378 0.037
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Table 77: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0058, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.189 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.189 0.001 0.001 0.001
50 vs 150 0.631 0.001 0.001 0.497
50 vs 200 0.378 0.001 0.001 0.774
100 vs 150 0.378 0.189 0.774 0.016
100 vs 200 0.924 0.497 0.275 0.275
150 vs 200 0.497 0.631 0.189 0.774

Table 78: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Mobile-Edge BW
= 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0035, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0007.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.037 0.001 0.001 0.001
10 vs 150 0.016 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.275
50 vs 150 0.631 0.001 0.001 0.378
50 vs 200 0.774 0.001 0.001 0.924
100 vs 150 0.924 0.924 0.774 0.378
100 vs 200 0.497 0.378 0.924 0.189
150 vs 200 0.924 0.497 0.497 0.924

Table 79: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0253, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.631 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.378
50 vs 150 0.924 0.001 0.001 0.122
50 vs 200 0.631 0.001 0.001 0.189
100 vs 150 0.631 0.275 0.924 0.774
100 vs 200 0.924 0.924 0.016 0.378
150 vs 200 0.122 0.497 0.189 0.275
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Table 80: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0299, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.122
50 vs 150 0.924 0.001 0.001 0.497
50 vs 200 0.924 0.001 0.001 0.071
100 vs 150 0.774 0.631 0.497 0.037
100 vs 200 0.774 0.924 0.189 0.631
150 vs 200 0.774 0.631 0.378 0.005
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Table 81: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0024, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.122
50 vs 150 0.016 0.001 0.001 0.774
50 vs 200 0.275 0.001 0.001 0.497
100 vs 150 0.037 0.924 0.378 0.001
100 vs 200 0.189 0.924 0.924 0.037
150 vs 200 0.071 0.774 0.924 0.924
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Table 82: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0100, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.001
50 vs 150 0.924 0.001 0.001 0.016
50 vs 200 0.924 0.001 0.001 0.378
100 vs 150 0.924 0.275 0.016 0.924
100 vs 200 0.631 0.071 0.001 0.071
150 vs 200 0.924 0.071 0.275 0.122

Table 83: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0076, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0009.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.774
50 vs 150 0.924 0.001 0.001 0.924
50 vs 200 0.631 0.001 0.001 0.924
100 vs 150 0.924 0.631 0.631 0.378
100 vs 200 0.631 0.005 0.924 0.378
150 vs 200 0.497 0.001 0.037 0.497
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Table 84: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Models) with Edge-Cloud BW
= 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0101, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.275
50 vs 150 0.924 0.001 0.001 0.378
50 vs 200 0.631 0.001 0.001 0.001
100 vs 150 0.924 0.774 0.774 0.497
100 vs 200 0.774 0.122 0.497 0.016
150 vs 200 0.924 0.016 0.001 0.774

Table 85: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0222, ResNet = 0.0002, ResNext = 0.0001, DUC = 0.0011.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.378 0.001 0.001 0.001
10 vs 200 0.774 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.924
50 vs 150 0.924 0.001 0.001 0.774
50 vs 200 0.497 0.122 0.001 0.631
100 vs 150 0.774 0.924 0.378 0.774
100 vs 200 0.631 0.189 0.378 0.774
150 vs 200 0.189 0.189 0.071 0.774
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Table 86: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0314, ResNet = 0.0001, ResNext = 0.0002, DUC = 0.0002.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.005
50 vs 150 0.774 0.001 0.001 0.037
50 vs 200 0.774 0.001 0.016 0.001
100 vs 150 0.924 0.275 0.497 0.631
100 vs 200 0.924 0.037 0.924 0.275
150 vs 200 0.924 0.497 0.378 0.189
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Table 87: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0010, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.005 0.001 0.001 0.001
10 vs 200 0.005 0.001 0.001 0.001
50 vs 100 0.122 0.001 0.001 0.001
50 vs 150 0.378 0.001 0.001 0.001
50 vs 200 0.631 0.001 0.001 0.001
100 vs 150 0.924 0.071 0.924 0.071
100 vs 200 0.275 0.037 0.001 0.189
150 vs 200 0.189 0.774 0.001 0.497

Table 88: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0009, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.275 0.001 0.001 0.001
10 vs 100 0.071 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.001 0.189
50 vs 150 0.016 0.001 0.001 0.001
50 vs 200 0.005 0.001 0.001 0.005
100 vs 150 0.071 0.924 0.631 0.001
100 vs 200 0.924 0.924 0.275 0.037
150 vs 200 0.275 0.774 0.275 0.774
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Table 89: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0057, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.122 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.122 0.001 0.001 0.001
50 vs 150 0.189 0.001 0.001 0.497
50 vs 200 0.037 0.001 0.001 0.631
100 vs 150 0.631 0.924 0.378 0.122
100 vs 200 0.631 0.189 0.497 0.122
150 vs 200 0.774 0.071 0.497 0.924

Table 90: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Mobile-
Edge BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0015, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.037 0.001 0.001 0.001
10 vs 200 0.005 0.001 0.001 0.001
50 vs 100 0.275 0.001 0.001 0.189
50 vs 150 0.497 0.122 0.001 0.001
50 vs 200 0.122 0.001 0.001 0.037
100 vs 150 0.122 0.189 0.631 0.497
100 vs 200 0.774 0.631 0.924 0.774
150 vs 200 0.189 0.071 0.924 0.275

Table 91: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0293, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0010.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.497
50 vs 150 0.774 0.001 0.001 0.378
50 vs 200 0.924 0.001 0.001 0.631
100 vs 150 0.631 0.631 0.016 0.774
100 vs 200 0.631 0.774 0.016 0.924
150 vs 200 0.631 0.497 0.189 0.497
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Table 92: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0311, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.631 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.016
50 vs 150 0.924 0.001 0.001 0.774
50 vs 200 0.924 0.001 0.001 0.005
100 vs 150 0.924 0.378 0.189 0.016
100 vs 200 0.924 0.071 0.497 0.378
150 vs 200 0.924 0.378 0.071 0.001

Table 93: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0010, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.275 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.037 0.001 0.001 0.924
50 vs 150 0.122 0.001 0.001 0.924
50 vs 200 0.378 0.001 0.001 0.001
100 vs 150 0.001 0.924 0.924 0.774
100 vs 200 0.016 0.924 0.774 0.001
150 vs 200 0.016 0.924 0.774 0.001

Table 94: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0036, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0007.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.071 0.001 0.001 0.001
10 vs 100 0.071 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.275
50 vs 150 0.122 0.001 0.001 0.774
50 vs 200 0.631 0.001 0.001 0.378
100 vs 150 0.071 0.378 0.189 0.189
100 vs 200 0.275 0.001 0.001 0.774
150 vs 200 0.275 0.122 0.001 0.631
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Table 95: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0027, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.005 0.001 0.001 0.001
10 vs 100 0.005 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.275 0.001 0.001 0.497
50 vs 150 0.189 0.001 0.001 0.016
50 vs 200 0.071 0.001 0.001 0.001
100 vs 150 0.924 0.275 0.189 0.001
100 vs 200 0.631 0.037 0.122 0.001
150 vs 200 0.924 0.001 0.001 0.497

Table 96: Pairwise Conover post-hoc p-values for RQ6 (Cloud Quantized Early Exit Models) with Edge-
Cloud BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0029, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.016 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.122 0.001 0.001 0.001
50 vs 100 0.122 0.001 0.001 0.497
50 vs 150 0.631 0.001 0.001 0.122
50 vs 200 0.378 0.001 0.001 0.037
100 vs 150 0.071 0.631 0.774 0.016
100 vs 200 0.189 0.122 0.016 0.016
150 vs 200 0.497 0.001 0.001 0.631

Table 97: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0180, ResNext = 0.0183, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.774 0.631 0.001
10 vs 100 0.001 0.631 0.631 0.001
10 vs 150 0.001 0.275 0.924 0.001
10 vs 200 0.001 0.774 0.924 0.001
50 vs 100 0.001 0.631 0.924 0.001
50 vs 150 0.001 0.497 0.378 0.001
50 vs 200 0.001 0.497 0.189 0.001
100 vs 150 0.378 0.122 0.631 0.001
100 vs 200 0.631 0.924 0.275 0.001
150 vs 200 0.631 0.631 0.497 0.037
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Table 98: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0198, ResNext = 0.0064, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.924 0.631 0.001
10 vs 100 0.001 0.774 0.071 0.001
10 vs 150 0.001 0.275 0.631 0.001
10 vs 200 0.001 0.189 0.378 0.001
50 vs 100 0.071 0.924 0.071 0.001
50 vs 150 0.001 0.774 0.378 0.001
50 vs 200 0.016 0.631 0.275 0.001
100 vs 150 0.189 0.774 0.122 0.001
100 vs 200 0.497 0.631 0.275 0.001
150 vs 200 0.122 0.275 0.631 0.001

Table 99: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0000, ResNet = 0.0023, ResNext = 0.0015, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.497 0.924 0.001
10 vs 100 0.001 0.122 0.001 0.001
10 vs 150 0.001 0.005 0.378 0.001
10 vs 200 0.001 0.122 0.774 0.001
50 vs 100 0.001 0.122 0.001 0.001
50 vs 150 0.001 0.016 0.378 0.001
50 vs 200 0.001 0.071 0.774 0.001
100 vs 150 0.122 0.774 0.122 0.001
100 vs 200 0.001 0.378 0.001 0.001
150 vs 200 0.001 0.631 0.631 0.005

Table 100: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0287, ResNext = 0.0096, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.924 0.924 0.001
10 vs 100 0.001 0.924 0.924 0.001
10 vs 150 0.001 0.631 0.497 0.001
10 vs 200 0.001 0.497 0.071 0.001
50 vs 100 0.001 0.774 0.774 0.001
50 vs 150 0.001 0.631 0.774 0.001
50 vs 200 0.001 0.924 0.189 0.001
100 vs 150 0.122 0.631 0.275 0.001
100 vs 200 0.071 0.924 0.037 0.001
150 vs 200 0.005 0.774 0.924 0.001
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Table 101: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0036, ResNext = 0.0139, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.924 0.001
10 vs 100 0.001 0.497 0.189 0.001
10 vs 150 0.001 0.001 0.631 0.001
10 vs 200 0.001 0.071 0.924 0.001
50 vs 100 0.001 0.497 0.189 0.001
50 vs 150 0.001 0.774 0.378 0.001
50 vs 200 0.001 0.774 0.924 0.001
100 vs 150 0.122 0.378 0.378 0.001
100 vs 200 0.378 0.631 0.189 0.001
150 vs 200 0.275 0.774 0.924 0.005

Table 102: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Mobile-
Edge BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0297, ResNext = 0.0293, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.924 0.378 0.001
10 vs 100 0.001 0.924 0.924 0.001
10 vs 150 0.001 0.924 0.924 0.001
10 vs 200 0.001 0.924 0.631 0.001
50 vs 100 0.001 0.774 0.774 0.001
50 vs 150 0.001 0.924 0.924 0.001
50 vs 200 0.001 0.497 0.631 0.001
100 vs 150 0.275 0.774 0.378 0.001
100 vs 200 0.275 0.774 0.774 0.001
150 vs 200 0.924 0.631 0.774 0.001

Table 103: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0006, ResNext = 0.0001, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.122 0.001 0.001
50 vs 150 0.001 0.378 0.378 0.001
50 vs 200 0.001 0.631 0.001 0.001
100 vs 150 0.189 0.497 0.037 0.001
100 vs 200 0.122 0.275 0.924 0.001
150 vs 200 0.071 0.497 0.016 0.001
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Table 104: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0000, ResNet = 0.0002, ResNext = 0.0001, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.005 0.001 0.001
50 vs 150 0.001 0.001 0.001 0.001
50 vs 200 0.001 0.631 0.631 0.001
100 vs 150 0.005 0.122 0.924 0.001
100 vs 200 0.001 0.037 0.016 0.001
150 vs 200 0.001 0.378 0.037 0.001

Table 105: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0000, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.001 0.001
50 vs 150 0.001 0.001 0.001 0.001
50 vs 200 0.001 0.122 0.122 0.001
100 vs 150 0.001 0.924 0.774 0.001
100 vs 200 0.016 0.071 0.001 0.001
150 vs 200 0.001 0.001 0.005 0.001

Table 106: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0006, ResNext = 0.0001, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.122 0.497 0.001 0.001
50 vs 150 0.037 0.122 0.001 0.001
50 vs 200 0.497 0.275 0.122 0.001
100 vs 150 0.378 0.631 0.631 0.001
100 vs 200 0.001 0.631 0.037 0.001
150 vs 200 0.001 0.122 0.005 0.037
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Table 107: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0002, ResNext = 0.0002, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.016 0.275 0.275 0.001
50 vs 150 0.001 0.001 0.001 0.001
50 vs 200 0.071 0.497 0.924 0.001
100 vs 150 0.001 0.631 0.275 0.001
100 vs 200 0.275 0.497 0.189 0.001
150 vs 200 0.001 0.001 0.001 0.037

Table 108: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Partition Models) with Edge-
Cloud BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0001, ResNext = 0.0002, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.005 0.001
50 vs 150 0.001 0.001 0.016 0.001
50 vs 200 0.001 0.005 0.378 0.001
100 vs 150 0.497 0.924 0.378 0.001
100 vs 200 0.016 0.005 0.275 0.001
150 vs 200 0.005 0.016 0.037 0.037

Table 109: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0097, ResNext = 0.0023, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.710 0.323 0.000 0.040
1 vs 50 0.001 0.035 0.002 0.000
1 vs 100 0.000 0.002 1.000 0.000
1 vs 150 0.000 0.008 0.002 0.000
1 vs 200 0.000 0.049 0.002 0.000
10 vs 50 0.198 1.000 1.000 0.040
10 vs 100 0.002 0.595 0.033 0.000
10 vs 150 0.000 1.000 1.000 0.000
10 vs 200 0.000 1.000 1.000 0.000
50 vs 100 0.996 1.000 0.107 0.029
50 vs 150 0.006 1.000 1.000 0.000
50 vs 200 0.005 1.000 1.000 0.000
100 vs 150 0.597 1.000 0.156 0.000
100 vs 200 0.500 1.000 0.138 0.003
150 vs 200 1.000 1.000 1.000 1.000
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Table 110: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0253, ResNext = 0.0011, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.594 0.038 0.041 0.001
1 vs 50 0.003 0.053 0.001 0.000
1 vs 100 0.000 0.149 0.000 0.000
1 vs 150 0.000 0.059 0.490 0.000
1 vs 200 0.000 0.013 0.000 0.000
10 vs 50 0.494 1.000 1.000 0.001
10 vs 100 0.000 1.000 0.714 0.000
10 vs 150 0.000 1.000 1.000 0.000
10 vs 200 0.000 1.000 0.063 0.000
50 vs 100 0.006 1.000 1.000 0.001
50 vs 150 0.012 1.000 0.255 0.000
50 vs 200 0.001 1.000 1.000 0.000
100 vs 150 1.000 1.000 0.063 0.001
100 vs 200 1.000 1.000 1.000 0.000
150 vs 200 1.000 1.000 0.004 0.001

Table 111: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0014, ResNext = 0.0024, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.050 0.392 0.159 0.001
1 vs 50 0.000 0.003 0.295 0.000
1 vs 100 0.000 0.000 0.000 0.000
1 vs 150 0.000 0.000 0.002 0.000
1 vs 200 0.000 0.046 0.000 0.000
10 vs 50 0.050 0.915 1.000 0.001
10 vs 100 0.000 0.009 0.423 0.000
10 vs 150 0.000 0.092 1.000 0.000
10 vs 200 0.000 1.000 0.205 0.000
50 vs 100 0.000 0.915 0.232 0.001
50 vs 150 0.000 1.000 0.749 0.000
50 vs 200 0.010 1.000 0.109 0.000
100 vs 150 0.128 1.000 1.000 0.001
100 vs 200 0.313 0.092 1.000 0.000
150 vs 200 0.000 0.724 1.000 0.001

Table 112: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0195, ResNext = 0.0131, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.390 0.023 0.075 0.001
1 vs 50 0.001 0.009 0.024 0.000
1 vs 100 0.000 0.050 0.002 0.000
1 vs 150 0.000 0.032 0.038 0.000
1 vs 200 0.000 0.267 0.179 0.000
10 vs 50 0.390 1.000 1.000 0.001
10 vs 100 0.000 1.000 1.000 0.000
10 vs 150 0.000 1.000 1.000 0.000
10 vs 200 0.000 1.000 1.000 0.000
50 vs 100 0.006 1.000 1.000 0.001
50 vs 150 0.004 1.000 1.000 0.000
50 vs 200 0.000 1.000 1.000 0.000
100 vs 150 1.000 1.000 1.000 0.001
100 vs 200 1.000 1.000 1.000 0.000
150 vs 200 1.000 1.000 1.000 0.001

128



Table 113: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0173, ResNext = 0.0081, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.208 0.021 0.013 0.001
1 vs 50 0.000 0.005 0.006 0.000
1 vs 100 0.000 0.122 0.747 0.000
1 vs 150 0.000 0.027 0.013 0.000
1 vs 200 0.000 0.168 0.004 0.000
10 vs 50 0.208 1.000 1.000 0.001
10 vs 100 0.000 1.000 1.000 0.000
10 vs 150 0.000 1.000 1.000 0.000
10 vs 200 0.000 1.000 1.000 0.000
50 vs 100 0.036 1.000 0.824 0.001
50 vs 150 0.000 1.000 1.000 0.000
50 vs 200 0.000 1.000 1.000 0.000
100 vs 150 0.127 1.000 1.000 0.001
100 vs 200 0.127 1.000 0.553 0.000
150 vs 200 1.000 1.000 1.000 0.001

Table 114: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Mobile-Edge
BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0184, ResNext = 0.0234, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.870 0.067 0.017 0.001
1 vs 50 0.001 0.025 0.159 0.000
1 vs 100 0.000 0.141 0.024 0.000
1 vs 150 0.000 0.005 0.105 0.000
1 vs 200 0.000 0.074 0.026 0.000
10 vs 50 0.106 1.000 1.000 0.001
10 vs 100 0.008 1.000 1.000 0.000
10 vs 150 0.000 1.000 1.000 0.000
10 vs 200 0.000 1.000 1.000 0.000
50 vs 100 1.000 1.000 1.000 0.001
50 vs 150 0.033 1.000 1.000 0.000
50 vs 200 0.018 1.000 1.000 0.000
100 vs 150 0.376 1.000 1.000 0.001
100 vs 200 0.221 1.000 1.000 0.000
150 vs 200 1.000 1.000 1.000 0.001

Table 115: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0172, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0005.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.010 0.554 0.564 1.000
1 vs 50 0.099 0.003 0.003 0.000
1 vs 100 0.027 0.000 0.000 0.000
1 vs 150 0.228 0.000 0.000 0.000
1 vs 200 0.011 0.000 0.000 0.001
10 vs 50 1.000 0.554 0.564 0.000
10 vs 100 1.000 0.000 0.000 0.011
10 vs 150 1.000 0.000 0.000 0.011
10 vs 200 1.000 0.000 0.000 0.041
50 vs 100 1.000 0.003 0.003 0.779
50 vs 150 1.000 0.001 0.004 0.779
50 vs 200 1.000 0.004 0.002 0.241
100 vs 150 1.000 1.000 1.000 1.000
100 vs 200 1.000 1.000 1.000 1.000
150 vs 200 1.000 1.000 1.000 1.000
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Table 116: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0045, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.380 0.378 0.387 0.963
1 vs 50 0.009 0.001 0.001 0.000
1 vs 100 0.094 0.000 0.000 0.000
1 vs 150 0.001 0.000 0.000 0.000
1 vs 200 0.001 0.000 0.000 0.000
10 vs 50 1.000 0.378 0.387 0.041
10 vs 100 1.000 0.000 0.000 0.000
10 vs 150 0.304 0.000 0.000 0.019
10 vs 200 0.340 0.000 0.000 0.000
50 vs 100 1.000 0.001 0.001 0.703
50 vs 150 1.000 0.000 0.000 1.000
50 vs 200 1.000 0.020 0.017 0.019
100 vs 150 1.000 1.000 1.000 1.000
100 vs 200 1.000 1.000 1.000 1.000
150 vs 200 1.000 0.845 0.861 0.041

Table 117: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0138, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0004.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.010 0.197 0.023 1.000
1 vs 50 0.070 0.000 0.000 0.003
1 vs 100 0.018 0.000 0.000 0.000
1 vs 150 0.006 0.000 0.000 0.000
1 vs 200 0.342 0.000 0.000 0.000
10 vs 50 1.000 0.197 0.023 0.205
10 vs 100 1.000 0.000 0.000 0.000
10 vs 150 1.000 0.000 0.000 0.000
10 vs 200 1.000 0.000 0.000 0.005
50 vs 100 1.000 0.000 0.000 0.148
50 vs 150 1.000 0.000 0.000 0.281
50 vs 200 1.000 0.033 0.023 1.000
100 vs 150 1.000 1.000 1.000 1.000
100 vs 200 1.000 0.252 0.001 1.000
150 vs 200 1.000 0.056 0.000 1.000

Table 118: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0028, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0004.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.363 0.251 1.000
1 vs 50 0.002 0.001 0.000 0.000
1 vs 100 0.001 0.000 0.000 0.000
1 vs 150 0.003 0.000 0.000 0.000
1 vs 200 1.000 0.000 0.000 0.001
10 vs 50 1.000 0.363 0.251 0.005
10 vs 100 1.000 0.000 0.000 0.007
10 vs 150 1.000 0.000 0.000 0.000
10 vs 200 0.083 0.000 0.000 0.085
50 vs 100 1.000 0.000 0.000 1.000
50 vs 150 1.000 0.000 0.001 1.000
50 vs 200 0.138 0.024 0.010 1.000
100 vs 150 1.000 1.000 0.760 1.000
100 vs 200 0.095 0.993 0.123 1.000
150 vs 200 0.226 1.000 1.000 0.118
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Table 119: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0014, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0008.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.009 0.354 0.272 1.000
1 vs 50 0.000 0.001 0.001 0.002
1 vs 100 0.008 0.000 0.000 0.000
1 vs 150 0.000 0.000 0.000 0.000
1 vs 200 0.724 0.000 0.000 0.000
10 vs 50 1.000 0.354 0.272 0.100
10 vs 100 1.000 0.000 0.000 0.006
10 vs 150 0.915 0.000 0.000 0.003
10 vs 200 1.000 0.000 0.000 0.006
50 vs 100 1.000 0.001 0.000 1.000
50 vs 150 1.000 0.000 0.000 1.000
50 vs 200 0.017 0.018 0.031 1.000
100 vs 150 1.000 1.000 1.000 1.000
100 vs 200 1.000 1.000 0.341 1.000
150 vs 200 0.013 0.538 0.341 1.000

Table 120: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Partition Models) with Edge-Cloud
BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0011, ResNet = 0.0002, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.002 0.840 0.120 1.000
1 vs 50 0.485 0.002 0.000 0.000
1 vs 100 0.000 0.000 0.000 0.001
1 vs 150 0.000 0.000 0.000 0.000
1 vs 200 0.040 0.000 0.000 0.000
10 vs 50 0.427 0.301 0.120 0.023
10 vs 100 1.000 0.000 0.000 0.069
10 vs 150 1.000 0.000 0.000 0.003
10 vs 200 1.000 0.001 0.000 0.000
50 vs 100 0.012 0.038 0.000 1.000
50 vs 150 0.012 0.004 0.000 1.000
50 vs 200 1.000 0.301 0.012 1.000
100 vs 150 1.000 1.000 0.344 1.000
100 vs 200 0.167 1.000 1.000 0.721
150 vs 200 0.167 1.000 0.005 1.000

Table 121: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0097, ResNext = 0.0023, DUC = 0.0001.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.774 0.631 0.001
10 vs 100 0.001 0.037 0.001 0.001
10 vs 150 0.001 0.122 0.774 0.001
10 vs 200 0.001 0.378 0.631 0.001
50 vs 100 0.037 0.631 0.016 0.001
50 vs 150 0.016 0.774 0.924 0.001
50 vs 200 0.016 0.924 0.774 0.001
100 vs 150 0.071 0.378 0.016 0.005
100 vs 200 0.071 0.189 0.016 0.001
150 vs 200 0.924 0.378 0.774 0.497
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Table 122: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0253, ResNext = 0.0011, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.924 0.189 0.001
10 vs 100 0.001 0.631 0.275 0.001
10 vs 150 0.001 0.924 0.275 0.001
10 vs 200 0.001 0.924 0.001 0.001
50 vs 100 0.001 0.631 0.631 0.001
50 vs 150 0.001 0.924 0.016 0.001
50 vs 200 0.005 0.497 0.071 0.001
100 vs 150 0.774 0.924 0.071 0.001
100 vs 200 0.497 0.275 0.924 0.001
150 vs 200 0.497 0.631 0.001 0.001

Table 123: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0014, ResNext = 0.0024, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.071 0.924 0.001
10 vs 100 0.001 0.001 0.071 0.001
10 vs 150 0.001 0.016 0.275 0.001
10 vs 200 0.001 0.631 0.016 0.001
50 vs 100 0.001 0.071 0.071 0.001
50 vs 150 0.001 0.378 0.122 0.001
50 vs 200 0.001 0.378 0.001 0.001
100 vs 150 0.071 0.631 0.774 0.001
100 vs 200 0.122 0.016 0.924 0.001
150 vs 200 0.001 0.275 0.631 0.001

Table 124: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0195, ResNext = 0.0131, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.924 0.631 0.001
10 vs 100 0.001 0.924 0.275 0.001
10 vs 150 0.001 0.924 0.631 0.001
10 vs 200 0.001 0.378 0.631 0.001
50 vs 100 0.001 0.631 0.189 0.001
50 vs 150 0.001 0.497 0.774 0.001
50 vs 200 0.001 0.189 0.378 0.001
100 vs 150 0.774 0.774 0.378 0.001
100 vs 200 0.275 0.631 0.122 0.001
150 vs 200 0.189 0.378 0.774 0.001
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Table 125: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0173, ResNext = 0.0081, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.631 0.924 0.001
10 vs 100 0.001 0.378 0.071 0.001
10 vs 150 0.001 0.924 0.924 0.001
10 vs 200 0.001 0.631 0.378 0.001
50 vs 100 0.001 0.378 0.037 0.001
50 vs 150 0.001 0.378 0.774 0.001
50 vs 200 0.001 0.275 0.924 0.001
100 vs 150 0.016 0.497 0.189 0.001
100 vs 200 0.122 0.774 0.122 0.001
150 vs 200 0.774 0.378 0.774 0.001

Table 126: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0184, ResNext = 0.0234, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.774 0.497 0.001
10 vs 100 0.001 0.924 0.774 0.001
10 vs 150 0.001 0.378 0.497 0.001
10 vs 200 0.001 0.924 0.924 0.001
50 vs 100 0.122 0.378 0.378 0.001
50 vs 150 0.071 0.497 0.924 0.001
50 vs 200 0.037 0.774 0.378 0.001
100 vs 150 0.001 0.189 0.631 0.001
100 vs 200 0.122 0.924 0.924 0.001
150 vs 200 0.497 0.378 0.774 0.001

Table 127: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0172, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0005.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.275 0.001 0.001 0.001
10 vs 100 0.924 0.001 0.001 0.001
10 vs 150 0.275 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.122
50 vs 150 0.497 0.001 0.001 0.122
50 vs 200 0.497 0.001 0.001 0.037
100 vs 150 0.497 0.774 0.924 0.924
100 vs 200 0.497 0.924 0.924 0.774
150 vs 200 0.378 0.774 0.924 0.631
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Table 128: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0045, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.037 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.071 0.001 0.001 0.001
50 vs 100 0.378 0.001 0.001 0.189
50 vs 150 0.275 0.001 0.001 0.924
50 vs 200 0.275 0.001 0.001 0.001
100 vs 150 0.189 0.774 0.378 0.497
100 vs 200 0.122 0.378 0.275 0.631
150 vs 200 0.774 0.122 0.275 0.001

Table 129: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0138, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0004.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.497 0.001 0.001 0.001
10 vs 100 0.924 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.189 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.071
50 vs 150 0.631 0.001 0.001 0.071
50 vs 200 0.774 0.001 0.001 0.122
100 vs 150 0.497 0.497 0.497 0.774
100 vs 200 0.189 0.037 0.001 0.275
150 vs 200 0.122 0.071 0.001 0.378

Table 130: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0028, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0004.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.774 0.001 0.001 0.001
10 vs 150 0.497 0.001 0.001 0.001
10 vs 200 0.005 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.774
50 vs 150 0.924 0.001 0.001 0.189
50 vs 200 0.016 0.001 0.001 0.497
100 vs 150 0.774 0.924 0.071 0.189
100 vs 200 0.016 0.189 0.122 0.378
150 vs 200 0.016 0.189 0.378 0.016
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Table 131: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0014, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0008.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.924 0.001 0.001 0.001
10 vs 150 0.037 0.001 0.001 0.001
10 vs 200 0.037 0.001 0.001 0.001
50 vs 100 0.189 0.001 0.001 0.497
50 vs 150 0.924 0.001 0.001 0.275
50 vs 200 0.005 0.001 0.001 0.275
100 vs 150 0.275 0.497 0.924 0.774
100 vs 200 0.189 0.378 0.071 0.774
150 vs 200 0.005 0.122 0.122 0.924

Table 132: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0011, ResNet = 0.0002, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.122 0.001 0.001 0.001
10 vs 100 0.378 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.189 0.001 0.001 0.001
50 vs 100 0.001 0.016 0.001 0.631
50 vs 150 0.037 0.001 0.001 0.497
50 vs 200 0.122 0.071 0.001 0.189
100 vs 150 0.774 0.631 0.122 0.275
100 vs 200 0.005 0.631 0.275 0.189
150 vs 200 0.071 0.189 0.005 0.378

Table 133: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0137, ResNext = 0.0080, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.378 0.924 0.001
10 vs 100 0.001 0.774 0.378 0.001
10 vs 150 0.001 0.774 0.275 0.001
10 vs 200 0.001 0.631 0.774 0.001
50 vs 100 0.001 0.071 0.378 0.001
50 vs 150 0.001 0.924 0.037 0.001
50 vs 200 0.001 0.774 0.497 0.001
100 vs 150 0.016 0.275 0.774 0.001
100 vs 200 0.037 0.189 0.275 0.001
150 vs 200 0.774 0.774 0.037 0.016
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Table 134: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0242, ResNext = 0.0188, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.378 0.497 0.001
10 vs 100 0.001 0.924 0.497 0.001
10 vs 150 0.001 0.378 0.774 0.001
10 vs 200 0.001 0.924 0.189 0.001
50 vs 100 0.001 0.631 0.631 0.001
50 vs 150 0.001 0.924 0.774 0.001
50 vs 200 0.001 0.378 0.631 0.001
100 vs 150 0.001 0.924 0.378 0.001
100 vs 200 0.774 0.774 0.631 0.001
150 vs 200 0.037 0.631 0.497 0.001

Table 135: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0000, ResNet = 0.0010, ResNext = 0.0003, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.497 0.631 0.001
10 vs 100 0.001 0.037 0.001 0.001
10 vs 150 0.001 0.005 0.001 0.001
10 vs 200 0.001 0.005 0.924 0.001
50 vs 100 0.001 0.189 0.001 0.001
50 vs 150 0.001 0.016 0.016 0.001
50 vs 200 0.001 0.037 0.924 0.001
100 vs 150 0.001 0.924 0.378 0.001
100 vs 200 0.122 0.189 0.001 0.001
150 vs 200 0.001 0.497 0.005 0.037
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Table 136: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0052, ResNext = 0.0065, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.774 0.378 0.001
10 vs 100 0.001 0.122 0.037 0.001
10 vs 150 0.001 0.189 0.378 0.001
10 vs 200 0.001 0.378 0.378 0.001
50 vs 100 0.001 0.631 0.037 0.001
50 vs 150 0.001 0.275 0.774 0.001
50 vs 200 0.001 0.774 0.924 0.001
100 vs 150 0.189 0.001 0.122 0.001
100 vs 200 0.037 0.924 0.378 0.001
150 vs 200 0.774 0.122 0.631 0.001

Table 137: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0170, ResNext = 0.0125, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.631 0.189 0.001
10 vs 100 0.001 0.774 0.631 0.001
10 vs 150 0.001 0.497 0.631 0.001
10 vs 200 0.001 0.631 0.016 0.001
50 vs 100 0.001 0.774 0.774 0.001
50 vs 150 0.001 0.497 0.774 0.001
50 vs 200 0.001 0.631 0.631 0.001
100 vs 150 0.016 0.275 0.774 0.001
100 vs 200 0.001 0.774 0.497 0.001
150 vs 200 0.774 0.122 0.497 0.189
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Table 138: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Mobile-Edge BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0214, ResNext = 0.0218, DUC = 0.0000.

Edge-Cloud BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.275 0.924 0.001
10 vs 100 0.001 0.774 0.378 0.001
10 vs 150 0.001 0.631 0.497 0.001
10 vs 200 0.001 0.497 0.631 0.001
50 vs 100 0.001 0.497 0.497 0.001
50 vs 150 0.001 0.631 0.497 0.001
50 vs 200 0.001 0.378 0.631 0.001
100 vs 150 0.016 0.924 0.631 0.001
100 vs 200 0.001 0.924 0.497 0.001
150 vs 200 0.924 0.924 0.774 0.005

Table 139: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 1Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0081, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0005.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.378 0.001 0.001 0.001
50 vs 100 0.497 0.001 0.001 0.774
50 vs 150 0.071 0.001 0.001 0.924
50 vs 200 0.275 0.001 0.001 0.189
100 vs 150 0.378 0.378 0.071 0.497
100 vs 200 0.774 0.122 0.378 0.071
150 vs 200 0.631 0.275 0.189 0.071

Table 140: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 10Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0002, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.924 0.001 0.001 0.631
50 vs 150 0.016 0.001 0.001 0.122
50 vs 200 0.631 0.122 0.001 0.378
100 vs 150 0.071 0.774 0.378 0.189
100 vs 200 0.275 0.071 0.497 0.497
150 vs 200 0.005 0.001 0.037 0.774
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Table 141: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 50Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0008, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.016 0.001 0.001 0.001
10 vs 100 0.037 0.001 0.001 0.001
10 vs 150 0.497 0.001 0.001 0.001
10 vs 200 0.189 0.001 0.001 0.001
50 vs 100 0.001 0.001 0.001 0.037
50 vs 150 0.071 0.001 0.001 0.071
50 vs 200 0.275 0.001 0.001 0.016
100 vs 150 0.275 0.774 0.497 0.378
100 vs 200 0.005 0.005 0.016 0.189
150 vs 200 0.189 0.001 0.189 0.275

Table 142: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 100Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0058, ResNet = 0.0001, ResNext = 0.0001, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.631 0.001 0.001 0.001
10 vs 150 0.497 0.001 0.001 0.001
10 vs 200 0.016 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.497
50 vs 150 0.378 0.001 0.001 0.122
50 vs 200 0.071 0.001 0.001 0.275
100 vs 150 0.774 0.774 0.122 0.037
100 vs 200 0.071 0.001 0.001 0.631
150 vs 200 0.189 0.016 0.071 0.037

Table 143: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 150Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0011, ResNet = 0.0001, ResNext = 0.0000, DUC = 0.0002.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.001 0.001 0.001
10 vs 100 0.378 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.071 0.001 0.001 0.001
50 vs 150 0.122 0.001 0.001 0.924
50 vs 200 0.001 0.001 0.001 0.924
100 vs 150 0.497 0.774 0.774 0.016
100 vs 200 0.071 0.071 0.001 0.037
150 vs 200 0.071 0.189 0.001 0.924
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Table 144: Pairwise Conover post-hoc p-values for RQ6 (Edge-Cloud Quantized Early Exit Partition
Models) with Edge-Cloud BW = 200Mbps

Kruskal-Wallis p-values for each model: FCN = 0.0045, ResNet = 0.0000, ResNext = 0.0001, DUC = 0.0006.

Mobile-Edge BW Pair FCN ResNet ResNext DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.378 0.001 0.001 0.001
10 vs 150 0.071 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.631 0.001 0.001 0.924
50 vs 150 0.005 0.001 0.001 0.631
50 vs 200 0.924 0.001 0.001 0.122
100 vs 150 0.275 0.631 0.122 0.774
100 vs 200 0.497 0.001 0.037 0.071
150 vs 200 0.016 0.001 0.071 0.275

Table 145: Pairwise Conover post-hoc p-values for RQ6 (Mobile Identity Models) comparing Mobile
Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0248, ResNet = 0.0008, ResNeXt = 0.0004, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.005
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.497 0.774 0.189 0.071
50 vs 150 0.774 0.774 0.122 0.924
50 vs 200 0.774 0.189 0.037 0.497
100 vs 150 0.378 0.774 0.774 0.016
100 vs 200 0.631 0.497 0.275 0.001
150 vs 200 0.497 0.378 0.497 0.774

Table 146: Pairwise Conover post-hoc p-values for RQ6 (Mobile Quantized Models) comparing Mobile
Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0018, ResNet = 0.0013, ResNeXt = 0.0006, DUC = 0.0011.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.631 0.005 0.001 0.001
10 vs 100 0.497 0.005 0.001 0.001
10 vs 150 0.275 0.001 0.001 0.005
10 vs 200 0.774 0.001 0.001 0.016
50 vs 100 0.189 0.924 0.122 0.924
50 vs 150 0.001 0.631 0.189 0.189
50 vs 200 0.774 0.497 0.275 0.497
100 vs 150 0.001 0.774 0.924 0.189
100 vs 200 0.275 0.774 0.378 0.774
150 vs 200 0.001 0.275 0.631 0.924
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Table 147: Pairwise Conover post-hoc p-values for RQ6 (Mobile Early Exit Models) comparing Mobile
Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0004, ResNet = 0.0001, ResNeXt = 0.0002, DUC = 0.0003.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.497 0.001 0.001 0.001
10 vs 100 0.071 0.001 0.001 0.001
10 vs 150 0.774 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.071 0.001 0.924 0.005
50 vs 150 0.189 0.001 0.001 0.497
50 vs 200 0.001 0.001 0.122 0.924
100 vs 150 0.189 0.631 0.005 0.631
100 vs 200 0.001 0.774 0.071 0.005
150 vs 200 0.001 0.631 0.378 0.378

Table 148: Pairwise Conover post-hoc p-values for RQ6 (Mobile Quantized Early Exit Models) comparing
Mobile Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0022, ResNet = 0.0008, ResNeXt = 0.0001, DUC = 0.0009.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.189 0.071 0.001 0.001
10 vs 100 0.189 0.001 0.001 0.005
10 vs 150 0.275 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.497 0.189 0.924 0.924
50 vs 150 0.005 0.275 0.001 0.122
50 vs 200 0.924 0.122 0.001 0.924
100 vs 150 0.005 0.924 0.122 0.189
100 vs 200 0.497 0.378 0.016 0.631
150 vs 200 0.037 0.497 0.122 0.774

Table 149: Pairwise Conover post-hoc p-values for RQ6 (Edge Identity Models) comparing Mobile-Edge
Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0132, ResNet = 0.0003, ResNeXt = 0.0002, DUC = 0.0005.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.924 0.001 0.001 0.001
10 vs 100 0.378 0.001 0.001 0.001
10 vs 150 0.631 0.001 0.001 0.001
10 vs 200 0.275 0.001 0.001 0.001
50 vs 100 0.631 0.924 0.001 0.071
50 vs 150 0.378 0.071 0.122 0.378
50 vs 200 0.378 0.001 0.001 0.924
100 vs 150 0.378 0.275 0.924 0.497
100 vs 200 0.122 0.189 0.631 0.122
150 vs 200 0.631 0.924 0.924 0.378
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Table 150: Pairwise Conover post-hoc p-values for RQ6 (Edge Quantized Models) comparing Mobile-
Edge Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0250, ResNet = 0.0003, ResNeXt = 0.0002, DUC = 0.0008.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.497 0.001 0.001 0.001
10 vs 100 0.497 0.001 0.001 0.001
10 vs 150 0.497 0.001 0.001 0.001
10 vs 200 0.924 0.001 0.001 0.001
50 vs 100 0.774 0.016 0.016 0.497
50 vs 150 0.631 0.071 0.016 0.497
50 vs 200 0.774 0.016 0.016 0.631
100 vs 150 0.497 0.774 0.378 0.275
100 vs 200 0.631 0.774 0.275 0.497
150 vs 200 0.924 0.631 0.631 0.774

Table 151: Pairwise Conover post-hoc p-values for RQ6 (Edge Early Exit Models) comparing Mobile-
Edge Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0142, ResNet = 0.0002, ResNeXt = 0.0002, DUC = 0.0005.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.497 0.001 0.001 0.005
10 vs 100 0.275 0.001 0.001 0.001
10 vs 150 0.924 0.001 0.001 0.001
10 vs 200 0.774 0.001 0.001 0.001
50 vs 100 0.774 0.001 0.001 0.631
50 vs 150 0.189 0.005 0.001 0.378
50 vs 200 0.497 0.071 0.037 0.122
100 vs 150 0.189 0.189 0.924 0.497
100 vs 200 0.378 0.497 0.378 0.122
150 vs 200 0.631 0.631 0.924 0.037

Table 152: Pairwise Conover post-hoc p-values for RQ6 (Edge Quantized Early Exit Models) comparing
Mobile-Edge Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0145, ResNet = 0.0010, ResNeXt = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.774 0.001 0.001 0.001
10 vs 100 0.924 0.001 0.001 0.001
10 vs 150 0.122 0.001 0.001 0.001
10 vs 200 0.378 0.001 0.001 0.001
50 vs 100 0.924 0.924 0.001 0.122
50 vs 150 0.189 0.378 0.001 0.378
50 vs 200 0.924 0.378 0.001 0.001
100 vs 150 0.497 0.774 0.071 0.275
100 vs 200 0.924 0.774 0.275 0.071
150 vs 200 0.189 0.924 0.924 0.001
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Table 153: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Edge Partition Models) comparing
Mobile-Edge Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0003, ResNeXt = 0.0001, DUC = 0.0000.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.071 0.016 0.001
50 vs 150 0.001 0.016 0.037 0.001
50 vs 200 0.001 0.071 0.001 0.001
100 vs 150 0.378 0.774 0.378 0.001
100 vs 200 0.275 0.631 0.001 0.001
150 vs 200 0.924 0.378 0.378 0.001

Table 154: Pairwise Conover post-hoc p-values for RQ6 (Mobile-Edge Quantized Early Exit Partition
Models) comparing Mobile-Edge Bandwidths

Kruskal-Wallis p-values for each model: FCN = 0.0001, ResNet = 0.0002, ResNeXt = 0.0001, DUC = 0.0001.

Mobile-Edge BW Pair FCN ResNet ResNeXt DUC

1 vs 10 0.001 0.001 0.001 0.001
1 vs 50 0.001 0.001 0.001 0.001
1 vs 100 0.001 0.001 0.001 0.001
1 vs 150 0.001 0.001 0.001 0.001
1 vs 200 0.001 0.001 0.001 0.001
10 vs 50 0.001 0.001 0.001 0.001
10 vs 100 0.001 0.001 0.001 0.001
10 vs 150 0.001 0.001 0.001 0.001
10 vs 200 0.001 0.001 0.001 0.001
50 vs 100 0.001 0.037 0.001 0.001
50 vs 150 0.001 0.016 0.001 0.001
50 vs 200 0.001 0.001 0.001 0.001
100 vs 150 0.275 0.378 0.497 0.924
100 vs 200 0.037 0.378 0.924 0.005
150 vs 200 0.378 0.924 0.774 0.001
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