Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Contrasting Test Selection, Prioritization, and Batch Testing
at Scale

Large-scale Empirical Study on 285 Million Test Results

Emad Fallahzadeh - Peter C. Rigby - Bram
Adams

Received: July 31, 2023 / Accepted: November 6, 2024

Abstract The effectiveness of software testing is crucial for successful software
releases, and various test optimization techniques aim to enhance this process by
reducing the number of test executions or prioritizing potential test failures. Although
different families of techniques exist, each with its own evaluation criteria, few studies
have compared these different lines of research. This study addresses this gap by
empirically comparing Yaraghi et al.’s test prioritization approach, Zhu et al.’s cross-
build test prioritization and its equivalent test selection technique, and our BatchAll
test batching algorithm. To evaluate these test optimization approaches, we empirically
analyze millions of test results from Google Chrome, along with pre- and post-commit
test outcomes for a Google project, as well as the JMRI Travis CI dataset.

Findings reveal that test selection can reduce actual median feedback time by up to
96% with the same number of machines but may miss up to 55% of failures. In contrast,
batching achieves up to a 99% reduction in feedback time without missing any failures.
Test selection cuts machine usage by up to 66%, while batching achieves up to an 88%

This version of the article has been accepted for publication, following peer review, and is subject to
Springer Nature’s AM terms of use. It is not the Version of Record and does not reflect post-acceptance
improvements or corrections. The Version of Record will be available on the publisher’s website.

Grants: Natural Sciences and Engineering Research Council (NSERC) and Concordia University FRS.

Emad Fallahzadeh

School of Computing, Queen’s University, Kingston, Ontario, Canada.
E-mail: emad.fallahzadeh@queensu.ca
https://orcid.org/0009-0005-5024-4868

Peter C. Rigby

Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec,
Canada.

E-mail: peter.rigby @concordia.ca

https://orcid.org/0000-0003-1137-4297

Bram Adams

School of Computing, Queen’s University, Kingston, Ontario, Canada.
E-mail: bram.adams @queensu.ca
https://orcid.org/0000-0001-7213-4006

https://orcid.org/0009-0005-5024-4868
https://orcid.org/0000-0003-1137-4297
https://orcid.org/0000-0001-7213-4006

2 Emad Fallahzadeh et al.

reduction. For failure detection, the test selection is up to 62 minutes faster than the
baseline, and the batching algorithm achieves up to a 63-minute median improvement
without missing failures. Regarding test execution time, test selection saves up to
66%, whereas batching’s saving can reach up to 98%, although its performance varies
based on the machines used. The studied test prioritization algorithms significantly
underperform compared to the test selection and batching algorithms.

In conclusion, this study provides practical recommendations for selecting appro-
priate test optimization algorithms based on the testing environment and failure loss
tolerance.

Keywords Test selection - Test prioritization - Test batching - test optimization -
Parallel testing - Chrome testing

1 Introduction

Software testing is an essential aspect of modern software development processes.
With the growth of software systems and the adoption of Continuous Integration
(CI) practices, it has become necessary to test each change individually, leading to a
significant increase in the number of test runs, especially for large-scale systems. This
presents a challenge for software development teams, as even companies like Google,
with extensive resources, are unable to test every change individually (Elbaum et al.,
2014; Memon et al., 2017).

To address the issue of ever-growing test runs, various test optimization techniques
have been proposed. Test selection involves running only those test cases that are more
likely to reveal failures. Test prioritization, on the other hand, prioritizes the order
in which tests are executed so that failures are detected earlier. Test parallelization
disperses tests across multiple execution units, aiming to minimize the time required
to obtain the results for all tests associated with a change, i.e., feedback time. Finally,
test batching groups multiple changes together and runs tests for the entire batch,
saving time on both change feedback and test execution.

Previous research has typically investigated test optimization techniques individ-
ually, including test selection, test prioritization, and test batching. However, there is
only limited research comparing these techniques, especially batching, which is often
overlooked, despite its promise. It remains unclear how these techniques compare in
terms of producing faster build feedback times. Does test selection or test batching
provide faster feedback? Which technique saves more resources in terms of machine
usage? Which one is more effective at detecting failures quickly? And which results
in greater savings in test execution?

Moreover, as noted by Greca et al. (2023), the majority of prior studies on re-
gression testing have primarily focused on small datasets. This emphasis has led to
the development of solutions that may not be applicable to large-scale projects due
to scalability limitations. For instance, although source code information has been
extensively utilized for test optimization, its rapid obsolescence and high acquisition
costs render it unsuitable for large-scale projects (Elbaum et al., 2014). Nevertheless,
it is essential to recognize that test optimization challenges are particularly acute in
large-scale contexts.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 3

Another dimension often overlooked in the evaluation of test optimization tech-
niques is parallelization. For instance, it remains unclear how test prioritization and
test selection techniques perform when varying the number of machines used. What is
the relative performance of different test optimization techniques in terms of feedback
time, resource usage, failure detection, and savings in test executions when the number
of machines is adjusted? Moreover, flaky tests are often mishandled in test executions,
typically by treating flaky failures as regular failures or, less frequently, filtering them
out. However, studies demonstrate that the way we handle flaky tests can significantly
impact the outcomes of analyses involving test execution results (Peng et al., 2020;
Fallahzadeh and Rigby, 2022).

To address these research gaps, this study compares 5 major families of test
optimization techniques and evaluates their performance using various evaluation
metrics. Specifically, we evaluate the effectiveness of test selection, prioritization,
and batching techniques with different numbers of machines under varying resource
availability environments. Our evaluation criteria include the feedback time from
commit to receiving test results, resource usage, test execution time, and the speed of
detecting failing tests.

While different families of test optimization techniques may sometimes be em-
ployed together as complementary approaches, comparing them within a paralleliza-
tion environment provides valuable insights. This comparison helps practitioners
understand the unique strengths and limitations of each technique, enabling them to
tailor their testing strategies to specific project requirements and resource constraints.

We conduct our experiments using four large-scale datasets, providing us with a
more realistic understanding of the testing scale and challenges. These datasets consist
of 276 million test results from Google Chrome (Fallahzadeh and Rigby, 2022), 1.1
million test results from Google pre-commit, 1.5 million test results from Google
Post-commit (Elbaum et al., 2014), and 6.5 million test results from the JMRI project
which is one of the largest projects on Travis CI Yaraghi et al. (2023). Additionally, we
take into account the presence of flaky tests for different test optimization algorithms,
especially where the flaky labels are available.

We provide answers to the following research questions in this study.

RQ1: How effective are different test optimization approaches in reducing feedback
time when executed in parallel with varying numbers of machines?

RQ2: How effective are different test optimization approaches in reducing the
number of machines in use when executed in parallel with varying numbers of ma-
chines?

RQ3: How quickly do different test optimization techniques detect failing tests
when executed in parallel with varying numbers of machines?

RQA4: How effective are different test optimization techniques in saving test exe-
cution time when executed in parallel with varying numbers of machines?

To address our research questions, we conduct comparative simulations using
test results from the Chrome, Google pre-commit, Google post-commit, and JMRI
datasets. Initially, we explore and describe the data to gain a better understanding of the
test runs and changes in these projects. Following this, we replicate the state-of-the-
art test prioritization technique proposed by Yaraghi et al. (2023). Subsequently, we
simulate an optimized version of the test prioritization and its equivalent test selection

4 Emad Fallahzadeh et al.

technique across builds proposed for a multi-machine environment, as suggested by
Zhu et al. (2018).

Additionally, we simulate the BatchAll algorithm as one of the effective batching
algorithms that uses adaptive batch sizes based on the number of changes in the queue
and adopts an improved culprit-finding technique that we introduced and evaluated
in our recent work (Fallahzadeh et al., 2023). We evaluate these test optimization
algorithms using four metrics: feedback time, number of machines used, GAINED-
TiME, and test execution time. These metrics allow us to evaluate the performance
of the algorithms from different perspectives and under different resource availability
scenarios, and have been used in multiple studies (Beheshtian et al., 2021; Bavand
and Rigby, 2021).

This study makes the following contributions.

— Comparison of test optimization algorithms: We compare and contrast test
selection, prioritization, and batching approaches to understand their strengths and
weaknesses and provide insights for practitioners on the most effective techniques,
considering varying resource availability.

— Dataset: We evaluate the algorithms using Chrome, Google pre-commit, Google
post-commit, and JMRI large-scale datasets. Additionally, we provide details about
these datasets and explore the data distributions for the number of concurrent
builds in each of them.

— Parallelization: We run the different test optimization algorithms using vari-
ous numbers of machines to evaluate their performance under different resource
availabilities.

— Flaky tests: We treat flaky failures as non-blocking failures to simulate the algo-
rithms under realistic conditions.

— Approaches: We replicate the state-of-the-art test prioritization technique pro-
posed by Yaraghi et al. (2023). Additionally, we optimize and simulate the test
prioritization technique suggested by Zhu et al. (2018) for cross-build and multi-
machine environments, along with its test selection equivalent. Moreover, we
replicate the BatchAll test batching algorithm, which we presented as an effective
batching technique in our recent study (Fallahzadeh et al., 2023).

— Outcome measures: We evaluate various test optimization algorithms using the
same metrics to assess their relative performance. These metrics include feedback
time, the number of machines used, gained time to identify failing tests, and the
level of test execution reduction.

— Results summary: We find the following outcomes.

RQ1: Test batching and test selection approaches offer the most significant reduc-
tion in commit feedback time. However, while the test selection algorithm may
miss up to 55% of failures, the test batching approach ensures that no failures are
overlooked.

RQ2: BatchAll achieves the best reduction in resources while achieving the same
feedback time as the baseline TestAll algorithm, which does not apply any test
optimizations.

RQ3: The test selection algorithm can deliver rapid failure detection, but it may
overlook up to 55% of failures. Similarly, the test batching algorithm offers com-

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 5

parable performance, except in scenarios with few concurrent builds, and impor-
tantly, it does not miss any failures. Test prioritization approaches follow thereafter.
RQ4: The savings in test execution time remain unchanged for the test selection
algorithm regardless of the number of machines in use, while they vary for the
batching algorithm depending on the number of machines in use.

The remainder of this work is structured as follows. In Section 2, we review the
background and related work. Section 3 presents the design and methodology adopted
to conduct this study. In Section 4, we provide explanations for each test optimization
approach. Section 5 elaborates on the different evaluation criteria and metrics used
in the simulation experiments. In Section 6, we present the results regarding our
research questions and simulations. In Section 7, we discuss the threats to the validity
of this research. Section 8 discusses the interpretations of the results and implications
from this study for practitioners. Finally, in Section 9, we present the conclusion and
potential future work.

2 Background and Related Works

This section presents an overview of test optimization techniques relevant to the ap-
proaches studied in this research, and also the datasets adopted for test optimization.
As software systems become more complex and Continuous Integration (CI) is in-
creasingly adopted in modern software release processes, the number of tests required
to verify these systems has significantly increased. With CI, every change made by
developers must undergo a time-consuming process of separate building and test-
ing (Poth et al., 2018; Hilton, 2016; Soni, 2015; Leppénen et al., 2015). However,
testing each change individually becomes nearly impossible for large companies due
to the sheer volume of tests involved (Herzig et al., 2016). Even Google, with its vast
resources, struggles to keep up with the high code churn in its code base (Elbaum
et al., 2014). To address this challenge, researchers have proposed various test opti-
mization techniques, such as test selection, prioritization, and batching, with the goal
of reducing the time and cost of testing while maintaining the quality of the software
product.

2.1 Test selection and prioritization

Test selection and prioritization approaches have been the primary solution to the
problem of ever-increasing test runs. Different test selection and prioritization tech-
niques have been proposed by researchers to improve feedback time (Li et al., 2007;
Jiang et al., 2009; Zhang et al., 2013; Herzig et al., 2015; Henard et al., 2016; Lu et al.,
2016; Luo et al., 2016; Hemmati and Sharifi, 2018; Liang et al., 2018; Najafi et al.,
2019b; Jahan et al., 2020; Sharif et al., 2021; Bagherzadeh et al., 2022; Parthasarathy
et al., 2022). In the past, researchers have primarily concentrated on selecting and
prioritizing tests within the same build. The work of Kim and Porter (2002) was one
of the initial studies in this field, which utilized the previous test records to prioritize

6 Emad Fallahzadeh et al.

tests. They established a metric that assigned a higher value and priority to the tests
that had previously failed.

Marijan et al. (2013) emphasized the importance of providing quick feedback in a
continuous integration setup. They proposed a prioritization scheme for tests based on
the time elapsed since the last failure, the test’s execution time, and domain-specific
knowledge.

Anderson et al. (2014) proposed two models to predict future test failures in the
Dynamics AX 2012 R2 project. The first model was based on the most frequent
failures, while the second model utilized more expensive data such as code coverage
through Associate Rule Mining (ARM) techniques. Interestingly, they found that the
simpler model based on the most frequent failures was just as effective as the ARM
model.

Herzig et al. (2015) aimed to reduce the cost of test execution on Microsoft
products by implementing test selection at different test execution levels. They created
a cost model based on historical test data, including test results and execution context.
Their model was defined based on the failure probability of a test, and they were able
to achieve significant reductions in test execution costs for Microsoft Office, Windows,
and Dynamics.

Memon et al. (2017) reduced feedback time in Google by using domain expertise
and statistical analysis. Their model was built by taking into account failing tests, the
relationship between tests and developers, the codebase, changes to the code, and the
frequency of test execution. To conduct their experiment, they analyzed 5.5 million
unique tests affected by 500k change lists for one month in 2016.

Elbaum et al. (2014) concentrated on optimizing test selection and prioritization
for Google’s multi-machine and parallel testing environment. They designed test
selection and prioritization approaches to apply to both the Google pre-submit and
post-submit test data. For determining which tests should be selected and prioritized,
they relied on test failure history and did not incorporate code information data in
their dataset and their experiment. Additionally, they applied three distinct windows:
failure, execution, and prioritization. The application of their algorithms on a sample
of 3.5 million tests demonstrated a noteworthy enhancement in test performance.

Liang et al. (2018) found that traditional methods such as code analysis and
coverage are not sufficient in the Continuous Integration (CI) environment. They
also mentioned that some companies are hesitant to use test selection techniques
because they could miss certain failures. As a solution, they proposed a commit-based
prioritization approach, which they applied to both the Google Shared dataset and the
Rails dataset from Travis CI. The results indicated that the Google dataset had a 12%
improvement in APF D ., whereas there were almost no noticeable improvements in
Rails.

Zhu et al. (2018) suggested that co-failures can provide useful information for pri-
oritizing tests, as they are likely to fail together in the future. They proposed a method
that uses multiple queues to prevent test starvation and improve test prioritization. The
authors evaluated their approach on the Google and Chrome datasets and compared
the results with the study conducted by Elbaum et al. (2014).

Najafi et al. (2019b) recognized that the duration of tests could be a significant
factor in test prioritization. They proposed an approach that considers the historical

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 7

frequency of test failures, the relationship between failures, and the cost of executing
a test. Their method involves assigning lower priority to more time-consuming tests.

Machine learning techniques have emerged as effective tools for enhancing test
case prioritization. For instance, Lachmann et al. (2016) employed a supervised ma-
chine learning approach utilizing test case history information to bolster test failure
detection. Similarly, Sharif et al. (2021) introduced a novel deep learning model that
leverages factors such as test duration and execution status to refine test case prioritiza-
tion, with evaluations focusing on time-effectiveness and fault detection. In a different
vein, Bagherzadeh et al. (2022) applied Reinforcement Learning (RL) in test case
prioritization, aiming to enhance the accuracy of identifying test failures promptly.
Additionally, Yaraghi et al. (2023) utilized the random forest machine learning tech-
nique on TravisTorrent projects, evaluating their model in terms of data collection
time and the efficacy of the ML-based TCP technique compared to heuristic-based
approaches.

On the other hand, the increasing prevalence of flaky tests has led researchers to
investigate their impact on test selection and prioritization algorithms. For instance,
Peng et al. (2020) identified the effect of flaky tests on the performance of IR-
based test prioritization algorithms on Travis CI projects. Similarly, in our previous
work (Fallahzadeh and Rigby, 2022), we analyzed 276 million Chrome test results and
found that flaky tests significantly affect history-based test prioritization algorithms.

With a few exceptions, prior research has generally overlooked the influence of
flaky tests on test optimization algorithms. Our study addresses this gap by appropri-
ately handling flaky tests, maintaining the assumption that flaky tests are non-blocking,
as established in our previous work (Fallahzadeh and Rigby, 2022).

Previous studies have explored individual families of test selection and prioritiza-
tion algorithms, yet there remains a significant gap in research comparing these fam-
ilies, particularly in multi-machine setups, to discern their relative performance and
trade-offs. While our earlier research studied the impact of flaky tests on test prioritiza-
tion specifically within the Chrome environment (Fallahzadeh and Rigby, 2022), our
current endeavor compares the efficacy of various test optimization techniques across
diverse dimensions using more extensive datasets. To achieve this goal, we replicate
cutting-edge test prioritization, selection, and batching methodologies. Additionally,
we employ a range of evaluation metrics, including Feedback time, GAINEDTIME,
machine usage, and reductions in test execution time. We also explore the implica-
tions of parallelization and the use of different machine configurations in executing
these test optimization algorithms, adding another layer of evaluation. Our analysis
encompasses four significant large-scale datasets, including Chrome (Fallahzadeh and
Rigby, 2022), GooglePre, GooglePost (Elbaum et al., 2014), and JMRI (Yaraghi et al.,
2023).

2.2 Batch Testing
In Continuous Integration (CI), each change must be tested individually. However, for

large software systems such as those found in Google products, even with extensive
computational resources, this is often unattainable (Herzig et al., 2016; Elbaum et al.,

8 Emad Fallahzadeh et al.

2014). Consequently, test batching has been proposed as a solution to this problem. By
grouping multiple changes together and testing them simultaneously, computational
resources and feedback time can be reduced in resource-constrained environments
(Cho et al., 2017; Chang et al., 2009). However, the trade-off is that when a batch
fails, there is a penalty to find the culprit change responsible for the breakage.

There have been several studies conducted by researchers on various methods
for performing culprit-finding procedures. GitBisection ! is a popular algorithm that
employs binary search and requires /og(n) executions to detect a culprit change.
However, this approach has a limitation: it can only identify the first culprit when
multiple culprits are present. To address this limitation, Najafi et al. (2019a) pro-
posed a divide-and-conquer bisection algorithm. This algorithm recursively divides
each failing batch into two sub-batches to detect all culprits. The divide-and-conquer
bisection algorithm requires between 2/0g(n) and 2n+ 1 batch tests to execute.

Beheshtian et al. (2021) found that the effectiveness of batching decreases for
batches of size four or smaller. To address this issue, they developed BatchStop4,
which performs batching until the batch size reaches four, at which point it tests
each change individually. Their approach outperformed batch bisection in terms of
feedback time.

Most prior research has primarily concentrated on employing batching and culprit
identification at the build level. In contrast, our approach in this study shifts the focus
to batching and culprit identification at the test level, a methodology introduced in
our recent work (Fallahzadeh et al., 2023). Additionally, prior studies typically utilize
a single machine for evaluating test optimization algorithms, while our investigation
delves into the impact of parallelism on the large-scale testing framework of the
Chrome project.

Our recent research (Fallahzadeh et al., 2023) experimented with the performance
analysis of various batching techniques, including the proposal of two new adaptive
batching algorithms, alongside considering parallelization on Chrome. However, our
current study evaluates the effectiveness of batching in comparison to other cutting-
edge test optimization methods, including test selection and prioritization, employing
more extensive datasets. To achieve this, we utilize diverse evaluation metrics, encom-
passing Feedback time, GAINEDTIME, machine usage, and reductions in test execution
duration. Furthermore, we incorporate three additional large-scale datasets beyond
Chrome, namely GooglePre and GooglePost (Elbaum et al., 2014), and JMRI (Yaraghi
etal., 2023).

2.3 Test Parallelization

The technique of test parallelization involves spreading out the testing process across
multiple machines, with the aim of reducing the time it takes to obtain feedback on
the tests. Various studies have explored the impact of test parallelization on software
testing, and have put forward algorithms that allow for the efficient execution of tests in
parallel (Jones et al., 2002; Misailovic et al., 2007; Bagies, 2020; Landing et al., 2020).

I https://git-scm.com/docs/git-bisect

https://git-scm.com/docs/git-bisect

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 9

One of these studies was carried out by Arabnejad et al. (2018), who investigated the
potential benefits of using GPUs to run tests in parallel. The most commonly used
algorithms for parallelizing tests include those that schedule tests across machines
based on their IDs and historical execution times (Shashban, 2022).

Candido et al. (2017) explored how test parallelization affects open-source soft-
ware projects. They analyzed more than 450 Java projects and discovered that less
than 20% of the major projects employ test parallelization due to concerns about
concurrency problems. To help practitioners with parallel testing, the authors provide
various suggestions, such as reorganizing tests for load balancing, grouping tests based
on dependencies, and executing tests with dependencies on the same machine.

Bell et al. (2015) conducted research on the effect of test dependencies on paral-
lelization. They presented the ElectricTest method to identify dependencies prior to
scheduling tests on multiple machines. In a separate study, Ding et al. (2007) suggested
a software behavior-oriented approach to parallelize testing, which aims to minimize
conflicting behaviors.

While previous studies have largely overlooked the influence of parallelization on
various test optimization algorithms, our recent research (Fallahzadeh et al., 2023)
studied the impact of parallelization specifically on different test batching algorithms.
However, our current study takes a broader approach by evaluating the ramifications
of test parallelization at scale on batching, contrasting it with other test optimization
methodologies like test selection and prioritization. We also evaluate parallelism
from different dimensions using different evaluation metrics. Our objective is to
investigate the relationship between the number of machines employed and the time
required to acquire build and failing test outcomes, alongside the reduction in test
execution duration. We also expand our analysis by incorporating more extensive
datasets beyond Chrome, encompassing GooglePre, GooglePost (Elbaum et al., 2014),
and JMRI (Yaraghi et al., 2023).

2.4 Datasets

Different datasets have been evaluated for test optimization. Elbaum et al. (2014)
investigated test selection and prioritization using a dataset derived from Google’s
anonymized test results. This publicly available dataset encompasses 3.5 million pre-
and post-commit test suites spanning a 30-day period.

Several studies have used test results from Travis CI, a continuous integration
service that hosts many open-source projects, to conduct their evaluations (Bell et al.,
2018; Hilton et al., 2018; Mattis et al., 2020; Shi et al., 2018; Labuschagne et al.,
2017).

Mattis et al. (2020) collected test results from 20 open-source Java projects from
Travis CI, and their dataset is publicly available for test optimization. However, the
largest project in their dataset, spanning 9 years, contains only about 17 million test
results, or approximately 158,000 tests per month. Moreover, Yaraghi et al. (2023)
used 25 Travis CI projects for their test prioritization study, which they claim to be
scalable. However, their criterion for defining a dataset as large-scale is based on the
test duration exceeding 5 minutes, which may not be a universally accepted definition.

10 Emad Fallahzadeh et al.

Given that test optimization is primarily relevant to large-scale projects, the limited
size of most existing datasets can hinder research efforts and lead to impractical
and expensive approaches (Memon et al., 2017; Greca et al., 2023). Furthermore,
according to Liang et al. (2018), the arrival rate of commits in the largest open-
source projects on Travis, like rails, is not high enough to warrant the use of selection
or prioritization algorithms, as there are usually no changes waiting in the queue.
Additionally, the duration of the entire test suites is typically only a few minutes,
which does not justify parallelization or batching techniques, as mentioned by Beller
et al. (2017a).

In contrast, our analysis encompasses a vast dataset of 276 million test results from
Google Chrome (Fallahzadeh and Rigby, 2022), along with 1,112,158 tests from the
GooglePre dataset and 1,495,856 tests from the GooglePost dataset (Elbaum et al.,
2014). Additionally, we incorporate the largest dataset from the study conducted by
Yaraghi et al. (2023), enhancing the generalizability of our work. By incorporating
these large-scale projects, we aim to gain deeper insights into the intricate challenges
associated with optimizing tests for expansive projects. Moreover, the presence of
massive concurrent builds in these datasets necessitates and facilitates the utilization
of various test optimization techniques and parallelism.

3 Research Design and Methodology

This section discusses the design and methodology of the empirical study that we
perform to address the research questions outlined in the introduction.

3.1 Datasets

In this study, we utilize four large-scale datasets, each comprising millions of test
results, to conduct our experiments.

3.1.1 Chrome

The Chrome dataset is one of the largest datasets publicly available, consisting of
276 million Google Chrome test results, as previously published in our work (Fal-
lahzadeh and Rigby, 2022). This dataset represents a large-scale system that executes
millions of tests daily, underscoring the importance of optimizing testing for efficient
release processes. The system encompasses multiple concurrent builds, offering an
opportunity to implement batching techniques to further enhance the testing process.

One notable feature of this dataset is its inclusion of final outcomes for tests,
including flaky flags. This provides a significant advantage over other studies, which
may only identify flaky tests through thousands of test re-runs, as demonstrated in
the research by Alshammari et al. (2021). The flaky test detection approach adopted
in Chrome differs from academic methods, as it detects flaky tests through a few test
re-runs initiated only after a failure occurs (Fallahzadeh and Rigby, 2022). For further
details regarding the testing process and data types in this project, please refer to our
prior work (Fallahzadeh and Rigby, 2022).

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 11

Actual Run

0 10 20 30 40 50
number of concurrent builds

Fig. 1: Violin plot displaying the distribution of the actual number of concurrent
builds in Chrome. The median number of concurrent builds is denoted by a solid
vertical line, while the dashed vertical lines indicate the first and third quartiles of the
distribution.

The Chrome dataset utilized in this study encompasses the change, build, and test
results for Chrome from January 1, 2021, to January 31, 2021. During this timeframe,
it includes the results for 9,524 change lists (commits), 19,045 builds, 49,932 test
suites, and 276,550,812 test cases. On average, each test suite contains approximately
5,538 test cases. The median feedback time for the builds in this dataset is 32.95
minutes. Feedback time is the duration between a change being committed and the
execution of all associated tests, measured across all builds during the studied period.

Figure 1 depicts the distribution of the number of concurrent builds in Chrome.
This data is derived by comparing the start and end times of each build with those of
other builds. In the actual Chrome build execution, each build has a concurrency with
up to 47 other builds, with a median of 12 concurrent builds and the first and third
quartiles at 6 and 19 concurrent builds, respectively. These concurrent builds offer an
excellent opportunity to implement batching algorithms, facilitating the grouping and
processing of builds together.

3.1.2 GooglePre Dataset

The GooglePre dataset encompasses pre-commit test suites data publicly accessible
through Elbaum et al. (2014), encapsulating a 30-day period of test executions for a
typical Google product. It encompasses anonymized test suite names, change requests,

12 Emad Fallahzadeh et al.

Actual Run

0 10 20 30 40 50
number of concurrent builds

Fig. 2: Violin plot showing the distribution of the actual number of concurrent builds in
GooglePre. The median number of concurrent builds is denoted by a solid vertical line,
while the dashed vertical lines indicate the first and third quartiles of the distribution.

verdicts, start times, and execution durations. Our experimental setup replicates the
dataset methodology employed in previous research, including studies by Elbaum
et al. (2014) and Liang et al. (2018) as follows.

Given the structure of the dataset, test suites are distributed across various shards,
which are subsets of test suites. To address this fragmentation, we consolidate test
suites with identical names but distributed across different shard numbers into unified
test suites. This approach is the same as the methodology utilized by Liang et al.
(2018). Following this consolidation process, the GooglePre dataset comprises 1693
change lists and 1,112,158 test suites, with an average of approximately 656 test suites
per change list. The median feedback time per build within the GooglePre dataset is
recorded at 1.6 minutes.

Figure 2 portrays the distribution of concurrent builds within the GooglePre
dataset. Each build exhibits concurrency with up to 49 other builds, showcasing a
median concurrency of 22 builds, with first and third quartiles at 15 and 28, respec-
tively. This dataset’s abundance of concurrent builds offers an extensive canvas for
exploring diverse test optimization techniques, including parallelization, batching,
selection, and prioritization.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 13

3.1.3 GooglePost Dataset

The GooglePost dataset entails post-commit test suites data publicly disseminated
by Elbaum et al. (2014). Analogous to the GooglePre dataset, it encapsulates a
30-day timeframe of test executions for a representative Google product, including
anonymized test suite names, change requests, verdicts, start times, and execution
durations. Our experimental approach aligns with previous dataset methodologies,
such as those outlined by Elbaum et al. (2014) and Liang et al. (2018) as follows.

Similar to its precursor, the GooglePost dataset exhibits fragmentation among test
suites across different shards. To mitigate this fragmentation, we merge test suites with
identical names but varying shards into single entities, adopting the methodology used
by Liang et al. (2018). Following this consolidation process, the GooglePost dataset
comprises 4520 change lists and 1,495,856 test suites, averaging around 330 test suites
per change list. The median feedback time per build within the GooglePost dataset is
documented at 4.6 minutes.

Figures 3 illustrate the distribution of concurrent builds within the GooglePost
dataset. Each build demonstrates concurrency with up to 86 other builds, with a median
concurrency of 50 builds and first and third quartiles at 35 and 62, respectively. The
wealth of concurrent builds within this dataset offers a fertile ground for investigating
various test optimization techniques, including parallelization, batching, selection,
and prioritization.

3.1.4 JMRI

The JMRI dataset is sourced from the study conducted by Yaraghi et al. (2023),
focusing on scalable test prioritization. They examined a total of 25 projects, including
18 of the largest ones based on Source Lines of Code (SLOC) and build counts sourced
from TravisTorrent (Beller et al., 2017b). Additionally, they included 7 major projects
with a minimum of 5 minutes of average testing time from the RTPTorrent dataset
(Mattis et al., 2020). In our experiment, we utilize the JMRI dataset, which represents
the largest dataset within their study.

The JMRI dataset covers a span of 5 months of test executions, encompassing
69,300 commits, 1,481 builds, and a total of 6,469,640 test cases. This averages to
approximately 4,368 test cases per build, with a median feedback time of 26.4 minutes
for each build.

Figure 4 illustrates the distribution of concurrent builds in the JMRI dataset. This
information is obtained by comparing the start and end times of each build with those
of others. In actual JMRI build executions, each build has a concurrency with up to 4
other builds, with a median of 1 concurrent builds and the first and third quartiles at
0 and 1 concurrent build, respectively.

4 Test Optimization Approaches

In this section, we describe the different test optimization approaches that are used in
this study.

14 Emad Fallahzadeh et al.

Actual Run

0 20 40 60 80
number of concurrent builds

Fig. 3: Violin plot showing the distribution of the actual number of concurrent builds
in GooglePost. The median number of concurrent builds is denoted by a solid vertical
line, while the dashed vertical lines indicate the first and third quartiles of the distri-
bution.

4.1 TestAll

As a general baseline for comparison, we use the TestAll algorithm, which does
not involve any test selection, prioritization, or batching. In this approach, the test
cases related to each change are processed separately based on their arrival time.
By increasing the number of machines in this case, we can execute more test cases
simultaneously, which leads to faster execution time.

4.2 MLPrioritization

One of the test optimization techniques widely used to improve failing test detection
is test prioritization. This approach reorders tests within a build to detect failing
tests faster. In this study, we compare the state-of-the-art test prioritization algorithm
devised by Yaraghi et al. (2023) with other test optimization approaches to assess its
effectiveness.

We replicated the approach outlined by Yaraghi et al. (2023) and applied features
that were both available and feasible across our various datasets under study. These
features were recognized as the most effective ones in their study and are aligned with
their recommendations for large-scale projects. The features we incorporated include
the test’s Age, LastFailAge, LastTransitionAge, AvgExeTime, MaxExeTime, FailRate,

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 15

Actual Run

0 1 2 3 4
number of concurrent builds

Fig. 4: Violin plot showing the distribution of the actual number of concurrent builds
in JMRI. The median number of concurrent builds is denoted by a solid vertical line,
while the dashed vertical lines indicate the first and third quartiles of the distribution.

ExcRate, TransitionRate, LastVerdict, and LastExeTime. For detailed explanations of
these features, please refer to the main paper (Yaraghi et al., 2023).

In this study, we implement the approach proposed by Yaraghi et al. (2023) using
the aforementioned features. We refer to this implementation as MLPrioritization in
this paper, and it is based on the pseudocode shown in Algorithm 1. We use the same
parameters and settings for executing the algorithm.

4.3 CoDynaQPrioritization

Elbaum et al. (2014) introduced the concept of utilizing previous failures to predict and
prioritize future ones in a Continuous Integration (CI) environment across multiple
builds. This approach reorders tests across queued builds to maximize the speed of
failure detection. A more recent study by Zhu et al. (2018) extended this concept by
incorporating co-failures, which are tests that fail in the same build. Zhu ez al.’s test
prioritization approach adjusts and reprioritizes test cases based on observed failures
or non-failures. For example, if a test previously co-failed with another test, the failure
of one in the current build increases the prioritization score of the other, based on the
conditional probability of their co-failure.

In this study, we optimize and adopt Zhu et al.’s approach as a representative of test
prioritization algorithms designed for CI systems across multiple builds. The pseudo-
code for this method is shown in Algorithm 2, and we refer to this implementation as

16 Emad Fallahzadeh et al.

Algorithm 1: MLPrioritization

Input : Build queue Qp,
Output Prioritized test queue Q;

while Qy, is not empty do

1
2 b « next build from Qp,;

3 Q; « tests from b;

4 forr € Q; do

5 Calculate ML features for ¢;

6 Input the calculated ML features for ¢ to the ML model to get Py (¢) as the failure

probability of 7;

7 end

8 Prioritize Q; based on Py (t);

9 while Q; is not empty do

10 t « next test from Qy;

11 Dispatch ¢ to available machine;

12 Execute ¢ and record the results;

13 if ¢ fails then

14 ‘ Update failure history for ;

15 end

16 end
17 end

CoDynaQPrioritization throughout the study. The conditional probability P(z,|t/i1)
in this algorithm represents the probability of test #, failing given that test #z; has
already failed in the corresponding build. This can be calculated using Formula 1.
The P(t, Nt) in Formula 1 is the probability that both tests ¢, and tg; fail together,
and P(tg;) represents the probability that test fg,; fails.

P(to N tfail)

1
P(t1ai1) M

P(t,|tri) =

We utilize three time windows as defined by Elbaum et al. (2014): the failure
window (ws), execution window (w.), and prioritization window (w). The failure
window determines the timeframe used to consider previous failures. The execution
window prevents low-priority tests from waiting too long, thereby avoiding starvation.
Specifically, we set w, to 2 builds, equivalent to the time window used in the main
study by Elbaum et al. (2014). Additionally, we adopt an unlimited window size for
w s and a window size of 2 for w,, to maximize the failure detection and optimize test
executions.

We compare the performance of the CoDynaQPrioritization algorithm with other
test optimization techniques. Notably, this algorithm relies solely on historical test
results and does not require resource-intensive data such as source code information,
which can be impractical for large-scale projects (Elbaum et al., 2014; Memon et al.,
2017).

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 17

Algorithm 2: CoDynaQPrioritization

Input : Build queue Oy, Prioritization window w),, Failure window w ¢, and Execution
window we
Output Test prioritization queue Q;

while Qp is not empty do

1
2 b « next builds from Qj, based on w),;
3 Qy « tests from b;
4 fort € Q; do
5 if ¢ has recent failures (t € wy), is new, or has not been executed for a long time
(t ¢ we) then
6 ‘ Set the priority of ¢ to 1;
7 end
8 else
9 | Set the priority of £ to 0;
10 end
11 end
12 Prioritize Q; based on priority;
13 while Q; is not empty do
14 t « next test from Qy;
15 Dispatch ¢ to available machine;
16 Execute ¢ and record the results;
17 Q, « other tests from Qy;
18 while Q,, is not empty do
19 to < next test from Q,;
20 if ¢ fails then
21 add P (o |tfzi1) to the 7, score;
2 Update failure history for #;
23 end
24 end
25 Re-Prioritize Q; based on new scores;
26 end
27 end

4.4 CoDynaQSelection

To ensure a fairer comparison by applying consistent approaches and criteria between
test prioritization and selection in continuous integration (CI) and across builds, we
apply the same method used for CoDynaQPrioritization as an optimized version of
Zhu et al. (2018) for test selection. This algorithm leverages the concept of previous
failures and co-failures for test selection across builds, utilizing lightweight test result
history information while avoiding the use of resource-intensive source code data,
which may not be feasible for large-scale projects Memon et al. (2017).

Test selection based on the co-failures approach involves adjusting and reselecting
test cases based on observed failures or non-failures. For instance, if a test co-failed
with another test previously, the failure of one in the current build will increase the
selection score of the other one, determined by the conditional probability of their
co-failure. In this experiment, we implement the co-failure selection algorithm as
described in the pseudocode shown in Algorithm 3. We refer to this implementation

18 Emad Fallahzadeh et al.

as CoDynaQSelection in the remainder of this study. The conditional probability
P(totgi1) in this algorithm is calculated based on Formula 1.

We utilize two time windows as defined by Elbaum et al. (2014): the failure window
(wg), and execution window (w.). The failure window determines the timeframe
used to consider previous failures. The execution window prevents low-priority tests
from waiting too long, thereby avoiding starvation. Specifically, we set an unlimited
window size for w y and a window size of 2 for w,, to maximize the failure detection
and optimize test executions.

Algorithm 3: CoDynaQSelection

Input : Build queue Qp, Failure window w > and Execution window w,
Output Test selection queue Qr

;Vhile Qp is not empty do

1
2 b < next builds from Qj, based on wp,;

3 Q; « tests from b;

4 fort € Q; do

5 if 1 has recent failures (t € wy), is new, or has not been executed for a long time

(t ¢ we) then

6 ‘ Set the priority of # to 1;

7 end

8 else

9 | Set the priority of £ to 0;

10 end
11 end
12 Select tests in Q with a score of 1;
13 while Q; is not empty do

14 t « next test from Qy;

15 Dispatch ¢ to available machine;

16 Execute ¢ and record the results;

17 Q, « other tests from Qy;

18 while Q,, is not empty do

19 t, « next test from Q,;

20 if ¢ fails then

21 add P (o |tfzit) to the 7, score;
2 Update failure history for ¢;

23 end

24 end

25 Re-Select from Q; based on new scores;
26 end
27 end

4.5 BatchAll

Batching is an effective yet often overlooked test optimization technique that has
gained prominence as the number of overlapping changes and builds has increased.
Therefore, it is important to compare the advantages and disadvantages of this ap-
proach in comparison to other test optimization techniques. In batching algorithms,

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 19

multiple changes are batched together, and the union of all their tests is run. When
the batch successfully runs all tests, there is a significant save in test runs. However,
when the batch fails, there is a penalty to find the culprit change that is responsible
for the failure. There are various batching algorithms and culprit-finding techniques
(Beheshtian et al., 2021).

In this study, we utilize the BatchAll algorithm, which demonstrated promising
results in our recent work (Fallahzadeh et al., 2023) comparing various batching tech-
niques. Unlike waiting to receive a specific number of changes (builds) (Beheshtian
et al., 2021), BatchAll batches all the available changes waiting for the build. This
approach avoids waiting for a specific number of changes when there are only a few
available and increases the batch size when there are numerous changes. In case of a
batch failure, the algorithm carries out the culprit-finding phase. We further improved
this part by considering only the tests that have failed in the batch, rather than all the
tests.

Assumptions for batching: Given that the datasets do not provide batch-level test
results, we rely on the following assumptions in our simulations to extrapolate batch
outcomes from individual build results:

1. We assume that if a test fails in any of the builds within a batch, it will cause the
entire batch to fail. This test will also trigger the same number of re-runs enforced
by the CI infrastructure to mitigate flakiness, just as it did when it ran in the
individual build. Such outcomes are classified as batch breakages, necessitating
the identification of the root cause through the culprit-finding process.

2. In the event of a test displaying a flaky result in any of the builds included in
the batch, we assume that it will produce a flaky result in the batch as well. It
undergoes the same number of re-runs in the batch as would be applied to the
specific build included to identify the flaky test. However, in our simulations, flaky
tests do not lead to the breakage of the batch and result in the integration of the
batch.

3. Other types of tests in the batch are considered as pass, resulting in the integration
of the batch.

Figure 5 shows the summary of the decision tree for each type of test result in the
builds included in the batch. We define the pseudocode for the BatchAll algorithm as
the pseudocode 4.

5 Evaluation Criteria

This section defines the different metrics used to evaluate test optimization algorithms.

5.1 Feedback Time

One of the primary objectives of test optimization algorithms is to minimize feedback
time, especially in Continuous Integration (CI) systems, to ensure prompt delivery
of test results. Feedback time refers to the duration between the time a change is

20

Emad Fallahzadeh et al.

Flaky in batch
builds?

Fail in batch
builds?

Integration

Culprit finding

Integration

Fig. 5: Decision tree for each type of test results in the builds included in the batch.

Algorithm 4: BatchAll

Input : Build queue Qp
Output Batched test execution

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
2
23 end

while Qy, is not empty do

batch < make a batch from available and arrived builds in Qp;
testSet < set of all unique tests across batch;

Qy « fill test queue with tests from testSet;

while Q; is not empty do

end

end

t « next test from Qy;

Dispatch # to an available machine;
Execute ¢ and record the results;

if ¢ fails then

Record the failing test in batch;

end

if batch failed then

for each failed test ty in batch do
for each commit c in batch do
Execute ¢ in ¢ and record the result;
if t¢ fails then
‘ Update failure history for z5;
end
end

end

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 21

committed and the time all test results are received. It is a critical parameter that
determines the effectiveness of testing.
We calculate feedback time using the following formula:

FeedbackTime = Time(TestResults) — Time(Commit) 2)

Let’s consider an example. Suppose a software developer commits a code change
at 1 PM and wants to receive the test verdicts as soon as possible. If the feedback time
is 1 hour and there is no waiting time before the tests can be executed, the developer
will receive the test verdicts at 2 PM. However, if there is a waiting time of 1 hour
before the tests can be executed, the feedback time will be 2 hours, and the developer
will not receive the test verdicts until 3 PM.

To evaluate different test optimization algorithms, we use the median feedback
time for each algorithm and a specific number of machines. This approach enables us
to compare the performance of each algorithm under various machine configurations
and identify the most efficient algorithm for a given set of resources.

5.2 Number of Machines in Use

One significant aspect of this study is its examination of resource optimization con-
cerning the number of build machines employed. We aim to determine how many
machines we can save while achieving the same actual feedback time by employing
different test optimization algorithms.

Baseline. To establish a benchmark, we consider the baseline number of machines
utilized to achieve the actual feedback time in the reality of the projects under study.
Since the actual number of machines used to achieve the feedback time for various
projects is unavailable, we estimate this figure using the TestAll algorithm, which does
not employ any test optimization techniques. By determining the number of machines
TestAll requires to attain a feedback time similar to the actual value, we establish
this count as the baseline for each dataset. This baseline serves as a reference point
for evaluating the performance of different test optimization algorithms in terms of
resource reduction.

For example, in the case of Chrome, the 7estAll configuration with 179 ma-
chines closely approximates the actual median feedback time taken from historical
test execution times and serves as our baseline. Similarly, for GooglePre, the TestAll
configuration with 46 machines is chosen as the baseline due to its close alignment
with the actual median feedback time. Likewise, for GooglePost and JMRI, our base-
lines are the 7estAll configurations with 103 machines and 1 machine, respectively.
These specific baselines provide a standardized basis for assessing the performance
of other test optimization algorithms in this study.

5.3 GaINEDTIME

Another essential aspect of evaluating test optimization algorithms is their efficiency
in promptly detecting failing tests.

22 Emad Fallahzadeh et al.

The Average Percentage of Faults Detected (APFD) metric is commonly used to
assess failure detection within individual builds. It measures the average cumulative
percentage of faults detected during the execution of test cases within a build when
run in a given order (Rothermel et al., 1999). However, our study focuses on test
optimization in a multi-machine, parallel environment and across multiple builds,
rather than running builds individually and sequentially. Therefore, we need to evaluate
failure detection performance across multiple builds. This involves determining when
failures are detected across several builds rather than within a single build.

For example, consider a scenario where algorithm A identifies a failure as the
first test in the 1000th build, while algorithm B identifies it as the 100th test in the
same build. The timeframe for detecting this failure can vary significantly between
scenarios. In one scenario, it might take 30 days to detect the failure due to the
postponement of running tests and the inability of the algorithm to clear the queue
efficiently. In another scenario, it might take only two days due to faster processing of
the build queue.

Elbaum et al., pioneers in utilizing the APFD metric for test prioritization, iden-
tified its limitations in measuring fail time across builds in large-scale continuous
integration environments (Elbaum et al., 2014). Further insights on this matter are
elaborated in the discussion section.

To address this challenge, Elbaum et al. (2014) and our previous work (Fallahzadeh
and Rigby, 2022) introduced an alternative metric known as GAINEDHouRrs. We extend
this metric to GAINEDTIME to accommodate various units such as hours or minutes.
This metric quantifies the time saved by each approach (A) compared to the baseline
(TestAll), and is defined as:

GAINEDTIME (A) = FailTime(TestAll) — FailTime(A) 3)

Here, FailTime represents the time at which the corresponding algorithm detects
the failing test. By comparing each algorithm’s run times against 7TestAll, which
processes tests in their arrival order, we calculate the time saved for each failed
test. Subsequently, we use the median GAINEDTIME to evaluate each algorithm’s
performance using a specific number of machines against other algorithms.

5.4 Execution Reduction

To assess the efficiency of various algorithms in terms of saving execution time by
utilizing different numbers of machines, we employ the ExecutioNREDUCTION metric.
This metric is calculated using Equation 4.

.7, Test Execution Time (A, m)

ExecuTioNREDUCTION, (A) = 1 — —; - -
;=1 Test Execution Time (TestAll)

“4)

This equation quantifies the time saved in test execution by a test optimization
algorithm (A) with m machines, relative to executing all tests in their original order
(TestAll). Here, T represents the number of tests executed by the test optimization

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 23

algorithm (A) with m machines, and N is the total number of tests executed by
TestAll.

The time saved is determined by dividing the sum of the test execution time of
approach A running with m machines by the sum of the test execution time of the
TestAll algorithm. This ratio represents the percentage of time required to run the tests
using approach A compared to TestAll. Subtracting this percentage from 1 yields the
percentage of time saved.

For instance, if approach A completes tests in 70% of the time taken by TestAll,
the percentage of time saved by A is obtained by subtracting this percentage from 1,
resulting in 30% of ExecutioNnREDpUCTION. This implies that approach A achieves
a 30% reduction in test execution time. By utilizing this formula as a metric, we
can compare the performance of different test optimization algorithms and determine
which ones are more effective in terms of saving time during test execution.

5.5 Experimental Setup
5.5.1 Simulated Hardware Environment

In this study, we simulate the impact of varying numbers of machines on different
test optimization algorithms to assess parallelism. We allocate test executions algo-
rithmically across these machines to ensure the accuracy of our results. For Chrome,
we span a range of machines from 1 to 400, with a standard step size of 25. However,
in cases where we observe significant differences, such as from 1 to 25 machines, we
employ more precise steps to thoroughly examine the outcomes. For the GooglePre
dataset, our range extends from 1 to 100 machines, with a step size of 10. Similarly, we
explore the range from 1 to 400 machines for the GooglePost dataset, using a step size
of 25. In contrast, for the JMRI dataset, we explore the range from 1 to 19 machines
with a step size of 2. The selection of these ranges and step sizes is meticulous, driven
by the evaluation results. We choose ranges and steps where they make a meaningful
difference in outcomes and where they plateau, ensuring a comprehensive analysis
of the performance of various test optimization algorithms under diverse machine
configurations.

5.5.2 Dealing with Test Results in Chrome

To conduct our simulation, we establish a set of assumptions regarding the treatment of
various types of test results in Chrome, drawing from our previous studies (Fallahzadeh
and Rigby, 2022; Fallahzadeh et al., 2023).

— Expected: These types of results in Chrome are treated as passing tests, which do
not block the build. So, we consider these types of tests as passing tests that do
not require any additional runs.

— Flaky: These outcomes in Chrome do not stop a build from being integrated into
the main repository. As such, we also consider these types of test results as passing
outcomes in our simulation. However, they cause re-runs of the tests that we take
into account in the experiment.

24 Emad Fallahzadeh et al.

— Unexpected: These types of results in Chrome are the main sources of blocking
the builders. Because of this, we consider these types of tests as failing tests in our
simulation. They usually require re-runs so that the testing infrastructure assures
that the failure is consistent. Hence, we consider the re-runs from unexpected
results in our simulation.

6 Results

This section presents the answer to each research question and displays the comparative
results of running simulations.

6.1 RQ1: How effective are different test optimization approaches in reducing
feedback time when executed in parallel with varying numbers of machines?

In this research question, we aim to understand the impact of using different test
optimization approaches on feedback time in a parallel environment with varying
numbers of machines on different datasets. This is important as the primary goal of
most test optimization algorithms is to reduce the feedback time in getting the results
from the builds. One of the unique aspects of our study is the consideration of a multi-
machine environment, allowing for a more realistic and comprehensive evaluation
of test optimization strategies in modern CI environments where builds are typically
distributed across several machines to improve efficiency and scalability.

To address this research question, we employ the TestAll algorithm as our base-
line, alongside MLPrioritization, CoDynaQPrioritization, CoDynaQSelection, and
BatchAll algorithms, analyzing their performance on various datasets. We vary the
number of machines used to execute these algorithms and record the median feedback
times across all commits for each algorithm and machine configuration.

We present the results of the median feedback time for the executions on Chrome
in Figure 6 and 7. The results are shown as a continuous line by connecting the dots
to enable better visualization of the outcomes. Figure 6 shows the median feedback
time for each available number of machines and each test optimization algorithm in
Chrome. Since the difference in feedback results is substantial when using different
numbers of machines, we use a logarithmic scale to display the results in this figure.

The results depicted in Figure 6 indicate that the BatchAll algorithm outperforms
other approaches, particularly in resource-constrained environments with substantially
fewer machines than the baseline. However, when the number of machines exceeds
approximately 70, the CoDynaQSelection algorithm demonstrates superior perfor-
mance. Thus, in resource-abundant environments, CoDynaQSelection surpasses the
other algorithms in effectiveness, though it does so at the cost of missing 31.25% of
failures regardless of the number of machines used. The percentage of missed failures
is calculated based on the total number of failures in the Chrome dataset and the
number of failures detected by the CoDynaQSelection algorithm. Both the MLPrior-
itization and CoDynaQPrioritization algorithms exhibit performance comparable to
the TestAll algorithm.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 25

100000

10000

1000 -

=
(=]
o

°
e
T

Median feedback time in hours (logarithmic scale)
e
2 s

0.001

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

——TestAll ——MlLPrioritization CoDynaQPrioritization CoDynaQSelection BatchAll

Fig. 6: Median feedback time for the 7estAll, CoDynaQSelection, CoDynaQPriori-
tization, MLPrioritization, and BatchAll algorithms, displayed in logarithmic scale
and expressed in hours, taking into account variations in peak machine numbers for
Chrome.

In this research question, our primary focus is on the median feedback time and the
improvements achieved by different algorithms using the actual baseline number of
machines, which is 179 in the case of Chrome. While Figure 6 provides a holistic view
of median feedback time performance, it may not adequately display the feedback time
values and the improvements achieved by different approaches around the baseline
actual feedback time due to its logarithmic scale. Therefore, we use Figure 7 for a
clearer view. This figure presents the median feedback time on the left axis and the
improvements relative to the actual median feedback time, showing deviations up to
100 percent, on the right axis.

As shown in Figure 7 for Chrome, with a baseline of 179 machines, the
BatchAll algorithm achieves a median feedback time of 2.69 minutes. This rep-
resents a 91.84% improvement over the actual feedback time, while ensuring
no failures are missed, as BatchAll executes all tests for the batch build. Co-
DynaQSelection results in a lower median feedback time of 1.28 minutes, showing
a significant improvement of 96.12%, albeit missing 31.25% of failures because it
avoids running all the tests. Neither the 7estAll nor the MLPrioritization algorithms
yield any improvements in feedback time, as expected. The median feedback time
for CoDynaQPrioritization is 31.20 minutes, representing approximately a 5.30%
improvement compared to the actual feedback time of 32.95 minutes.

Each data point in Figures 6 and 7 represents the median of the feedback time
distribution across all commits in the Chrome dataset. To evaluate and compare the

26 Emad Fallahzadeh et al.

-100%

60 1 -80%

{ -60%
50
{ -40%
{ -20%
1 0%

30

4 20%

4 40%

Median feedback time in minutes

1 60%
10

Improvement against actual median feedback time

4 80%

100%

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

——TestAll ——MLPrioritization CoDynaQPrioritization CoDynaQSelection ——BatchAll

Fig. 7: Median feedback time in minutes and the improvement relative to the baseline
median feedback time of 32.95 minutes for the TestAll, CoDynaQSelection, CoDy-
naQPrioritization, MLPrioritization, and BatchAll approaches, factoring in variations
in peak machine numbers for Chrome.

feedback time distributions of various test optimization algorithms, we employ the
Wilcoxon Rank-Sum test. This statistical test is specifically designed for comparing
two independent samples without making assumptions about their underlying distri-
butions.

To address the challenge of conducting multiple comparisons, we employ the
Bonferroni correction method. This correction involves dividing the desired overall
p-value of 0.05 by the number of comparisons being made. Consequently, each indi-
vidual comparison is subject to a strict significance threshold, resulting in a p-value
cutoff of 0.00024 for Chrome. This adjustment ensures that any observed differences
between the algorithms are statistically significant.

To maintain content flow, we present the resulting table in Appendix A. Table 7
presents the calculated p-values for comparing the feedback time distribution between
different test optimization algorithms for the Chrome dataset. These results are consis-
tent with the observations of the median feedback time depicted in Figures 6 and 7. For
instance, the findings reveal that there are no statistically significant differences in the
distribution between TestAll and MLPrioritization, TestAll and CoDynaQPrioritiza-
tion when the number of machines is below 175, as well as between MLPrioritization
and CoDynaQPrioritization within the same machine range. However, for the remain-
ing comparisons, the p-values indicate statistically significant differences, meeting the
predetermined cutoff of 0.00024.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 27

To quantify the magnitude and direction of differences between feedback time
distributions, we employ Cliff’s delta effect size measure. The resulting effect sizes
between different algorithms at varying machine counts are presented in Table 8. This
additional data reinforces the observed patterns and underscores the significance of
the differences depicted in the median feedback time plot.

For GooglePre, Figures 8 and 9 show the corresponding median feedback time
results. Figure 8 depicts the median feedback time in logarithmic scale for each
available number of machines and test optimization algorithm on GooglePre.

The results illustrated in Figure 8 indicate that the BatchAll algorithm consis-
tently outperforms other algorithms in terms of feedback time on the GooglePre
dataset, particularly in resource-constrained environments with fewer machines. Sub-
sequently, CoDynaQSelection achieves the second-best median feedback time in most
cases; however, it misses 6.24% of failures regardless of the number of machines
used. This failure miss rate is due to CoDynaQSelection selectively executing tests,
which leads to not detecting some failures. Both the MLPrioritization and CoDy-
naQPrioritization algorithms perform comparably to the 7estAll algorithm, although
CoDynaQPrioritization outperforms TestAll when the number of machines exceeds
approximately 46, the baseline number.

Figure 9 showcases the improvements realized by each test optimization algorithm
relative to the actual median feedback time of 15.21 minutes for GooglePre.

In the case of GooglePre, as illustrated in Figure 9, using 46 baseline machines,
BatchAll achieves a median feedback time of (.04 minutes, marking a significant
improvement of 99.75% against the actual feedback time without missing any
failures. CoDynaQSelection produces a longer median feedback time of 2.92 minutes,
representing approximately an 80.83% improvement, while also missing 6.24% of
failures due to executing tests selectively. Both TestAll and MLPrioritization do not
result in any improvements, as expected. The CoDynaQPrioritization algorithm yields
a median feedback time of 14.91 minutes, representing about a 1.94% improvement
against the actual median feedback time of 15.21 minutes.

The Wilcoxon Rank-Sum test, conducted on the GooglePre dataset to compare the
feedback time distribution across various test optimization approaches and commits,
is presented in Table 9 in Appendix A. Employing the Bonferroni correction yields a
p-value cutoff of 0.00045 for GooglePre. The findings of Table 9 closely align with
the observations derived from the median feedback time depicted in feedback time
figures 8 and 9. Additionally, the effect size measure, Cliff’s delta, displayed in Table
10, reinforces the observed patterns and underscores the significance of the differences
illustrated in the median feedback time plot.

For GooglePost, Figures 10 and 11 present the respective findings regarding the
median feedback times. Figure 10 outlines the median feedback time in logarithmic
scale concerning each available number of machines and test optimization algorithm
on GooglePre.

The outcomes depicted in Figure 10 demonstrate that the BatchAll algorithm con-
sistently outperforms other algorithms in terms of feedback time on the GooglePost
dataset, with its superiority more pronounced in environments with limited resources
and fewer machines. Following BatchAll, CoDynaQSelection achieves the second-
best median feedback time in most instances, although it misses 0.86% of failures

28 Emad Fallahzadeh et al.

10000

1000

=
=]
o

10

o
B

e
o
=2

0.001

Median feedback time in hours (logarithmic scale)
-

0.0001

0 10 20 30 40 50 60 70 80 90 100
Peak total number of machines

——TestAll ——ML Prioritization CoDynaQPrioritization CoDynaQSelection = ——BatchAll

Fig. 8: Median feedback time for the 7TestAll, CoDynaQSelection, CoDynaQPriori-
tization, MLPrioritization, and BatchAll algorithms, displayed in logarithmic scale
and expressed in hours, taking into account variations in peak machine numbers for
GooglePre.

regardless of the number of machines used. Both the MLPrioritization and CoDy-
naQPrioritization algorithms perform comparably to the TestAll algorithm. However,
CoDynaQPrioritization surpasses TestAll when the number of machines exceeds ap-
proximately 103, the baseline number.

For GooglePost, as depicted in Figure 11, with a baseline of 103 machines, the
BatchAll algorithm showcases a median feedback time of 1.88 minutes, demon-
strating a 60.21% improvement against the actual feedback time without missing
any failures. CoDynaQSelection yields a median feedback time of 3.07 minutes, rep-
resenting a 34.94% improvement, while missing 0.86% of failures. Both TestAll and
MLPrioritization do not result in any improvements, as expected. The CoDynaQPri-
oritization algorithm results in a median feedback time of 4.24 minutes, marking a
10.25% improvement against the actual feedback time of 4.72 minutes.

The Wilcoxon Rank-Sum tests presented in Table 11 in Appendix A, considering
the Bonferroni correction cutoff of 0.00028 for GooglePre, and Cliff’s delta depicted
in Table 12, closely align with the observations derived from the median feedback
time depicted in Figures 10 and 11.

For JMRI, Figure 12 presents the findings on median feedback times, along with
corresponding improvements relative to the actual feedback time of 26.39 minutes.
Since there are no substantial variations in the feedback time results, we consolidate
this information into the single 12 figure.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 29

-100%

30

4 -80%

25 4 -60%

-40%
20 -
4 -20%

15 1 0%

4 20%

10
1 40%

Median feedback time in minutes

1 60%

Improvement against actual median feedback time

4 80%

0 — . . e 100%
0 10 20 30 40 50 60 70 80 90 100

Peak total number of machines

——TestAll ——MlLPrioritization CoDynaQpPrioritization CoDynaQSelection BatchAll

Fig. 9: Median feedback time in minutes and the improvement relative to the baseline
median feedback time of 15.21 minutes for the TestAll, CoDynaQSelection, CoDy-
naQPrioritization, MLPrioritization, and BatchAll approaches, factoring in variations
in peak machine numbers for GooglePre.

The outcomes depicted in Figure 12 demonstrate that the CoDynaQSelection
algorithm consistently outperforms other algorithms in terms of feedback time on
the JMRI dataset, particularly in environments with limited resources and fewer
machines. However, this advantage comes at a cost, as it misses a substantial 55.27%
of failures regardless of the number of machines used, since it selectively executes tests,
which leads to missed failures. The MLPrioritization algorithm performs identically to
the TestAll algorithm. In contrast, the CoDynaQPrioritization algorithm outperforms
TestAll when using the baseline number of machines of 1. However, as the number of
machines increases, its feedback time overlaps with BatchAll and eventually converges
with TestAll. While the BatchAll algorithm initially outperforms the baseline 7estAll
algorithm in resource-constrained environments with fewer machines, its feedback
time becomes comparable to the baseline as the number of machines increases.

For the JMRI dataset, employing a single baseline machine, CoDynaQSe-
lection achieves a median feedback time of 7.85 minutes, marking a significant
70.27% improvement compared to the actual feedback time of 26.39 minutes, de-
spite missing 55.27% of failures. While other algorithms failed to surpass the actual
median feedback time, some managed to achieve improvements relative to the TestAll
baseline algorithm. Specifically, CoDynaQPrioritization demonstrates an approxi-
mately 8% enhancement over the baseline algorithms, while the BatchAll algorithm
outperforms the baseline by approximately 15

30 Emad Fallahzadeh et al.

10000

1000

=
(=3
o

[
o

o
=

Median feedback time in hours (logarithmic scale)
o
I

0.001

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

——TestAll ——MlLPrioritization CoDynaQpPrioritization CoDynaQSelection ~ ——BatchAll

Fig. 10: Median feedback time for the TestAll, CoDynaQSelection, CoDynaQPrior-
itization, MLPrioritization, and BatchAll algorithms, displayed in logarithmic scale
and expressed in hours, taking into account variations in peak machine numbers for
GooglePost.

Table 1: The median feedback time in minutes and the corresponding improvements
achieved by different algorithms for various datasets using the baseline number of
machines: 179 for Chrome, 46 for GooglePre, 103 for GooglePost, and 1 for IMRI
datasets.

Datasets TestAll CoDynaQ CoDynaQ MLPrioritization ~ BatchAll
Selection Prioritization

Chrome 3355 (-1.81%) 1.28 (96.12%) 31.20 (5.30%) 33.55 (-1.81%) 2.69 (91.84%)

GooglePre 1596 (-4.91%) 2.92 (80.83%) 14.91 (1.94%) 15.96 (-4.91%) 0.04 (99.75%)

GooglePost 4.72 (0.01%) 3.07(34.94%) 424 (10.25%) 4.72 (0.01%) 1.88 (60.21%)

JMRI 30.87 (-16.99%) 7.85 (70.27%) 28.81(-9.17%) 30.87 (-16.99%) 26.84 (-1.71%)

The Wilcoxon Rank-Sum test, considering the Bonferroni p-value threshold of
0.0005 for JMRI, closely corresponds with the insights gleaned from the median
feedback time portrayed in Figure 12. Moreover, Cliff’s delta effect size measure, pre-
sented in Table 14, further confirms observed trends and accentuates the significance
of differences illustrated in the median feedback time plot.

Table 1 provides a summary of the median feedback time achieved by each
algorithm for each dataset using the baseline number of machines for each dataset,
along with the corresponding improvements compared to the actual median feedback
time.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 31

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

Median feedback time in minutes

60%

Improvement against actual median feedback time

80%

100%

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

——TestAll ——MLPrioritization CoDynaQPrioritization CoDynaQSelection = ——BatchAll

Fig. 11: Median feedback time in minutes and the improvement relative to the base-
line median feedback time of 4.72 minutes for the TestAll, CoDynaQSelection, CoDy-
naQPrioritization, MLPrioritization, and BatchAll approaches, factoring in variations
in peak machine numbers for GooglePost.

Observations spanning from Figure 6 to Figure 12 and detailed in Table 1 unveil
the following insights. In larger-scale projects like Chrome, with numerous concur-
rent builds, the BatchAll algorithm consistently boasts superior feedback times across
various test optimization algorithms. This advantage is particularly pronounced in
resource-constrained environments with limited machine availability, all while ensur-
ing no failures are missed. Following closely is the CoDynaQSelection algorithm. In
contrast, in smaller-scale projects with fewer concurrent builds, such as JMRI, the
CoDynaQSelection algorithm emerges as the top performer despite its propensity to
miss up to 55% of failures. Interestingly, test prioritization algorithms, in general, do
not yield substantial reductions in feedback time.

An additional insight from Figures 7, 9, 11, and 12 is identifying the point where
each test optimization algorithm reaches a plateau. While some algorithms may ini-
tially perform well, they may plateau prematurely, with no further room for improve-
ment. We define a plateau as occurring when increasing the number of machines,
according to the dataset’s unit, results in less than a 1% improvement in feedback
time.

Table 2 presents the number of machines and the corresponding median feedback
time in minutes at which each algorithm reaches a plateau for different datasets. As
seen in both Table 2 and Figure 7, in the case of Chrome, both the CoDynaQSelection
and BatchAll algorithms plateau with 200 machines. However, the former achieves
a median feedback time of 0.96 minutes, while the latter achieves 2.4 minutes. The

32 Emad Fallahzadeh et al.

-20%

30

1 0%
25

1 20%
20

1 209
s L 0%

0 | 1 60%

Median feedback time in minutes
Improvement against actual median feedback time

5 TN 4 80%
0 . . . L 1 n 1 I 100%
1 3 5 7 9 11 13 15 17 19
Peak total number of machines
——TestAll ——ML Prioritization CoDynaQPrioritization CoDynaQSelection ~ ——BatchAll

Fig. 12: Median feedback time in minutes and the improvement relative to the baseline
median feedback time of 26.39 minutes for the TestAll, CoDynaQSelection, CoDy-
naQPrioritization, MLPrioritization, and BatchAll approaches, factoring in variations
in peak machine numbers for JMRI.

CoDynaQPrioritization algorithm reaches a plateau with 250 machines, with a median
feedback time of 1.94 minutes, while the TestAll and MLPrioritization algorithms
plateau with 325 machines, with a median feedback time of 1.56 minutes.

As demonstrated by Table 2 and Figure 9, for the GooglePre dataset, the BatchAll
algorithm reaches the quickest plateau, with 30 machines at 0.16 minutes, while
the CoDynaQSelection algorithm plateaus with 70 machines at 0.26 minutes. The
CoDynaQPrioritization algorithm plateaus with 80 machines at 0.13 minutes, and
the TestAll and MLPrioritization algorithms approach their plateau with 90 machines,
with a median feedback time of 0.15 minutes.

For the GooglePost dataset, as depicted in both Table 2 and Figure 11, the BatchAll
algorithm reaches its plateau with the fewest machines, specifically 250, achieving a
median feedback time of 0.18 minutes. In contrast, the other algorithms reach their
plateau at a median feedback time of 0.22 minutes. Notably, the CoDynaQSelection
and CoDynaQPrioritization algorithms require 275 machines to reach this point,
while the TestAll and MLPrioritization algorithms require 375 machines.

As evidenced by Table 2 and Figure 12, for the JMRI dataset, the CoDynaQS-
election algorithm plateaus with the lowest number of machines, 7, achieving the
lowest median feedback time of 1.02 minutes. All the other algorithms plateau with
15 machines, with BatchAll and CoDynaQPrioritization at 1.76 minutes in median
feedback time, and TestAll and MLPrioritization at 1.78 minutes.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 33

Table 2: The number of machines and the corresponding median feedback time in
minutes at which each algorithm reaches a plateau for different datasets.

CoDynaQ CoDynaQ

Datasets TestAll . L S MLPrioritization = BatchAll
Selection Prioritization

Chrome 325 (1.56) 200 (0.96) 250 (1.94) 325 (1.56) 200 (2.40)

GooglePre 90 (0.15) 70 (0.26) 80 (0.13) 90 (0.15) 30 (0.16)

GooglePost 375 (0.22) 275(0.22) 275(0.22) 375 (0.22) 250 (0.18)

JMRI 15 (1.78) 7(1.02) 15 (1.76) 15 (1.78) 15 (1.76)

RQ1: The BatchAll algorithm demonstrates a feedback time reduction of up
t0 99.75% with the baseline machine configuration, while ensuring no failures
are missed. Meanwhile, the CoDynaQSelection approach achieves a reduction
of up to 96.12% in feedback time under identical machine conditions, albeit
with a drawback of missing between 1% to 55% of failures depending on
the dataset. The CoDynaQPrioritization approach achieves up to a 10.25%
reduction using the same number of machines as the baseline. In contrast, the
MLPrioritization algorithm exhibits no improvement in feedback time.

6.2 RQ2: How effective are different test optimization approaches in reducing the
number of machines in use when executed in parallel with varying numbers of
machines?

In this research question, we investigate how different test optimization algorithms
can help reduce the number of machines required for running tests. This is important
as large companies may have to invest millions of dollars in machines, making it a
critical cost factor (Anderson et al., 2014).

In this research question, we investigate the efficacy of various test optimization
algorithms in minimizing the number of machines necessary for test execution. This
inquiry holds significant relevance, particularly for large enterprises, where substantial
investments in hardware infrastructure are commonplace and constitute a critical cost
factor (Anderson et al., 2014).

Contrasting with our prior research question, which primarily revolved around
comparing feedback time outcomes across various approaches and datasets, our cur-
rent investigation pivots towards assessing how these approaches influence the reduc-
tion of overall machine utilization while upholding a specific median feedback time
for each dataset. To achieve this, we quantify the number of machines required by
each algorithm to attain the targeted median feedback time across the datasets. The
results of our experiment are summarized in Table 3.

For Chrome, the BatchAll algorithm achieves a remarkable 88.27 % reduction
in machine usage, requiring only 21 machines to maintain the baseline feedback
time compared to the baseline of 179 machines. CoDynaQSelection reduces the
number of machines needed to maintain the actual median feedback of 32.95 minutes
by 65.92%, needing only 61 machines. However, as seen in RQI1, this reduction

34 Emad Fallahzadeh et al.

Table 3: The necessary quantity of machines for each algorithm to maintain the actual
median feedback time for different datasets, and the corresponding percentage of
reduction in machine usage compared to the baseline number of machines.

CoDynaQ CoDynaQ

Datasets TestAll . LT MLPrioritization = BatchAll
Selection Prioritization

Chrome 179 (0% baseline) 61 (65.92%) 178 (0.56%) 179 (0%) 21 (88.27%)

GooglePre 46 (0% baseline) 37 (19.56%) 46 (0%) 46 (0%) 14 (69.56%)

GooglePost 103 (0% baseline) 92 (10.68%) 101 (1.94%) 103 (0%) 79 (23.30%)

JMRI 1 (0% baseline) 1 (0%) 1 (0%) 1 (0%) 1 (0%)

comes at the cost of missing 31.25% of the failures. Both the MLPrioritization
and CoDynaQPrioritization algorithms maintain the baseline feedback time but do
not significantly reduce machine usage, with the latter achieving only a negligible
0.56% reduction. This limited reduction is because test prioritization algorithms focus
primarily on reordering tests rather than minimizing machine usage.

For the GooglePre dataset, the BatchAll algorithm reduces machine usage by
69.56%, requiring only 14 machines compared to the baseline of 46 machines,
without missing any failures. CoDynaQSelection reduces the number of machines
by 19.56% to 37 machines, while maintaining the median feedback time of 15.21
minutes, but at the cost of missing 6.24% of failures. Neither the MLPrioritization
nor the CoDynaQPrioritization algorithms achieve any reduction in the number of
machines used.

Moving to GooglePost, the BatchAll algorithm reduces machine usage by
23.30%, requiring 79 machines compared to the baseline of 103 machines, with-
out missing any failures. CoDynaQSelection reduces the number of machines by
10.68% to 92, while maintaining the actual median feedback time of 4.72 minutes,
albeit missing 0.86% of failures. While MLPrioritization does not reduce machine
usage, CoDynaQPrioritization achieves a slight reduction of 1.94%, requiring 101
machines.

Finally, for JMRI, none of the algorithms could reduce machine usage since the
baseline uses only 1 machine to maintain the actual median feedback time of 26.39
minutes.

Observations from Table 3 show that the BatchAll algorithm is the most effective
approach for reducing the number of machines used without missing any failures. The
CoDynaQSelection algorithm follows, but it misses up to 55% of failures. In contrast,
test prioritization algorithms are generally not very effective in reducing machine
usage.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 35

RQ2: The BatchAll approach achieves up to an 88.27% reduction in machine
usage while maintaining the baseline feedback time and not missing any
failures. The CoDynaQSelection approach reduces machine usage by up to
65.92% while maintaining the baseline feedback time but misses up to 55.27%
of failures. The CoDynaQPrioritization approach achieves a slight reduction
in machine usage by up to 1.94%, maintaining the same feedback time, while
the MLPrioritization approach shows no improvement in machine usage.

6.3 RQ3: How quickly do different test optimization techniques detect failing tests
when executed in parallel with varying numbers of machines?

Apart from the feedback time required to obtain all the commit test results and
reducing the number of machines needed for running tests, another crucial aspect
of test optimization is how quickly the algorithms can detect failing tests. While
this measure is typically used for test prioritization algorithms, this study aims to
investigate the impact of other test optimization approaches on this measure, providing
a broader view of the implications of these algorithms.

To achieve this goal, we use the GAINEDTIME measure, which is similar to mea-
sures used in previous studies by Elbaum et al. (2014) and Fallahzadeh and Rigby
(2022). This measure represents the difference in the time it takes to detect each
individual failing test. We use the median GAINEDTIME across failures detected by
each algorithm to compare them. To ensure a balanced median GAINEDTIME com-
parison among algorithms, we primarily concentrate on the failing tests detected by
CoDynaQSelection, as it encompasses the common failing tests across all approaches.

The resulting median GAINEDTIME for different test optimization algorithms in
this study for Chrome using varying numbers of machines is presented in Figure
13. Each line in the figure represents the results by connecting the non-continuous
result points for each approach. To better illustrate the differences between the median
GaNeDpTIME for each algorithm, we show the results in a logarithmic scale and add 1
GAINEDTIME unit to the results.

As illustrated in Figure 13, the median GAINEDTIME across all test optimization al-
gorithms on Chrome exhibits notable improvements in highly resource-constrained en-
vironments. However, as the number of machines increases, the efficacy of these algo-
rithms decreases significantly. Notably, the BatchAll algorithm outperforms all others
in highly resource-constrained settings. Conversely, CoDynaQSelection demonstrates
slightly better performance than BatchAll in environments with ample resources.
Nonetheless, it is essential to acknowledge that CoDynaQSelection overlooks certain
failing tests, accounting for 31.25% of all failures on the Chrome dataset, as men-
tioned in the previous RQs. The test prioritization algorithms exhibit significantly
lower GAINEDTIME performance, with CoDynaQPrioritization following BatchAll
and CoDynaQSelection, while MLPrioritization recording the lowest GAINEDTIME
results.

To evaluate and compare the distributions of GAINEDTIME across various test
optimization algorithms for Chrome, we employ statistical tests (see Tables 15 and

36 Emad Fallahzadeh et al.

100000

10000

1000 -

[

(=3

o
T

Median GainedTime + 1 (logrithmic scale)
s

1 n T e
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Peak total number of machines

MLPrioritization ——CoDynaQPrioritization ——CoDynaQSelection BatchAll

Fig. 13: Median GAINEDTIME + 1 in hours for MLPrioritization, CoDynaQPrioritiza-
tion, CoDynaQSelection, and BatchAll algorithms displayed in logarithmic scale and
in hours by considering the different peak number of machines on Chrome.

16 in Appendix A). These findings closely mirror the observed median GAINEDTIME
depicted in Figure 13. For instance, the results indicate statistically significant dif-
ferences in most comparisons, except for a few instances. Specifically, there are no
significant differences between CoDynaQPrioritization and CoDynaQSelection when
the number of machines is 275 or higher. Moreover, there is no significant difference
between the distributions of GAINEDTIME for CoDynaQSelection and BatchAll when
the number of machines is between 25 and 250. These differences are mostly apparent
as their median GAINEDTIME also overlaps, as shown in Figure 13.

For the GooglePre dataset, Figure 14 displays the median GAINEDTIME results in
logarithmic scale for all approaches studied, utilizing varying numbers of machines.
Similar to Chrome, the GAINEDTIME for all algorithms demonstrates more pronounced
improvements in resource-constrained environments with fewer machines. However,
as the number of machines increases, the GAINEDTIME performance of all algorithms
declines significantly. The BatchAll algorithm consistently achieves significantly bet-
ter GAINEDTIME performance compared to all other approaches, except when the
number of machines increases substantially, resulting in similar and limited perfor-
mance across all algorithms. Subsequently, the CoDynaQSelection algorithm follows
the BatchAll algorithm, although it misses 6.24% of failures. Thereafter, with a no-
table margin, the test prioritization algorithms trail the CoDynaQSelection algorithm.
While the performance of CoDynaQPrioritization and MLPrioritization is compara-
ble, CoDynaQPrioritization exhibits slightly better performance.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 37

10000

1000

100

10

Median GainedTime + 1 (logrithmic scale)

0 10 20 30 40 50 60 70 80 90 100
Peak total number of machines

MLPrioritization ——CoDynaQPrioritization ——CoDynaQSelection BatchAll

Fig. 14: Median GAINEDTIME + 1 in hours for MLPrioritization, CoDynaQPrioritiza-
tion, CoDynaQSelection, and BatchAll algorithms displayed in logarithmic scale and
in hours by considering the different peak number of machines on GooglePre.

The statistical tests related to the GooglePre dataset, comparing GAINEDTIME
distributions across various test optimization approaches and commits, are detailed
in Tables 17 and 18 within Appendix A. These results closely align with the insights
derived from the median GaiNeDTIME depicted in Figure 14. In most cases, there
are significant differences between the GAINEDTIME distributions, except between
CoDynaQPrioritization and CoDynaQSelection when the number of machines is
more than 80, and between MLPrioritization and CoDynaQPrioritization when the
number of machines is more than 90.

For the GooglePost dataset, Figure 15 illustrates the median GAINEDTIME out-
comes on a logarithmic scale for all analyzed algorithms, utilizing various numbers
of machines. Similar to Chrome and GooglePre, the GAINEDTIME for all algorithms
displays more noticeable enhancements in settings with fewer resources. However,
as the number of machines rises, the effectiveness of GaiNepTiME for all algorithms
decreases notably. The BatchAll algorithm achieves notably superior GAINEDTIME
performance compared to all other strategies, except in scenarios with a substantial in-
crease in machine numbers, where performance across all algorithms becomes equally
limited. Following the BatchAll algorithm is the CoDynaQSelection approach, despite
missing 0.86% of failures. Subsequently, with a notable difference, CoDynaQPriori-
tization and MLPrioritization follow, with the MLPrioritization approach performing
slightly better.

The statistical tests regarding the GooglePost dataset are shown in Tables 19 and
18 within Appendix A. The results indicate statistical significance in the GAINED-

38 Emad Fallahzadeh et al.

10000

1000

=
(=3
o

Median GainedTime + 1 (logrithmic scale)
s

(N

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

MLPrioritization =~ ——CoDynaQPrioritization =~ ——CoDynaQSelection BatchAll

Fig. 15: Median GAINEDTIME + 1 in hours for MLPrioritization, CoDynaQPrioritiza-
tion, CoDynaQSelection, and BatchAll algorithms displayed in logarithmic scale and
in hours by considering the different peak number of machines on GooglePost.

TiME distributions, with some exceptions. Notably, there is no significant difference
between the CoDynaQPrioritization and CoDynaQSelection algorithms when more
than 125 machines are used. Similarly, there is no statistical significance between
CoDynaQSelection and BatchAll when 75 machines are used. Additionally, between
the MLPrioritization algorithm and CoDynaQPrioritization, there is no statistical
significance when either 50 or more than 325 machines are used. Likewise, between
MLPrioritization and CoDynaQSelection, there is no statistical significance when
more than 275 machines are used.

For JMRI, Figure 16 presents the median GAINEDTIME outcomes on a logarithmic
scale for all analyzed algorithms, utilizing various quantities of machines. Unlike
the Chrome, GooglePre, and GooglePost datasets, the effectiveness of the BatchAll
algorithm in terms of GAINEDTIME is negligible in the JMRI dataset due to the limited
number of concurrent builds. However, other test optimization techniques demon-
strate notable GAINEDTIME improvements in resource-constrained environments with
fewer machines, with their effectiveness diminishing as the number of machines
increases. Remarkably, the CoDynaQSelection algorithm outperforms all other al-
gorithms by detecting failures faster through selective test execution. However, it is
noteworthy that this approach misses a significant portion, accounting for 55.27%, of
failures. Additionally, the CoDynaQPrioritization algorithm consistently outperforms
the MLPrioritization algorithm.

The statistical tests related to the JMRI dataset are displayed in Tables 21 and 14
within Appendix A. The results indicate statistical significance between the CoDy-

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 39

16

14

12

=
o

Median GainedTime
0

1 3 5 7 9 11 13 15 17 19
Peak total number of machines

MLPrioritization ——CoDynaQPrioritization ——CoDynaQSelection BatchAll

Fig. 16: Median GAINEDTIME in minutes for MLPrioritization, CoDynaQPrioritiza-
tion, CoDynaQSelection, and BatchAll algorithms displayed considering the different
peak number of machines on JMRI.

naQPrioritization and BatchAll algorithms, as well as between CoDynaQSelection
and BatchAll. Similarly, statistical significance is observed between MLPrioritization
and CoDynaQSelection, and also between MLPrioritization and BatchAll in most
cases. However, the stringent p-value threshold of 0.00083 does not confirm statisti-
cal significance between CoDynaQPrioritization and CoDynaQSelection, as well as
between MLPrioritization and CoDynaQPrioritization algorithms.

To provide a more accurate and realistic comparison between the different test
optimization algorithms based on GAINEDTIME, we analyzed the results at the baseline
number of machines, which is closer to the actual number of machines used. The
findings are presented in Table 4.

For Chrome, Table 4 demonstrates that when utilizing the baseline of 179
machines, both the CoDynaQSelection and BatchAll algorithms achieve similar
median GAINEDTIME values of 62.12 and 61.40 minutes, respectively. However,
CoDynaQSelection misses 31.25% of failures, whereas BatchAll doesn’t miss any.
Subsequently, CoDynaQPrioritization with a significant difference, shows a median
GaINEDTIME of 3.92 minutes, while the MLPrioritization algorithm achieves the
lowest median GAINEDTIME of 0.71 minutes.

In the case of GooglePre, BatchAll outperforms other techniques, achieving
a GAINEDTIME of 61.40 minutes without missing any failures. Following this,
CoDynaQSelection achieves a median GAINEDTIME of 43.13 minutes, although it en-
counters a 6.24% failure rate. Next, CoDynaQPrioritization attains a GAINEDTIME of

40 Emad Fallahzadeh et al.

Table 4: The median Gained Time in minutes achieved by different algorithms using
baseline number of machines as in the TestAll baseline for different datasets and for
the failures detected by CoDynaQSelection.

Datasets CoDynaQ Selection CoDynaQ Prioritization = MLPrioritization = BatchAll
Chrome 62.12 3.92 0.71 61.40
GooglePre 43.13 22.09 14.40 62.84
GooglePost 2.79 2.93 2.37 0.24
JMRI 14.43 10.57 6.29 0

22.09 minutes. Finally, MLPrioritization shows the smallest GAINEDTIME improve-
ment, with 14.40 minutes.

For GooglePost, while CoDynaQPrioritization outperforms other approaches
by achieving a median GAINEDTIME of 2.93 minutes using the baseline of 103
machines, this may not represent the entire picture. Typically, BatchAll and
CoDynaQSelection outperform other methods when fewer machines are used, as
illustrated in Figure 15. At the baseline number of machines, CoDynaQSelection and
MLPrioritization achieve median GAINEDTIME of 2.79 and 2.37 minutes, respectively,
which is close to the performance of CoDynaQPrioritization, with CoDynaQSelection
missing 0.83% of failures. In contrast, BatchAll achieves a lower median GAINEDTIME
of 0.24 minutes with the baseline number of machines.

In the case of JMRI, CoDynaQSelection performs better than all other algo-
rithms when using the baseline of one machine, achieving a median GAINEDTIME
of 14.43 minutes, though it misses a significant number of failures (55.27%). Fol-
lowing this, CoDynaQPrioritization achieves a median GAINEDTIME of 10.57 minutes,
and MLPrioritization attains a median GAINEDTIME of 6.29 minutes. BatchAll is in-
effective in terms of GAINEDTIME due to the limited concurrent builds in the JMRI
dataset.

Previous GAINEDTIME results were derived from commonly detected failures
across all approaches under study, ensuring comparability. However, to evaluate if the
failures missed by CoDynaQSelection significantly affect the relative performance of
these algorithms in terms of GAINEDTIME, we compiled GAINEDTIME outcomes for
all algorithms except CoDynaQSelection, including all failures in Table 5. Across all
datasets, we noticed a decline in GAINEDTIME performance for all algorithms. This
decline is particularly noticeable in datasets like JMRI and Chrome, where CoDy-
naQSelection missed more failures. Nevertheless, this observation does not change
the overall relative performance of these algorithms.

The results from Figures 13 to 16 and Tables 4 and 5 demonstrate that in larger-
scale projects characterized by substantial concurrent builds, such as Chrome, the
BatchAll and CoDynaQSelection algorithms, which exhibit similar performance, excel
in detecting failing tests faster, particularly in scenarios with fewer machines. Notably,
CoDynaQPrioritization and MLPrioritization follow BatchAll and CoDynaQSelec-
tion, albeit with a considerable difference in performance. Conversely, in smaller-scale
projects, such as JMRI, due to the lack of concurrent builds, the BarchAll algorithm
becomes almost ineffective in terms of GaNEDTIME, while the CoDynaQSelection

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 41

Table 5: The median Gained Time in minutes achieved by different algorithms except
CoDynaQSelection using baseline number of machines as in the TestAll baseline for
different datasets and all failures.

Datasets CoDynaQ Prioritization = MLPrioritization BatchAll
Chrome 2.68 0.67 48.32
GooglePre 19.09 13.89 56.32
GooglePost 1.44 2.34 0.23
JMRI 8.25 2.53 0

algorithm exhibits superior performance compared to other approaches, albeit with
the caveat of missing up to 55% of failures in our experiment.

RQ3: BatchAll generally outperforms other algorithms in terms of GAINED-
TiME, achieving a maximum GAINEDTIME of 62.84 minutes across different
datasets, except in the JMRI dataset with limited concurrent builds. This
advantage is notable as BatchAll does not miss any failures. The CoDy-
naQSelection algorithm demonstrates a significant improvement in median
GAINEDTIME, reaching up to 62.12 minutes, but it may miss as much as
55.27% of failures. Following, CoDynaQPrioritization achieves a maximum
GaNepTIME of 22.09 minutes with a significant difference, while the ML-
Prioritization algorithm showcases a median GAINEDTIME of up to 14.40
minutes.

6.4 RQ4: How effective are different test optimization techniques in saving test
execution time when executed in parallel with varying numbers of machines?

Another important aspect of test optimization is the amount of time different algo-
rithms can save in test executions (ExecutioNREDUCTION). The more time they can
save, the more resources and feedback time we can conserve.

To calculate the amount of time saved in test executions by different algorithms
with varying numbers of machines, we utilize the ExecutioNnREDUCTION formula.
For each algorithm with m machines, we divide the execution time of that algorithm
by the execution time of the 7estAll algorithm and subtract the result from 1.

For TestAll, MLPrioritization, and CoDynaQPrioritization algorithms, there is no
ExecuTtioNREDUCTION as they run all tests, although they may reorder them. The
results for the CoDynaQSelection and BatchAll algorithms for Chrome are shown in
Figure 17. The figure demonstrates that CoDynaQSelection always saves 66.31% of
the time spent on test executions, regardless of the number of machines used. On the
other hand, the amount of time saved in test executions by BatchAll varies significantly
depending on the number of machines used. With a single machine, BatchAll can save
up to 98.69% in test execution time, whereas with 400 machines, it saves only 8.29%.

Figure 18 illustrates the ExecutioNnREDUCTION for both the CoDynaQSelection
and BatchAll algorithms on the GooglePre dataset. It is evident that the CoDynaQS-

42 Emad Fallahzadeh et al.

100%

920%

80%

70%

60%

50%

40%

30%

20%

Percentage of ExecutionReduction

10%

0% 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Peak total number of machines

— — -CoDynaQSelection BatchAll

Fig. 17: The percentage of ExecutioNREDUCTION achieved by CoDynaQSelection
and BatchAll algorithms, relative to the total execution time for all test cases, was
calculated for different peak numbers of machines for Chrome.

election algorithm consistently achieves a 22.44% reduction in test execution time
across different machine configurations. In contrast, the BatchAll algorithm demon-
strates varying levels of ExEcuTioNREDUCTION, ranging from 76.13% with a single
machine to 52.83% with 100 machines.

Figure 19 displays the ExecutioNREDUCTION achieved by the CoDynaQSelection
and BatchAll algorithms on the GooglePost dataset. The CoDynaQSelection algorithm
consistently reduces test execution time by 14.28% across different machine setups.
Conversely, the BatchAll algorithm exhibits different levels of ExecuTioNREDUCTION,
ranging from 44.73% with one machine to 23.28% with 400 machines.

Figure 20 depicts the ExecutioNnREDUCTION achieved by the CoDynaQSelec-
tion and BatchAll algorithms on the JMRI dataset. The CoDynaQSelection algorithm
consistently reduces test execution time by 58.46% across different machine config-
urations. However, this improvement comes at the expense of missing 55.27% of
failures. On the other hand, the batching algorithm only reduces test execution time
by up to 2.67% when using a single machine, and its ExecutioNREDUCTION becomes
almost negligible as the number of machines increases. This is due to the limited
concurrent builds in the JMRI dataset.

To assess the potential time savings achievable by different test optimization
algorithms using the baseline number of machines, which is more representative of
the actual number of machines used in practice across different datasets, we present
the results of ExecutioNREDUCTION for the baseline number of machines in Table 6.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale

43

100%

90%

80%

70%

60%

50%

40%

30%

20%

Percentage of ExecutionReduction

10%

0%

Fig. 18: The percentage of ExecutioNREDUCTION achieved by CoDynaQSelection

0 20 40 60 80 100

Peak total number of machines

- = -CoDynaQSelection BatchAll

and BatchAll algorithms, relative to the total execution time for all test cases, was
calculated for different peak numbers of machines for GooglePre.

100%

90%

80%

70%

60%

50%

40%

30%

20%

Percentage of ExecutionReduction

10%

0%

Fig. 19: The percentage of ExecutioNREDUCTION achieved by CoDynaQSelection
and BatchAll algorithms, relative to the total execution time for all test cases, was

0 50 100 150 200 250 300 350 400

Peak total number of machines

- = =CoDynaQSelection BatchAll

calculated for different peak numbers of machines for GooglePost.

44 Emad Fallahzadeh et al.

100%
90%
80%
70%
60% ' o L o e e e e e e e e e e e e e e e e m oo

50%

40%

30%

20%

Percentage of ExecutionReduction

10%

0% A . ,
0 5 10 15 20
Peak total number of machines

- = -CoDynaQSelection BatchAll

Fig. 20: The percentage of ExecutioNREDUCTION achieved by CoDynaQSelection
and BatchAll algorithms, relative to the total execution time for all test cases, was
calculated for different peak numbers of machines for JMRI.

Table 6: The Execution Reduction achieved by different algorithms using the baseline
number of machines for different datasets.

Datasets CoDynaQ Selection CoDynaQ Prioritization = MLPrioritization BatchAll
Chrome 66.31% 0% 0% 21.45%
GooglePre 22.44% 0% 0% 55.24%
GooglePost 14.28% 0% 0% 22.16%
JMRI 58.46% 0% 0% 2.67%

In the Chrome and JMRI datasets, where CoDynaQSelection misses 31.25%
and 55.27% of failures respectively (see RQ1), it significantly outperforms other
algorithms, demonstrating 66.31% and 58.46% reduction in execution time as
illustrated in Table 6. However, in the GooglePre and GooglePost datasets, where
CoDynaQSelection misses fewer failures at 6.24% and 0.86% respectively, the
BatchAll algorithm surpasses all others, showing a significant execution time
reduction of 55.24% and 22.16 % respectively, without missing any failures. In the
JMRI dataset, the execution time reduction achieved by BatchAll is only 2.67% when
using a baseline of 1 machine, due to limited concurrent builds. The MLPrioritization
and CoDynaQPrioritization algorithms do not result in any time savings for test
execution, as expected.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 45

RQ4: CoDynaQSelection achieves up to 66.31% reduction in test execution
time, although it comes with the trade-off of potentially missing up to 55.27%
of failing tests. Conversely, both the MLPrioritization and CoDynaQPrioriti-
zation approaches do not yield any savings in test executions. The BatchAll
technique, on the other hand, demonstrates varied savings ranging from 0% to
98.69%, depending on the dataset and the number of machines being utilized.

7 Threats to Validity

This section discusses the threats to the validity of this research.

7.1 External Validity

In this study, we applied our experiments to four available large-scale datasets, recog-
nizing that they may not fully represent all large-scale projects. Nevertheless, we made
every effort to include all publicly available large-scale datasets. The Google Chrome
dataset (Fallahzadeh and Rigby, 2022) stands out as the largest publicly available
dataset in terms of the number of test cases, boasting 49,932 test suites, 276 million
test cases over one month, and up to 47 concurrent builds. Additionally, we analyzed
the GooglePre dataset (Elbaum et al., 2014), comprising 1,112,158 test suites over one
month with up to 49 concurrent builds. Furthermore, our experiments were conducted
on the GooglePost dataset, which includes 1,495,856 test suites with up to 86 build
concurrency. Finally, we incorporated the largest open-source dataset from the study
by Yaraghi et al. (2023), consisting of 6,469,640 test cases spanning over 5 months,
with up to 4 concurrent builds.

The approaches adopted in this study may not encompass all test optimization
techniques currently in use. However, we made every effort to replicate state-of-the-
art techniques representing the main families of test optimization approaches relevant
to large-scale projects. We used the MLPrioritization approach, which is the state-of-
the-art test prioritization method for test prioritization (Yaraghi et al., 2023). We also
used the CoDynaQPrioritization and CoDynaQSelection approaches as recent studies
for test optimization in continuous integration environment and across builds (Zhu
et al., 2018). As for the batching techniques, we applied the state-of-the-art batching
technique, the effectiveness of which we recently demonstrated (Fallahzadeh et al.,
2023).

This study primarily utilizes features related to historical test execution records for
test selection and prioritization, recognizing that these may not encompass all possible
features. The selection of these features is based on their demonstrated effectiveness
at scale and in practical settings, as well as the limitations of available features across
projects. As documented by Elbaum et al. (2014) and Memon et al. (2017), the
utilization of features such as the ones collected by code instrumentation is infeasible
for large-scale projects like those at Google. The impracticality arises from the high
CI traffic, making data collection prohibitively expensive, and the rapid code churn,

46 Emad Fallahzadeh et al.

rendering the collected data imprecise and quickly obsolete. In contrast, test execution
records have been shown to be among the most lightweight and effective features for
test optimization (Anderson et al., 2014; Yaraghi et al., 2023).

In this study, we conducted simulations based on historical test results rather than
real-time execution or stopping of tests. Consequently, our simulations followed the
settings of the projects under study, where test executions did not stop the build after
detecting a single failure. Therefore, our findings may not be applicable to projects
that halt build executions after the first detected failure. However, it is important to
note that across all the projects we studied (Chrome, GooglePre, GooglePost, and
JMRI), which reflect the Google and Travis CI settings, there were no instances where
builds were stopped after a single failure. The occurrence of multiple failures within
individual builds in these datasets indicates that the builds were not terminated after
the first failure.

7.2 Construct Validity

To calculate the feedback time of a build, only the test execution time is considered,
while other processing times, such as compilation time, are not taken into account.
This data is not included in the dataset, and even if we had access to it, we cannot
assume the compilation time of a batch because multiple commits are batched together,
making the compilation time unpredictable. This could be particularly important for
the batching algorithm. When a batch succeeds, it saves on compilation time, and
when it fails, it has to compile included changes to find the culprit change. Given the
8.5% build failure rate in Chrome, batching is likely to be advantageous even when
compile time is factored in.

7.3 Internal Validity

To carry out the test optimization techniques in this study, we had to change the order
of tests, ignore some tests, or batch tests belonging to multiple changes. All of these
assumptions require tests to be independent of each other. Otherwise, if there are
any dependencies among tests, these manipulations could cause dependency flaky
failures (Lam et al., 2019). In this study, we simulated concurrent and autonomous
test executions based on the test results for projects that already utilize parallel test
executions.

In this study, we simulated varying numbers of machines using historical test
execution times from different datasets. Instead of physically distributing test runs
across multiple machines, we modeled parallel execution by dividing the test execution
times by the number of machines used. In practice, distributing test execution across
different machines requires additional time for test distribution and result collection.
This extra time can potentially increase feedback time and reduce GaiNepTiME and
ExecuTioNREDUCTION.

We also made a set of assumptions for the batching results. For instance, if a test
fails in one of the builds included in the batch, it is assumed to fail when combined

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 47

with other builds in the batch as well. While this might be true in most cases, there
could be instances where the failure is resolved after applying subsequent changes in
the batch, and the test subsequently passes. Similarly, we assume that if a test flakes in
one of the builds included in the batch, it also flakes in the batch. While this scenario
is highly probable given the repeated behavior of flaky tests (Fallahzadeh and Rigby,
2022), there could be instances where the test either fails or passes in the batch. In the
former case, an additional culprit-finding process would be necessary, while in the
latter case, there would be no need for re-runs.

8 Discussion

This section discusses the implications of our findings for practitioners and key
parameters that impact the study.

Implications of feedback time comparison in software testing. Building upon
the findings of our study in RQ1, we recommend employing test batching techniques
effectively in larger-scale projects with a considerable number of concurrent builds.
These techniques exhibit the capability to significantly reduce feedback time without
compromising the detection of failures. Furthermore, in resource-constrained envi-
ronments where only a few machines are available, test batching demonstrates even
greater advantages. Conversely, in smaller-scale projects with fewer concurrent builds,
such as the JMRI project, test selection techniques emerge as a viable option for re-
ducing feedback time. However, it is important to note that this approach may result
in overlooking failures. If such loss of failure detection is deemed intolerable, we
advocate for the adoption of test batching and test prioritization methods instead.

Implications of resource usage comparison in software testing. Based on the
results of RQ2, we recommend the following practice to minimize resource usage
in testing. Both test selection and batching approaches are effective in substantially
reducing the number of machines and resources needed for testing. However, while
test selection may overlook some failures, ranging from 1% to 55% in our experiment,
batching reduces resource consumption without sacrificing any failure detection and
yields greater savings compared to the test selection algorithm. Moreover, our findings
indicate that the advantage of using the batching algorithm in terms of feedback
time and resource reduction, compared to other test optimization algorithms, is more
pronounced when resources are limited, as opposed to in a resource-rich environment.

Implications of test optimization for failure detection speed. Our study in RQ3
yields the following recommendations for practitioners. In larger-scale projects with
substantial build concurrency, both test batching and test selection techniques are sig-
nificantly more effective than test prioritization in accelerating failure detection. This
discrepancy becomes even more pronounced in resource-constrained environments
with limited machine availability. While test selection may miss some failures, this
is not the case for test batching. Conversely, in smaller-scale projects with minimal
build concurrency, test batching becomes less effective, with test selection emerging
as the optimal choice, despite the risk of overlooking certain failures, which ranged
from 1% to 55% in our experiment. Moreover, test prioritization techniques applied

48 Emad Fallahzadeh et al.

across multiple builds demonstrate superior effectiveness compared to those applied
within individual builds in terms of expediting failure detection.

Implications of the test execution time comparison. Drawing from the results
obtained in RQ4, we propose the following recommendations for practitioners. Both
test selection and batching techniques exhibit high effectiveness in Execution Re-
duction. However, a notable discovery from this investigation is the static nature of
Execution Reduction in the test selection algorithm, contrasted with its significant
variation in the batching approach. This discrepancy arises from the behavior ob-
served as the number of resources increases. In batching, the queue size decreases,
necessitating more test executions. Conversely, in test selection, the number of test
executions remains constant regardless of resource changes. In resource-constrained
environments, we advise the utilization of batching to minimize test execution time.
Conversely, in environments with ample resources, practitioners may lean towards
test selection, potentially achieving more efficient test execution, albeit with a risk of
overlooking failures. Alternatively, practitioners can opt for the batching algorithm,
which adjusts test execution time based on the number of machines in use, while
ensuring comprehensive failure detection.

Implications of Comparing Test Optimization Techniques. Our comparative anal-
ysis reveals important insights into the practical application of test case prioritization,
selection, batching, and parallelization. While these techniques may seen as com-
plementary, understanding their individual performance helps practitioners prioritize
their use based on specific project needs. For instance, in resource-constrained en-
vironments, we observed that effectively using test batching in large-scale projects
might eliminate the need for test selection, which carries the risk of missing failures
but uses similar resources. The use of batching in these environments improves build
feedback time, machine usage, failure detection speed, and reduces test executions.
Conversely, in scenarios with sufficient resources for parallelization, the benefits of
other test optimization techniques may diminish.

Impacts of failure rate on batching algorithm. The performance of the batching
algorithm is significantly influenced by the failure rate. A higher number of failures in
test results can result in more penalties for identifying culprits in batching. However,
research by Beheshtian et al. (2021) suggests that 85.5% of the Travis CI projects
they studied could benefit from batching, provided their failure ratio remains below
40%. In our study, the build failure rates are as follows: 8.5% for Chrome, 16.42%
for GooglePre, 23.12% for GooglePost, and 6.41% for JMRI. These rates are all
well below the threshold, making batching an effective approach for improving test
execution time. Nevertheless, the number of concurrent builds is another important
factor that determines the effectiveness of batching. This justifies the lower batching
performance observed for the JMRI dataset.

Measuring failure detection. In this study, one of our key objectives was to
measure how quickly each algorithm detects failures across multiple builds. This is
particularly relevant given that we utilized varying numbers of machines and employed
different test optimization techniques, such as CoDynaQPrioritization, CoDynaQS-
election, and BatchAll, all of which operate across builds. Specifically, we focused
on assessing when failures are detected in parallel across several concurrent builds,
as opposed to detecting failures within a single, sequentially executed build. Our

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 49

approach contrasts with studies that focus on running builds individually and sequen-
tially, where test prioritization techniques are applied only within each build. Such
studies typically compare performance by measuring the difference in repositioning
of failures compared to the beginning of a single build.

For example, when applying test prioritization techniques on Chrome using only
a few machines, a build can be delayed by hours or even days due to the inability
of the algorithms to clear the queue quickly and the limited availability of resources.
However, using the same resources but employing the CoDynaQSelection or BatchAll
techniques would significantly accelerate the build executions by hours or days. As a
result, the time required to detect the same test failure would be drastically reduced,
and this speed of failure detection needs to be captured by the metric. Traditional
test prioritization metrics, which only measure the repositioning of failures within a
single build, fail to account for these differences. Instead, the metric should take a more
holistic, cross-build view of failure detection to accurately reflect the improvements
in speed.

To compare cross-build failure detection speed, we initially considered the APFD
metric (Rothermel et al., 1999). However, we found that it falls short in differentiating
the performance of various approaches in this context. This limitation of APFD was
already suggested by Elbaum et al. (2014). While they were among the first to advocate
for APFD in test case prioritization, they acknowledged its limitations in measuring
the speed of failure detection for individual tests in continuous integration. Our work
encountered more specific challenges when applying APFD across builds, which we
discuss further below.

The primary limitation of APFD lies in its sensitivity to the total number
of test cases being evaluated. APFD reflects changes in test case execution order
relative to the total number of test cases. Figure 21 illustrates the impact of reordering
on the APFD score for different test set sizes, assuming that each test case takes 1
minute to execute. In the left figure, with 10 test cases and a single failure, moving the
failure from position 6 to position 5 results in a 10% improvement in the APFD score,
reflecting a 1-minute gain. Conversely, the right figure shows the same reordering
applied to 100 test cases, where moving the failing test from position 60 to position
59 leads to only a 1% increase in the APFD score—even though this still represents
a l-minute improvement. The area between the blue and orange lines in each figure
indicates the extent of improvement due to reordering. Although the gain is 1 minute
in both cases, APFD reflects a 9% smaller improvement in the 100-test case scenario
simply because the total number of test cases is ten times larger. However, 1 minute
remains 1 minute, allowing developers in both cases to start one minute earlier to
debug and fix a test failure.

The sensitivity of the APFD metric to the total number of test cases makes its
results incomparable across different test suites with varying numbers of test cases, as
well as across different datasets. This limitation was highlighted by Wang et al. (2020)
in their analysis of the metric (Section 3). However, a more critical issue we observed
is that APFD becomes nearly ineffective in large-scale cross-build test optimization.
For instance, when dealing with millions of test cases, even substantial changes in
the order of test failures would have only a negligible impact on the APFD score,
rendering the metric inadequate for evaluating large-scale testing scenarios.

wn
[«

Emad Fallahzadeh et al.

5 APFD Curves 10_test_cases 5 APFD Curves 100 _test_cases

F] =]

v 1%

Q Q

- -

7} 7}

(=] a

= =

S S

S ©

[T '8

] [}

> >

F] =]

g —— Before Change) —— Before Change

£ After Change g After Change

30 S0

OO0 1 2 3 4 5 6 7 8 9 10V 0 10 20 30 40 50 60 70 80 90 100
Test Case Position Test Case Position

Fig. 21: Comparison of APFD results for 10 and 100 test cases with 1 failure and 1
order of improvement.

A further limitation of APFD is its lack of sensitivity to time. For instance,
what does a 10% improvement in APFD actually mean when answering the research
question of how quickly Algorithm A detects failures compared to Algorithm B? Does
this improvement reflect a difference of 1 millisecond or 1 hour? Due to the relative
nature of APFD, a 10% improvement could represent a millisecond in one dataset and
an hour in another, making the results both unintuitive and difficult to compare across
different datasets.

More critically, APFD becomes ineffective when dealing with parallel execution.
Since APFD considers only the order of test case execution to evaluate algorithm
performance, it neither accounts for the execution time nor handles cases where tests
are run in parallel on multiple machines, each with a separate order. In practice, while
test results can be aggregated using timestamps from different machines to create a
unified order, the fundamental issue with APFD is its inability to consider the time
taken for failure detection. This makes APFD inadequate for reflecting real-world
performance improvements, especially when execution time is a crucial factor.

For example, in the earlier scenario with 10 test cases on a single machine, the total
sequential execution time might be 10 minutes. Increasing the number of machines to
2 could reduce the execution time to 5 minutes, enabling failures to be detected twice
as fast. However, if the overall order of test case execution remains the same when
aggregated, the APFD results will not reflect this improvement.

Figures 22 to 25 show the cross-build APFD results for different datasets with
varying numbers of machines. In these figures, the APFD curves for the MLPrioritiza-
tion and CoDynaQPrioritization algorithms overlap, failing to confirm the significant
performance differences in terms of median GAINEDTIME results, which reveal that
for Chrome, the CoDynaQPrioritization algorithm detects failures 9.24 hours faster
than the MLPrioritization algorithm on a single machine, as shown in Figure 13.
While APFD can indicate performance differences when substantial gaps exist—such
as the significant differences observed between test prioritization algorithms and Co-
DynaQSelection, which can span hundreds of hours—it lacks the precision needed to
capture more subtle distinctions.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 51

100%

90%

80% |

70%

60%

50% [

APFD

40%

30%

20%

10%

0%
[} 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Peak total number of machines

——MLPrioritization CoDynaQPrioritization =~ ——CoDynaQSelection BatchAll

Fig. 22: APFD results for different algorithms on the Chrome dataset by varying the
numbers of machines.

Moreover, APFD struggles to capture performance variations when the number
of machines changes, as illustrated in Figures 22 to 25. The fluctuations observed
in the BatchAll algorithm result from the varying number of test cases executed
under different machine configurations, rather than APFD’s ability to differentiate
performance in parallel execution. While test optimization strategies generally detect
failures faster as the number of machines increases, their relative advantage over the
baseline with the same number of machines diminishes due to the reduced impact of
test reordering when more machines are used.

This trend is clear in Figures 13 to 16, where beyond a certain machine count,
the median GAINEDTIME achieved by various test optimization algorithms becomes
negligible and fails to outperform the baseline with the same number of machines.
For example, in Chrome, with more than 75 machines, the median GAINEDTIME
for the MLPrioritization algorithm plateaus and becomes insignificant compared
to the baseline. However, these conclusions are not evident through APFD alone,
underscoring the limitations of relying on APFD to assess performance.

The GaNnepTiME metric used in this study is straightforward yet effective for
comparing the speed of failure detection among different test optimization algorithms
in parallel environments. It avoids the issues associated with the APFD, as it quantifies
the difference in failure detection times for each individual test between each test
optimization algorithm and the baseline 7estAll algorithm for a given number of
machines. It is also the same metric employed by Elbaum et al. (2014) and in our
previous study (Fallahzadeh and Rigby, 2022) for multi-build and multi-machine
environments.

52 Emad Fallahzadeh et al.

100%

90%

80% |

70%

60% |

50%

APFD

40% |

30%

20%

10%

0% L L L L L L L L L
0 10 20 30 40 50 60 70 80 920 100

Peak total number of machines

~——MLPrioritization CoDynaQPrioritizati ——CoDynaQSelecti BatchAll

Fig. 23: APFD results for different algorithms on the GooglePre dataset by varying
the numbers of machines.

100%

90%

80% |

70%

60% |

50% [

APFD

40%

30%

20% |

10%

0% L L L L L L L L L L L 1 1 L L
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Peak total number of machines

—— MLPrioritization CoDynaQPrioritizati ——CoDynaQSelecti BatchAll

Fig. 24: APFD results for different algorithms on the GooglePost dataset by varying
the numbers of machines.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 53

100%

90%

80% [

70%

60%

50% [

APFD

40% |

30%

20%

10%

0%
1 3 5 7 9 11 13 15 17 19
Peak total number of machines

MLPrioritization CoDynaQPrioritization =~ ——CoDynaQSelection BatchAll

Fig. 25: APFD results for different algorithms on the JMRI dataset by varying the
numbers of machines.

9 Conclusion and Future Works

This study aimed to compare and evaluate various test optimization algorithms with
the goals of reducing feedback time, enhancing failure detection, and optimizing test
execution time. We assessed these algorithms across diverse sets of execution re-
sources and datasets. Through a detailed analysis of the strengths, limitations, and
trade-offs of each technique, our study offers a comprehensive understanding that
assists practitioners in crafting and refining their testing processes. This nuanced
perspective enables the customization of testing strategies to suit specific project
contexts, thereby maximizing efficiency and effectiveness. Our results indicate that
the batching algorithm performs best in a highly resource-constrained environment
with a substantial number of concurrent builds, achieving significant reductions in
feedback time, resource usage, and test execution time while also improving failure
detection without missing any failures. Test selection performs better in environments
with fewer concurrent builds, but it comes at the cost of missing some failures. Test
prioritization algorithms generally underperformed compared to both batching and
test selection but should be considered in rare cases where batching is ineffective,
and missing failures is not acceptable. Practitioners can choose the appropriate test
optimization algorithm based on computational resource availability, tolerance for
missing failures, and the number of concurrent builds. In resource-constrained envi-
ronments with many concurrent builds, the batching algorithm is the optimal choice.
In contrast, in resource-rich environments with fewer concurrent builds, test selection
may yield slightly better results. Given the underperformance of test prioritization
algorithms, they should not be the primary choice for test optimization. Although we
made a concerted effort to include a variety of large-scale projects, different test op-

54 Emad Fallahzadeh et al.

timization techniques, and various evaluation metrics, this study has its limitations in
these areas. Future research could explore other types of software, additional test op-
timization algorithms, and other evaluation metrics to provide a more comprehensive
analysis. Further research could focus on exploring the impact of combining different
test optimization algorithms, investigating the effectiveness of other test optimization
algorithms, and evaluating the impact of test optimization on software quality.

Data Availability A replication package for this paper is available at https://
github.com/emadfallahzadeh/ContrastTestOptimizations.

Conlflict of interest All authors certify that they have no affiliations with or involve-
ment in any organization or entity with any financial interest or non-financial interest
in the subject or materials discussed in this manuscript.

Appendix A Statistical Tests

This appendix presents the statistical tests conducted to compare the distributions
of various evaluation metrics across different datasets. Tables 7 to 14 provide the
results of pairwise comparisons, including the P-values and Cliff’s Delta effect sizes.
These tables allow for the comparison of feedback time distributions among different
approaches for each dataset and varying numbers of machines. Additionally, Tables 15
to 22 present similar pairwise comparisons for the GAINEDTIME distributions across
different approaches for each dataset and machine configuration.

https://github.com/emadfallahzadeh/ContrastTestOptimizations
https://github.com/emadfallahzadeh/ContrastTestOptimizations

55

Contrasting Test Selection, Prioritization, and Batch Testing at Scale

NVYoIng 1Y d UOUDIHLIOUGTI ‘dIN ‘U0HI212STPULJO) 1§D UOUD2ILIOLJOPUSTOD :dD 1VIS2L 'V ‘SUOHRIAIQQY

1 0 0 0 0 0 0 0 9I-dey'1 0 00t
1 0 0 0 0 0 0 0 0 0 SLE
I 0 0 0 0 0 0 0 0 0 0s¢
1 0 0 0 0 0 0 0 0 0 943
I 0 0 0 0 0 0 0 0 0 00¢
1 0 0 0 0 0 0 0 0 0 SLT
I 0 0 0c-dI 0 0 0c-dl 0 0 0 0S¢
1 0 0 S1-49 0 0 S1-49 0 0 0 §ee
1 0 0 01-969°¢ 0 0 01-469°¢ 0 0 0 00¢
I 0 0 L2000°0 0 0 L2000°0 0 0 0 SLT
1 0 0 9¢€90°0 0 0 cl-des’l 0 0 0 0S1
I 0 0 96€C€°0 0 0 £6S116°0 0 0 0 gcl
1 0 0 8EETY80 0 0 8€ETI8'0 0 0 0 001
I 0 0 €6S116°0 0 0 €6S116°0 0c-dl1 0 0 SL
1 0 0 L9SY66°0 0 0 L9SY66'0 0 0 0 0s
1 0 0 9696€6°0 0 0 9695€6°0 0 0 0 4
1 0 0 905L6°0 0 0 90SL6'0 0 0 0 91
1 0 0 §SET66'0 0 0 §SET66°0 0 0 0 8
I 0 0 VLLIY6'0 0 0 YLLIY6'0 0 0 0 14
1 0 0 L8LY860 0 0 L8LY86°0 0 0 0 [4
I 0 0 6L¥86°0 0 0 6L186°0 0 0 0 !

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAdD SDOSAxdD SdD

"SQUIYORUI JO SIOqUINU JUSISJIP I8 SWOIYD)
Joy swyjrrog[e uoneziumndo 189} JULISHIP JO UOHNQLISIP SWI) JOrqpad) oY) Jo uostredwod asimired 10J sonfea-J i/ 9[qeL

Emad Fallahzadeh et al.

56

NVYoIng 1Y d UOUDIHLIOUGTI ‘dIN ‘U0HI212STPULJO) 1§D UOUD2ILIOLJOPUSTOD :dD 1VIS2L 'V ‘SUOHRIAIQQY

0 681S8C°0 S¥CC06'0 8THBII'0 681S8C0 SYCc06'0 8T891°0 18898°0- LT68LO0 918L8°0 00t
0 861200 Tric06'0 89991°0 8S120¢0 r1€06'0 89991°0 889980~ ¢6vC600 TE8L80 SLE
0 6S8LC€'0 600S06'0 CTO8S9I'0 6S8LCEO 6005060 T08S91°0 817980~ LE9IIT0 ITL8L80 0s¢
0 POVISE0 CIT906'0 CTLOLYI'O ¥O¥ISEO CI?906'0 CTLOLYI'O vEI980- S8LOVIO ¥¥6088°0 943
0 T6E98E'0 €06806'0 60SIEI'0 TSE98E0 €06806'0 60SIEI'0 ¥6LS8°0- 1L£061°0 LTTY880 00¢
0 YesTro 8¥PI160 6V0111°0 YesTro 8¥y116'0 6¥0I11°0 £€68°0- 1860¥C°0 6L¥L88°0 SLT
0 90¥LY0 L9SS16'0 6568800 90vLY'0 L9SS16'0 656880°0 819180~ S€Ce0L0 SS1268°0 0S¢
0 61€1TS0 LELLI6'O ¥PSPLOO 6I€ITS0 LELLIO'O ¥PSYPLOO 91¥€8°0- £209¢°0 805£68°0 gee
0 60L68S°0 TILIT6'0 11T6S00 60LS8SO CILIT6'0 1126500 GO8I80- 66L8EY'0 86L8680 00¢
0 €88799°0 ¥SS8C6'0 86LVE0'0 €881499°0 ySe8C6'0 86LYE00 TTL6L'0- 86LSSSO 660016°0 SLT
0 IC6ELO0 SL8IE60 L9LT00 8560650 L19016°0 EveEelo- GE8IL0- €€0999°0 9€6TC6'0 0S1
0 6CLI080 LI6ve6’'0 CCh6000 6CLI080 L16¥€6'0 TCr600'0 91¥89°0- ISCIYL0 1¥9126°'0 gcl
0 80€L06°0 $0€56°0 61000 80€L06°0 ¥0€56°0 61000 6L89%'0- TS9E88°0 8LYLY6'0 001
0 LTyS6°0 969796'0 1901000 LTYS6°0 9697960 190100°0 696800 LYSSY6'0 856096°0 SL
0 YILT96'0 L9STE6'0 SO-HIS9 ¥1LT96°0 L9STE6'0 CO-HISO €9S86¥'0 9¥8SS6°0 L861€6°0 0s
0 8¢¥8L6'0 TEI9I8'0 ILLOOOO 8EV8L60 cel1918°0 [LL0O00°0 SLTE6'0 L97896°0 691518°0 4
0 106860 LYEISL'0 6620000 10686°0 LYEISL'0 6620000 CTIIEY6'0 T8TT86'0 SOISL0 91
0 888660 ¢C890L°0 SOHT6- 888660 CC890L°0 S0-d¢'6- 996796'0 1858660 81890L°0 8
0 8156660 6€L889°0 8690000 8156660 6€L889°'0 8690000 COP¥86'0 CTCHB66'0 SCI889°0 14
0 876660 986SL9°0 C8I0000 8¥¥666°0 986SL9°0 CT8I0000 61SL66'0 ¥L1666°0 €ILSL90 [4
0 [LL966'0 96T699°0 T81000°0 1LL966°0 96C699'0 ¢81000°0 CTLLB6'0 L6¥966°0 £20699°0 !

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAdD SDOSAxdD SdD

"SQUIYOBW JO SIOqUINU JUSIQYIP 18 SWOIY) JOf SWLIoTe
uonezrundo 1$9) JUSIOHIP JO UOTINQLISIP SWIT} YOvqPAd) oY) Jo uosiiedwod astmared 10§ 9Z1S 1000 BIR(S.HIID 8§ 9[qeL

57

Contrasting Test Selection, Prioritization, and Batch Testing at Scale

HYYoIPg g ‘UOUDZULIOLITI ‘dIN ‘UOUI2[2SDPUCFOD) 18D “UOUPIHLIOUJOVULTOD *dD 11YIS2L VL SUOHBIAIGQY

1 0 L¥0200'0 680S01°0 0 L¥0200'0 680S01°0 0 0 £€898¥1°0 001
I 0 £5L,000°0 989¢1°0 0 £5L000°0 989C1°0 0 0 S910L0°0 06
1 0 €L10000 ¥¥8EST0 0 €L10000 ¥¥8EST'0 0 0 991220°0 08
1 0 S0-d¢'1 626020 0 S0-d¢'1 6260CE0 0 0 LL8000°0 0L
I 0 LO0-HTE'e IvySTy o 0 LO-HTE'E 1822494\ 0 0 S0-dv'c 09
1 0 TT-ALy'T - 098710 0 IT-dLY'T €098¥1°0 0 0 60-dI6°¢ 0s
I 0 0 13243524 0 0 evPPeSS o 0 0 0 oy
1 0 0 126L8°0 0 0 126L8°0 0 0 0 0¢
I 0 0 8698560 0 0 8698560 0 0 0 0c
1 0 0 89¢€6£6°0 0 0 89€6£6°0 0 0 0 01
1 0 0 81€8L6'0 0 0 81€8L6°0 0 0 0 1

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAID SDOSAxdD SdD

*SQUIYORUI JO SIOqUINU JUSIYIP 18 2428005
Joj swyjrroge uoneziundo 189} JUSIOYIP JO UOHNQLISIP SWI) Jorqpad) oY) Jo uostredwod asimired 10J sonfea-d :6 9[qeL

Emad Fallahzadeh et al.

58

HYYoIPg g ‘UOUDZULIOLITI ‘dIN ‘UOUI2[2SDPUCFOD) 18D “UOUPIHLIOUJOVULTOD *dD 11YIS2L VL SUOHBIAIGQY

0 LL98STO €61190°0 S91CE0°0 LLI8STO €61190°0 S91C€0°0 S80T6I'0 8STETTO £€99820°0 001
0 €9LYLTO 989900 86C0€0'0 €9LVLTO 9489900 86C0¢0'0 ¥I9C0CTO LLTIVYCO ¥65€0°0 06
0 9CI186C°0 YESYLO'O0 +0E8CO'0 9CI86TO PESYLO'0 ¥Y0€8C0'0 ¥9L0CCT'0 688S9C°0 ¥$¥0°0 08
0 1eIeeo 689800 669610°0 1€TIeeo 68980°0 6696100 S965¥C°0 9LILOEO 9€0990°0 0L
0 ¥e6r9¢’0 10€10I'0 6I8SI00 ¥C6¥9¢€0 10€101°'0 618S100 ¥OSILTO 100¥¥E0 £€8€80°0 09
0 LT8LTY0 86¢€1°0 6€0S10°0 LT8LLYO 86¢€1°0 605100 SLITIE0 €9190¥°0 €68911°0 0s
0 €e0v9s’0 ITILETO COLITOO0 €20¥9S°0 ITILETO TOLITIOO0 S8IT6E0D 89¥SPSO 681£CC0 oy
0 6£0869'0 €6068C°0 910€000 6£0869°0 £€6068C°0 910£00°0 87650 9866890 LLSESTO 0¢
0 8€8998°0 TI6LSE0 €0100°0- 8€8998°0 Cl6LSE0 €0100°0- YOITEL'0 981¥98°0 6C18S€°0 0c
0 Y0LSO6'0 L9E€SO¥'0 161000~ $0LS96°0 LI9ESOY'0 1S100°0- 9€9096'0 LT8S96°0 CLY99Y'0 01
0 evvII80 [{Yazall ¥5000°0- EPPI18°0 [{Yazall ¥5000°0- 880SLLO VL1180 1erT0 1

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAID SDOSAxdD SdD

"SQUIYORUI JO SIOqUINU JUSIJYIP I8 2.4J2]800L) I0f SWILIOTe
uonezrundo 1593 JUSIOYIP JO UOTINQLISIP S ovqpad) oY) Jo uosLredwod asmmared 10§ 9z1s 100 eifo S.HID 01 9[qeL

59

Contrasting Test Selection, Prioritization, and Batch Testing at Scale

NVYoIg 1Vl UOHD2ILOUGTI (dIN ‘UOUIIPSOPULTOD 18D UOUDILLOUJOPUCFOD 1D 1VIS2L TV ‘SUOHRIAIQQV s

SI-dIeC CI-dp81 LT0LO00 SI-HIET a8l L20€00°0 SILEOY'0 LO-HSE'8 S0-dvS'S 00v
SI-H80°L cr-gysy - L00C000 SI-H80'I cr-gysy L00C000 6L6EIE€0 LOHPE6 8710000 SLE
SI-dE0°1 cl-dey'e SSIT000 ST-HEO'T cl-dev'e SSI100°0 1¥0€¥C’0 90-9C1'C 10000 0S¢
SI-H8C'L 11-99¢°1 11000 SI-d8¢'1 11-99¢°1 CI11000 ¥8C10C°0 90-HITT 91£000°0 943
S1-469C [1-946¢°'1 €90100°0 SI-HS9'C I1-96¢C'1 €901000 6LS681'0 90-H6L'E 1¥5000°0 00¢€
yI-dIcy I1-dé6v'l €€80000 vI-HICY [1-dev'l £€€80000 SS86¥C0 SO-HEST 8¢L000°0 SLT
Y1-dST'1 cI-g1e'8 - €0v¥0000 vI-HST'I cl1-d16'8 £0¥000°0 991610 S0-deTe C¢Cl100°0 0s¢
PIALT'E C1-H9CL CTev0000 vI-HLI'E CI-H9TL TEY000'0 €6CI8I0 S0-H68'Y $6000°0 §ee
LI-gyy'L TIHEY'T 6610000 LI-HVY'L cl-geve 6610000 968500 90-dH¥9t 1€0100°0 00¢

0C-d¢ c€l-d61's L92000°0 0c-d¢ [ARC NS L920000 L8¥0I00 80-HC8'TC ¥¥000°0 SLT

o e e e e e e e e e e

0 SI-H109 ¥9€000°0 0 SI-410°9 9€000°0 1€6600°0 0I-d¢9'1 S0-dv8'¢c 0S1
0 0 1+2000°0 0 0 1¥2000'0 ¥11000°0 81-HEC 80-HIS'T Scl
0 0 696960°0 0 0 6969600 [1-dLS9 0 0 001
0 0 YLYOEL'O 0 0 YLYOEL'O 0 0 0 SL
0 0 C6L0S6°0 0 0 °6L0S6°0 0 0 0 0s
0 0 659766°0 0 0 659660 0 0 0 4
0 0 205866°0 0 0 205866°0 0 0 0 01
0 0 1812¢86°0 0 0 1812860 0 0 0 1

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAdD SDOSAxdD SdD

"SQUIYOBUI JO SIOqUINU JUIISJIP I8 1S0J2]8005) 10§
swipioS[e uoneziundo 1$9) JUSIOYIP JO UOHINGLNSIP W} Jorqpad) ay) Jo uostredwos asimired 10f sonfea-J 1] 9[qeL

Emad Fallahzadeh et al.

60

YYoIng g ‘UOUDZULIOLITI ‘dIN ‘UOU22[2SDPUCFOD) 18D “UOUPIHLIOUJOPULTOD *dD 11VIS2L VL SUONPIAAIGQY

0 ¢E€C960°0 LLSS800 T109€0°0 TET960°0 LLSS800 1109€0°0 6688000 1¥8650°0 £96870°0 00v
0 LEL60'0 9¢0¥80°0 61SLE00 LEL600 9¢0¥80°0 61SL£0°0 6CCCI0O0 TLS6S0°0 ¥60910°0 SLE
0 evyL60°0 LLT800 LY6£0°0 €PyL60°0 LLT800 LY6£0°0 6L1710°0 88SLSO0 2062¥0°0 0S¢
0 CIL60°0 121T80°0 SLS6£0°0 CIL60°0 ITIT800 SLS6£0°0 ¢sC100 L8YLSO'0 €LITY00 943
0 $20960°0 ¥CCC80'0 ¥SL6E00 $20960°0 yCce80'0 ¥SL6E00 TE6SI00 ¥PI19S0°0 200’0 00¢€
0 CSLI600 9961800 €8SO¥0'0 CSLIGO'0 9961800 €8S0¥0°0 9L6€100 I911S0°0 LEOTY0'0 SLT
0 LY9€60'0 698C80°0 896Ct0°0 L¥9£60°0 6987800 896CY0°0 ISLSTO0 18¥0S0°0 8966€0°0 0s¢
0 6617600 $TCE800 8YLTHO'O 661T60°0 ¥CCe80°0 8YLTPO'O 9€T9I00 1Ce6¥0°0 8€10¥0°0 §ee
0 68CI0I'0 SOIS800 68IS¥00 68CI0I0 S0IS80'0 68IS¥0°0 166200 6795500 986€0°0 00¢
0 CLETITO 169L80°0 SLTWYO'O0 SLETIT'O 169L80°0 SLTYPO'0 ¥801€0°0 £vL90°0 969100 SLT
0 ILITCI'0 8LLY60'0 96CEr0'0 IL122C10 8LLY60'0 96CEV0'0 969¢€00 ¥S9LLO'O 2000S0°0 0S1
0 12sTS1'0 161911°0 96S¥¥0°0 12sTs1°0 161911°0 96S¥¥0°0 L89¥0°0 991901°0 S¥L890°0 Scl
0 SOPECCT0 LOYLLI'O 8SIOCO'0 S9vECCO LOYLLT'O 8SI0C00 CTIE6LO0 8L6S610 66CCS1°0 001
0 19600%'0 9LIYLTO ¥81+¥00°0 19500t°0 9LIYLTO ¥81¥00°0 86¥61°0 §798¢°0 860L9C°0 SL
0 9L6TL9°0 99¢r'0 $L000°0 9L6CTL90 99¢r'0 $L000°0 YLOTOY'0 8LSIL9O 981ery'0 0s
0 TrLO6L'0 ISTETY'O 110000~ TrLO6L'0 1S2ECY'0 110000~ Y0€€9S'0 ¥LSO6L0 LIETY0 4
0 C90L8S°0 99€LE£TO0 SO-HECT 790L8S0 99€LETO S0-de'c- SY8TY0 SYL98S0 CCCLETO 01
0 8696110 £V691°0 1L20000 86961¥°0 £7691°0 IL2000°0 STLEOE0 9ve6ly 0 8C1691°0 1

dINSAVL VESAVL SOSAVL dOSAVL VESAJIN SOSADIN dOSAdIN VESASD VESAdD SDOSAxdD SdD

"SQUIYOBW JO SIOQUINU JURISYIP I8 JS0J2]8005) 10§ Suyirios[e
uonezrundo 1593 JUSIOYIP JO UOTINQLISIP W) ovqpad) oY) Jo uosLredwod asmmared 10§ 9z1s 100 ey S.HPID :Z1 998l

61

Contrasting Test Selection, Prioritization, and Batch Testing at Scale

NVYoIng 1Y g UOUDIBLOUGTI ‘dIN ‘U0HI212SOPULFOD 1SD UOUDZILIOLUJOPUSFOD :dD 1VIS2L VL ‘SUOHRIAIQQY

I yorrey'0 0 yorvey'o vovvey'o 0 yorier 0 0 I 0 61
1 8IL6€0 0 8IL6€0 8IL6€0 0 81L6€°0 0 1 0 L1
I 9CeSE0 0 IPCESE'0 9PCESED 0 9YCeESE0 0 I 0 Sl
1 129620 0 12¥96C°0 12¥96C°0 0 129620 0 ! 0 €l
I 9L0EETO 0 9L0€€C’0 9LOEECO 0 9L0€€T0 0 ! 0 I
1 9L9LT'0 0 YISY61°0 9L9LT0 0 yISY61°0 0 §95956'0 0 6
1 €CLETTO 0 8L6SCTI'0 €TLEITO 0 8L6SCTI0 0 SPE8S6°'0 0 L
I S09¢S0°0 0 €L9LS0'0 S09€S0°0 0 €L9LS00 0 68¥L6'0 0 S
1 8€6€00°0 0 CCLY00'0 8E€SE00°0 0 CCLY00°0 0 80¥LE6'0 0 €
I 0C-99 0 €1-d8S°1 0¢-49 0 €1-d8S°1 0 1S0SS1°0 0 I

dNSAVL VESAVL SOSAVL dOSAVL VESAdIN SOSAJIN dOSAdIN VHSASD VdsAdD SOsAxdD S(1dD

*SQUIYORW JO SIQQUINU JUSISYIP 18 JY S 10]
swrprioS[e uoneziundo 1$9) JUSISHIP JO UOHINGLNSIP SWI Yorqpadf oY) Jo uostiedwod asimared 10§ sanfea-q :€1 9[qeL

Emad Fallahzadeh et al.

62

NVYoIng 1Y g UOUDIBLOUGTI ‘dIN ‘U0HI212SOPULFOD 1SD UOUDZILIOLUJOPUSFOD :dD 1VIS2L VL ‘SUOHRIAIQQY

0 G8GOI00 CO¥60L'0 S8S910'0 S8S910°0 c0¥60L'0 S8S910°0 8LY0L0- 0 Y8LYOL'0 61
0 L96L10°0 9€€60L°0 L96LIO0 L96LIOO 9€€60L°0 L96LI00 LTY0L 0~ 0 YLTYOL'0 L1
0 6696100 €L960L'0 6696100 6696100 €L960L0 669610°0 8€0L0- 0 818€0L0 Sl
0 LSITT00 9T860L0 LSITCO'0 LSITTOO 97860L°0 LSITCO0 61€0L°0- 0 981€0L°0 €l
0 G0ESTO'0 €ST60L'0 S0ESTO'0 S0€ST00 €6C60L°0 S0€SC00 I810L°0- 0 I810L°0 I
0 €99820°0 L8060L0 €5L20°0 §99820°0 L8060L°0 €6L20°0 800L°0- 9G1100°0 SLITOL'O 6
0 P96€€0°0 L9TLOL'O0 ILYCE00 ¥9S€€0'0 L9TLOLO IL¥Te0°0 §CL69°0- 6011000 96$L69°0 L
0 9660¥0°0 SEILOLO 820¥0°0 956010°0 SEILOL'O 820¥0°0 8L¥69°0- 8990000 L96¥69°0 S
0 7681900 €CL90L°0 9566500 ¥68190°0 €CL90L'0 95665070 wi89'0- L99100°0 £€6L89°0 €
0 681761°0 vrrOEL'0 9099S1°0 681¥61°0 PPPOEL’0 9099S1°0 90199'0- ¥L10£00 ¥650L9°0 I

dNSAVL VESAVL SOSAVL dOSAVL VESAdIN SOSAJIN dOSAdIN VHSASD VdsAdD SOsAxdD S(1dD

"SQUIYORUL JO SISqUINU JUSISPIP 18 [y 10] SWLioS e
uonezrundo 1$9) JUSISHIP JO UONNQLISIP AW} YOrqpasy oY) Jo uostredwod astmared 10§ 9z1S 1000 eife S.HID 1 9[qeL

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 63

Table 15: P-values for pairwise comparison of the GAINEDTIME distribution of different
test optimization algorithms for Chrome at different numbers of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvsBA

1 0 0 2.78E-11 0 0 0
2 0 0 7.65E-11 0 0 0
4 0 0 6.19E-10 0 0 0
8 0 0 1.19E-08 0 0 0
16 0 0 294E-06 O 0 0
25 0 0 0.000877 0O 0 0
50 0 0 0.554687 0 0 0
75 0 0 0919794 0 0 0
100 0 0 0.943727 0 0 0
125 0 0 0.766059 0 0 0
150 0 0 0.878127 0 0 0
175 0 0 0.40057 0 0 0
200 0 3.49E-16 0.096645 0 0 0
225 4.92E-16 1.15E-07 0.010419 0 0 0
250 8.75E-12 0.001152 0.000803 O 0 0.00000454
275 0.001167 0.074664 3.25E-07 O 0 0.00006555
300 0.006187 0.000432 1.56E-10 0 0 0.00504651
325 0.186533 591E-07 827E-13 0 0 0.00785462
350 0.856054 1.14E-10 1.82E-15 0 0 0.00985162
375 0.908756 5.23E-14 2.02E-18 0 1.16E-16 0.02564895
400 0.584217 5.76E-16 2E-20 0 3.83E-14 0.04480623

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

64 Emad Fallahzadeh et al.

Table 16: Cliff’s Delta effect sizes for pairwise comparison of the Gained Time
distribution of different test optimization algorithms for Chrome at different numbers
of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvsBA

1 -1 -1 -0.32173 -0.60732 -1 -1

2 -1 -1 -0.31447 -0.61035 -1 -1

4 -1 -1 -0.29891 -1 -1 -1

8 -1 -1 -0.27554 -0.62201 -1 -1

16 -0.99929 -0.99616 -0.22593 -0.93599 -1 -1

25 -0.98868 -0.98601 -0.16079 -0.94743 -1 -0.99789721
50 -0.9868 -0.98636 -0.02856 -0.62727 -0.99359 -0.98882586
75 -0.97269 -0.9698 -0.00488 -0.65124 -0.98544 -0.97258456
100 -0.93679 -0.92904 0.003423 -0.69121 -0.96853 -0.95584136
125 -0.81407 -0.78344 0.014389 -0.71546 -0.95839 -0.94855123
150 -0.9027 -0.89098 0.008981 -0.74162 -0.95382 -0.94041545
175 -0.6247 -0.55687 0.040625 -0.70547 -0.81564 -7.8219E+11
200 -0.49655 -0.39388 0.080248 -0.63962 -0.75271 -0.56719155
225 -0.39207 -0.25586 0.123612 -0.61245 -0.69564 -0.42845129
250 -0.32984 -0.15678 0.161622 -0.60484 -0.61322 -0.36213848
275 -0.1569 0.085897 0.246039 -0.57232 -0.59232 -0.21584513
300 -0.1323 0.169397 0.307802 -0.53448 -0.52058 -0.13488435
325 -0.06384 0.240012 0.34366 -0.51841 -0.49232 -0.11894531
350 -0.00878 0.309575 0.381498 -0.50123 -0.45214 -0.10812385
375 0.00555 0.361069 0.419605 -0.49531 -0.39 -4.5646E-06
400 0.026456 0.387818 0.443176 -0.48506 -0.36565 0.096056042

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

Table 17: P-values for pairwise comparison of the GAINEDTIME distribution of different
test optimization algorithms for GooglePre at different numbers of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvs BA

1 0 0 0 1.7E-09 0 0
10 0 0 0 4.71E-09 0 0
20 0 0 0 3.31E-09 0 0
30 0 0 0 1.11E-08 0 0
40 0 0 3.63E-17 5.81E-09 0 0
50 3E-20 0 7.93E-10 1.81E-09 0 0
60 3.06E-13 0 5.88E-07 2.28E-08 0 0
70 2.28E-08 1E-20 2.87E-05 1.47E-07 0 0
80 0.001753 9.63E-12 6.51E-05 5.16E-06 5.33E-15 0
90 0.027968 2.43E-09 5.85E-05 0.001173 2.24E-08 1E-20

100 0.229486 9.69E-07 0.000125 0.007699 5.08E-05 3.63E-16

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 65

Table 18: Cliff’s Delta effect sizes for pairwise comparison of the GAINEDTIME dis-
tribution of different test optimization algorithms for GooglePre at different numbers
of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvs BA

1 -0.91579 -0.97832 -0.68068 -0.12501 -0.93576 -0.98438
10 -0.89411 -0.96718 -0.64091 -0.12155 -0.91949 -0.9763
20 -0.78198 -0.85856 -0.40362 -0.12276 -0.8346 -0.89235
30 -0.56891 -0.66081 -0.22002 -0.11857 -0.65294 -0.7257
40 -0.36988 -0.47099 -0.1749 -0.12082 -0.47891 -0.567
50 -0.1917 -0.29174 -0.1276 -0.12481 -0.31078 -0.40559
60 -0.15135 -0.2374 -0.10369 -0.11599 -0.26375 -0.34783
70 -0.116 -0.19318 -0.08684 -0.10908 -0.22595 -0.30286
80 -0.06494 -0.1414 -0.08289 -0.09459 -0.16225 -0.23817
90 -0.04561 -0.12383 -0.08341 -0.06735 -0.11604 -0.19465
100 -0.02494 -0.10166 -0.07963 -0.0553 -0.08407 -0.16915

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

Table 19: P-values for pairwise comparison of the GAINEDTIME distribution of different
test optimization algorithms for GooglePost at different numbers of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvs BA

1 0 0 0 1.87E-17 0 0
10 0 0 0 3.82E-18 0 0
25 0 0 0 5.41E-17 0 0
50 0 0 0 0.604562 0 0
75 0 0 0.013733 0 0 0

100 0 0 0 0 0 0
125 0.00089 0 0 0 0 0
150 0.747586 0 0 0 0 0
175 0.185964 0 0 0 0 0
200 0.372207 0 0 0 0 0
225 0.296089 0 0 0 0 0
250 0.278252 0 0 0 0 0
275 0.427549 0 0 0 0.005415 0
300 0.300333 0 0 0 0.000874 0
325 0.267384 0 0 0.015647 0.023485 O
350 0.269513 0 1E-20 0.125464 0.218456 O

375 0.254679 1.55E-16 5.68E-12 0.214896 0.235649 1.62E-16
400 0.22929 9.1E-16 4.05E-11 0.601545 0.215648 7.22E-16

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

66 Emad Fallahzadeh et al.

Table 20: Cliff’s Delta effect sizes for pairwise comparison of the GAINEDTIME distri-
bution of different test optimization algorithms for GooglePost at different numbers
of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvs BA

1 -0.99691 -0.98085 -0.78185 0.098486 -0.99673 -0.98076
10 -0.99691 -0.98426 -0.78967 0.1006 -0.99672 -0.98415
25 -0.98825 -0.9819 -0.64638 0.09705 -0.98672 -0.9812
50 -0.89651 -0.82749 -0.23656 -0.006 -0.89878 -0.82967
75 -0.65157 -0.49314 0.028546 0.123743 -0.60169 -0.45192
100 -0.34127 0.15727 0.403375 0.125687 -0.24618 0.241087
125 -0.03848 0.286044 0.317881 0.17572 0.145608 0.44234
150 0.003726 0.267496 0.266816 0.202174 0.210681 0.463439
175 -0.01531 0.186382 0.203761 0.23475 0.225491 0.450819

200 0.01033 0.172321 0.163358 0.224763 0.235122 0.447595
225 0.012094 0.162849 0.151446 0.235457 0.238741 0.417849
250 0.01255 0.153788 0.141439 0.235465 0.242165 0.392316
275 0.009183 0.15393 0.143404 0.245456 0.258451 0.382156
300 0.011987 0.142502 0.128535 0.213132 0.282136 0.405641
325 0.012836 0.13206 0.1177 0.255133 0.242315 0.385125
350 0.012779 0.12204 0.108103 0.261223 0.228456 0.375412
375 0.013182 0.095573 0.079755 0.172131 0.238749 0.395431
400 0.013913 0.09309 0.076451 0.151875 0.258743 0.382156

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

Table 21: P-values for pairwise comparison of the GAINEDTIME distribution of different
test optimization algorithms for JMRI at different numbers of machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvsBA

1 0.003006 4.73E-07 1E-20 0.004542 1.11E-07 0.000116
3 0.042738 447E-08 0 0.152402 0.00673 7.43E-06
5 0.028089 241E-08 0 0.000804 4.23E-06 0.003307
7 0.035722 337E-09 O 0.604891 0.075351 2.77E-11
9 0.04798 7.69E-10 0 0.40303 0.021144 2.35E-06
11 0.048226 2.88E-10 O 0.206654 0.00504 0.000376
13 0.048226 2.88E-10 0 0.908921 0.208151 5.53E-12
15 0.048226 2.88E-10 0 0.002448 4.83E-05 6.31E-05
17 0.048226 2.88E-10 0 0.000524 1.43E-05 0.000376
19 0.048226 2.88E-10 0O 0912432 0.200779 2.58E-11

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 67

Table 22: Cliff’s Delta effect sizes for pairwise comparison of the GAINEDTIME dis-
tribution of different test optimization algorithms for JMRI at different numbers of
machines.

Machines CP*vsCS CPvsBA CSvsBA MPvsCP MPvsCS MPvs BA

1 -0.20515 0.342806 0.634286 -0.19622 -0.36694 0.261939
3 -0.1401 0.357908 0.737449 -0.09898 -0.18735 0.291939
5 -0.15184 0.36301 0.75898 -0.23173 -0.31796 0.190306
7 -0.1452 0.384082 0.783061 -0.03582 -0.12296 0.430612
9 -0.13673 0.399592 0.79449 -0.05786 -0.15939 0.305306
11 -0.13658 0.407143 0.807143 -0.08735 -0.19388 0.228571
13 -0.13658 0.407143 0.807143 -0.00796 -0.08704 0.442857
15 -0.13658 0.407143 0.807143 -0.20949 -0.28092 0.257143
17 -0.13658 0.407143 0.807143 -0.2398 -0.2999 0.228571
19 -0.13658 0.407143 0.807143 -0.00765 -0.08847 0.428571

*Abbreviations: CP: CoDynaQPrioritization, CS: CoDynaQSelection, MP: MLPrioritization, BA:
BatchAll.

68 Emad Fallahzadeh et al.

References

Alshammari A, Morris C, Hilton M, Bell J (2021) FlakeFlagger: Predicting Flaki-
ness Without Rerunning Tests. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp 1572-1584, DOI 10.1109/ICSE43902.2021.
00140, iSSN: 1558-1225

Anderson J, Salem S, Do H (2014) Improving the effectiveness of test suite through
mining historical data. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, Association for Computing Machinery, New York, NY,
USA, MSR 2014, pp 142-151, DOI 10.1145/2597073.2597084, URL https:
//doi.org/10.1145/2597073.2597084

Arabnejad H, Bispo J, Barbosa JG, Cardoso JM (2018) Autopar-clava: An automatic
parallelization source-to-source tool for ¢ code applications. In: Proceedings of the
9th Workshop and 7th Workshop on Parallel Programming and RunTime Manage-
ment Techniques for Manycore Architectures and Design Tools and Architectures
for Multicore Embedded Computing Platforms, pp 13-19

Bagherzadeh M, Kahani N, Briand L (2022) Reinforcement Learning for Test Case
Prioritization. IEEE Transactions on Software Engineering 48(8):2836-2856, DOI
10.1109/TSE.2021.3070549, conference Name: IEEE Transactions on Software
Engineering

Bagies TOS (2020) Parallelizing unit test execution on gpu. PhD thesis, Iowa State
University

Bavand AH, Rigby PC (2021) Mining Historical Test Failures to Dynamically Batch
Tests to Save CI Resources. In: 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp 217-226, DOI 10.1109/ICSME52107.
2021.00026, iSSN: 2576-3148

Beheshtian MJ, Bavand A, Rigby P (2021) Software batch testing to save build test
resources and to reduce feedback time. IEEE Transactions on Software Engineering
pp 1-1, DOI 10.1109/TSE.2021.3070269

Bell J, Kaiser G, Melski E, Dattatreya M (2015) Efficient dependency detection
for safe java test acceleration. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2015, p 770-781, DOI 10.1145/2786805.2786823,
URL https://doi.org/10.1145/2786805.2786823

Bell J, Legunsen O, Hilton M, Eloussi L, Yung T, Marinov D (2018) DeFlaker: Auto-
matically Detecting Flaky Tests. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pp 433—444, DOI 10.1145/3180155.3180164,
iSSN: 1558-1225

Beller M, Gousios G, Zaidman A (2017a) Oops, my tests broke the build: An ex-
plorative analysis of travis ci with github. In: 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR), pp 356-367, DOI
10.1109/MSR.2017.62

Beller M, Gousios G, Zaidman A (2017b) TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous Integration. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR), pp 447—
450, DOI 10.1109/MSR.2017.24

https://doi.org/10.1145/2597073.2597084
https://doi.org/10.1145/2597073.2597084
https://doi.org/10.1145/2786805.2786823

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 69

Candido J, Melo L, d’Amorim M (2017) Test suite parallelization in open-source
projects: a study on its usage and impact. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, pp 838-848

Chang F, Ren J, Viswanathan R (2009) Optimal Resource Allocation for Batch Testing.
In: 2009 International Conference on Software Testing Verification and Validation,
pp 91-100, DOI 10.1109/ICST.2009.25, iSSN: 2159-4848

Cho C, Chun B, Seo J (2017) Adaptive Batching Scheme for Real-Time Data Transfers
in IoT Environment. In: Proceedings of the 2017 International Conference on Cloud
and Big Data Computing, Association for Computing Machinery, New York, NY,
USA, ICCBDC 2017, pp 55-59, DOI 10.1145/3141128.3141145, URL https:
//doi.org/10.1145/3141128.3141145

Ding C, Shen X, Kelsey K, Tice C, Huang R, Zhang C (2007) Software behavior
oriented parallelization. ACM SIGPlan Notices 42(6):223-234

Elbaum S, Rothermel G, Penix J (2014) Techniques for Improving Regression Test-
ing in Continuous Integration Development Environments. In: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, ACM, New York, NY, USA, FSE 2014, pp 235-245, DOI 10.1145/
2635868.2635910, URL http://doi.acm.org/10.1145/2635868.2635910,
event-place: Hong Kong, China

Fallahzadeh E, Rigby PC (2022) The Impact of Flaky Tests on Historical Test Prioriti-
zation on Chrome. In: 2022 IEEE/ACM 44th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pp 273-282, DOI
10.1109/ICSE-SEIP55303.2022.9793941

Fallahzadeh E, Bavand AH, Rigby PC (2023) Accelerating Continuous Integration
with Parallel Batch Testing. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2023)(ESEC/FSE2023), ACM, New York, NY, USA,
p 13, accepted, to be presented at ACM ESEC/FSE 2023

GrecaR, Miranda B, Bertolino A (2023) State of Practical Applicability of Regression
Testing Research: A Live Systematic Literature Review. ACM Comput Surv DOI
10.1145/3579851, URL https://dl.acm.org/doi/10.1145/3579851

Hemmati H, Sharifi F (2018) Investigating NLP-Based Approaches for Predicting
Manual Test Case Failure. In: 2018 IEEE 1 1th International Conference on Software
Testing, Verification and Validation (ICST), pp 309-319, DOI 10.1109/ICST.2018.
00038

Henard C, Papadakis M, Harman M, Jia Y, Le Traon Y (2016) Comparing White-
Box and Black-Box Test Prioritization. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp 523-534, DOI 10.1145/2884781.
2884791, iISSN: 1558-1225

Herzig K, Greiler M, Czerwonka J, Murphy B (2015) The Art of Testing Less without
Sacrificing Quality. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol 1, pp483-493, DOI10.1109/ICSE.2015.66,iSSN: 1558-
1225

Herzig K, Czerwonka J, Murphy B, Greiler M (2016) Selecting tests for exe-
cution on a software product. URL https://patents.google.com/patent/
US20160321586A1/en

https://doi.org/10.1145/3141128.3141145
https://doi.org/10.1145/3141128.3141145
http://doi.acm.org/10.1145/2635868.2635910
https://dl.acm.org/doi/10.1145/3579851
https://patents.google.com/patent/US20160321586A1/en
https://patents.google.com/patent/US20160321586A1/en

70 Emad Fallahzadeh et al.

Hilton M (2016) Understanding and improving continuous integration. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp 1066—1067

Hilton M, Bell J, Marinov D (2018) A large-scale study of test coverage evolution.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, Association for Computing Machinery, New York, NY,
USA, ASE 2018, pp 53-63, DOI 10.1145/3238147.3238183, URL https://doi.
org/10.1145/3238147.3238183

Jahan H, Feng Z, Mahmud SMH (2020) Risk-Based Test Case Prioritization by Cor-
relating System Methods and Their Associated Risks. Arab J Sci Eng 45(8):6125—
6138, DOI 10.1007/s13369-020-04472-z, URL https://doi.org/10.1007/
s13369-020-04472-z

Jiang B, Zhang Z, Chan WK, Tse TH (2009) Adaptive Random Test Case Priori-
tization. In: 2009 IEEE/ACM International Conference on Automated Software
Engineering, pp 233-244, DOI 10.1109/ASE.2009.77, iSSN: 1938-4300

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference on Soft-
ware Engineering, Association for Computing Machinery, New York, NY, USA,
ICSE 02, p 467477, DOI 10.1145/581339.581397, URL https://doi.org/
10.1145/581339.581397

Kim JM, Porter A (2002) A history-based test prioritization technique for regres-
sion testing in resource constrained environments. In: Proceedings of the 24th
International Conference on Software Engineering. ICSE 2002, pp 119-129, DOI
10.1109/ICSE.2002.1007961

Labuschagne A, Inozemtseva L, Holmes R (2017) Measuring the cost of regression
testing in practice: A study of java projects using continuous integration. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2017,
p 821-830, DOI 10.1145/3106237.3106288, URL https://doi.org/10.1145/
3106237.3106288

Lachmann R, Schulze S, Nieke M, Seidl C, Schaefer I (2016) System-Level
Test Case Prioritization Using Machine Learning. In: 2016 15th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp 361-
368, DOI 10.1109/ICMLA.2016.0065, URL https://ieeexplore.ieee.org/
abstract/document/7838169

Lam W, Oei R, Shi A, Marinov D, Xie T (2019) idflakies: A framework for
detecting and partially classifying flaky tests. In: 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST), IEEE Computer Soci-
ety, Los Alamitos, CA, USA, pp 312-322, DOI 10.1109/1CST.2019.00038, URL
https://doi.ieeecomputersociety.org/10.1109/ICST.2019.00038

Landing C, Tahvili S, Haggren H, Langkvis M, Muhammad A, Loufi A (2020)
Cluster-based parallel testing using semantic analysis. In: 2020 IEEE International
Conference On Artificial Intelligence Testing (AlTest), pp 99-106, DOI 10.1109/
AITEST49225.2020.00022

Leppinen M, Mikinen S, Pagels M, Eloranta VP, Itkonen J, Mantyld MV, Mannisto
T (2015) The highways and country roads to continuous deployment. leee software

https://doi.org/10.1145/3238147.3238183
https://doi.org/10.1145/3238147.3238183
https://doi.org/10.1007/s13369-020-04472-z
https://doi.org/10.1007/s13369-020-04472-z
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/3106237.3106288
https://doi.org/10.1145/3106237.3106288
https://ieeexplore.ieee.org/abstract/document/7838169
https://ieeexplore.ieee.org/abstract/document/7838169
https://doi.ieeecomputersociety.org/10.1109/ICST.2019.00038

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 71

32(2):64-72

Li Z, Harman M, Hierons RM (2007) Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33(4):225-237, DOI 10.
1109/TSE.2007.38, conference Name: IEEE Transactions on Software Engineering

Liang J, Elbaum S, Rothermel G (2018) Redefining Prioritization: Continuous Prior-
itization for Continuous Integration. In: 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE), DOI 10.1145/3180155.3180213, iSSN:
1558-1225

LuY,LouY, Cheng S, Zhang L, Hao D, Zhou Y, Zhang L (2016) How does regression
test prioritization perform in real-world software evolution? In: Proceedings of the
38th International Conference on Software Engineering, Association for Computing
Machinery, New York, NY, USA, ICSE ’16, pp 535-546, DOI 10.1145/2884781.
2884874, URL https://doi.org/10.1145/2884781.2884874

Luo Q, Moran K, Poshyvanyk D (2016) A large-scale empirical comparison of static
and dynamic test case prioritization techniques. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, Association for Computing Machinery, New York, NY, USA, FSE 2016, pp
559-570, DOI 10.1145/2950290.2950344, URL https://doi.org/10.1145/
2950290.2950344

Marijan D, Gotlieb A, Sen S (2013) Test Case Prioritization for Continuous Regression
Testing: An Industrial Case Study. In: 2013 IEEE International Conference on
Software Maintenance, pp 540-543, DOI 10.1109/ICSM.2013.91, iSSN: 1063-
6773

Mattis T, Rein P, Diirsch F, Hirschfeld R (2020) RTPTorrent: An Open-source Dataset
for Evaluating Regression Test Prioritization. In: Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories, Association for Computing
Machinery, New York, NY, USA, MSR °20, pp 385-396, DOI 10.1145/3379597.
3387458, URL https://doi.org/10.1145/3379597.3387458

Memon A, Gao Z, Nguyen B, Dhanda S, Nickell E, Siemborski R, Micco J (2017)
Taming Google-scale continuous testing. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), pp 233-242, DOI 10.1109/ICSE-SEIP.2017.16

Misailovic S, Milicevic A, Petrovic N, Khurshid S, Marinov D (2007) Parallel test
generation and execution with korat. In: Proceedings of the the 6th Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, Association for Com-
puting Machinery, New York, NY, USA, ESEC-FSE 07, p 135-144, DOI 10.
1145/1287624.1287645, URL https://doi-org.lib-ezproxy.concordia.
ca/10.1145/1287624.1287645

Najafi A, Rigby PC, Shang W (2019a) Bisecting commits and modeling commit risk
during testing. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, Tallinn, Estonia, ESEC/FSE
2019, pp 279-289,DOI 10.1145/3338906.3338944, URL https://doi.org/10.
1145/3338906.3338944

https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1145/2950290.2950344
https://doi.org/10.1145/2950290.2950344
https://doi.org/10.1145/3379597.3387458
https://doi-org.lib-ezproxy.concordia.ca/10.1145/1287624.1287645
https://doi-org.lib-ezproxy.concordia.ca/10.1145/1287624.1287645
https://doi.org/10.1145/3338906.3338944
https://doi.org/10.1145/3338906.3338944

72 Emad Fallahzadeh et al.

Najafi A, Shang W, Rigby PC (2019b) Improving Test Effectiveness Using Test Ex-
ecutions History: An Industrial Experience Report. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pp 213-222, DOI 10.1109/ICSE-SEIP.2019.00031

Parthasarathy G, Rushdi A, Choudhary P, Nanda S, Evans M, Gunasekara H, Ra-
jakumar S (2022) RTL Regression Test Selection using Machine Learning. In:
2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp
281-287, DOI 10.1109/ASP-DAC52403.2022.9712550, iSSN: 2153-697X

Peng Q, Shi A, Zhang L (2020) Empirically revisiting and enhancing IR-based test-
case prioritization. In: Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Association for Computing Machinery,
New York, NY, USA, ISSTA 2020, pp 324-336, DOI 10.1145/3395363.3397383,
URL http://doi.org/10.1145/3395363.3397383

Poth A, Werner M, Lei X (2018) How to deliver faster with ci/cd integrated testing
services? In: European Conference on Software Process Improvement, Springer,
pp 401-409

Rothermel G, Untch R, Chu C, Harrold M (1999) Test case prioritization: an em-
pirical study. In: Proceedings IEEE International Conference on Software Main-
tenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No0.99CB36360), pp 179-188, DOI 10.1109/ICSM.1999.792604,1SSN: 1063-6773

Sharif A, Marijan D, Liaaen M (2021) DeepOrder: Deep Learning for Test Case
Prioritization in Continuous Integration Testing. In: 2021 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pp 525-534, DOI
10.1109/ICSME52107.2021.00053, iSSN: 2576-3148

Shashban (2022) Run VSTest tests in parallel - Azure Pipelines. URL
https://learn.microsoft.com/en-us/azure/devops/pipelines/
test/parallel-testing-vstest?view=azure-devops

Shi A, Gyori A, Mahmood S, Zhao P, Marinov D (2018) Evaluating test-suite reduction
in real software evolution. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Association for Computing Machin-
ery, New York, NY, USA, ISSTA 2018, pp 84-94, DOI 10.1145/3213846.3213875,
URL https://doi.org/10.1145/3213846.3213875

Soni M (2015) End to end automation on cloud with build pipeline: the case for devops
in insurance industry, continuous integration, continuous testing, and continuous
delivery. In: 2015 IEEE International Conference on Cloud Computing in Emerging
Markets (CCEM), IEEE, pp 85-89

Wang Z, Fang C, Chen L, Zhang Z (2020) A Revisit of Metrics for Test Case
Prioritization Problems. Int J Soft Eng Knowl Eng 30(08):1139-1167, DOI 10.
1142/S0218194020500291, URL https://www.worldscientific.com/doi/
abs/10.1142/S0218194020500291

Yaraghi AS, Bagherzadeh M, Kahani N, Briand LC (2023) Scalable and Accurate Test
Case Prioritization in Continuous Integration Contexts. IEEE Transactions on Soft-
ware Engineering 49(4):1615-1639, DOI 10.1109/TSE.2022.3184842, conference
Name: IEEE Transactions on Software Engineering

Zhang L, Hao D, Zhang L, Rothermel G, Mei H (2013) Bridging the gap between the
total and additional test-case prioritization strategies. In: 2013 35th International

http://doi.org/10.1145/3395363.3397383
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/parallel-testing-vstest?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/parallel-testing-vstest?view=azure-devops
https://doi.org/10.1145/3213846.3213875
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500291
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500291

Contrasting Test Selection, Prioritization, and Batch Testing at Scale 73

Conference on Software Engineering (ICSE), pp 192-201, DOI 10.1109/ICSE.
2013.6606565, iSSN: 1558-1225

Zhu Y, Shihab E, Rigby PC (2018) Test Re-Prioritization in Continuous Testing
Environments. In: 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp 69—79, DOI 10.1109/ICSME.2018.00016, iSSN: 1063-
6773

	Introduction
	Background and Related Works
	Research Design and Methodology
	Test Optimization Approaches
	Evaluation Criteria
	Results
	Threats to Validity
	Discussion
	Conclusion and Future Works
	Statistical Tests

