
Noname manuscript No.
(will be inserted by the editor)

Towards Semantic Versioning of Open Pre-trained Language Model
Releases on Hugging Face

Adekunle Ajibode · Abdul Ali Bangash · Filipe Roseiro
Cogo · Bram Adams · Ahmed E. Hassan

Received: date / Accepted: date

Abstract The proliferation of open Pre-trained Language Models (PTLMs) on model registry platforms
like Hugging Face (HF) presents both opportunities and challenges for companies building products around
them. Similar to traditional software dependencies, PTLMs continue to evolve after a release. However,
the current state of release practices of PTLMs on model registry platforms are plagued by a variety of
inconsistencies, such as ambiguous naming conventions and inaccessible model training documentation.
Given the knowledge gap on current PTLM release practices, our empirical study uses a mixed-methods
approach to analyze the releases of 52,227 PTLMs on the most well-known model registry, HF. Our results
reveal 148 different naming practices for PTLM releases, with 40.87% of changes to model weight files not
represented in the adopted name-based versioning practice or their documentation. In addition, we identified
that the 52,227 PTLMs are derived from only 299 different base models (the modified original models
used to create 52,227 PTLMs), with Fine-tuning and Quantization being the most prevalent modification
methods applied to these base models. Significant gaps in release transparency, in terms of training dataset
specifications and model card availability, still exist, highlighting the need for standardized documentation.
While we identified a model naming practice explicitly differentiating between major and minor PTLM
releases, we did not find any significant difference in the types of changes that went into either type
of releases, suggesting that major/minor version numbers for PTLMs often are chosen arbitrarily. Our
findings provide valuable insights to improve PTLM release practices, nudging the field towards more
formal semantic versioning practices.

Keywords Hugging Face, Pre-trained Language Models, Model Versioning Practices, Model Naming
Practice, Model Registry

1 Introduction

The efficacy of pre-trained language models (PTLMs) for enhancing various language understanding tasks
is widely acknowledged (Sarzynska-Wawer et al., 2021). PTLMs have initiated a paradigm shift in AI
applications, fundamentally altering the landscape of natural language processing (NLP) and catalyzing
remarkable progress across diverse software domains. Their success is rooted in their ability to extract
patterns from extensive textual datasets, effectively capturing the complexity of human language, thus

Adekunle Ajibode
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: ajibode.a@queensu.ca

Abdul Ali Bangash
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: abdulali.b@queensu.ca

Filipe R. Cogo
Centre for Software Excellence, Huawei Canada
E-mail: filipecogo@acm.org

Bram Adams
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: bram.adams@queensu.ca

Ahmed E. Hassan
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: hassan@queensu.ca

2 Adekunle Ajibode et al.

enabling the development of contextually aware intelligent systems (Wang et al., 2022). As such, PTLMs
are prominent in popular model registries like Hugging Face (HF) and central to the advancement of AI
(Zhao et al., 2023). They also tend to be larger, better documented and more popular than models from
other domains (Castaño et al., 2024).

As open-source PTLMs like the Llama family (Touvron et al., 2023) have significantly increased in
availability and popularity, they have spawned a wide range of model variants, each produced through
different modification methods, such as fine-tuning, knowledge distillation, pruning, quantization, or any
other strategies that alter a model’s architecture of training to better suit specific use case. The diversity of
these model variants, and the fact that each variant can be further modified into additional variants, poses
challenges for stakeholders trying to identify new model versions or variants and understand the associated
changes and risks. Given that hundreds of possible variants are continuously evolving, these challenges
impact both model developers, who are responsible for creating and maintaining these models, and end
users, including industry professionals, practitioners, and academic researchers who rely on the models for
various applications.

In traditional software engineering, the problem of versioning and tracking variants is addressed by the
established practice of semantic versioning. It is commonly used by software package management systems
and both open-source and commercial software projects to clearly communicate the impact of changes
between versions, communicating potential compatibility issues, and reducing integration risks (Lam et al.,
2020, Decan and Mens, 2019). Semantic versioning has been shown to be very useful and important in
release engineering, such as helping developers automate dependencies and avoid unnecessary work when
components evolve (Lam et al., 2020), addressing inconsistent breaking changes that impact dependent
systems (Raemaekers et al., 2017), enabling better version control in continuous delivery environments
(Carvalho and Seco, 2021), improving compliance with versioning policies across different software ecosys-
tems (Decan and Mens, 2019), and reducing the impact of breaking changes on client code (Ruhroth et al.,
2014).

However, popular model registries like HF currently lack semantic versioning practices, relying instead
on ad hoc naming conventions to communicate updates. These issues are particularly pronounced when
analyzing PTLMs, given their popularity and sprawling variants making consistent versioning even more
important. To gain a better understanding of how naming conventions and versioning are currently han-
dled within the HF platform, the first and second authors manually explored 50 PTLMs. This selection
was random, without prioritizing repositories from top organizations or popular models. While not statis-
tically representative, this exploration provided valuable insights into the prevalent naming and versioning
practices on HF, motivating a deeper analysis of these conventions and the need for standardization.

Across these 50 analyzed models, we observed diverse naming practices such as super-cinnamon/fewshot-
followup-multi-e5 1, structured with four segments separated by dashes, in contrast to gsareen07/llama-2-
finetune2, which uses three segments to indicate that it is a fine-tuned version of Llama-2. Some models, like
mixedbread-ai/mxbai-rerank-large-v1 3, use version identifiers such as “v1,” resembling traditional software
practices, while others like eachadea/ggml-vicuna-7b-1.1 4 do not. We also encountered models uploaded
under different names, such as michellejieli/test classifier5 and michellejieli/emotion text classifier6, both
using the same base model with nearly identical configurations but lacking dataset specifications. Fur-
thermore, there were variations in the inclusion of model cards and dataset documentation; for instance,
080-ai/flintlock 3B v0.1b7 did not include a model card but specified the training dataset, whereas 080-
ai/tiny-cutlass8 included a model card but omitted details about the training dataset, despite being man-
aged by the same owner. These observations highlight the need for a more thorough empirical exploration
of current release practices for PTLMs on model registries.

The naming convention of PTLMs in model stores, and the degree to which they adhere to semantic
versioning practices, has not been studied thus far. Prior research has examined a wide variety of release
engineering aspect of non-AI systems, including continuous deployment and delivery (Shahin et al., 2017,
Bobrovskis and Jurenoks, 2018, Laukkanen et al., 2017, Kerzazi and Adams, 2016), release notes (Abebe
et al., 2016, Bi et al., 2020), release management (Michlmayr et al., 2007, Khomh et al., 2012), and release
practices for mobile apps (Nayebi et al., 2016, Domı́nguez-Álvarez and Gorla, 2019). More recently, research
has explored ML model and dataset documentation practices (Oreamuno et al., 2024, Mitchell et al.,

1 https://huggingface.co/super-cinnamon/fewshot-followup-multi-e5
2 https://huggingface.co/datasets/gsareen07/llama-2-finetune
3 https://huggingface.co/mixedbread-ai/mxbai-rerank-large-v1
4 https://huggingface.co/eachadea/ggml-vicuna-7b-1.1
5 https://huggingface.co/michellejieli/test classifier
6 https://huggingface.co/michellejieli/emotion text classifier
7 https://huggingface.co/080-ai/flintlock 3B v0.1b
8 https://huggingface.co/080-ai/tiny-cutlass

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 3

2019, Wadhwani and Jain, 2020, Crisan et al., 2022, Castaño et al., 2024). Yang et al. have analyzed the
sub-ecosystem of large language models for code (LLM4Code), focusing on model reuse, documentation
practices, and licensing for code-related tasks (Yang et al., 2024), but did not consider the broader spectrum
of PTLMs used for diverse tasks beyond coding.

To date, there is no empirical research focused specifically on PTLM release practices, highlighting the
need for more comprehensive studies in this area.

Therefore, this study explores current practices in PTLM versioning, the reproducibility of PTLMs in
terms of their provenance and variant types, and the transparency of model cards and dataset documenta-
tion on HF. Specifically, through an empirical analysis of 52,227 PTLMs on HF, this paper addresses the
following research questions (RQs):

RQ1. What are the current naming and versioning practices of PTLMs on HF?
Motivation: Unclear and inconsistent model naming and versioning conventions can impede the ability of
practitioners to effectively understand the communicated changes in model releases. For those developing
and publishing models, standardized and meaningful naming practices are crucial for clarifying model
identities and tracking modifications. This ensures that changes are documented systematically over
time, allowing practitioners to assess whether they can safely update to new model versions.
Findings: We found a diverse and heterogeneous landscape of naming practices on HF, with 148 distinct
PTLM naming conventions and two types of versioning schemes: major and minor versions. Our analysis
also reveals that changes made to model weights are not communicated via the current versioning
conventions, indicating a high level of implicit versioning.

RQ2. What are the PTLM variant types, and how are their qualities in terms of reproducibility
and transparency on HF?
Motivation: Ensuring reproducibility and transparency is crucial for evaluating the reliability and prac-
ticality of PTLMs, as it allows for consistent verification of model performance and fosters trust in
the results. Reproducibility ensures that a model can deliver consistent outcomes when retrained or
fine-tuned under similar conditions, which is essential for validating scientific claims and practical ap-
plications. Transparency, through detailed model card and dataset documentation, provides essential
information about training processes and datasets used, enabling users to understand and assess the
model’s quality, limitations, and potential biases. By understanding these aspects, practitioners can
ensure that PTLMs are both reliable and trustworthy, facilitating more informed decision-making.
Findings: Since 2022, 299 distinct models, including popular choices like Gemma (Team et al., 2024),
Mistral (Jiang et al., 2023a), Llama (Touvron et al., 2023), and Bert (Devlin et al., 2018),
have served as base models for PTLM variant releases. Our manual analysis identified 15 different
keywords that can be translated into four different PTLM variant types: Fine-tuning, Quantization,
Knowledge Distillation, and Deduplication. However, only 17% of these PTLM variant releases explicitly
mentioned keywords corresponding to their variant types, potentially limiting users’ ability to accurately
reproduce the models and assess their suitability and performance for specific tasks. Furthermore, we
observed that only 15.6%
of PTLM releases included training dataset information within their repositories, with even fewer pro-
viding details in model cards (12%) or dataset source links (2%). This lack of transparency may hinder
user understanding and responsible model utilization. Additionally, we noted inconsistencies in model
card documentation across different variant types, highlighting the need for standardized documentation
practices to enhance transparency in PTLM releases on model registry platforms.

RQ3. To what extent do versioning identifiers in PTLM names align with actual changes in
PTLM versions on HF?
Motivation: Unlike traditional software engineering, where version numbers typically indicate clear
changes such as bug fixes (patch) or feature additions (minor), the specific improvements associated
with version updates in PTLMs often lack clarity. This ambiguity can hinder practitioners from un-
derstanding the nature and impact of updates, making it challenging to decide whether to adopt new
versions. By examining how accurately major and minor versioning identifiers in model names reflect
the changes observed between model versions, we aim to evaluate the consistency of name-based ver-
sioning practices. This assessment is important for determining whether current practices effectively
communicate changes and for guiding model owners in refining their versioning strategies, potentially
adopting more standardized approaches like semantic versioning.
Findings: Major versions exhibit significantly more types of changes, averaging 31 changes, compared to
minor versions, which average 10 changes. We grouped these changes into nine categories and observed
that the differences between major and minor versions across these categories are not statistically
significant. This suggests that practitioners may be using version identifiers in model names arbitrarily,
indicating a misalignment between the change types and the identifiers specified in the model names.

4 Adekunle Ajibode et al.

Additionally, when changes are made to configurations, training libraries, or performance metrics, there
is consistently a corresponding change in the performance of the PTLMs.

Our findings highlight the heterogeneity in model naming conventions, versioning, and release quality
within model registry platforms for PTLMs, emphasizing the need for improved release practices. These
improvements should include meaningful and unambiguous model naming, clearer versioning, and compre-
hensive documentation of datasets, model variant types, and training information through model cards.
These measures are important for ensuring the ability to replicate model performance, thereby maintaining
the stability and reliability of applications that rely on these models. Specifically, our study provides the
following contributions:

– We pioneer and provide comprehensive understanding of PTLM release practices on HF, covering PTLM
naming practices, PTLM versioning, and PTLM reproducibility and transparency attributes.

– We identify sources of naming inconsistencies, missing versions, and documentation gaps, proposing
strategies such as standardized naming practices, clear versioning alignment, and improved documen-
tation.

– We offer a dataset and publicly share our extraction code to support empirical research in related fields.
These resources aim to facilitate further studies for researchers and model developers (Ajibode, 2024).

This paper is structured as follows. Section 2 discuss key concepts such as Pre-Trained Language Models,
Model Registries, and Naming and Versioning Conventions in Software Engineering, along with related
work. Section 3 outlines the study setup. Section 4 presents the findings of the research questions. Section 5
covers the study’s discussion and implications, while Section 6 addresses potential threats to validity. Finally,
Section 7 summarizes the study and outlines key directions for future research.

2 Background and Related Work

2.1 Pre-Trained Language Models (PTLMs)

Pre-trained models are generalist models trained on large-scale datasets to learn broad features that can be
adapted to various specific tasks. Unlike simple models like logistic regression, which are trained from scratch
for specific tasks, advanced models such as deep neural networks benefit from pre-training on diverse data to
develop a strong base of generalized knowledge. This approach, combined with sophisticated architectures
and extensive datasets, significantly enhances the model’s performance and adaptability across different
domains, such as image recognition, speech processing, and natural language processing. The synergy of
advanced architectures, large data volumes, and high-quality data, rather than the practice of pre-training
alone, has been instrumental in improving these models’ capabilities and efficiency compared to training
from scratch (Mao, 2020).

One subset of pre-trained models, PTLMs, are specifically designed for natural language processing
(NLP) tasks. PTLMs, such as BERT (Devlin et al., 2018), GPT (OpenAI, 2023), and RoBERTa (Liu
et al., 2019), are trained on extensive text corpora to predict natural language tokens. These models serve
as the foundational layer for various NLP applications, significantly enhancing capabilities such as text
classification, machine translation, and question answering. For the purposes of this study, we consider
PTLMs with a parameter size of 1 million or more. This threshold is based on findings by Eldan et
al. (Eldan and Li, 2023), which demonstrated that language models with 1 million parameters can exhibit
reasoning capabilities comparable to larger models.

Following the pre-training phase, practitioners can apply various modification methods (e.g., fine-tuning
or quantization) to tailor models for specific applications. In this study, we categorize the modification
methods mentioned in the model names9 as distinct variant types. Although a model might have undergone
different modification methods that are not mentioned in the names, we use the listed method as the basis
for defining our variant types. Numerous types of modification methods exist, a few of which are discussed
below:

– Fine-tuning: Further training pre-trained models on a dataset specific to a task to adapt them to new
conditions or improve performance on particular tasks. This may include full fine-tuning or parameter-
efficient fine-tuning. For example, fine-tuned models are widely used in tasks like question answering
and sentiment analysis (Min et al., 2017, Severyn and Moschitti, 2015).

– Deduplication: Identifying and removing redundant data in datasets before training to improve the
quality of training data and prevent model overfitting (Kandpal et al., 2022).

9 By “model name,” we refer to the repository name, such as roneneldan/TinyStories-1M, which differs from the base
model name, such as BERT.

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 5

– Knowledge distillation: Transferring knowledge from a larger teacher model to a smaller student model,
reducing model size for deployment on devices with limited resources (Sun et al., 2019).

– Quantization: Reducing the model’s precision to save space and computational resources, commonly
converting model parameters to 8-bit integers for faster computations (Jacob et al., 2018).

– Pruning: Removing less important weights from the models, which reduces the model size and compu-
tational cost (Zhu and Gupta, 2017).

– Parameter Sharing: The technique of keeping the majority of a pre-trained model’s parameters fixed
while introducing a small number of additional parameters specific to each new task (Houlsby et al.,
2019). This differs from fine-tuning in that it involves minimal updates to the pre-trained model pa-
rameters, focusing instead on leveraging a shared base with specific extensions.

Numerous pre-trained models have been released via HF. Examples include Llama-2 (Touvron et al.,
2023), xlm-roberta-base (Conneau et al., 2019), and bert-base-uncased (Devlin et al., 2018). These models
are designed for general-purpose NLP tasks and have been widely adopted across various applications.
Moreover, these models serve as the foundation for their variant models, which result from the applica-
tion of one of such modification methods. Examples of these variants include starmpcc/Asclepius-13B10,
starmpcc/Asclepius-7B11, and THUDM/agentlm-13b12.

Therefore, when we mention base models, we refer to pre-trained models that have not undergone any
of the modification methods mentioned above and still retain their original parameters, such as Llama,
Mistral, Bert, and other PTLMs. Variant types refer to the various modification methods, such as fine-
tuning or deduplication, with their resulting models being referred to as fine-tuned models or deduplicated
models. When we refer to PTLMs, we mean the models in general, whether they are the original base
models or modified variants.

2.2 Model Registries

Model registries are centralized repositories designed to store, manage, and distribute ML models (Xiu et al.,
2020). They serve as essential infrastructure to ensure reproducibility, sharing, and deployment of models
across various environments. These registries enable developers to access a wide array of PTLMs, facilitating
the reuse and adaptation of existing models to new problems. Several model registries are available, such as
HF 13, ONNX 14, PyTorch Hub15, Model-Zoo16, and Modelhub17. Among these, HF stands out as the largest
model registry (Jiang et al., 2022), not only because of the volume of hosted models but also due to its
comprehensive set of resources, such as inference APIs, model card support, and extensive documentation
for managing models.

On HF, models are systematically organized by their owners, with each release housed in its own repos-
itory. Model owners often maintain multiple repositories that include not only models but also associated
datasets and spaces for specific tasks. Base models are frequently adapted into new variants or versions,
allowing continuous evolution and flexibility in addressing diverse applications. This organization and the
extensive resources available on HF are particularly significant given the platform’s substantial growth, from
500,000 requests per month in May 2021 (Kirk et al., 2021) to over 7 million per month as of now (Jiang
et al., 2023c). This surge highlights the importance of using HF as a case study for understanding PTLM
release practices.

In contrast to similar stores for mobile apps, Linux distribution packages, or programming language
libraries, there is no official versioning mechanism for PTLMs on HF. Typically, versioning is managed
through arbitrary naming schemas and heuristics rather than standardized or conventional systems. Se-
mantic versioning, commonly used in traditional software development, involves assigning version numbers
with a structure like major.minor.patch (e.g., 1.0.0), to indicate the level of changes and compatibility (Lam
et al., 2020). However, such a well-defined versioning system does not exist for PTLMs on HF or other
model registries mentioned above. The closest existing system for PTLM versioning on HF is based on
naming schemas. These naming schemas often encode specific details such as the model’s architecture or
type, the dataset or task it was trained on, and additional characteristics like model size and version. Al-
though a structured versioning system is essential to support efficient model discovery and usage within

10 https://huggingface.co/starmpcc/Asclepius-13B
11 https://huggingface.co/starmpcc/Asclepius-7B
12 https://huggingface.co/THUDM/agentlm-13b
13 https://huggingface.co/models
14 https://github.com/onnx/models
15 https://pytorch.org/hub/
16 https://modelzoo.co/
17 http://app.modelhub.ai/

6 Adekunle Ajibode et al.

Variant Types

1 2

3 4

Fig. 1 Four different examples of how the model modification methods (variant type) are specified in the model names on
HF repository.

the HF model registry, there is no standard, and arbitrary naming schemas have limitations. Additionally,
there are no checks on names, making them prone to typos and inconsistencies, which cannot be enforced.
Therefore, while naming schemas practices aim to enhance transparency and reproducibility, they may vary
significantly between different models and practitioners.

For instance, model cross-encoder/ms-marco-MiniLM-L-6-v2 18 exemplifies a naming practice where
“cross-encoder” specifies the model’s owner, “ms-marco” denotes the associated dataset or task, and
“MiniLM-L-6-v2” specifies the model’s size, number of layers, and version. In contrast, other models such as
michellejieli/NSFW text classifier19 may provide more generalized descriptions without specific architec-
tural or versioning details. Variations in versioning practices can also be observed, such as the use of whole
numbers (cross-encoder/ms-marco-MiniLM-L-6-v2) versus decimal numbers (Vezora/Mistral-22B-v0.2 20)
to denote different model updates. These practices influence how models are updated and managed within
the HF ecosystem, impacting their applicability across different downstream tasks.

Figure 1 illustrates how variant types are often specified in the model names on the HF repository.
For example: Model names might include keywords like “ft” or “fine-tuned” to indicate that the model
has undergone fine-tuning. Keywords like “deduped” are used to signify that the deduplication method
was applied. Models might be labeled with terms like “distilled” to indicate the application of knowledge
distillation. Keywords such as “8bit” are used to denote quantized models.

Understanding these naming and versioning practices, along with their inconsistencies and limitations,
is essential for both model developers and users to effectively navigate and utilize model registry plat-
forms. By elucidating these conventions, this study aims to contribute to improving the transparency and
reproducibility of model releases on such platforms.

2.3 Naming and Versioning Conventions in Software Engineering

Effective naming of software components is important for code readability, maintainability, and collabora-
tion (Seacord et al., 1998, Lawrie et al., 2007, Gresta et al., 2021), as it simplifies the process of searching
for and selecting components for reuse. However, this should not be confused with version naming, which
specifically refers to conventions like semantic versioning used to specify version numbers and track changes
over time.

In contrast, the naming conventions for models on platforms like HF often involve segmented names with
different parts separated by hyphens (-). These segments may represent various attributes of the model,
such as base models, variant types, versions, and sizes, as illustrated in Figure 2. This approach can lead
to confusion, as it mixes component naming with version information within the same string.

The challenge with this segmented naming method is that it can overload the naming scheme with
versioning details, making it less sustainable. Model names are subject to change, and errors or inconsis-
tencies can occur, complicating the tracking of updates and changes. Proper versioning, using dedicated
practices like semantic versioning, is crucial for PTLMs to ensure accurate tracking of changes and maintain
compatibility across versions over time.

18 https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
19 https://huggingface.co/michellejieli/NSFW text classifier
20 https://huggingface.co/Vezora/Mistral-22B-v0.2

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 7

Base Model Ethnicity Variant Type Identifier Version

Identifier

1

2

Base Model Identifier

3

Description

4
5

Identifier Size

Fig. 2 Five different examples of model naming practices on HF. Some models have 5 segments, while some have less
than 2 segments. Each of these examples indicates different information in the names, such as base models, variant types,
version, and size.

In software engineering, the most commonly used versioning mechanism involves incrementing version
numbers to indicate changes, with major version increments for backward-incompatible changes, and minor
or patch increments for enhancements and bug fixes (Stuckenholz, 2005, Novakouski et al., 2012), respec-
tively. Minor version increments typically introduce new features or improvements that are backward-
compatible, while patch version increments address bug fixes and small changes that do not affect the
software’s functionality or compatibility.

2.4 Related Work

Numerous studies have extensively investigated identifier naming within software engineering. For instance,
Gresta et al. explored naming practices across 40 open-source Java projects, identifying eight distinct
approaches (Gresta et al., 2021). Loomes et al. explored the implications of naming conventions on software
maintenance and evolvability, highlighting how traditional naming practices may not fully address the
unique needs of software systems (Loomes et al., 2005). Wenxin et al. investigated naming practices for
pre-trained models (PTMs), noting discrepancies in PTM naming on HF, revealing misalignments with
traditional practices, and introducing a novel technique for detecting naming anomalies (Jiang et al., 2023b).
In contrast to these studies, this paper focuses on the naming practices specific to PTLMs on HF.

Furthermore, while Jiang et al. provided (amongst others) valuable insights into practitioners’ usage
of model naming segments (Jiang et al., 2023b) on HF, their work did not analyze this in the context of
semantic versioning of models, which is the core focus of our work.

Notably, while Jiang et al. examined individual naming segments, they did not analyze how these
segments combine into structured naming conventions, as we do. Similarly, what Jiang et al. regarded as
naming conventions in their study actually corresponds to naming segments in our study, since they focused
on individual components within the name segment, whereas naming conventions in our study encompass
the combination of various segment types.

As a result, we uncovered 12 distinct segments used across 148 unique naming conventions, while
Jiang et al. identified 12 distinct segments only without exploring their combinations. Unlike Jiang et
al.’s study, which separated aspects such as training process, number of layers, and number of parameters
into distinct segments, we grouped these under a single “training mechanism” segment type, providing
a more streamlined categorization. Additionally, their broad “other” category is undefined, whereas our
explicit identification of segments such as “identifier,” “description,” and “creation date” adds clarity to
the taxonomy of name segment types.

Another difference with the study of Jiang et al. is that they did not focus on possible correlations be-
tween naming conventions and model popularity (download rate), while our analysis fills this gap, providing
actionable insights into the relationship between naming strategies and user engagement.

Furthermore, our findings reveal that only 6.64% of models on HF include explicit versioning informa-
tion, with major versioning being the predominant practice, while the aspect of versioning and repository
management is absent in Jiang et al.’s study. We also identify significant repository evolution, including
frequent updates to model weight files, often without corresponding changes in version identifiers.

8 Adekunle Ajibode et al.

In addition, Jiang et al. did not address transparency in metadata or documentation completeness, both
of which are vital for effective model reuse. Our analysis highlights that 33% of PTLMs lack model card
documentation, and most fail to provide explicit training dataset metadata. By shedding light on these
gaps, our work highlights the need for improved transparency and documentation practices within the HF
ecosystem—areas overlooked in Jiang et al.’s investigation.

Lastly, Jiang et al. also trained a model to automatically investigate anomalies in model names in terms
of discrepancies between the base model specified in the model name and the one specified in the Hugging
Face configuration file. Their results show that their tool effectively detects naming anomalies based solely
on architectural information with 92.18% accuracy—an area we did not cover in our study.

Castano et al. conducted a comprehensive study on ML model evolution and maintenance on the
HF platform, revealing dynamic shifts in model development practices and emphasizing the critical role
of systematic maintenance and incremental improvements for long-term model efficacy (Castaño et al.,
2024). Kathikar et al. examined 110,000 HF model repositories on GitHub, employing static analysis to
detect vulnerabilities. They found a significant number of vulnerabilities, with a higher concentration of
high-severity issues in popular foundational repositories like Transformers, highlighting the complexity of
securing ML models (Kathikar et al., 2023). Castano et al. analyzed approximately 170,000 models to inves-
tigate HF’s environmental sustainability impact. They found that only a small fraction of models reported
carbon emissions from training, primarily those trained on HF’s infrastructure, which automatically reports
emissions. Over time, the percentage of models reporting emissions decreased, but among those that did
report, average emissions slightly decreased. The study also identified factors associated with higher carbon
emissions (Castaño et al., 2023). In contrast, our study explores the reproducibility and transparency of
PTLM releases in HF, focusing on the consistency and naming practices.

Similarly, in software and artifact versioning, Novakouski et al. described the challenges of software
versioning in service-oriented architectures (SOA) and provided industry guidelines for managing change,
emphasizing the impact of versioning on the software life cycle and the importance of a comprehensive
versioning policy (Novakouski et al., 2012). Paez proposed a version control strategy for managing new
artifacts introduced by DevOps practices, covering artifact identification, versioning tools, naming practices,
and traceability, and validated the strategy in three real-world projects (Paez, 2018). In contrast, our work
focuses on the versioning conventions of pre-trained PTLMs.

In the same vein, (Oreamuno et al., 2024) have shown that only a fraction of models and datasets
on HF are properly documented, revealing inconsistencies in ethics and transparency-related information.
Mitchell et al. , addressing the need for transparent model reporting, proposed a framework called model
cards, advocating for detailed documentation of performance characteristics across various conditions to
promote responsible and informed usage of ML models (Mitchell et al., 2019). Toma et al. , focusing on
dataset and model management in ML applications, found that most are stored in file systems, lack proper
version control integration, and are infrequently updated, leading to issues with availability, traceability,
and reproducibility (Toma and Bezemer, 2024). Gong et al. , in a comprehensive review of dataset quality
in ML, provided valuable guidance for improving the accuracy and efficiency of ML models (Gong et al.,
2023). Lastly, Jiang et al. addressed the scarcity of structured datasets documenting pre-trained model
supply chains by presenting the PeaTMOSS dataset, enabling comprehensive analysis and understanding
of pre-trained model adoption and reuse dynamics (Jiang et al., 2024b).

In terms of model documentation practices, (Oreamuno et al., 2024) shed light on the documentation
shortcomings of all models on HF, examining a total of 55,280 models. At the time of their study, the
number of models in the model registry was smaller compared to the current number, which has since grown
significantly due to influx and shifting community interests. Our research explores the release documentation
practices of 196,211 models, focusing specifically on the availability of model cards and training datasets,
with a threshold for parameter size. Furthermore, Toma et al. (Toma and Bezemer, 2024) studied dataset
storage locations and versioning for general ML models on GitHub, highlighting issues with storage and
version control integration. However, they did not explore the availability of training datasets for PTLMs,
which is crucial for reproducibility. In contrast to their work, our research focuses on the availability of
training datasets and the versioning of PTLMs on HF, specifically examining these critical aspects for
models with large parameter sizes.

In addition to the work within the Software Engineering domain, recent studies in related fields have
emphasized key aspects of transparency, reproducibility, and documentation in AI and machine learning.
(Simbeck, 2022) examines legislative approaches to regulating AI in the public sector, focusing on fairness
and transparency to address risks associated with AI deployment. (Turri et al., 2024) explore transparency
needs in AI decision-support tools through a comprehensive case study, highlighting the challenges and
diverse requirements of end-users. (Kinahan et al., 2024) tackle reproducibility in EEG machine learning
research by introducing the EEG ML Model Card, a standardized documentation tool aimed at addressing
issues such as data leakage and flawed model selection. (Ahn et al., 2024) investigate user trust in AI,
showing how factors like interpretability and outcome feedback influence trust and task performance, with

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 9

Step-1: NLP Model
Information Extraction

What changes occur in between
different versions of an pre-trained
language model on HuggingFace?

RQ-3:

HuggingFace

- Versioning practices
- The hidden versions in
PTLM repositories'
commits.

Step-2: Filter NLP models
with identifiable base

models

Random Sample
(384)

Entire
dataset

- Naming
convention

Random Sample
(378)

Entire
dataset

-Provenance of PTLM
releases
- Reproducibility of PTLM
releases
- Automatic analysis of PTLM
releases' transparency

Manual
analysis of
PTLM
releases'
transparency

Random Sample (518)

Models with version
identifiers (3,471)

- Mapping of predecessor and
successor versions
- Identify the changes between
predecessor and successor
- Differences between Major and Minor
versions

196,211
models

53,027 models 52,227 models

What are the pre-trained language model
variant types and their qualities on

HuggingFace?

RQ-2:
What is the current naming convention
and versioning practice of pre-trained
language models on HuggingFace?

RQ-1:

Step-3: Filter out small
 NLP

Fig. 3 Data collection procedure

implications for improving transparency in AI-human collaboration. Finally, (Alcobaça et al., 2020) address
reproducibility in meta-learning by proposing Meta-Feature Extractor (MFE) packages that standardize
meta-feature extraction, enabling reliable experimentation. While these studies generally addressed trans-
parency and reproducibility in various domains, our research examines the transparency and reproducibility
of pre-trained language models on Hugging Face, including model cards, dataset documentation, and adap-
tation methods. By focusing on Hugging Face, we aim to identify gaps that hinder model adoption and
integration, providing insights to improve PTLMs accessibility and reliability for both practitioners and
users.

3 Study Setup

This section presents the design of our empirical study addressing the three research questions outlined in
the introduction. Figure 3 illustrates the procedures we followed to extract and refine our dataset for this
research.

3.1 Data Collection Procedure

HF contains tens of thousands of downstream models for dozens of tasks. We outline the three steps that
we follow in order to obtain our dataset from the model registry:

– Step 1: NLP Model Information Extraction: We conducted a comprehensive extraction of NLP
models from HF, facilitated by the HfApi Client21. Following a structured procedure for data collection,
as depicted in Figure 3, we obtained a total of 196,211 NLP models extracted as of March 17, 2024.

– Step 2: Filter NLP models without identifiable base models: In this step, we aim to focus on
models that clearly indicate their base models, as these models typically inherit the characteristics of
their base models, including parameter sizes and generative capabilities. Since this step is not straight-
forward, we explain our approach in detail in the next section. During this process, we filtered out
143,184 (72.97% of 196,211) models, resulting in 53,027 models. This step was necessary to ensure that
we focus our analysis on models with traceable lineage, which are more likely to be robust, mature, and

21 https://huggingface.co/docs/huggingface hub/package reference/hf api

10 Adekunle Ajibode et al.

widely used. By doing so, we minimize the likelihood of including experimental or toy models that may
lack broader applicability or relevance. However, it is important to note that certain base models, such
as Llama2, Gemma, and Mistral, are base models themselves and do not have other base models. These
base models are not automatically accessible through the HfAPI we used, and access to them requires
manual authentication, which is impractical given the large number of inaccessible models. As a result,
1,497 (1% of 143,184) models requiring manual authentication were excluded from consideration, as ac-
cess to them depends on the repository owner’s approval. Instead, for practicality, we focused on open
and readily available models, allowing for a more seamless and efficient filtering process. As a result,
after Step 2, we retained 53,027 variants that exhibit the characteristics of these base models and their
accessible configurations.

– Step 3: Filter out small NLP: We filtered out NLP models that either did not have their model size
indicated in their safetensors (a recent format designed for efficiently and safely storing model weights22)
or in their model name. To extract model sizes from the safetensor format, we used the HfAPI Client,
while to extract model sizes from model names (e.g., models like meta-llama/Llama-2-7b23, where “7b”
represents 7 billion parameters), we developed a Python script to gather this information. At the end
of this filtering process, 800 models—representing 1.50% of the 53,026 models—did not have their sizes
indicated in either the safetensor format or their model names. Subsequently, we applied a threshold of
1 million parameters to the remaining 52,227 models. All of these turned out to satisfy the size criterion,
ensuring that they are sufficiently large, robust, and widely used (Eldan and Li, 2023). This constitutes
our final dataset for further analysis.
Note that 14% of the 52,227 models do not specify safetensor as their format, suggesting that our dataset
may include models from various frameworks such as PyTorch, TensorFlow, and ONNX. However, the
absence of a safetensor format specification does not necessarily indicate that a model belongs to one
of these other frameworks. We have made this dataset available in our replication package (Ajibode,
2024).

It is important to note that the difference between the random samples of RQ1 and RQ2 in Figure 3
is due to RQ1 being sampled from the entire dataset, whereas RQ2 is sampled from the remaining dataset
after conducting automatic analysis for that research question.

3.2 Identifying base models

We use two distinct approaches to extract the base models for each PTLM. First, we examine the “model type”
field in the HF model configuration file to extract the associated values. This configuration file, in JSON
format, contains metadata and parameters defining the model’s architecture and behavior. Model owners
typically specify their base models in this field. We then developed a Python script (Ajibode, 2024) to
automate the extraction of base model information from the “model type” field. To ensure the accuracy of
the extracted base models, we randomly selected 50 samples from the dataset for manual verification. This
manual cross-check confirms that the extracted values accurately represent the base models of the studied
PTLMs.

Second, for PTLM repositories that did not include configuration files but listed sizes and the base model
in the model name, we developed another Python script (Ajibode, 2024) to extract base models directly
from the model names. This script uses the known extracted base models from the “model type” field as a
reference. It first splits the model names into two parts using the standard HF separator (owner/identifier).
Then, it replaces underscores (“ ”) in the identifier with hyphens (“-”) to standardize the format. Finally, it
decomposes each model name into its constituent parts, or segments. By comparing these segments with the
list of previously retrieved base models, the script identifies base models for PTLMs lacking configuration
files. To ensure the accuracy of the extracted base models, we manually verified 50 of the models for which
base models were automatically identified. This cross-check confirmed that the extracted values accurately
represent the base models of the studied PTLMs. Additionally, we randomly selected another 50 models
that did not have base models identified through our two approaches for manual verification. This process
ensured that these models genuinely lack base models.

It is worth noting that, for the purposes of this study, we define a base model strictly as the root model
of an entire model lineage tree, as referenced in the (1) “model type” field within the config JSON file on
HF, rather than the direct parent specified in the (2) “name or path” field in the same file. This distinction
is necessary because the child model referenced in the latter can itself serve as the parent model to another
variant, forming a multi-layered supply chain that complicates the process of tracing a model’s lineage.
Our standardized approach ensures consistency across our analysis and provides a clear framework for

22 https://huggingface.co/docs/safetensors/index
23 https://huggingface.co/meta-llama/Llama-2-7b

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 11

identifying base models. Future research could expand on this by fully mapping hierarchical relationships
between models and their roots, offering deeper insights into the multi-layered structure of model lineages
and the evolution of PTLMs over time.

4 Results

4.1 RQ1: What are the current naming and versioning practices of PTLMs on HF?

4.1.1 Motivation

Unclear and incoherent model naming and versioning conventions can hinder users’ ability to select and
utilize the most suitable PTLMs for their needs. Standardized and meaningful naming practices serve to
clarify model identities and streamline the search process. Effective versioning is important, not only for
tracking changes and ensuring model reproducibility but also for understanding whether a model update
is compatible with current products or if it will cause integration issues. This helps maintain the stability
and reliability of systems that rely on these models.

4.1.2 Approach

Identifying the naming practices of PTLMs on HF. To understand the existing model naming practices on
HF, we employed a manual analysis approach, combining both open and closed card sorting methods (Wood
and Wood, 2008). In the open card sorting phase, researchers create their own groups without predefined
categories. We began by interpreting the meanings of different segments within the model names and
organizing them into distinct categories based on these interpretations. In the closed card sorting phase,
researchers are provided with predefined categories and tasked with sorting data segments accordingly.
After categorizing 13% of 384 model name samples through open card sorting, we applied the resulting
categories to the remaining 87% of the samples using a closed card sorting. Specifically, we iterated through
the following steps:
Step 1: Selection of representative samples. We used a stratified random sampling method with a 95%
confidence level and a 5% margin error24 (Singh and Masuku, 2014, Cocks and Torgerson, 2013) to select a
representative sample of 384 models from a total population of 52,227 for manual analysis. Model names can
contain a variable number of segments (see Section 2.3), ranging from 2 to N, where N can be any positive
integer. We stratified our sampling method according to the number of segments (delimited by forward
slashes or hyphens). For instance, a model like mdhugol/indonesia-bert-sentiment-classification25 has 4
segments, placing it in stratum 4. Each stratum represents a distinct grouping of models that potentially
convey different semantic meanings or characteristics based on their naming conventions. Additionally, we
ensured that each selected PTLM in the sample had a unique owner to prevent overrepresentation from a
single source, as we assume that an owner may follow the same naming pattern for all models. Given that
a single owner may use the same number of segments in multiple model names, such as AdamCodd/yolos-
small-person26, AdamCodd/donut-receipts-extract27, and AdamCodd/tinybert-sentiment-amazon28, each
having 3 segments, we applied owner uniqueness across all strata.
Step 2: Interpretation and labeling of the model name segments using open card sorting
method. Following the selection of 384 models using a stratified random sampling method, the first and
second authors engaged on interpreting the meaning of model names, which are the same as the repository
names. To initiate this process, they randomly selected 50 models from the pool of 384 for detailed analysis.
This initial subset allows us to gain insight into the diversity and complexity of model naming conventions
on HF, helping us to refine our categorization approach for the larger sample. Each author independently
assigned labels to the segments of their assigned model names, drawing upon the semantic information
conveyed within the segments. We initially provided an example of model names and their segments in
Figure 2, illustrating five different model names in Section 2.3, each containing distinct segments that can
be interpreted as the base model, language, variant type, identifier, and version. The first model name
in Figure 2, with its five segments, exemplifies how a single model name can encompass multiple distinct
segments. This process highlights the diversity in segment labeling, where different models may have varying
numbers of segments, each conveying different types of information.

24 https://www.surveymonkey.com/mp/sample-size-calculator/
25 https://huggingface.co/mdhugol/indonesia-bert-sentiment-classification
26 https://huggingface.co/AdamCodd/yolos-small-person
27 https://huggingface.co/AdamCodd/donut-receipts-extract
28 https://huggingface.co/AdamCodd/tinybert-sentiment-amazon

12 Adekunle Ajibode et al.

The terms used in the segments of the model names were clear and self-explanatory, which facilitated
the open card sorting process. For instance, terms like “Llama” are universally understood to denote a base
model, “7B” indicates size, and prefixes like “v\d+(\.\d+)*” signify version identifiers. Other terms such
as “dataset” and “task” were explicitly mentioned in the model cards. The first two authors familiarized
themselves with these labels during an initial observation of 50 repositories, as detailed in Section 3.2

Following the independent phase, the authors discussed and compared their identified labels. Through a
negotiated agreement process (Campbell et al., 2013), which involves collaborative discussion and resolution
of differences, they addressed all discrepancies and reached a mutual consensus on the most appropriate
labels for each model. An example of such discrepancies is when the first author labeled “20epoch” as
“epoch,” and “direct preference optimization” as “features,” whereas the second author categorized them
as “training mechanisms.” In this case, after further investigation, they reached an agreement to classify
all these keywords under “training mechanisms.” This negotiated agreement ensured a consistent labeling
scheme for the remaining models at the right level of abstraction, thereby laying the groundwork for robust
analysis and interpretation.
Step 3: Closed card sorting for the remaining models. Using the labels identified in the previous
step and considering the substantial agreement achieved in Step 2, the first and second authors performed a
closed card sorting analysis on the remaining 334 models (Saldana, 2015). They applied the predefined cate-
gories from the open card sorting phase to systematically code the semantic meanings of the segments in the
model names. To ensure the reliability of the labeling process, the authors calculated Cohen’s Kappa (Vieira
et al., 2010) to measure inter-rater agreement before reaching a final consensus. Cohen’s Kappa evaluates
the level of agreement between two raters beyond what would be expected by chance, accounting for random
agreement. In this study, Cohen’s Kappa achieved a score of 0.74, indicating substantial agreement (Pérez
et al., 2020). The analysis was conducted using the scikit-learn implementation (Pedregosa et al., 2011).
Cohen’s Kappa has been widely used for reliability measurement in software engineering research (Pérez
et al., 2020, Ali et al., 2020, Yang et al., 2021).

Identifying the versioning conventions. Practitioners on HF often create new repositories for different
model releases instead of evolving versions within the commit history of a single repository. This multi-repo
phenomenon implies that version information might be dispersed across multiple repositories rather than
being consolidated in one. Thus, our analysis followed such cases by identifying and categorizing version
indicators in model names across separate repositories. To identify the model versioning convention, we
developed a script (Ajibode, 2024) that uses a regex “v\d+(\.\d+)*” to extract the version number from
all PTLM names. We then categorized these versions based on the numerical values following the “v”
identifier. Versions were grouped as follows: “major” for v1, v2, and so on; “minor” for v1.x, v2.x where x
is greater than 0; and “patch” for v1.x.y, v2.x.y where both x and y are greater than 0. It is important to
note that the concept of major, minor and patches are not used anywhere on HF. However, these identifiers
resemble those used in software engineering, which is why we followed the same approach to name the
identifiers in this manner. Subsequently, we calculated the number of PTLMs following each practice and
analyzed the results.

Determination of the frequency of file changes on HF model registry through their commits. We authored
a Python script (Ajibode, 2024) to extract modified repository files within each model repository. This was
done to determine implicit model versions. Implicit model versions refer to various alterations made to model
weights or configurations, that can only be detected from the commit history of the model’s repository or
by examining changes in the model’s binary files, as they had no accompanying version or model update
annotations. After extracting all the files that are associated with PTLMs on each repository, we focused
more on the model binary files used to store parameter information, in particular .bin, .pt, .pth, .h5, and
.safetensors (including possible variations). We operated under the assumption that changes to these files
signify new versions of the model, potentially resulting in observable differences in model inference behavior.
While this assumption is reasonable based on the role of these files in storing model parameters, the actual
impact on inference behavior may vary depending on the nature of the changes. As users typically access the
latest version of models from HF, in a similar vein as R users would do when installing R packages (Decan
et al., 2016), this means that they might unknowingly obtain an implicit version that is not documented
as a new release and they might not be meant as such. To determine whether a new commit of a model
binary file introduces changes, we checked for changes in the file hashes, as these commits do not have
accompanying tags like those found on GitHub. Changes in the hashes could result from various factors
such as updates to the model architecture, adjustments in hyperparameters, or modifications to the training
data.

During our analysis of the files associated with each PTLM repository, we encountered a total of 452
unique file extensions. However, numerical extensions such as .1, .0, .172, and others were filtered out to
focus on meaningful extensions that could be categorized. It is important to note that none of these numer-
ical extensions were related to model weight files. After this filtering, we have 192 unique file extensions.
The primary goal of this categorization was to achieve two main objectives: first, to assess the variety of

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 13

0 10 20 30 40 50 60 70 80
Number of Occurrences Across Model Names

 (% relative to the 384 samples)

Identifier
Base-model

Size
Training-mechanism

Description
Variant-type

Version
Task

Language
Dataset
Others

Creation-dateM
os

t O
cc

ur
rin

g
Se

gm
en

t T
yp

es
70.83%

39.84%
34.38%

20.05%
15.36%

12.50%
12.50%

10.68%
9.64%

8.85%
5.73%

1.30%

Fig. 4 Visualization of naming convention segment types in 384 manually analyzed model names on HF. Each model name
was broken down into 928 segments, resulting in 12 segment types, which are plotted on the y-axis, with their frequency
of occurrences on the x-axis.

file types maintained in the HF model registry, and second, to identify the key file extensions associated
with model binaries. By manually categorizing these extensions, we aimed to gain a comprehensive under-
standing of the file types used, particularly focusing on those relevant to model weights and binaries. This
understanding is essential for addressing the research question regarding the PTLM versioning practices on
HF.

The first and second authors independently categorized file extensions based on their meanings observed
during the initial manual observation of 50 repositories. They agreed on classifying model weight exten-
sions (e.g., .bin, .safetensor) as model files; text extensions (e.g., .md) as documentation; data-interchange
extensions (e.g., .json) as configuration; and programming extensions (e.g., .py) as code files. These were
the categories identified during the initial observation. This categorization is essential for understanding
the convention of files within the HF model registry, facilitating the efficient management of PTLMs. In
cases of disagreement, such as distinguishing between data and configuration files, the authors reached a
consensus through negotiated agreement.

Following the manual categorization, the authors aggregated the fine-grained file extension label into
broader categories. For instance, while initially categorized separately, data and configuration files were
combined under “Data & Configuration” since some files serve both purposes, such as JSON files. Ulti-
mately, this aggregation resulted in five distinct categories: “Code files” for extensions like .py, .cpp, .java;
“Data & Configuration files” for .json, .xml, and similar extensions; “Documentation files” for .md, .csv,
and others; “Model binary files” for .safetensor, .bin, and similar extensions; and “Other files” for exten-
sions like .jpeg, .zip. Finally, we visualized the distribution of changes across these file extension categories
and present the results in a table.

Determining the frequency of changes in model binary files. After categorizing all repository files on
HF, we focused on model binary files, as changes in these files could indicate updates or new versions
of PTLMs. We categorized model weight files based on their extensions, such as .safetensor, .bin, and
others. Subsequently, we visualized the number of changes occurring in these files. This approach helps
us understand the rate at which implicit versions are embedded in PTLM repositories on HF. We created
visual representations to illustrate the frequency distribution of changes and computed the mean frequency
of changes for each model binary file. This analysis allows us to assess how often model binary files are
modified, even in the absence of explicit versioning in the model name.

4.1.3 Results.

Current naming convention of PTLMs on HF. The segments in the naming convention of PTLMs
on HF encompass 12 segments types, with identifiers (70.8% of the model names), base
model (39.8%), and size (34.3%) being the most prevalent. Figure 4 illustrates the distribution of
12 segment types identified within HF model naming practices. The y-axis represents the segments types,
while the x-axis displays the percentage occurrence of each term relative to the 384 manually analyzed
models. We provide a detailed explanation of each segment type in our study.

14 Adekunle Ajibode et al.

– Identifier: An identifier, such as “myllm” in “truemansquad/myllm,”29 aims to uniquely differentiate
a model, similar to how variable and method names try to distinguish variables and methods based on
their semantics. Since an identifier by itself might not be unique across the overall HF model registry,
it may also be combined with additional contextual information to further specify and identify models.

– Base model:“bart” in “voidful/bart-distractor-generation-both”30 is an example of a base model. It
represents the base model from which the custom model was adapted, serving as the foundational
architecture or framework from which adaptations are made to suit specific tasks or applications.

– Size: In “Voicelab/trurl-2-13b,”31 the designation “13b” signifies the number of parameters, indicating
the computational capacity of the underlying PTLMs.

– Description: The inclusion of “my awesome qa model” in “lakshyasoni/my awesome qa model”32 pro-
vides a description chosen by the model’s owner, emphasizing the model’s purpose as a question an-
swering model. Unlike identifiers, which are always single words, descriptions are typically meaningful
sentences or phrases that convey more detailed information about the model.

– Variant type: “finetune” in “gsomers-smarsh/distilgpt2-emailtype-finetune”33 exemplifies an adapta-
tion method applied to the base model. This indicates a specific adaptation, such as fine-tuning for a
particular task or domain.

– Version: The presence of “v1” and “v1.2” in “Haary/TinyLlama-1.1B-usk-v1”34 and “SQAI/distilroberta-
base finetune v1.2”35 denote different versions of the models. They signify distinct iterations of the
downstream models, reflecting updates, improvements, or changes made over time to address user feed-
back or evolving requirements.

– Training mechanism: The “loss 5e-06” in “Shijia/furina pan loss 5e-06”36 is an example of a training
mechanism. It specifies the training hyperparameter or methodologies applied during the model training
process, such as the choice of loss function or optimizer settings, influencing model performance and
convergence. Under this category, we also classified all the information regarding training task, tuning
method, optimization technique, programming, scaling, instruct, direct preference optimization (dpo),
post-training quantization for generative pre-trained transformer (GPTQ), Python, and upscalled. “In-
struct” refers to a training mechanism that involves providing specific instructions or directives to the
model during the training process, guiding its learning behavior. “DPO” is a training mechanism aimed
at optimizing the model’s parameters directly based on user preferences or desired outcomes, bypassing
intermediate steps or metrics. “GPTQ” is a technique used to quantize or compress the parameters of a
pre-trained transformer model after the training phase, reducing its memory footprint or computational
requirements while preserving performance. “Python” indicates that the model was trained using the
Python programming language, commonly used for developing ML models and frameworks. “Upscaled”
denotes a training mechanism where the model’s capacity or size is increased, often resulting in improved
performance or capabilities, such as increased resolution or feature representation.

– Task: In “youdiniplays/filipinolingo translation,”37 “translation” denotes the task for which the model
is modified for. It clarifies the model’s intended use case or functionality, guiding users in selecting
appropriate models for specific tasks or applications, such as language translation.

– Dataset: “indonlu” in “andikamandalaa/indobert-base-uncased-finetuned-indonlu-smsa”38 represents
the dataset used for training the model. It provides transparency regarding the training data sources,
enabling users to assess the model’s domain relevance and generalization capabilities.

– Language: In “abiatarfestus/marian-finetuned-en ng bible-en-to-ng,”39 “en” and “ng” represent the
languages for which the model is designed or supports. It ensures compatibility with language-specific
tasks or datasets, facilitating seamless integration into language-centric applications.

– Others: In “Arkong/chatglm2-6b-torchkeras-2epoch-11-15,”40 the segment “11-15” illustrates ambigu-
ity within the naming practice. This lack of clarity may hinder users’ understanding of the model’s
attributes or specifications, highlighting the importance of clear and precise terminology.

29 https://huggingface.co/truemansquad/myllm
30 https://huggingface.co/voidful/voidful/bart-distractor-generation-both
31 https://huggingface.co/Voicelab/trurl-2-13b
32 https://huggingface.co/lakshyasoni/my awesome qa model
33 https://huggingface.co/distilgpt2-emailtype-finetune
34 https://huggingface.co/Haary/TinyLlama-1.1B-usk-v1
35 https://huggingface.co/SQAI/distilroberta-base finetune v1.2
36 https://huggingface.co/Shijia/furina pan loss 5e-06
37 https://huggingface.co/youdiniplays/filipinolingo translation
38 https://huggingface.co/andikamandalaa/indobert-base-uncased-finetuned-indonlu-smsa
39 https://huggingface.co/abiatarfestus/marian-finetuned-en ng bible-en-to-ng
40 https://huggingface.co/Arkong/chatglm2-6b-torchkeras-2epoch-11-15

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 15

0 10 20 30 40 50 60
Percentage of Occurrence in the Name Convention

 (% relative to the total number of name conventions)

Creation-Date
Others

Task
Dataset

Language
Description

Version
Variant-Type

Training-Mechanism
Size

Base-Model
Identifier

Na
m

e
Co

nv
en

tio
n

Se
gm

en
t T

yp
es

3.38%
10.14%

14.86%
15.54%

18.92%
20.95%
21.62%

23.65%
35.81%

43.24%
58.11%
58.11%

Fig. 5 Visualization of labeled segments from 384 manually analyzed model names on HF. Each model name is composed
of various segment types, as illustrated by the naming convention {base-model}{variant-type}{dataset}. The dataset,
consisting of several segments in the 148 naming conventions, is plotted with the segment types on the y-axis and the
number of times each segment type appears in these conventions on the x-axis.

– Creation-date: The inclusion of “2024-03-01” in “thrunlab/Mistral Sparse refined web relu 2024-03-
01”41 indicates the model’s creation date or any other information associated with a date. It provides
temporal context and facilitates version control, enabling users to track model evolution and updates
over time.

Furthermore, the key segment types indicated in the naming practice contribute to the diversity and
inconsistency within the HF repository. This inconsistency poses challenges for users attempting to quickly
and accurately understand model characteristics, which is essential not only for selecting but also for
effectively utilizing the most suitable models for their specific tasks. Interestingly, our analysis shows that
the ‘version’ segment, which closely resembles semantic versioning, is utilized in only about 5% of the
cases depicted in Figure 4, highlighting a significant finding. To address these challenges, a more structured
and enforceable representation, akin to semantic versioning, could be implemented through model cards or
configuration files, providing users with clearer and more standardized information. If this information is
already included in model cards or configuration files, it should be consistently indicated there rather than
relying on the model names alone.

The average download rates of PTLMs mentioning only model size in their name is more
than 11 times as high as those mentioning only base model. Given the prevalence of base model and
size in the studied model names, we investigate their association with the number of model downloads. To do
this, we compute the download rates of models that include either size, base model, or both in their names,
and compare them with the download rates of models that excluded these segments. Therefore, our analysis
shows that the download rate for PTLMs that mentioned base models averaged 101.88 downloads, while
those that mentioned size averaged 1,163.21 downloads per model. In contrast, models that mentioned both
size and base model averaged 314.2 downloads per model, whereas those that mentioned neither averaged
only 67.1 downloads per model. This observation suggests a correlation between including base model
and/or size in model names and higher download rates than those without these segments, potentially
reflecting users’ demand for clarity in model names to better assess the relevance or impact of version
updates.

Our manual analysis reveals the existence of 148 distinct name convention for repositories
on HF, highlighting a notable level of diversity in model naming strategies across HF model’s repositories.
Table 1 presents the 20 most prevalent name convention, including the percentage of repositories utilizing
each convention, along with illustrative examples. Despite the multitude of conventions, the predominant
formats observed are {identifier}, {identifier}{size}, and {base model }{identifier}.

This diversity in naming practices may reflect a range of practitioner preferences and practices. Names
are not enforced on HF or other registries, nor are there official standards, leading to the observed inconsis-
tencies. The discrepancy between what practitioners prefer or would ideally like when it comes to naming
PTMs and the actual naming convention that are commonly used in practice highlights the need for more
standardized guidelines to ensure consistency and clarity in PTM naming (Jiang et al., 2024a).

41 https://huggingface.co/thrunlab/Mistral Sparse refined web relu 2024-03-01

16 Adekunle Ajibode et al.

Table 1: The 20 (out of 148) most occurring naming convention and examples, comprising at least 3 models

Naming convention % Model Examples

{identifier} 17.96 vesteinn/ScandiBERT
{identifier}{size} 8.07 automerger/Experiment27-7B
{base model }{identifier} 3.12 eugenesiow/bart-paraphrase
{description} 2.86 FrankTCH/Trans-from-scratch
{identifier}{version} 2.6 anupk/AskPaul-V2
{identifier}{description} 2.34 kamel-usp/aes enem models-sourceA-ordinal-

from-bertimbau-large-C1
{identifier}{base model }{size} 2.08 cerebras/Cerebras-GPT-111M
{task} 2.08 bgoel4132/tweet-disaster-classifier
{base model }{training-mechanism} 1.82 danielkty22/gpt2-ep-1.4-b-4-lr-4e-06-

dp-0.1-ss-0-st-False-fh-False-hs-200 normal
{identifier}{base model } 1.56 nbroad/ESG-BERT
{identifier}{task} 1.56 emarron/JARVIS-email-sorter
{identifier}{size}{training-mechanism} 1.30 Ichigo2899/Airoboros-13b-8k-TGI-GPTQ
{identifier}{training-mechanism} 1.30 ATYOSHIDA/Q2 default 7030 seed42 random 2
{base-model}{variant-type}{dataset} 1.30 Quocc/roberta-finetuned-subjqa-movies 2
{base-model}{size} 1.04 openerotica/Qwen-7b
{identifier}{others} 1.04 controltensor/subnet-model-19
{identifier}{base-model}{training-mechanism} 1.04 danielkty22/probe gpt2-medium-ep-1.0-b-4-lr-1e

-05-dp-0.01-ss-0-st-False-fh-False-hs-100
{identifier}{size}{description} 1.04 vincentmin/bloomz-1b1-eli5-reward
{base-model}{size}{identifier} 1.04 win10/Qwen1.5-0.5b-Xia-Ai
{identifier}{base-model}{dataset} 0.78 mesolitica/malaysian-mistral-mmmmodal

Our analysis reveals that identifiers, base models, and size are the most prevalent naming
segments in the naming conventions used by practitioners on Hugging Face. Figure 5 shows the
prevalence of each segment type in the observed naming convention patterns. Even though identifiers can
be arbitrary and are at the practitioners’ discretion, the most prevalent segments among the practitioners
aside from “identifiers” are: “base model”, “size”, “training mechanism”, “variant type”, and “version”.
This indicates that practitioners prioritize communicating key model characteristics such as architectural
foundation, scale, training methodology, and specific variant details to provide quick, comprehensive insights
into the model’s essential attributes and differentiation.

This result corroborates the findings in (Jiang et al., 2023b), which revealed a preference of practitioners
for the architecture, size, and task naming segments. Building on their observations, we found that, due to
the unique characteristics of language models compared to other model types, practitioners on Hugging Face
also emphasize training mechanisms and version. These segments, which were shown to have low prevalence
in Jiang et al.’s study, appear to play a more prominent role in the naming practices for language models.
This may be one of the aspects that distinguish language models from other types of models.

Note that, what (Jiang et al., 2023b) referred to as naming conventions in their study is categorized as
naming segments in our work, as 148 naming conventions in our paper comprise one or more segments types.
Additionally, while (Jiang et al., 2023b) studied models of different domains, our focus was specifically on
language models. The insights from our analysis highlight the need for further studies focusing on naming
conventions specific to models of different domains.

Our analysis of naming conventions reveals that {identifier}{base-model}{size}, {identifier}{size},
and {identifier}{training-mechanism} are associated with the highest download rates among
the prevalent conventions. However, no significant relationship was found between the length
of model names and download rates.We analyzed the relationship between download rates and naming
conventions. To achieve this, we first ranked the naming conventions by their average download rates. The
naming conventions—such as {identifier}{size}{language}{version}, {identifier}{size}{language}, {base-
model}{size}{variant-type} {description}, {identifier}{base-model}{version}, and {base-model}{size}{dataset}{training-
mechanism}—had the highest average download rates (19,434, 5,762, 3,015, 2,522, and 2,418 downloads per
model, respectively). However, these naming conventions lacked sufficient data points to draw a definitive
conclusion. Consequently, we filtered out naming conventions that were used by fewer than three PTLMs,
resulting in 20 naming conventions (13.5% of 148) being qualified for this analysis.

Figure 6 visualizes the download rates of the prevalent naming conventions using a bubble plot.
The y-axis represents naming conventions, while the x-axis indicates the normalized size of each bub-
ble, and the bubble size reflects the average download rate. The results show that {identifier}{base-
model}{size}, which averages 1,072.12 downloads per model; {identifier}{size}, averaging 770.90 downloads;
and {identifier}{training-mechanism}, averaging 283.80 downloads, are the most widely adopted naming
conventions with notable download rates. This analysis highlights the frequent inclusion of base model, size,
and training mechanism segments in naming conventions with high download rates, suggesting that these
features are key factors in naming preferences. These findings align with the results in (Jiang et al., 2023b)’s

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 17

0.96 0.98 1.00 1.02 1.04
Download (Bubble Size)

{identifier}{base-model}{size}

{identifier}{size}

{identifier}{training-mechanism}

{identifier}{size}{description}

{identifier}{version}

{base-model}{size}

{identifier}

{identifier}{description}

{identifier}{size}{training-mechanism}

{identifier}{base-model}

{base-model}{identifier}

{task}

{base-model}{size}{identifier}

{identifier}{task}

{base-model}{training-mechanism}

{identifier}{ambiguous}

{description}

{identifier}{base-model}{dataset}

{identifier}{base-model}{training-mechanism}

{base-model}{variant-type}{dataset}

1072.12

770.90

283.80

280.25

227.10

225.00

151.07

131.56

71.80

25.83

21.58

19.75

9.00

8.67

7.29

6.50

5.73

5.67

4.25

2.40

Fig. 6 Visualization of the top 20 prevalent naming conventions out of 148 and their average download rate per model
for each naming convention. The naming conventions are displayed on the y-axis, while the normalized download rate is
shown on the x-axis. The higher the download rate, the larger the bubble.

study, which revealed participants’ preference for naming models are based on architectural characteristics
and intended functions.

To quantify the relationship between model name length and download rates, we conducted a Pearson
correlation analysis and a linear regression. The Pearson correlation coefficient (-0.024) and p-value (0.7718)
indicate no statistically significant correlation between the two variables. The negative sign of the correlation
coefficient suggests a negligible tendency for download rates to decrease as model names lengthen. The linear
regression analysis further supports this observation, with a slope of -0.024 indicating a slight negative
relationship between name length and download rates. However, this effect is minimal, and the near-zero
intercept reflects the minimal correlation of name length with download rates, highlighting that even very
short names do not significantly alter the former. The R-squared value of 0.0006 shows that only 0.06%
of the variance in download rates can be explained by model name length, emphasizing that factors other
than name length, such as number of direct descendant model and documentation quality (Jones et al.,
2024), play a more significant role in influencing download rate as reported in Jones et al. study.

Current Versioning Conventions on HF. Only 3,471 (6.64%) of 52,227 PTLMs have a version
segment in the name convention. Our analysis of model name conventions on HF reveals that the
percentage of PTLMs specifying the version of the model is very low. This lack of versioning informa-
tion in model names highlights the potential difficulties in tracking and managing different iterations of
PTLMs on the platform. Adding to the complexity, each version of a model on HF is often placed in a
separate repository, further underscoring the need for proper naming conventions and versioning tags to
help users easily identify and differentiate between various iterations. This low percentage might suggest
that practitioners only specify versions when necessary. It is possible that many practitioners are adapting
the base model to publish a new PTLM once without further corrections or updates, indicating a one-off
customization for specific use cases rather than ongoing iterative development. Alternatively, the lack of
versioning might reflect a broader issue where there are no established guidelines or enforced standards for
naming conventions on HF. This lack of enforcement and standardization could contribute to the overall
low rate of version specification in model names.

Among the PTLMs that do include version information in their name convention on HF,
the predominant strategy is major versioning, following the software development standard
of identifiers like v1, v2, etc. Specifically, we observed that 67% of these PTLMs adopted
this major versioning approach. This indicates that when version information is provided, it
predominantly reflects major versions only. Our analysis reveals that major versions (e.g., v1, v2)
are the predominant versioning practice on HF among PTLMs that specify versions, accounting for 67% of
the 3,471 PTLMs with version information in their names. While major versioning is widely adopted for
updating many models, the limited use of minor versions (e.g., v1.1) for 33% models suggests deviations

18 Adekunle Ajibode et al.

from established software engineering practices. Minor versions provide finer granularity in version up-
dates, facilitating more precise tracking of incremental changes and the ability to check compatibility with
downstream applications (Paez, 2018). Enhancing the use of minor versions on HF could align practices
more closely with industry standards, which emphasize the importance of both major and minor version
distinctions.

Summary

HF PTLMs feature diverse naming practices (148) on HF, composed of segments
matching 12 possible segments with segments representing “identifiers,” “base model,”
and “size” the most frequent indicated in the names. Major versioning identifiers (67%
of 3,471 models) dominates.

Categories of Changed Files in Repository Commits. A total of 1,282,874 changes were observed
across 52,227 PTLM repositories. However, only 3,471 of these changes are explicitly com-
municated through version identifiers in the model names, leaving other significant changes
implicit within the model’s repository. Furthermore, we observed that many practitioners prefer us-
ing separate HF repositories for different major and minor releases instead of evolving versions within the
commit history of a single repository. This practice further complicates tracking and managing different
iterations of PTLMs. Table 2 shows the categories of files that are changed on HF, the frequency of changes
in percentage, the number of PTLMs (in percentage) that made changes to each file category, and the
average number of changes per model. The mean changes per model are determined by dividing the change
frequency by the total number of models that made the changes. It is evident that different file categories
exhibit distinct conventions of change.

Model files, referring to model binary files, have the highest frequency of changes (40.87%), with a
substantial proportion of models making changes to these files (32.81%). Despite this high frequency, only
0.66% of these changes are reflected in the model names through version identifiers. This implies that ap-
proximately 40.21% of changes are implicit, not declared in the model names or anywhere in the repository.
This high percentage of implicit versions suggests a significant oversight in versioning practices, similar to
issues seen in R where users might face difficulties due to inadequate versioning of packages(Decan et al.,
2016). The frequent updates to model binaries, likely driven by ongoing improvements and optimizations,
highlight the need for more structured versioning that includes major, minor, and patch revisions. The
high average of 12 changes per model in this category suggests that adopting a more rigorous versioning
approach could help mitigate confusion and compatibility issues for users.

Data & Configuration Files also exhibit a high frequency of changes (34%) and are similarly important,
reflected in the comparable percentage of models making changes to these files (32.85%). This suggests that
modifications in configuration and data are frequent and essential for maintaining and enhancing model
performance. The average changes per model in this category (10) are significant, highlighting the ongoing
need to update and refine configuration settings and data inputs.

Other Files, despite having a moderate frequency of changes (14%), see a relatively low percentage of
models making changes (6.95%). This discrepancy could imply that when changes do occur in these files,
they are often more substantial or involve fewer models but with more significant changes per instance. The
high average changes in this category (19 changes per model) support this notion, indicating substantial
modifications when changes are made.

Documentation files, while not changed as frequently (11%), are updated in a considerable proportion
of models (25.81%), highlighting the importance of maintaining accurate and up-to-date documentation.
The lower average changes (4 per model) suggest that documentation updates are more straightforward
and less frequent compared to other file categories. The reasons for these updates could include initial
documentation being incomplete, unclear, or missing, among other possibilities.

Lastly, Code Files have the lowest frequency of changes (1%) and a minimal percentage of models
making changes (1.58%). This is not surprising, given that HF primarily functions as a model registry for
downstream tasks rather than a code repository like GitHub. Consequently, there is less need for frequent
updates to code files. The low average changes (4 per model) suggest that code updates are infrequent and
involve smaller adjustments rather than large-scale revisions.

Categories of Changed Model Binary Files in Repository Commits. Frequent changes (a total of
524,419 changes) are observed in the model weight files of 52,227 models, and security-
focused tensor files are the most commonly used ML framework for storing model weight on
HF, exhibiting the highest frequency of changes, averaging 7.88 changes per model.

We identified various model binary file extensions used for storing model weights on HF, associated
with different ML frameworks: Generic Binary files (.bin, .model, .mdl), PyTorch model files (.pt, .pth,

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 19

Table 2: Change Frequency and Average Number of Changes per Model by File Category. CF(%): Percent-
age of Change Frequency, NM (%): Percentage of Number of Models (relative to 52,227), ACPM: Average
Number of Changes Per Model.

File Categories CF (%) NM (%) ACPM
Model Files 40.878 32.81 12
Data & Configuration Files 33.946 32.85 10
Other Files 13.825 6.95 19
Documentation Files 10.658 25.81 4
Code Files 0.69 1.58 4

Table 3: Categorization of model weight files. Percentage of Change Frequency, NM (%): Percentage of
Number of Models (relative to 52,227), ACPM: Average Number of Changes Per Model.

Model File Categories CF (%) NM (%) ACPM

Security-focused tensor file 62.63 53.63% 7.88
Generic Binary file 27.17 43.85% 4.18
PyTorch model file 9.96 2.10% 31.92
ONNX model file 0.20 0.32% 4.28
TensorFlow model files 0.02 0.05% 3.03
TensorFlow Lite model file 0.01 0.02% 3.53
Apple Core ML model file 0.01 0.03% 1.44

.torch), TensorFlow model files (.meta, .ckpt, .pb), TensorFlow Lite model files (.tflite), ONNX model files
(.onnx), Apple Core ML model files (.mlmodel), and Security-focused tensor files (.safetensors). Table 3
presents these model file categories along with their frequency of changes, percentage of models utilizing
each category, and average changes per model.

Security-focused tensor files exhibit the highest frequency of changes, averaging 7.88 changes per model,
indicating significant maintenance and updates. Generic Binary files show substantial activity with an av-
erage of 4.18 changes per model, widely utilized across models. PyTorch model files demonstrate a notably
high average of 31.92 changes per model, reflecting dynamic development despite lower utilization. ONNX
model files average 4.28 changes per model, emphasizing their role in interoperability. TensorFlow and
TensorFlow Lite model files exhibit lower activity with averages of 3.03 and 3.53 changes per model, re-
spectively. Apple Core ML model files have the lowest frequency of changes at 1.44 per model, reflecting
their specialized use within the Apple ecosystem.

Summary

We highlight a significant disconnect between versioning practices and model release
activities (3,471 declared versions instead of potentially 524,419 versions, if each change
is considered a potential version). Frequent changes (an average of 12 changes per
model) were observed in model files more than in configuration, documentation, and
code files, but these modifications weren’t always reflected in model names or version
identifiers (3,471 out of 524,417 were reflected). Similarly, up to seven different ML
frameworks are utilized for storing model weights on HF, indicating potential
implications for model interoperability and user-friendliness concerning versioning
conventions. Security-focused tensor files exhibit the highest frequency of changes
among all categories, suggesting intensive maintenance and updates (Singla, 2023).
Code and documentation file categories have the fewest changes (4 per model), while
model files have the most changes (12 per model), underscoring frequent modifications
that can significantly impact model versions.

4.2 RQ-2: What are the variant types and their qualities on HF

4.2.1 Motivation

This research question investigates the reproducibility and transparency of PTLM releases on HF. Under-
standing these aspects is important because they affect users’ trust in the consistency and dependability of
the models. Transparency is defined in terms of the availability of model cards and dataset documentation,
while reproducibility pertains to understanding the provenance of PTLMs and their variant types on HF.
For transparency, we explore the rate at which practitioners release model cards with their PTLMs and
how frequently they mention the datasets used to train their PTLMs. For reproducibility, we investigate the

20 Adekunle Ajibode et al.

number of base models adapted to publish the 52,227 PTLMs we are studying and how often practitioners
state the adaptation methods, which result in different variant types. This understanding is supported by
the availability of configuration files that specify model settings and base model details. Inconsistent release
practices may hinder users and developers not only in selecting models for their downstream applications
but also in assessing model reliability and efficacy before deployment. By studying transparency and repro-
ducibility for different model variants, we aim to identify areas where improvements are needed to enhance
the overall model sharing and reuse process on HF. This information is valuable for both model creators
and users, ensuring that models are more accessible and easier to integrate into various applications.

4.2.2 Approach

1.) Provenance of PTLMs on HF (reproducibility). To investigate the reproducibility of each PTLM
release, we first explored their provenance of PTLMs by identifying the base model within the configuration
file of each PTLM release in its respective repository. To extract configuration information of a release,
we leveraged the config.values() function of the HF Transformers library. At the time of collecting
the data, not all models have configuration files, such as nvidia/retro-8b-base-4k, indicating the owner
did not upload them using either the standard HfAPI 42 or the transformers.PretrainedConfig43 class.
Standard HfAPI is a part of the HF Hub that provides a unified interface for accessing model configuration
information, while transformers.PretrainedConfig is a class within the HF transformers library specifically
designed for handling model configurations. We calculated the percentage of PTLM models that have
configuration files in their repositories.

2.) Variant types of PTLMs on HF (reproducibility). We identified the variant types from the model
name. As explained in Section 2.1, Variant types encompass types of modification methods applied to the
base model, such as Fine-tuning to derive a variant model. We discovered in RQ1 that some keywords,
such as “finetuned”, are stated in the names of some models on HF, and can be classified as the variant
type. Therefore, to comprehensively identify all these keywords, we used both manual and automatic
methods to analyze the model names, config files, and metadata associated with each of the models in
the HF model registry. We explored only these aspects because both the first author and second author
independently examined 50 randomly selected PTLMs repositories and found that these aspects at least
consistently provide the necessary information to identify variant types accurately across those models
through the common naming practices. We acknowledge that model cards may sometimes contain the
necessary keywords; however, not all models have model cards, and accessing them for some repositories
requires manual authentication and waiting time, reducing our sample size. For example, accessing meta-
llama/Llama-2-7b-chat44 and meta-llama/Llama-2-7b45 requires manual authentication and waiting time
to be granted access by the owner to these PTLMs.

For our manual analysis, as it is impractical to analyze 52,227 models, we focused on a statistically
significant sample of 384 models (confidence level of 95% percent and margin of error 5%). For the selected
samples, we manually explore different aspects of the models by browsing each model’s repository one by
one to identify an indications of variant types. First, we focused on the model names, as many models
have indications, such as “finetuned,” directly in their name segments. Second, we explored the configu-
ration files to determine whether variant-related segments are present. However, we found that 2% of the
studied PTLMs lacked configuration files, such as Sosaka/Alpaca-native-4bit-ggml and Skaczmarj/resnet50-
truncated.tv in1k, making it impossible to locate this information from them. Third, we explored the tags
of each model repository. While some models, like 01-ai/Yi-34B-Chat-4bits, specified a keyword (4bits) in
their tags, others, like upstage/SOLAR-0-70b-8bit, did not. Subsequent to the manual analysis, we auto-
matically collected these segments from the segments of the model names using a Python script (Ajibode,
2024).

To determine the prevalence of model reproducibility in terms of variant types, we calculated the
distribution of PTLMs across variant types. This reproducibility characteristic allows us to gain insights
into which variant types are more prevalent on HF, thereby helping us understand the common practices
in specifying model variants.

3.) PTLMs training dataset indication (transparency). To gain a comprehensive understanding of
release transparency on HF, we examined how frequently the sources of training datasets are mentioned
in the release documentation or in the dedicated areas of the PTLM repositories on HF. This focus is
important because the training dataset can significantly impact a model’s performance and suitability for

42 https://huggingface.co/docs/huggingface hub/en/package reference/hf api
43 https://huggingface.co/docs/transformers/en/main classes/configuration
44 https://huggingface.co/meta-llama/Llama-2-7b-chat
45 https://huggingface.co/meta-llama/Llama-2-7b

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 21

specific tasks. Our assessment of the distribution of PTLM models that mention training dataset sources
involved a dual methodology: manual and automatic.
Automatic Method for Identifying PTLM Releases that Mentioned the Training Dataset and their sources.
We leveraged the cardData.datasets function of the HfAPI to extract dataset information from all analyzed
releases. Our script retrieves the dataset specified by the model owner. For instance, executing our script on
the PTLM named “rhaymison/cuscuz-7b”46 returns “rhaymison/questions answers geo nord”, indicating
the dataset used for training the model.
Manual Method for Identifying PTLM Releases that Mentioned the Training Dataset and their Sources. We
conducted a manual analysis of repositories where the automated technique failed to identify a specified
dataset. To ensure an unbiased approach, we considered all PTLM releases (25,807 in total) where the
automated method did not retrieve any dataset. From this pool, we randomly sampled 379 unique PTLMs
for further analysis using a Python script, with a confidence level of 95% and a % margin of error. The
selection criteria required each sample to have a unique owner, a unique model, and an available model
card for each release. These criteria were collaboratively established by both authors to ensure consistency.

Furthermore, dataset names can be duplicated, while only the source clarifies the exact data used. For
example, the model card for saicharan8/telugu-summarization-umt5-small47 stated, “This repository is a
fine-tuned version of google/umt5-small48 on a Telugu-News Article Summaries Dataset,” indicating the
utilization of the Telugu-News Article Summaries Dataset for training without mentioning the source. If
the source is unavailable, the user cannot access the training dataset, particularly if it is not on HF. In
another example, the model card for Salesforce/codegen2-16B49 mentioned, “This checkpoint is trained
on the stricter permissive subset of the deduplicated version of the Stack dataset (v1.1),” accompanied
by a link50 to the dataset. Some repositories, such as “chihoonlee10/T3Q-Merge-SOLAR12”51, lack any
information regarding the training dataset or source. Subsequently, we categorized the PTLM model based
on whether they specified the dataset without source, specified the dataset with source, or didn’t specify
either.

We highlight that our initial sample selection encountered inaccessibility issues with three repositories
“(venkycs/ZySec-2B-v2”, “deepnetguy/gemma-54”, and “deepnetguy/gemma-55”) potentially deleted or
renamed on HF. To ensure data integrity, we re-examined all repositories using a Python library, assigning
a “success” status to accessible ones and an “error 404” status to unavailable ones. This process identified
95 inaccessible repositories (0.2% of the total), indicating that model registry releases can be relatively
brittle. The fact that between the start and end of our study, 95 out of 52,227 repositories were no longer
accessible, could indicate potential disruption of user workflows and applications. We then proceeded with
the analysis using the final, accessible sample.

Following this procedure, both the first and second authors independently performed the entire manual
analysis by directly accessing each repository to read the model card for the purpose of identifying the
mentioned training dataset information. The inter-rater agreement between them was measured using
Cohen’s kappa score, which was found to be 0.98. Notably, there was only one discrepancy: in a case where
a model card stated, “This model is a fine-tuned version of bert-base-uncased on an unknown dataset,” the
first author accidentally interpreted the dataset name as “Unknown,” while the second author interpreted
it differently.
4.) PTLMs model card publication (transparency) To investigate the transparency of PTLM releases
on HF regarding model card availability, we developed a Python script using the HF API. This script checks
each PTLM to determine if it has an associated model card. If a model card is found, the script retrieves it;
otherwise, it outputs a message stating, “Repo card metadata block was not found. Setting CardData to
empty.” Following this, we analyzed the distribution of PTLMs, categorizing them based on whether they
have model cards or not.

4.2.3 Result

Reproducubility of HF releases based on provenance.
98% of the studied PTLMs have configuration files that detail the base models adapted for
PTLMs. Our analysis shows that practitioners make it easier for users to locate the parent model of
their current model by including configuration files that detail model origin and other information, such
as parameter settings and transformer versions. Furthermore, the variant type of the source model is also

46 https://huggingface.co/rhaymison/cuscuz-7b
47 https://huggingface.co/saicharan8/telugu-summarization-umt5-small
48 https://huggingface.co/google/umt5-small
49 https://huggingface.co/Salesforce/codegen2-16B P
50 https://huggingface.co/datasets/bigcode/the-stack-dedup
51 https://huggingface.co/chihoonlee10/T3Q-Merge-SOLAR12

22 Adekunle Ajibode et al.

Lla
ma

Bert
Mistr

al

Disti
lbe

rt
Gpt2 T5

Ro
be

rta

Xlm
-ro

be
rta

Gem
ma

Mixt
ral Bart

Gpt_
ne

ox
Mari

an Mt5 Ph
i

Prevalent Base Models

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f P
TL

M
s

19.5%

13.8%

12.1%

8.2%
7.0%

6.4%
5.1%

4.1%

2.2% 1.7% 1.5% 1.5% 1.0% 1.0% 0.9%

Fig. 7 Percentage of PTLM releases by each top 15 (out of 229) base model on HF, calculated as the number of PTLMs
released using each base model divided by the total number of PTLMs studied (52,227) as of March 17, 2024, multiplied
by 100.

documented in these files, though not in all cases. While 98% have configuration files, only 0.085%, such as
mlx-community/Mistral-7B-Instruct-v0.2-4-bit and 01-ai/Yi-34B-Chat-4bits, actually contain indications
of variant type in these files. However, repository names remain important because they provide a quick
reference to models and help users differentiate between them, especially when configuration files do not
consistently contain all the necessary information about variant types. The inclusion of configuration files
is crucial as they hold information about the model origin and variant types, underscoring the importance
of providing these files when sharing models to ensure accurate and reliable reproduction of results. For the
remaining 2% that did not include configuration files, it is important to note that all models should ideally
have these files, if not for anything else, then to identify the parent model and variant type. Configuration
errors are well-documented as a significant source of problems in software systems (Xu and Zhou, 2015,
Yin et al., 2011, Santolucito et al., 2016), and their absence in these PTLM releases raises concerns about
potential issues during deployment.

Since 2022, the 52,227 PTLM variant releases on HF have all been derived from only
299 base models. The top 15 base models account for 85.80% of these releases, with Llama,
Bert, and Mistral leading the community in the number of times they have been adapted.
However, the prevalence of these top 15 PTLMs relative to their age shows that Gemma and
Mistral are growing faster than Llama, which has seen the most explosive development when
their age is not considered. This highlights the concentrated development efforts within the
community.

Our analysis reveals that the initial PTLM variant release using the GPT2 base occurred in March
2022. We visualize the distribution of these top 15 base models in Figure 7, which contributed to 85.80% of
the studied models. It is evident that Llama, Bert, and Mistral dominate the landscape of PTLM releases
on HF, contributing 19.45%, 13.78%, and 12.08% of the total studied models among the top 15 base
models, respectively. Conversely, Phi, MT5, and Marian contributed the least, with 0.85%, 0.95%, and
1.04% among the top 15 base models. This concentration highlights the community’s preference for Llama,
Bert, and Mistral base models, likely due to their suitability for various NLP tasks.

We further explored the prevalence of each base model, adjusted by the age of its first PTLM release
(in terms of number of models per day), illustrated in Figure 8. Gemma has seen the most explosive
development, and even Mistral was growing faster than Llama, which makes them stand out prominently
with the highest proportion of PTLM releases per day (47.9%) and (36.9%), highlighting their popularity
among practitioners. Conversely, PTLMs such as MT5, Marian, and Bart have fewer releases, indicating
lower adoption rates within the HF community by the practitioners. The concentration of development
efforts around these top 15 base models is further emphasized by their collective contribution of 85.80% of
the 52,227 PTLMs, illustrating the community’s focus on a select group of base models.

This observation may be due to other factors that make Gemma, Mistral, and Llama particularly appeal-
ing to HF developers and users, such as their high performance, ease of adaptation, and broad applicability.
Further research is needed to understand why these models are more popular in the community.

Among model names, configuration files, and tags, model names and tags show diverse variant
type indications. Specifically, 12.76% of models specify these diverse variant types in their

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 23

Gem
ma

Mistr
al

Lla
ma

Bert

Mixt
ral

Disti
lbe

rt
Gpt2 T5 Ph

i

Ro
be

rta

Xlm
-ro

be
rta

Gpt_
ne

ox Bart

Mari
an Mt5

Prevalent Base Models

0

10

20

30

40

50

Nu
m

be
r o

f P
TL

M
s a

dj
us

te
d

 b
y

ag
e

of
 th

e
fir

st
 re

le
as

e

47.9

36.9

27.8

9.7 8.9
5.7 4.9 4.5 3.6 3.6 2.9 1.3 1.0 0.7 0.7

Fig. 8 Top 15 base models (out of 299) as of March 17, 2024, by number of PTLM variant releases on HF per day. The
number of PTLMs released is normalized by the age (in days) of the first PTLM released using that base model on HF.

names, compared to 5.63% in their tags. Our analysis reveals that practitioners on Hugging Face (HF)
denote the variant type of their models in three locations: model names, configuration files, and tags. Diverse
variant type indications, such as ‘ft’, ‘AWQ’, and ‘deduped’, are commonly specified in model names and
tags. However, only the indications of models that have undergone parameter conversions, like ‘float16’, are
found in configuration files. Of the 52,227 models analyzed, 12.75% indicated their variant types in model
names, and 5.63% did so in tags. In contrast, 19.22% of models indicated their variant types in configuration
files. Furthermore, when practitioners include this information in model names, they also tend to include it
in the tags or configuration files. We observed that 2.48% of models contained indications of variant types in
all three aspects. However, 8.51% specified this information solely in model names, 13.90% in configuration
files only, and 1.17% in tags only. This implies that while model names are a prominent location for diverse
variant type indications, tags are used less frequently and often redundantly, it highlights the variability in
how practitioners choose to document variant types, with some relying exclusively on one location while
others use multiple locations.

70.72% of 52,227 PTLM releases does not state their variant type at all. This absence of
variant type information may significantly complicate the process of selecting the most suitable model
for a particular task, because different PTLM variant types have distinct characteristics and performance
metrics. For instance, a fine-tuned model might excel in a specific domain but struggle with generalizability
(Ding et al., 2023, Howard and Ruder, 2018), while a distilled model might offer faster inference times but
sacrifice some accuracy. Without knowing the variant type, users may face challenges in selecting the optimal
model. This can lead to inefficient exploration through trial-and-error approaches, potentially wasting
valuable time and computational resources. Additionally, the lack of clear variant information may result
in users independently recreating and uploading certain variants, leading to redundant work and further
inefficiencies. Even if issues are identified with a base model, such as copyright concerns or performance
limitations, knowing a model’s derivation and adaptation method remains crucial for compliance and legal
purposes. Clear variant type labeling enhances trust and communication between developers and users.
When developers provide comprehensive information about their models, including variant type, users feel
more confident in their choices and are more likely to engage with the model.

14 distinct variant type indicators are extracted from model names, configuration files,
and tags. Our analysis shows that 14 different indicators are being used by the practitioners to indicate
the variant types of their model. In this case, We classified these indicators into four distinct categories:
Fine-tuning, Deduplication, Quantization, and Knowledge Distillation. It is important to note that 0.7% of
models used multiple adaptation methods on a single base model, resulting in multiple variant types. In this
case, we decided not to categorize them separately but maintained their variant type and duplicated the
models with such multiple variant types for the analysis. This approach was taken to avoid overcomplicating
the classification and to maintain clarity in our analysis.

In our examination, we found two indication of Fine-tuning: “finetuned” and “ft”. They signify instances
where models have undergone additional training to enhance their performance on specific tasks.

Furthermore, our analysis identified eleven indication of Quantization: indicating various techniques
and methods used to decrease the bit-width or precision of numerical values within models:

– 4bit: quantization to 4-bit precision.
– 8bit & q8: quantization to 8-bit precision.
– Int4: integer quantization to 4-bit precision.

24 Adekunle Ajibode et al.

Quantized Fine-tuned Distilled Deduped
Different Variant Types

0

10

20

30

40

50

60

70

Nu
m

be
r o

f P
TL

M
 re

le
as

es
 (%

)

69.3%

29.6%

0.6% 0.5%

Fig. 9 Distribution of variant types by the number of releases out of 15,287 releases.

– QAT: Quantization-Aware Training, a technique where quantization constraints are applied during
training.

– awq: adaptive weight quantization, a technique where quantization is applied to model weights.
– float16: quantization to 16-bit floating point precision.
– int8: quantization to 8-bit integer precision.
– ptq: Post-Training Quantization, a technique where quantization is applied after model training.

We also identified one indication of Deduplication: “deduped”. It indicates instances where efforts have
been made to eliminate duplicate or redundant information within models.

Our analysis found one indication of Knowledge Distillation: “distilled”, which denotes instances where
models have been trained using knowledge distillation techniques to transfer knowledge from a larger model
to a smaller one.

These categories provide insights into the different techniques and processes applied during the devel-
opment and refinement of PTLMs available on HF. They also highlight the ways in which variant types are
documented and where these variant types can be located. However, the fact that there are four identified
variant types, and there are redundant specifications of these variant types in different aspects of the PTLM
repositories, shows that inconsistency in choosing a specific location for indicating these variant types im-
plies a potential risk that many variant types might not be adequately documented. This inconsistency can
lead to confusion and difficulty in identifying the specific adaptation method for a specific PTLM.

The widespread use of these indications within the HF community suggests they could serve as foun-
dational segments for designing a mechanism for future semantic versioning of PTLMs. Establishing such
standards could enhance clarity and interoperability in model development practices across platforms, en-
suring developers and users alike have a clearer understanding of model functionalities and changes over
time.

Based on the available information, Quantized PTLM releases, constituting roughly 69.3%
and Fine-tuned PTLM releases, constituting roughly 29.6% of 15,287 PTLM releases, are the
most released model variant types on HF.

It is evident in Figure 9 that the community is primarily adopting two methods of modifying the
base models: Quantization and Fine-tuning. This trend could be attributed to several factors, including
reduced model size through quantization, which enhances accessibility and specific use cases and easy
performance improvement through fine-tuning. Quantization has been optimized to reduce model size
without compromising much on performance, leading to greater efficiency, while Fine-tuning has been
optimized to significantly improve model performance metrics such as accuracy (Dettmers et al., 2024,
Martin, 2024, Wortsman et al., 2022, Liu et al., 2022). However, as high percentage (70.72%) of practitioners
fail to indicate the variant type of their models, it is difficult to draw definitive conclusions about the most
released PTLM variant types in this study.

Furthermore, based on our results, among the top 15 released base models, Llama and Mistral are promi-
nently used for quantization, while Bert and Distilbert emerge as the predominant choices for fine-tuning
base models. Specifically, Llama and Mistral account for 85.65% of quantized PTLMs, highlighting their
dominance in this technique. Similarly, 52.93% of the fine-tuned PTLMs are based solely on Bert and Dis-
tilbert models, highlighting their significant role in this method. Additionally, 91.66% of the deduplicated
PTLMs in our study originate from the GPT-NeoX base model, illustrating its widespread adoption for
this approach. Conversely, Bert and Distilbert contribute to 76.05% of the distilled PTLMs, emphasizing

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 25

No Yes
Dataset Availability

Deduped

Distilled

Fine-tuned

Quantized
Re

le
as

e
Va

ria
nt

 Ty
pe

s

76.0 24.0

67.1 32.9

77.7 22.3

83.6 16.4
20

30

40

50

60

70

80

Pe
rc

en
ta

ge

Fig. 10 Distribution of release variant type with available training datasets from a total of 8,157 PTLMs.

their prevalence in this method.

Summary

Since 2022, 52,227 PTLM releases on HF have been derived from only 299 base models,
with the top 15 base models accounting for 85.80% of these releases. Llama, Bert, and
Mistral are the most frequently adapted models, although Gemma and Mistral are
growing faster relative to their age compared to Llama. Variant types are indicated in
model names, configuration files, and tags, with 12.76% of PTLMs specifying these
variant types in their names, making it the most common method for variant type
indication. However, 70.72% of PTLMs do not specify their variant type. Four distinct
variant type indicators—Quantized, Deduped, Distilled, and Fine-tuned—are observed.
Quantized and Fine-tuned PTLMs are the most prevalent, constituting approximately
69.3% and 29.6% of releases, respectively.

Training dataset transparency on HF
Our automatic method for identifying PTLMs with training dataset information in the meta-
data on HF shows that out of 52,227 PTLMs, 33,964 (65%) have dataset metadata. Among
these, only 24% (8,157) explicitly indicate their training datasets in the metadata. Further
manual analysis of the model cards for the remaining 25,807 PTLMs reveals that just 12%
mention the names of their datasets, and only 2% provide a link to the dataset.

Our results show that among the PTLMs with dataset metadata (33,964), only 24% specify the training
dataset in the metadata. Consequently, we manually analyzed those PTLMs that do not specify datasets
in their metadata by reading their model cards. A manual analysis of a random subset (n=379) of those
lacking training data information (25,807) revealed that only 12% mention the training dataset name in
the model card, and a mere 2% provide links to the source. This lack of transparency may hinder users’
ability to assess potential biases in the training data and their impact on the model’s suitability for specific
tasks. It is important to note that all the datasets identified by the HfAPI are datasets hosted on HF, while
others mentioned in the model cards could be either external datasets or HF datasets.

Our findings on dataset transparency contrast with those of (Pepe et al., 2024), who reported that
14% of models identify their datasets via specific tags, and that 61% of the top-downloaded models that
they manually sampled document their training datasets. In comparison, our broader analysis of 52,227
pre-trained language models (PTLMs) reveals a significant lack of transparency. Out of our 52,227 models,
33,964 models contain dataset metadata, but only 8,157 (24%) of the latter specify their training datasets in
the metadata accessible via the Hugging Face API. For the remaining 76% of PTLMs (25,807 models) not
specifying their training dataset in HF metadata, manual analysis of a random sample of 379 models showed
that only 12% of them mention the dataset name, with 1

6 of the latter also providing a URL, while the
remaining 88% had empty data cards. These findings are consistent with those of (Oreamuno et al., 2024),
who reported that 71.52% of datasets lack a dataset card and exhibit inconsistent documentation across
sections. Both studies underscore the pervasive issue of insufficient dataset transparency, which complicates
the evaluation of biases and the suitability of models, regardless of their popularity.

Only a minority of models from deduplication (24%), fine-tuning (22.3%), and quantization
(16.4%) were accompanied by training datasets. Even knowledge distillation, with a slightly
higher rate (32.9%), had a substantial portion without explicitly specified datasets.

The result in Figure 10 shows a general lack of dataset inclusion in each variant type release. However,
there is still a need to understand if there is a relationship between the variant type PTLM releases and the

26 Adekunle Ajibode et al.

inclusion of training datasets with them. We therefore conducted a chi-square test for each variant type to
understand the relationship between the variant types and dataset inclusion. For each test, we constructed
a confusion matrix to compare the presence or absence of dataset metadata with each variant type. The
analysis revealed significant associations for fine-tuned releases (χ2 = 71.68, p < 0.05), distilled releases
(χ2 = 11.62, p < 0.05), and quantized PTLM releases (χ2 = 64.69, p < 0.05) with dataset availability. This
suggests that there might be a tendency for uploaders of fine-tuned, distilled, and quantized models to be
more likely to include the training dataset. However, the significant chi-squared result does not specify the
direction of the relationship, meaning that while there is a statistically significant association, we need to
examine whether the inclusion rates are higher or lower for these variant types. In this case, we found that
the inclusion rates are higher for these variant types. For deduplicated PTLM releases (χ2 = 1.37, p =
0.24), no statistically significant relationship was observed with dataset inclusion. This is consistent with
the nature of this technique: many deduplication methods might operate as black-box procedures that do
not require retraining on a dataset. Therefore, the decision to publish a training dataset for deduplicated
variant releases might be more influenced by specific use cases or model complexity rather than the variant
type itself. Further research is needed to explore these potential explanations and to confirm these findings.

Summary

A large portion (76%, n=43,453) of studied PTLMs lack training dataset specification in
the dedicated field provided by HF. This transparency gap hinders user understanding,
as only 12% of these PTLMs with missing dataset information mention it in their model
cards, and a mere 2% provide links to the dataset source. The statistically proven
disparities in dataset transparency across different variant types (below 33%) highlight
the need for improved practices and standards in model documentation.

Model card transparency on HF. 33% of the 52,227 PTLMs were not released with model card doc-
umentation, hindering users’ understanding and responsible utilization of PTLMs on HF. For
instance, howey/electra-large-qqp52, monologg/koelectra-base-finetuned-sentiment53, and msintaha/gpt2-
finetuned-rocstories54 do not have any model card that shows the documentation of their training datasets,
hyperparameters, or intended use cases. This lack of transparency can impede efforts to evaluate model
biases and replication efforts, as users of these models rely on comprehensive model cards to make in-
formed decisions. Furthermore, this finding shows an increase in model card documentation compared to
the findings by (Oreamuno et al., 2024) who found that 39.62% of 55,280 models in HF have a model
card and (Taraghi et al., 2024) who found that 53.38% of 239,422 models on HF have model cards. Our
analysis suggests a potential improvement in the prevalence of model cards specifically for PTLMs on HF
compared to (Oreamuno et al., 2024) and (Taraghi et al., 2024) broader findings. This improvement might
be attributed to the recent increase in community interest in pre-trained language models and the timing
of our study, which captures more current trends in model documentation practices.

Our findings also resonate with (Bhat et al., 2023), who identified significant gaps between the proposed
best practices for model cards and their real-world usage. They proposed the DocML tool to guide data
scientists in improving documentation and maintaining traceability links of pre-trained models on Hugging
Face. In our study, the absence of model cards in 33% of PTLMs highlights the need for such interventions
to promote accountability and transparency in model documentation.

The analysis of PTLM model card transparency for the variant types depicted in Figure 11
reveals a significant variation in the presence of model cards across the different variant
types. Deduped models exhibit the highest percentage of release with model cards (82.7%),
followed by Quantized (74.5%) and Distilled models (74.1%). Fine-tuned models have the
lowest representation (68.6%). Notably, over 80% of Deduped models are released with a model card,
suggesting more consistent documentation practices among uploaders of this variant type. Conversely,
the lower model card presence for Fine-tuned models still shows good practices of model card releases,
because 68.6% is not too low but indicates that practitioners can do better. Improving the consistency
of model card documentation for Fine-tuned models would enhance transparency, aligning their practices
more closely with those of other variant types.

To investigate the variation, chi-square tests were conducted for each variant type to assess the rela-
tionship between release variant types and model card documentation. Statistically significant relationships
were found for Fine-tuned models (χ2 = 43.68, p < 0.05) and Quantized models (χ2 = 78.52, p < 0.05),

52 https://huggingface.co/howey/electra-large-qqp
53 https://huggingface.co/monologg/koelectra-base-finetuned-sentiment
54 https://huggingface.co/msintaha/gpt2-finetuned-rocstories

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 27

Has_ModelCard No_ModelCard
Model Card Documentation

Deduped

Distilled

Fine-tuned

Quantized
Re

le
as

e
Va

ria
nt

 Ty
pe

s

82.7 17.3

74.1 25.9

68.6 31.4

74.5 25.5
20

30

40

50

60

70

80

Pe
rc

en
ta

ge

Fig. 11 Distribution of release variant type with available training datasets from a total of 8,157 PTLM releases.

indicating that the higher prevalence of model cards for these variant types is not by chance. However, the
chi-square test for Distilled models (χ2 = 0.06, p > 0.05) and Deduped models (χ2 = 3.53, p > 0.05), did
not show a statistically significant association, suggesting that the observed percentage of model cards for
the model of these variant types might be due to random chance rather than a meaningful link. Therefore,
the significant relationship between model card presence and variant type observed for Fine-tuned, and
Quantized models contradicts the overall lack of model card documentations reported in (Oreamuno et al.,
2024) and (Taraghi et al., 2024).

Overall, this result suggests that for dataset transparency, Fine-tuned and Quantized models have the
lowest dataset availability but are statistically significant in their association with the presence of datasets.
For Model card transparency, Fine-tuned models have the lowest available model card documentation,
while Quantized models have moderate availability. These findings underline the complexity of transparency
practices across different model variants. Despite statistical significance, the practical implications of these
differences highlight the need for standardized documentation practices across all PTLM variants.

Summary

67% of PTLM releases included model cards, indicating a 14% improvement from
previous findings. Despite this progress, the lack of comprehensive model cards may
pose challenges for users in understanding model capabilities and limitations. This
reinforces the importance of complete model cards for responsible PTLM utilization.
Furthermore, there’s a variation in model card presence across the PTLM variant types.
Deduped models have the highest documentation rate (over 82.7%), while Fine-tuned
models have the lowest (68.6%). The observed statistical associations between model
card presence and dataset transparency suggest variant-specific documentation
practices. This highlights the need for improved and standardized documentation
practices on HF to support clear and responsible model use.

4.3 RQ-3: To what extent do versioning identifiers in PTLM names align with actual changes in PTLM
versions on HF?

4.3.1 Motivation

Unlike traditional software engineering practices, where the version number of a release often reflects clear
changes such as bug fixes or feature additions, the specific improvements associated with version updates in
PTLMs remain unclear. Understanding the specific changes or enhancements made between versions, such
as performance improvements or configuration adjustments, is important for informed decision-making,
particularly from a user’s point of view. Unclear versioning strategies lead to uncertainty about whether to
risk an update or not, which is the essence of why semantic versioning practices were developed for software
engineering. Therefore, this RQ focuses on the changes introduced in successive PTLM releases, specifically
exploring the nuances of version numbering in model releases.

4.3.2 Approach

Mapping of predecessors and successors of major and minor versions on HF. This RQ examines the dif-
ferences between the current model we are studying and its predecessor (the version before the one under

28 Adekunle Ajibode et al.

Major Predecessor Major Successor (randomly selected for analysis)

Minor Predecessor (randomly selected for analysis) Minor Successor

Fig. 12 Examples of predecessors and successors of PTLMs on HF, randomly selected for analysis.

study) or successor (the version after the one under study) within the major and minor model version cat-
egories identified on HF. We give examples of successors and predecessors of PTLMs on HF in Figure 12.
This distinction is based on the two types of versioning identifiers observed in RQ1: major versioning, such
as v1 and v2 and minor versioning such as v1.x and 2.x. This is to understand how major and minor ver-
sioning practices correspond to actual changes between two versions of a single PTLM. This understanding
will clarify the nature of modifications between versions, aiding in the assessment of versioning practices.
For consistency, we focus on model names that include a segment with version identifiers, as reported in
RQ1. Although models might indicate versions in different ways, such as using only numbers without the
preceding ’v’, we concentrated on those following the ‘v\d+(\.\d+)*’ pattern. Out of all the studied models,
only 3,471 have these versions, which now serve as the basis for this analysis.

To map predecessors and successors, we employed a two-step approach. First, we selected a random
sample of 330 major versions (out of 2,329) and 288 minor versions (out of 1,142) with a 95% confidence level
and a 5% margin of error. Next, we manually identified the predecessors and successors of these samples
by accessing the repositories of each selected version to locate their corresponding predecessor or successor
based on their names under the same ownership. We ensured that the immediate predecessor or successor of
the treated version was selected. For example, we identify the model version TheDrummer/Llama-3SOME-
8B-v1 55, which is a predecessor to another model. By inspecting the owner’s repository, we identified its
immediate successor, TheDrummer/Llama-3SOME-8B-v2 56. In summary, for major versions, we ensured
that if a model in our study was v1 (predecessor), we selected v2 (successor) from the owner’s repository
to form a pair. Conversely, if a model was v2 (successor), we selected v1 (predecessor) to review previous
releases and understand the differences between the current release and its predecessor. If v2 was unavailable
for a v1 model, we selected v3. Similarly, if v1 was unavailable for a v2 model, we selected v3. For versions
that are not the first, such as v2, we prioritized their predecessor, and if the predecessor was not found, we
took the successor. In essence, we selected only one version, either the predecessor or successor, of the version
we were studying for pairing. However, for versions that are the first, we prioritized their successor. The
goal was to understand the differences between two paired versions of PTLMs. In cases where neither the
immediate predecessor nor the immediate successor versions were available, we selected any other available
version of that model, whether predecessor or successor. We applied the same approach to minor versions.

Determining the differences between the model artifacts of predecessors and successors in major and minor
versions. After completing the manual mapping procedure, we calculated the percentage of successfully
paired versions of PTLMs. These identified pairs of predecessors and successors were then used for the
remaining analysis in RQ3. Although replacing models that do not have both a predecessor or successor
is an option, this approach is time-consuming due to the manual nature of identifying these relationships.
Furthermore, by focusing on models with confirmed predecessors or successors, we aim to accurately assess
versioning practices and ensure data integrity. This approach offers a clear overview of practitioners’ con-
sistency in versioning and helps us evaluate whether they are maintaining appropriate versioning practices
on HF.

After mapping the predecessors and successors in both major and minor versions, we explored the
differences between the model artifacts of these versions on HF. Model artifacts here refer to the base model
(the initial model architecture and parameters), model binary file size (indicating storage requirements),
model binary file pointer size (affecting memory usage), model readme size and content (overview and
usage instructions), and model card content (detailed documentation about the model’s use, limitations,
and ethical considerations). Understanding these changes is important because they help us determine
if there are actual modifications between the predecessor and successor versions, especially to the model
weight, which is the main attribute indicating a substantial model change on HF.

55 https://huggingface.co/TheDrummer/Llama-3SOME-8B-v1
56 https://huggingface.co/TheDrummer/Llama-3SOME-8B-v2

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 29

We assume that if there are no changes to the model weight file size between the predecessor and
successor of a major or minor version, the model owner may have uploaded the model to a new repository
without making any substantive changes. This assumption helps us avoid unnecessary exploration of such
models. However, if there are changes to the model weight binary file, it is important to explore the
documentation to understand what actually changed.

To achieve this goal, we developed a custom Python script (Ajibode, 2024) that extracted the base
model, model binary file size, model binary file pointer size, model readme size, and model card content. To
find the differences between the base models of predecessors and successors, we made a direct comparison
of the base model names. For the model binary files, readmes, and model weight file pointers, we compared
their sizes. This approach helped us understand if there were modifications between the versions.

For model cards, we assessed content similarity using a word tokenizer from the NLTK57 library and
a SequenceMatcher from the difflib58 library. NLTK is a well-established NLP library that offers function-
alities like tokenization, stemming, tagging, parsing, and semantic reasoning. Difflib, on the other hand,
provides tools for comparing sequences of words or characters, finding similarities, and calculating differ-
ences between them. In this context, we used Difflib to compare the sequences of tokenized words from the
model cards of predecessor and successor versions, allowing us to evaluate the extent of content changes
between them. Our script was designed to determine if there are changes to the model card content or not.

After determining the differences in the model artifacts of predecessors and successors in major and
minor versions, it is important to understand if these differences are statistically significant. To calculate
statistical significance, we utilized Fisher’s exact test (Boslaugh, 2012). Fisher’s exact test is a statistical
measure used as an alternative when chi-square tests are invalid due to low expected frequencies (Williams
and Quave, 2019). The imbalanced distribution of the outcomes in predecessor and successor mapping for
major and minor versions justified the use of Fisher’s exact test instead of the chi-square test.

Determining the changes in the predecessors that lead to the deployment of successors. Upon discovery
of differences in the model weight files and model cards between predecessors and successors in major
and minor versions, we employed a manual analysis approach to understand what changed between these
versions. This involved a thorough examination of the model cards and Readmes documents associated
with each version where the model weight file size had changed, along with the Readmes and model card
contents. While configuration files hold valuable information regarding changes, we prioritized model cards
and Readmes documents because they typically provide a more comprehensive overview of the model’s
details and updates.

Subsequently, the two authors independently reviewed and labeled observations from all model cards
and Readmes of predecessors and successors where the model weight had changed. For example, af-
ter comparing the Readmes content of the predecessor nitky/Superswallow-70b-v0.2 59 with its successor
nitky/Superswallow-70b-v0.3 60, we found no changes other than the model name. In such cases, we labeled
the scenario as “No change.” However, when slight changes were observed in the model cards, similar
to modifications in YAML configuration, we labeled these changes accordingly. Notably, such changes in-
creased the model weight file size of the later version. It is important to note that Readmes content on HF
includes both metadata and model card information. Therefore, we compared metadata for the Readmes
content and model card details separately.

Following the review of Readmes and model cards, all observed changes were systematically categorized.
Initially, the first author identified ten distinct categories based on the information available on HF, derived
from an initial manual review of 50 models conducted in RQ1. For example, details such as batch size, token
size, and hidden layer size were categorized under “Configuration” because they are typically found in the
configuration files. Similarly, any information related to datasets was categorized under “Dataset.” After
forming these preliminary categories, the first author proceeded to classify the observed changes within these
categories. This initial classification was then independently reviewed by the second and third authors to
ensure accuracy and consistency. They cross-checked the categories against the observed changes to verify
their relevance and appropriateness.

During this review process, two categories—“Language” and “File Format”—raised concerns. Specif-
ically, the first author had categorized the abbreviation ‘en’ under “Language” and ‘GGUF’ under “File
Format.” To avoid creating too many classifications and for the sake of simplicity, it was decided after
thorough discussions among the first three authors to scrap the “Language” and “File Format” categories.
Instead, these items were reclassified under a newly created “Other” category. This collaborative review
and reclassification process ensured that all observed changes were accurately categorized, reflecting the

57 https://pypi.org/project/nltk/
58 https://docs.python.org/3/library/difflib.html
59 https://huggingface.co/nitky/Superswallow-70b-v0.2
60 https://huggingface.co/nitky/Superswallow-70b-v0.3

30 Adekunle Ajibode et al.

varied nature of the information present in the model artifacts while maintaining a manageable number of
categories.

We further conducted a statistical significance test of the distribution of these categories across major
and minor versions using Fisher’s exact test, with Bonferroni correction applied for multiple comparisons.
To understand if there is an association between these categories, i.e., whether a change in one category
leads practitioners to make changes in another category, we used the phi coefficient. Phi is a measure of
association between two binary (nominal) variables, specifically used in 2x2 contingency tables to quantify
the degree of association between the variables. Additionally, the phi coefficient can be interpreted as an
effect size, indicating the strength of the relationship between the two variables. We then interpreted the
phi coefficient following (Akoglu, 2018), where ϕ > 0.25 indicates a very strong relationship, ϕ > 0.15 a
strong relationship, ϕ > 0.10 a moderate relationship, ϕ > 0.05 a weak relationship, and ϕ > 0 indicates
no or a very weak relationship, to examine the relationships between changes in different categories.

4.3.3 Results

Mapping of Predecessors and Successors of major and minor versions. 57% of major and 65% of minor
version releases are missing from the model owner’s repositories. Despite the large number of
models hosted on the HF repository, continuity between versions is disrupted due to practices such as
utilizing separate repositories for each release instead of maintaining a single repository for all versions.
This fragmentation can lead to situations where predecessor versions are missing, as seen with 9.92% of the
141 successfully mapped major versions. For example, models like Sandrro/text to function v2 61 lack a v1
counterpart despite having 10 subsequent releases of the same PTLM variant and are not found anywhere
on HF at large. Similarly, major versions like yacine-djm/binary v4 62 sometimes lack direct predecessors or
successors despite having 24 releases under the same owner, indicating possible removals from the repository.
This practice can inconvenience users needing access to prior or subsequent versions of their models. We
found 57% of 330 major PTLM versions in this scenario. Similar observations apply to minor versions,
exemplified by lmsys/vicuna-33b-v1.3 63, which has no predecessor or successor despite up to 18 PTLMs in
the owner’s profile. We also found 65% of minor PTLM versions in this scenario.
Difference between the model artifacts of predecessor and successor of major and minor versions Our
analysis results show that model cards (71%) experience the most changes between major
versions of PTLM variants on HF, comparing directly between versions such as v1 and
v2, regardless of intermediate releases like v1.1 or v1.2. In contrast, base models (13%)
experience the least changes. We found that the base model changed in 13% of the analyzed cases,
indicating that only a few versions with major identifiers alter the underlying architecture. However, model
weight files changed in 67% of the cases, suggesting substantial updates to the version’s learned parameters.
Additionally, model weight file pointers were modified in 50% of the models, reflecting adjustments in how
the model version weights are referenced. Furthermore, README files were updated in 68% of the models,
highlighting frequent revisions to usage documentation. Finally, model cards were modified in 71% of the
cases, indicating significant updates to the descriptive metadata.

Our further analysis of minor versions shows that model cards (80%) still experienced the
most changes between two different releases of the same PTLM variant on HF, while the
model’s base model was not changed in these versions. This finding suggests that updates in the
predecessors and successors of minor versions typically retain the same architecture. Model weight files were
altered in 48% of the cases, indicating less frequent but still significant parameter updates. Model weight
file pointers changed in 40% of the cases, showing moderate adjustments. model cards were modified in
80% of the cases, indicating regular updates to the documentation, while README files were updated in
75% of the model versions, reflecting ongoing refinements to the metadata.

The observed differences in the attributes of major and minor versions are only statistically
significant in model weight files and base models. We statistically compared the observed differences
in the model artifacts of predecessors and successors between major and minor versions. It is evident that
only the differences in the base model artifacts and model weight file attributes of PTLM releases in major
and minor versions are statistically significant. No significant differences were found for model binary file
pointers, README files, or model card content across major and minor versions. Table 4 presents the
p-values, odds ratios, and confidence intervals indicating the statistical significance between major and
minor model artifacts. Specifically, there is a statistically significant (p < 0.05) difference in the base model
artifact between major and minor versions, with a large odds ratio (inf) and a wide confidence interval
(1.855 to 522.799). The odds ratio has such values due to no observations of PTLM releases in minor versions

61 https://huggingface.co/Sandrro/text to function v2
62 https://huggingface.co/yacine-djm/binary v4
63 https://huggingface.co/lmsys/vicuna-33b-v1.3

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 31

Table 4: Statistical difference between the changes in major and minor releases.
model artifacts P-values Odd Ratio Confidence Interval

base model <0.05 inf 1.855 - 522.799
Model weight file < 0.05 2.2373 1.321 - 3.790
Model weight file pointer >0.05 1.5214 0.906 - 2.556
Readme >0.05 0.71111 0.400 - 1.263
Model Card >0.05 0.6097 0.331 - 1.122

changing their base model. Similarly, the differences in the model weight attribute of PTLM releases in
both major and minor versions are statistically significant (p < 0.05) with an odds ratio of 2.23, indicating
that changes in model weight are 2.3 times more likely in major versions than in minor versions, with a
confidence interval between 1.32 and 3.79.

These findings suggest that major versions, as expected, are more likely to include substantial changes,
such as alterations to the base model and model weights. This aligns with the principles of semantic version-
ing, where major versions typically involve significant changes that may affect compatibility, while minor
versions involve incremental improvements and fixes that maintain compatibility. The lack of significant
differences in other artifacts like model binary file pointers, README files, or model card content across
major and minor versions indicates that these segments are less likely to be altered significantly between
versions, which aligns with the idea that documentation and pointers often receive more consistent updates
across all types of releases.

Summary

57% of major versions and 65% of minor versions of PTLMs on HF lacked versioning
continuity as a result of missing versions, leading to ambiguities for users needing
previous versions or updates. Similarly, while 87% of models maintain the same base
model across versions, 13% switch to entirely different ones. Changes are frequently
observed in model weight files (67%), pointers (50%), readmes (68%), and model cards
(71%) in major versions, while minor versions show changes in 48%, 40%, 80%, and
75%, respectively. However, these changes are only statistically significant in the base
model and model binary files, with substantially larger odds ratios (inf and 2.237)
falling within the 1.855 to 522.799 confidence interval.

The actual changes between the predecessors and successors in major and minor versions that translated to
the new version of PTLMs.
Although there are changes in the model artifacts of predecessors and successors in major and minor
versions of PTLMs, these changes are not statistically significant except for the model weight file and base
model. Changes in the model weight file translate to new versions of PTLMs. Therefore, to understand
the changes made to these major and minor versions that caused a change in the model weight files, we
focused on major and minor versions where the model weight file changed, along with the corresponding
model card and README. These activities resulted in the analysis of 40 README files and 40 model
cards for minor versions, as well as 71 README files and 71 model cards for major versions. Figure 13
highlights the differences between README files and model cards, which is why we consider them as
separate documentations.

Our investigation identified change patterns for major releases compared to minor releases.
Major version updates typically exhibit a broader range of modifications, encompassing an
a total of 28 unique changes, while minor version updates show an average of approximately
8 changes. We categorized these changes into nine different categories. Table 5 presents these categories
along with the frequency of changes, displayed as percentages, and the types of version in which the changes
occurred. We also depict the meaning of these change types in Table 6.

It is evident that configuration, model architecture, energy consumption, performance changes are spe-
cific to major versions. Conversely, all changes identified in minor versions were also observed in major
versions, indicating consistency across updates despite differing version identifiers.

There is no statistically significant difference between the prevalence of changes that
actually occurred between the major and minor versions, except for changes that occur in
the configuration, license, and others.

A statistical analysis of the prevalence of the nine main categories of changes between major and minor
PTLM releases, as depicted in Table 7, reveals that six out of nine categories of changes exhibited p-values
greater than 0.05. These results suggest no statistically significant difference between major and minor

32 Adekunle Ajibode et al.

Fig. 13 The README contains content that differentiates it from the model card content. While the model card does
not include the metadata found in the README, the README sometimes also contains all the information present in
the model card. Note that it is possible for a model to contain little information in the README and no information in
the model card.

Table 5: The outcome of different activities between the predecessor and successor of major and minor
version of releases on HF.

Categories Changes % of change Major Minor

Batch Size 3.82 ✓
Tokenizer Version 3.82 ✓
Evaluation Metrics 0.64 ✓
Normalized Layer 0.64 ✓

Configuration change (20.35%) Embedding Size 0.64 ✓
Hyperparameters 3.18 ✓
Number of Epoch 4.46 ✓
Hidden Layer Size 1.27 ✓
Token Size 1.91 ✓
Merged base model 4.46 ✓

Model architecture change (14.01%) Base Model 5.73 ✓
Training Variant 3.82 ✓

License change (7.64%) License 7.64 ✓ ✓
Performance 11.46 ✓

Performance change (14.65%) Result 2.55 ✓
Evaluation base model 0.64 ✓

Dataset change (14.65%) Dataset Specification 10.19 ✓ ✓
Dataset Versions 4.46 ✓
Tokenizer Version 3.82 ✓

Training Library change (13.37%) Transformer Version 7.64 ✓ ✓
Libraries 1.91 ✓

Energy consumption (1.27%) CO2 Emission 1.27 ✓
Performance metrics change (3.82%) Metrics 3.82 ✓ ✓

Task 3.82 ✓ ✓
Tags 3.82 ✓ ✓

Other change (14.65%) File Format 0.64 ✓
Language 6.37 ✓ ✓
Model Name 4.46 ✓ ✓

releases for these categories. Conversely, license, configuration, and other changes showed a statistically
significant difference between major and minor releases (p-value < 0.05).

While license, configuration, and other changes showed statistical significance, these findings alone
do not provide conclusive evidence that the current major-minor versioning practice on HF consistently
adheres to semantic versioning principles. Semantic versioning is intended to communicate the significance of
changes through version numbers, with major versions denoting breaking changes, minor versions indicating
backward-compatible feature additions, and patch versions representing backward-compatible bug fixes.

The statistically significant differences observed in configuration, license, and other changes suggest that
these aspects are prioritized or more rigorously addressed within the update practices on HF. Configuration
changes, such as adjustments to batch size or tokenizer versions, are important as they directly impact model
performance and compatibility with existing applications. Similarly, license updates are significant as they
may introduce new usage terms or legal implications for users and developers.

In contrast, categories like model architecture, performance metrics, and dataset changes did not show
statistically significant differences between major and minor releases. While these categories are important
for understanding model capabilities and performance, their consistent lack of significant distinctions be-

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 33

Table 6: Definition of the different activities between the predecessor and successor of major and minor
version of releases on HF.
Changes Description

Batch Size Data processed per iteration during training or evaluation. Changed in newer model.
Tokenizer Version Version of tokenization mechanism for NLP models. Updated in newer model.
Evaluation Metrics Measures assessing model performance. Included or expanded in newer model.
Normalized Layer Neural network layer standardizing input data. Adjusted or increased in newer model.
Embedding Size Dimensionality of vector space for words or tokens. Increased or decreased in newer model.
Hyperparameters Configurable parameters influencing model behavior. Specified or optimized in newer model.
Number of Epoch Number of passes through dataset during training. Increased or decreased in newer model.
Hidden Layer Size Number of hidden layers in neural network. Increased or reduced in newer model.
Token Size Length or size of tokenized input sequences. Increased or decreased in newer model.
Merged base model Creation of a more powerful model by combining multiple pre-trained base models into a

single entity. The number increased or decreased in the newer version.
Base Model Primary model used as a foundation. Changed in newer version.
Training Variant Variant of base model used for training. Changed in newer version.
License Legal terms governing the use and distribution of the model. Added, changed or removed

from the newer version.
Performance Measure of the model’s effectiveness or efficiency in accomplishing tasks. Increased or de-

creased in the newer version.
Result Contain the evaluation result of the model’s predictions or computations. Added or removed

from the newer version.
Evaluation base model The baseline model compared with the newer version. Changed in the newer version.
Dataset Specification Detailed description or requirements for a dataset. Added or deleted in the newer version.
Dataset Versions A specific iteration or snapshot of a dataset used for training or evaluating the released

model. Earlier or later version used in the newer version.
Tokenizer Version Version of the tokenization tool used to process text data.
Transformer Version Version of the transformer model architecture employed in the model. Earlier or later version

used in the newer version.
Libraries The specific library or modules used for training the released model. Added or deleted from

the newer version.
CO2 Emission The total amount of carbon dioxide (CO2) emissions generated throughout the training.

Increased or decreased in the newer version.
Metrics Performance metrics used to measure the effectiveness and performance of models. Added or

deleted in the newer version.
Task Specific objective or goal the model is designed to accomplish. Changed in the newer version.
Tags Label or identifier assigned to categorize or classify data release information. Added or re-

moved from the newer version.
File Format A specialized binary file format designed for efficient storage and inference of model. Changed

in the newer version.
Language The primary language(s) the model is trained on and designed to work with. Added or

removed in the newer model.
Model Name Unique identifier assigned to the model. Changed in the newer version.

Table 7: Statistical comparison of changes in major and minor version of PTLM releases.
Categories p-value
Configuration 0.02
Model Architecture 1.00
License 0.00
Performance 0.42
Dataset 1.00
Training Library 1.00
Energy consumption 1.00
Performance metrics 1.00
Other Changes 0.01

tween major and minor updates suggests that their versioning on HF may not fully align with the clear
distinction of major and minor changes advocated by semantic versioning, or it may simply indicate that
changes in these areas are less common.

The result in Figure 14 shows one very strong association, four strong associations, and
three moderate associations between pairs of change categories in PTLMs.

We observed a very strong ϕ association between Performance changes and Configuration changes (ϕ =
0.46). When developers modify configuration settings in PTLMs, they are also likely to make corresponding
changes in performance results. This association indicates that adjustments to configurations often co-occur
optimizations or adjustments in performance metrics, ensuring compatibility and enhanced performance in
subsequent versions of PTLMs.

There is a strong association between Evaluation metrics changes and Dataset changes (ϕ = 0.24),
Evaluation metrics changes and Performance changes (ϕ = 0.19), Training library changes and Performance
changes (ϕ = 0.15), and Model Architecture changes and Configuration changes (ϕ = 0.15). These strong

34 Adekunle Ajibode et al.

CC MAC LC PC DC TLC ECC EMC OC

CC

MAC

LC

PC

DC

TLC

ECC

EMC

OC

0.15

0.11 0.00

0.46 0.07 0.11

0.03 0.07 0.09 0.03

0.07 0.00 0.00 0.15 0.00

0.08 0.00 0.00 0.00 0.00 0.00

0.07 0.01 0.00 0.19 0.24 0.01 0.00

0.00 0.08 0.07 0.00 0.00 0.00 0.00 0.13
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 14 Associations between several categories of changes on HF. The acronyms are as follows: CC: Configuration
Changes, MAC: Model Architecture Changes, LC: License Changes, PC: Performance Changes, DC: Dataset Changes,
TLC: Training Library Changes, ECC: Energy Consumption Changes, EMC: Evaluation Metrics Changes, OC: Other
Changes.

associations suggest that updates to evaluation metrics or datasets typically coincide with adjustments
in performance metrics. Similarly, changes in training libraries are closely linked with modifications in
performance outcomes, reflecting the adoption of more efficient or advanced libraries to enhance model
capabilities. Adjustments in model architecture often necessitate corresponding changes in configuration
settings to ensure compatibility and optimal performance.

Moderate associations were observed between Other changes and Evaluation metrics changes (ϕ = 0.13),
License changes and Configuration changes (ϕ = 0.11), and License changes and Performance changes (ϕ
= 0.11). These moderate associations indicate that while modifications in evaluation metrics or licensing
terms occasionally prompt adjustments in configuration or performance metrics, the relationship is less
consistent compared to the stronger associations observed.

All other relationships showed weak associations (ϕ < 0.10), indicating that changes in these categories
occur relatively independently of each other.

The observed associations between changes in different categories during PTLM development provide
valuable insights into how modifications are interrelated. Strong and very strong associations suggest that
practitioners often alter multiple related aspects simultaneously. This pattern highlights the importance of
implementing structured versioning practices on HF to accurately capture these interdependencies. In the
context of semantic versioning, such associations can significantly impact versioning practices. For instance,
if a major change affects multiple related aspects of the model, it is crucial to reflect this in the version
number. By rigorously applying semantic versioning, practitioners can better communicate the scope and
impact of changes, improving transparency and predictability for users. Major version updates should signal
substantial modifications that may require user adjustments, while minor updates can indicate incremental
improvements that maintain compatibility.

Similar patterns of change associations and their impact on versioning have been well-documented in
regular source code projects 64. In software projects, semantic versioning (SemVer) practices are crucial
for managing and communicating changes effectively. By drawing parallels between these practices and
PTLM versioning, it becomes evident that structured versioning based on observed change associations
can enhance clarity and user understanding in PTLM deployments. This approach not only aligns with
established versioning practices but also provides a clearer framework for managing complex changes in
PTLMs.

64 Semantic Versioning 2.0.0: https://semver.org

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 35

Summary

We observed a total of 28 different change types in major and minor versions of
PTLMs, categorized into nine different groups. Major version updates exhibit all 28
change types, while minor version exhibit 8 change types. There is no statistically
significant difference between the changes observed in major and minor versions, except
for configuration, license, and other changes.

5 Discussion and Implication

5.1 Discussion

The ubiquity of pre-trained models is on the rise, sparking interest in model registries and dedicated
platforms for hosting these models. One of the major categories of these pre-trained models is PTLM,
which enhance various language understanding tasks and are widely acknowledged (Sarzynska-Wawer et al.,
2021). The free and open-source availability of these PTLMs has led to increased adoption, which has
in turn brought about different challenges associated with their release and version management. As a
result, we explored 52,227 PTLMs to answer three research questions aimed at understanding the release
characteristics of these PTLMs, using HF as the case study due to its status as the largest pre-trained
model registry (Jiang et al., 2022). Therefore, this section discusses the main findings of our empirical
investigation into the naming and versioning conventions, transparency of these releases, variant types, and
changes that occur between different versions of PTLMs on HF, aiming to improve the release process of
these models.

In RQ1, our analysis reveals 148 distinct naming conventions on HF, highlighting the diverse approaches
developers employ in labeling their models, reflecting individual preferences and project-specific needs.
This finding supports Jiang’s study (Jiang et al., 2023b), which surveyed 108 HF users and revealed a
disparity between desired and actual naming practices. To mitigate ambiguity and inconsistencies observed
in PTLM names, practitioners are encouraged to adopt a structured naming convention that includes
essential segments like base model and size. Our study highlights that models incorporating these details
tend to receive higher downloads, suggesting increased adoption rates and facilitating better decision-making
among users, particularly concerning environmental impact considerations (Bender et al., 2021).

Furthermore, the disappearance of 0.2% of PTLMs from the repository suggests model owners may have
either deleted or renamed them. This could disrupt ongoing projects or workflows that rely on these models.
To prevent such disruptions, similar to the issues seen during the left-pad incident65, HF administrators
should implement a mechanism that makes it difficult for practitioners to unpublish or delete an already
published model. This measure would help ensure the stability and reliability of the repository for all users.

Additionally, our analysis reveals a significant gap between declared versions (3,471) and potential ver-
sions inferred from changes (524,419) in model binary files, highlighting discrepancies in current versioning
practices versus actual development frequencies. It is crucial for practitioners to diligently version every
significant release to mitigate risks akin to those encountered with the Therac-25 radiation therapy machine
in the late 1980s66. These incidents resulted in fatal radiation overdoses due to software bugs introduced
in a new version. Inadequate testing and poor version control practices allowed the faulty version to be de-
ployed to machines in hospitals. Failure to version their PTLMs could lead to similarly severe consequences,
as applications relying on these models may be significantly impacted by untracked changes, potentially
resulting in catastrophic outcomes.

The average of 12 changes per model binary file further highlights this inconsistency, potentially mis-
leading users relying on version numbers for assessing model updates. The presence of different model
storage format compounds this issue, highlighting the importance of clear and consistent versioning to
ensure interoperability and user accessibility (Singla, 2023, Liu et al., 2020). While HF prioritizes security
and efficient storage of tensors within its ecosystem, the popularity of two main file extensions for storing
model weights, “.safetensor” and “.bin”, persists. However, this can lead to interoperability issues since
other frameworks and deployment environments may not inherently support all features of “.safetensor”
and “.bin” files. This often necessitates conversion or additional steps to integrate models into different
platforms. While prioritizing security is commendable, developers should also consider adopting formats
that support broader interoperability beyond the HF ecosystem.

65 https://en.wikipedia.org/wiki/Npm left-pad incident
66 https://en.wikipedia.org/wiki/Therac-25

36 Adekunle Ajibode et al.

In RQ2, we identified two key areas for improvement in PTLM releases on HF: variant type transparency
and training data disclosure. Despite a diverse set of 299 base models fueling a vibrant PTLM ecosystem
with 52,227 models, a concerning 70.72% of releases lack explicit information about their variant type. This
obscurity can hinder user understanding of specific modifications applied to a base model. Understanding
the modification type is crucial, as deploying a model without knowledge of its modification type can lead to
unexpected performance degradation. For example, models modified using different techniques may require
specific software or hardware environments for optimal performance. Without knowing the modification
type, integration into existing systems or workflows could be problematic, leading to compatibility issues
or additional development costs to resolve integration challenges. Stakeholders relying on ML models, such
as end-users, policymakers, or business decision-makers, often require transparency about how models are
modified. Lack of clarity about modification methods can erode trust in the model’s reliability, transparency,
and ethical usage. Therefore, we encourage developers to consistently specify variant type information
in model names, descriptions or configuration file to enhance transparency and mitigate potential risks
effectively.

Similarly, 76% of models lack information about their training data, which is crucial as training data can
significantly influence an PTLM’s behavior and biases. While practitioners may have valid reasons for not
releasing their training datasets—such as protecting intellectual property and ensuring responsible model
use—OpenAI has cited similar reasons for not disclosing the training data used in GPT-467. They emphasize
that controlling access to the training data helps mitigate risks and ensures ethical alignment, focusing on
principles like harm avoidance, fairness, and transparency. However, while security and responsible use
are paramount, complete transparency, including the release of training data, remains desirable. Balancing
transparency with these concerns is essential. Therefore, HF should enforce rigorous dataset and model
card documentation practices to enhance standards on their platform. This approach ensures users have
access to essential information for understanding and replicating model behaviors. When practitioners use
external datasets for training, they should provide links to the dataset sources, not just names, given the
commonality of dataset names across the internet.

In RQ3, we explored changes associated with different PTLM version types on HF. Our analysis revealed
distinct usage patterns but also highlighted a significant issue: over 50% of major and minor versions
lacked clear predecessor-successor connections, primarily due to missing or deleted versions. This lack of
information poses challenges for users tracking updates or locating specific PTLM versions.

In addition to the issues with missing predecessor-successor connections, we found that among all model
artifacts, model cards experienced the most frequent changes between major and minor versions, with 71%
of major versions and 80% of minor versions showing updates in this area. This indicates that changes
to documentation or usage instructions are the most prevalent between releases. Moreover, major versions
also demonstrated significant changes in base models (13%), suggesting potential shifts in the underlying
architecture. This highlights the importance of clear versioning, as major changes can impact user workflows
and require careful consideration before adoption. We identified a total of 28 different changes grouped into
9 categories. While trends in changes were observed, they did not significantly differ between major and
minor versions, except for configuration, license, and other changes. This highlights the need for clear and
consistent versioning practices. Without a standardized system, users face challenges such as hesitation to
upgrade due to ambiguity, potential disruptions from unclear updates, and staying on outdated versions
missing improvements. Therefore, semantic versioning on HF is crucial to improve user model selection,
facilitate informed decision-making, and promote responsible PTLM development.

Based on our findings about the different challenges and difficulties of PTLM releases on the HF model
registry, and noting the lack of a standardized notion of ‘model release’, we define a model release as
the publication of a model registry entry characterized by a meaningful name and unambiguous version
identifiers, and encompassing the essential artifacts needed to successfully operate and evolve the model, such
as model weights, configurations, and documentation, along with relevant provenance links to datasets and
earlier model releases. However, a significant challenge observed on HF is that different versions often receive
separate repositories instead of being included in the release history of the previous version. This practice
makes it difficult to track the complete evolution of a model over time and complicates the application
of semantic versioning principles, leading to fragmentation and inconsistencies in version management
practices across the platform. Addressing this issue is important for reducing confusion and enhancing the
clarity of and interaction with model repositories on HF.

It is also worth noting that while our analysis focused on a diverse set of models with sufficient metadata,
the distribution of model usage on Hugging Face is likely skewed (Osborne et al., 2024). A small subset of
highly popular models (e.g., the Llama, Qwen and DeepSeek families) accounts for a disproportionate share
of user engagement and influence on the ecosystem. While unclear or inadequate versioning in widely used
models can create significant challenges for numerous users, affecting adoption, integration, and trust in the

67 https://www.linkedin.com/pulse/behind-closed-doors-decision-release-training-data-gpt-4-jatasra-kr4df

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 37

platform, less popular models may not have the same reach, even if their versioning practices are similarly
inconsistent. This skewness in usage suggests that the practical significance of our observations could vary
depending on the popularity of a model. Future research could investigate how versioning practices and
their consequences differ between high-impact models and those with more limited user bases.

5.2 Towards Semantic Versioning of PTLMs

5.2.1 Versioning of PTLMs vs. traditional code

The findings of this study highlight a fundamental difference between versioning for PTLMs and tra-
ditional code artifacts. In software, semantic versioning encodes backward compatibility and adherence
to downstream client contracts into a concise, 1-dimensional numbering scheme (Preston-Werner, 2025).
This approach relies on the clear definition of ’contracts’—the expectations and compatibility between
artifacts and their clients—that allows semantic versioning to systematically indicate whether a version
complies with or violates clients’ expectations (Lam et al., 2020). These contracts encapsulate essential
details such as API specifications, backward compatibility, functionality additions or deprecations, and bug
fixes. However, PTLMs lack a direct counterpart to such contracts, i.e., there currently is no agreement
on what compatibility means in the context of PTLMs. As our results demonstrate, PTLMs’ inherently
multidimensional nature, encompassing characteristics such as architecture, size, training data, and domain
specificity, complicates the application of semantic versioning principles and concepts. Furthermore, model
owners currently try to project this multidimensionality onto a one-dimensional model name, but without
an established naming convention, leading to ambiguities that challenge users in assessing compatibility
and understanding the implications of changes (as we have pointed out in our findings).

Unlike traditional software, PTLMs lack a standardized versioning framework due to their inherently
multidimensional nature. This necessitates an approach that explicitly stores version metadata and enables
automated compatibility assessments to streamline model adoption and evolution. In the following sections,
we discuss (1) how to represent the ’version’ of a model, (2) how to determine the right ’version’ for a new
model, and (3) how model version metadata can be accessed.

5.2.2 How to Represent the “Version” of a Model

Representing the version of deep learning models, particularly PTLMs, presents challenges that go beyond
traditional software versioning. Semantic versioning (e.g., X.Y.Z) has been pivotal in software develop-
ment, helping to prevent “dependency hell” by clearly signaling the nature of changes between versions
(Lam et al., 2020, Preston-Werner, 2025). This one-dimensional structure of version numbering excels in
signaling backward compatibility—where major version increments (X) indicate breaking changes, minor
version increments (Y) represent new but compatible features, and patch version increments (Z) account
for backward-compatible bug fixes.

The one-dimensional approach of current semantic versioning assumes that changes can be captured in
a linear, incremental fashion, but this simplicity cannot capture the complexity of PTLM evolution, due
to the unique dynamics of model evolution. For instance, does changing the base model imply a major
version update, or does it reflect a minor change? What about fine-tuning a model with an entirely new
dataset—should this be classified as a major or minor change? Furthermore, configuration and license
changes—often seen in model releases—may be viewed as relatively trivial, but should they constitute
patch updates, or do they warrant a more significant version change?

These uncertainties illustrate the difficulty of defining “backward compatibility” for PTLMs. While in
traditional software, backward compatibility refers to a new version not breaking existing functionality,
for PTLMs, model changes such as data shifts, architecture changes, or training adjustments may not fit
into the established categories of software versioning. This makes it challenging to determine if a model
is backward compatible in the same way as software, as modifications to models do not always directly
correspond to “breaking” or “compatible” changes within the versioning system.

Therefore, PTLM versioning requires a more effective approach, one that accounts for factors beyond
functional compatibility, such as dataset shifts, model architecture, task specificity, reuse methods, and
training dataset modifications. For instance, a minor adjustment in hyperparameters might not necessitate
a major version update under traditional schemes, but it could have significant downstream impacts.

Our study reveals that existing naming practices on Hugging Face often attempt to embed information
about model changes, albeit inconsistently. Beyond compatibility, a critical aspect of semantic versioning
should be the inclusion of provenance information—details about a model’s origin and the transformations
it has undergone. In the context of versioning PTLMs, our paper identifies specific fields that may be
important for a more accurate versioning system. These include: identifier, base model, model size, and

38 Adekunle Ajibode et al.

training mechanisms. By incorporating these fields, versioning could better reflect the nuances of model
evolution and provide users with more transparent, traceable information. Such an approach would not only
improve compatibility assessments but also enhance reproducibility, enabling users to track and understand
the evolution of models over time.

5.2.3 How the Right “Version” Can Be Determined for a New Model

Once a complete representation of semantic versioning for pre-trained language models is determined, de-
termining the appropriate version “number” for a new model version requires evaluating how its changes
impact backward compatibility and performance. Current practices, as observed in our study, lack sys-
tematic tools for this evaluation, resulting in inconsistent version tagging. For example, on Hugging Face,
models fine-tuned on new datasets are often assigned major version identifiers, which contradicts the seman-
tic versioning principle that major version increments (X) should be reserved for backward-incompatible
changes. In contrast, fine-tuning a model with a new dataset typically results in a less significant change
than altering the base model itself, which may not warrant a major version increment. Instead, a minor
version update (Y) is more appropriate in these scenarios. This inconsistency highlights the need for a more
structured and standardized approach to version generation.

Building on the concept of semantic version calculators (Preston-Werner, 2025), (Lam et al., 2020)
proposed using contracts as inputs for these tools. Extending this idea to PTLMs could involve incorporating
model configuration changes, model architecture updates, performance variations, dataset modifications,
and dependency changes into the contract. Such an adaptation would provide a framework more suited to
the unique needs of PTLMs. Without dedicated tools, developers often rely on intuition or ad hoc practices,
which may not fully capture the different changes. Model registries such as Hugging Face could benefit from
integrating semantic version calculators to foster consistency, encourage the adoption of community-driven
standards, and support users in making the final decision about the right version number. This would
enhance transparency and build trust in the evolution of PTLMs.

5.2.4 How Model Version Metadata can be accessed

Currently, Hugging Face lacks dedicated fields to store versioning metadata, which forces developers to
embed such details in model names. The absence of standardized naming conventions contributes to in-
consistencies, making it challenging for users to interpret model changes systematically. While names often
include attributes like model size, base model name, and training mechanism, the lack of uniformity results
in overloading model names with information, compromising clarity and usability. Short-term efforts should
prioritize establishing standard naming guidelines to mitigate these issues and promote consistency across
repositories.

In the long term, repositories must address this limitation by introducing structured metadata fields for
versioning. These fields should explicitly capture version numbers (e.g., X.Y.Z or a future multi-dimensional
representation), compatibility information, and key attributes such as model architecture or task alignment.
Decoupling versioning information from model names would establish a more robust framework for tracking
changes and ensuring reproducibility. Moreover, incorporating provenance information within model cards
or as a separate metadata field would further enhance transparency and accountability in version manage-
ment, aligning with best practices observed in other domains, such as software supply chain management
(e.g., SBOMs).

Therefore, based on our results, we believe the minimal set of essential segments to include in stan-
dardized naming or in multidimensional version representations should encompass identifiers, base model
information, model size, and training mechanism. As a result, we emphasize the need to standardize nam-
ing practices in the short term, and advocate for long-term investments in accessible version metadata.
In addition to the need for semantic versioning calculators, future research could explore integrating soft-
ware bill of materials (SBOM)-inspired tools to decouple versioning and provenance information. SBOM
is a formal machine-readable inventory of the components (and their dependency relationships) used for
producing a software product (Xia et al., 2023). By redefining existing software compatibility notions for
PTLMs and establishing robust standards, the ML community can enhance the usability, reproducibility,
and transparency of its models. Addressing these challenges requires collaborative efforts between model
developers, repository maintainers, and the broader research community, ensuring that PTLM versioning
evolves alongside advancements in ML technology.

5.3 Implications

Different stakeholders can benefit from our work:

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 39

Practitioners:

• Adopt a consistent and structured naming convention that includes segments for base model, size, and
version identifiers as a short-term solution to effectively encode versioning information. However, for
the longer term, implement explicit versioning mechanisms to provide a more robust and standardized
approach to model versioning.

• Align versioning practices with the actual development changes of the models and the current stage of
model versions to avoid discrepancies between version labels and the true state of the model’s develop-
ment.

• Specify variant type information consistently in model names or descriptions.
• Ensure comprehensive training data documentation including dataset sources and preprocessing steps.
• Maintain deprecated model tags instead of removing them to aid users in understanding model evolution

and informed upgrade decisions.

Model registry administrators/Operators:

• Develop and enforce standardized guidelines for naming and versioning models, promote semantic ver-
sioning, and provide tools for effective version management.

• Establish guidelines for disclosing variant types in model names or descriptions.
• Enforce inclusion of detailed training data information in model card submissions.
• Implement a mechanism that prevents practitioners from unpublishing or deleting an already published

model.

Research Community:

• Collaborate on standards and tools supporting structured naming and consistent versioning.
• Study the impact of transparent variant type and training data disclosure on user adoption and model

performance.

6 Threats to Validity

6.1 Internal Validity

We only focus on NLP models in this study, although we acknowledge the existence of other models such as
Computer Vision, Multimodal, Audio, Tabular, and Reinforcement Learning models. Our focus on language
models introduce a threat to internal validity by potentially limiting the generalizability of our findings
across different types of models.

To increase internal validity we performed meticulous sampling methods, mitigation of potential threats,
and a double-coding (2 people coding in parallel) approach for categorization. Stratified random sampling
with a 95% confidence level and 5% error rate was employed to select distinct model subsets for each research
question (RQ). This approach minimized sampling bias and ensured our findings reflect the diverse range
of models relevant to each analysis.

To mitigate potential bias during categorization, a crucial step in all RQs, we implemented a double-
coding approach. Two independent researchers systematically interpreted and labeled model names using
both open and closed card sorting methods. Initially, open-card sorting was used to identify all relevant
terms from HF, followed by closed-card sorting based on these terms. Any discrepancies in categorization
between the coders were resolved through negotiated agreement. Our inter-rater reliability for the open
card coding, assessed using Cohen’s Kappa, yielded scores indicative of high levels of consistency across all
RQs (specific scores mentioned in the relevant sections).

Missing configuration files were handled by using the config.values() function from the HF Transformers
library, ensuring consistent data extraction across all model releases. Additionally, statistically significant
sample sizes helped to minimize the influence of random chance on our findings. Through these rigorous
methods, we ensured a high degree of internal validity in our study.

Furthermore, the final dataset only includes models with at least 1 million parameters, a threshold we
chose to reduce noise and focus on more capable and widely used models for NLP based on (Eldan and
Li, 2023). This threshold was automatically satisfied by the earlier filtering step removing models without
identifiable base models, as the latter models were less likely to meet the size and complexity criteria
we aimed for. While this approach helps refine the dataset, there is no universally accepted definition of
’toy models. As a result, some experimental or toy-like models may still be included, as a model with an
identifiable base model and more than 1 million parameters might still be fine-tuned or adapted as a toy
project or experiment. This presents a potential threat to the internal validity of our study, as the presence
of such models could introduce variability in the dataset that might not reflect the characteristics of widely
adopted models.

40 Adekunle Ajibode et al.

6.2 External Validity

Our study aimed to achieve external validity by examining a broader spectrum of model types and naming
conventions present on HF. We carefully documented our methodologies and provided links to specific
models, making it easier for other researchers to replicate and generalize our findings. This transparency
strengthens the stability of our conclusions within the specific context of model naming practices on HF.
However, we acknowledge several key limitations. First, our findings are based on a specific model registry
platform, HF, which primarily focuses on open-source models. As a result, commercially licensed models
might not be represented on the platform. Consequently, the practices observed here might not be fully
applicable to the broader PTLM landscape. This limitation introduces the potential for selection bias, as
HF’s open-source emphasis could differ from the conventions used by other platforms or in proprietary
settings.

Second, as discussed in the implications section, the distribution of model usage on HF is skewed, with a
small subset of models receiving the majority of attention and engagement. Due to lack of direct information
about model usage, our conclusions may vary for models with higher adoption compared to those with
limited use. For instance, high-impact models may follow entirely different naming or versioning conventions
than less popular ones, and these differences could have a significant impact on the ecosystem. This skewness
suggests that future research should investigate how versioning practices and their consequences differ
between these groups to provide more understanding of their implications.

Another threat to external validity arises from our reliance on models explicitly specifying their base
model as the first step, followed by two heuristics to identify model sizing information: (1) based on
safetensors’ metadata and (2) explicit size information in the model names. Models that specify sizing
information through methods beyond our heuristics may have been incorrectly excluded by our criteria,
leading to potential false positives. To mitigate this threat, we based our heuristics on typical cases of model
size information observed in the collected data, ensuring that our filter aligns with prevalent practices.
Furthermore, our filter is conservative, as only 1.5% of 53,027 models were filtered out.

To address these limitations, we employed several strategies. First, we acknowledged that the naming
and versioning conventions on HF differ significantly from those on other platforms such as Model Zoo,
PyTorch, and ONNX. For instance, on HF, model names typically follow a two-component structure:
owner/model name, which clearly indicates ownership and source. In contrast, platforms like Model Zoo,
PyTorch, and ONNX use a simpler naming convention, often with a single-component model name, without
an explicit owner identifier. These differences affect how models are tracked, managed, and versioned across
platforms.

To mitigate these platform-specific limitations, we focused on analyzing the underlying principles of
versioning and release practices that can be adapted across various model registry platforms, despite their
implementation differences. By focusing on these foundational practices, we aimed to derive insights that
could be relevant and applicable beyond the specific conventions used by HF. Furthermore, we encourage
the replication of similar analyses on different platforms to enhance the generalizability of our findings and
to account for platform-specific nuances in model naming and versioning practices.

6.3 Construct Validity

We ensured construct validity through the careful definition and operationalization of key constructs, such
as model naming practices and versioning conventions. Our methodologies, including regex-based version
extraction and systematic card sorting, align with established practices in software engineering research.
The use of Cohen’s Kappa to measure inter-rater reliability yielded a score between 0.74 and 0.98, indi-
cating substantial agreement in our labeling process. These measures help ensure that our interpretations
accurately reflect the nuances and meanings embedded in model names and versioning practices observed
on HF.

However, potential threats to construct validity may also arise from inconsistencies in data sources
or interpretation. To address these, we employed rigorous operational definitions for key constructs, such
as reproducibility, variant types, and dataset transparency. Despite these precautions, our study remains
dependent on the accuracy and accessibility of data from the HF API and repository statuses, which could
affect the completeness and reliability of our findings.

Construct validity threats may arise from using file size rather than checksums to compare model weight
files and determine changes between versions. While file size offers a straightforward comparison method, it
may not be sensitive to minor modifications, such as typos, which could still impact the model’s behavior
but not necessarily alter its size significantly. Checksums, on the other hand, provide a more granular and
accurate measure of changes, detecting even small alterations. However, the decision to use file size was
influenced by scalability concerns, as handling large model files with checksums could be computationally

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 41

intensive and time-consuming. Therefore, while file size is a practical choice for scalability, it may introduce
potential threats to construct validity due to its limitations in detecting subtle changes.

Another potential threat to construct validity arises from missing predecessors. Some predecessor models
were not found in the owner’s repository, potentially having been deleted or removed. This absence could
affect the completeness of our analysis and the accuracy of our measurements of model changes. By not
replacing missing predecessors with alternative models, we aimed to maintain the integrity of our dataset
and avoid introducing potential biases. However, this decision may impact the representation of versioning
practices and model evolution, potentially affecting the validity of our findings.

7 Conclusion

In this study, we conducted a comprehensive investigation into PTLM releases on HF, focusing on nam-
ing and versioning conventions, release transparency, and differences between major and minor versions.
Utilizing a mixed-method approach combining quantitative and qualitative analyses, we provided nuanced
insights into the landscape of PTLM releases on HF. Our study addressed three primary research questions:
the naming and versioning conventions of PTLMs on HF, the provenance, transparency, and reproducibility
of PTLM releases, and the differences between major and minor versions.

We found 148 naming practices for PTLMs on HF, characterized by segment counts and semantic
meanings. We identified major and minor versioning patterns, indicating significant updates and incremen-
tal changes, respectively. Notably, 98% of PTLMs included configuration files, enhancing reproducibility
and transparency. However, 29.28% PTLMs explicitly mentioned variant types and included references to
training datasets, limiting transparency and reproducibility.

Through manual and statistical analyses, we observed significant differences between major and minor
predecessor-successor pairs. Major updates involved substantial changes in base models and model weight
files, with a total of 28 unique changes. In contrast, minor updates exhibited incremental modifications,
with a total of 8 unique changes. These minor updates often overlapped with the changes in the major
versions. Additionally, 524,419 version traces were embedded in commits without being indicated in the
model names or repository, highlighting the need for semantic versioning on HF. Building on these findings,
there are opportunities for future work to improve the release process of PTLMs.

Future research should focus on establishing semantic versioning practices for PTLMs.

8 Conflict of Interest

The authors declare that they have no conflict of interest.

9 Data Availability Statement

The datasets generated and analyzed during this study are available in the replication package (Ajibode,
2024).

References

Surafel Lemma Abebe, Nasir Ali, and Ahmed E Hassan. An empirical study of software release notes.
Empirical Software Engineering, 21:1107–1142, 2016.

Daehwan Ahn, Abdullah Almaatouq, Monisha Gulabani, and Kartik Hosanagar. Impact of model inter-
pretability and outcome feedback on trust in ai. In Proceedings of the CHI Conference on Human Factors
in Computing Systems, pages 1–25, 2024.

Ajibode. Wip-24: Towards semantic versioning of pre-trained language models. https://github.com/

SAILResearch/wip-24-adekunle-lm-release, 2024.
Haldun Akoglu. User’s guide to correlation coefficients. Turkish journal of emergency medicine, 18(3):

91–93, 2018.
Edesio Alcobaça, Felipe Siqueira, Adriano Rivolli, Lúıs PF Garcia, Jefferson T Oliva, and André CPLF

De Carvalho. Mfe: Towards reproducible meta-feature extraction. Journal of Machine Learning Research,
21(111):1–5, 2020.

Shaukat Ali, Paolo Arcaini, Dipesh Pradhan, Safdar Aqeel Safdar, and Tao Yue. Quality indicators in
search-based software engineering: An empirical evaluation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 29(2):1–29, 2020.

42 Adekunle Ajibode et al.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pages 610–623, 2021.

Avinash Bhat, Austin Coursey, Grace Hu, Sixian Li, Nadia Nahar, Shurui Zhou, Christian Kästner, and
Jin LC Guo. Aspirations and practice of ml model documentation: Moving the needle with nudging and
traceability. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages
1–17, 2023.

Tingting Bi, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. An empirical study of release
note production and usage in practice. IEEE Transactions on Software Engineering, 48(6):1834–1852,
2020.

Sergejs Bobrovskis and Aleksejs Jurenoks. A survey of continuous integration, continuous delivery and
continuos deployment. In BIR workshops, pages 314–322, 2018.

Sarah Boslaugh. Statistics in a nutshell: A desktop quick reference. ” O’Reilly Media, Inc.”, 2012.
John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. Coding in-depth semistructured

interviews: Problems of unitization and intercoder reliability and agreement. Sociological methods &
research, 42(3):294–320, 2013.

Lúıs Carvalho and João Costa Seco. Deep semantic versioning for evolution and variability. In Proceedings
of the 23rd International Symposium on Principles and Practice of Declarative Programming, pages 1–13,
2021.

Joel Castaño, Silverio Mart́ınez-Fernández, Xavier Franch, and Justus Bogner. Exploring the carbon foot-
print of hugging face’s ml models: A repository mining study. In 2023 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM), pages 1–12. IEEE, 2023.

Joel Castaño, Silverio Mart́ınez-Fernández, Xavier Franch, and Justus Bogner. Analyzing the evolution
and maintenance of ml models on hugging face. In 2024 IEEE/ACM 21st International Conference on
Mining Software Repositories (MSR), pages 607–618. IEEE, 2024.

Kim Cocks and David J Torgerson. Sample size calculations for pilot randomized trials: a confidence interval
approach. Journal of clinical epidemiology, 66(2):197–201, 2013.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

Anamaria Crisan, Margaret Drouhard, Jesse Vig, and Nazneen Rajani. Interactive model cards: A human-
centered approach to model documentation. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 427–439, 2022.

Alexandre Decan and Tom Mens. What do package dependencies tell us about semantic versioning? IEEE
Transactions on Software Engineering, 47(6):1226–1240, 2019.

Alexandre Decan, TomMens, Maëlick Claes, and Philippe Grosjean. When github meets cran: An analysis of
inter-repository package dependency problems. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages 493–504. IEEE, 2016.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained language
models. Nature Machine Intelligence, 5(3):220–235, 2023.

Daniel Domı́nguez-Álvarez and Alessandra Gorla. Release practices for ios and android apps. In Proceedings
of the 3rd ACM SIGSOFT international workshop on app market analytics, pages 15–18, 2019.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Youdi Gong, Guangzhen Liu, Yunzhi Xue, Rui Li, and Lingzhong Meng. A survey on dataset quality in
machine learning. Information and Software Technology, page 107268, 2023.

Remo Gresta, Vinicius Durelli, and Elder Cirilo. Naming practices in java projects: An empirical study. In
Proceedings of the XX Brazilian Symposium on Software Quality, pages 1–10, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
conference on machine learning, pages 2790–2799. PMLR, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146, 2018.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 43

2704–2713, 2018.
Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego

de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023a.

Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt, Taylor R Schorlemmer,
George K Thiruvathukal, and James C Davis. An empirical study of artifacts and security risks in
the pre-trained model supply chain. In Proceedings of the 2022 ACM Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses, pages 105–114, 2022.

Wenxin Jiang, Chingwo Cheung, George K Thiruvathukal, and James C Davis. Exploring naming conven-
tions (and defects) of pre-trained deep learning models in hugging face and other model hubs. arXiv
preprint arXiv:2310.01642, 2023b.

Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R Schorlemmer, Rohan Sethi, Yung-Hsiang Lu,
George K Thiruvathukal, and James C Davis. An empirical study of pre-trained model reuse in the
hugging face deep learning model registry. arXiv preprint arXiv:2303.02552, 2023c.

WENXIN Jiang, CHINGWO CHEUNG, MINGYU KIM, HEESOO KIM, GEORGE K THIRU-
VATHUKAL, and JAMES C DAVIS. Naming practices of pre-trained models in hugging face. 2024a.

Wenxin Jiang, Jerin Yasmin, Jason Jones, Nicholas Synovic, Jiashen Kuo, Nathaniel Bielanski, Yuan Tian,
George K Thiruvathukal, and James C Davis. Peatmoss: A dataset and initial analysis of pre-trained
models in open-source software. arXiv preprint arXiv:2402.00699, 2024b.

Jason Jones, Wenxin Jiang, Nicholas Synovic, George Thiruvathukal, and James Davis. What do we know
about hugging face? a systematic literature review and quantitative validation of qualitative claims. In
Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 13–24, 2024.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks in
language models. In International Conference on Machine Learning, pages 10697–10707. PMLR, 2022.

Adhishree Kathikar, Aishwarya Nair, Ben Lazarine, Agrim Sachdeva, and Sagar Samtani. Assessing the
vulnerabilities of the open-source artificial intelligence (ai) landscape: A large-scale analysis of the hugging
face platform. In 2023 IEEE International Conference on Intelligence and Security Informatics (ISI),
pages 1–6. IEEE, 2023.

Noureddine Kerzazi and Bram Adams. Who needs release and devops engineers, and why? In Proceedings
of the international workshop on continuous software evolution and delivery, pages 77–83, 2016.

Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster releases improve software
quality? an empirical case study of mozilla firefox. In 2012 9th IEEE working conference on mining
software repositories (MSR), pages 179–188. IEEE, 2012.

Sean Kinahan, Pouria Saidi, Ayoub Daliri, Julie Liss, and Visar Berisha. Achieving reproducibility in eeg-
based machine learning. In The 2024 ACM Conference on Fairness, Accountability, and Transparency,
pages 1464–1474, 2024.

Hannah Rose Kirk, Yennie Jun, Filippo Volpin, Haider Iqbal, Elias Benussi, Frederic Dreyer, Aleksandar
Shtedritski, and Yuki Asano. Bias out-of-the-box: An empirical analysis of intersectional occupational
biases in popular generative language models. Advances in neural information processing systems, 34:
2611–2624, 2021.

Patrick Lam, Jens Dietrich, and David J Pearce. Putting the semantics into semantic versioning. In
Proceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pages 157–179, 2020.

Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, causes and solutions when adopting
continuous delivery—a systematic literature review. Information and Software Technology, 82:55–79,
2017.

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. Effective identifier names for compre-
hension and memory. Innovations in Systems and Software Engineering, 3:303–318, 2007.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances
in Neural Information Processing Systems, 35:1950–1965, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. Enhancing the
interoperability between deep learning frameworks by model conversion. In Proceedings of the 28th ACM
joint meeting on European software engineering conference and symposium on the foundations of software
engineering, pages 1320–1330, 2020.

Martin J Loomes, Chrystopher L Nehaniv, and Paul Wernick. The naming of systems and software evolv-
ability. In IEEE International Workshop on Software Evolvability (Software-Evolvability’05), pages 23–28.

44 Adekunle Ajibode et al.

IEEE, 2005.
Huanru Henry Mao. A survey on self-supervised pre-training for sequential transfer learning in neural

networks. arXiv preprint arXiv:2007.00800, 2020.
John Martin. Fine-tuning and deployment. LinkedIn, 2024. URL https://www.linkedin.com/pulse/

fine-tuning-deployment-dr-john-martin-yvqyf.
Martin Michlmayr, Francis Hunt, and David Probert. Release management in free software projects:

Practices and problems. In Open Source Development, Adoption and Innovation: IFIP Working Group
2.13 on Open Source Software, June 11–14, 2007, Limerick, Ireland 3, pages 295–300. Springer, 2007.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi. Question answering through transfer learning from
large fine-grained supervision data. arXiv preprint arXiv:1702.02171, 2017.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena
Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In Proceedings of
the conference on fairness, accountability, and transparency, pages 220–229, 2019.

Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. Release practices for mobile apps–what do users
and developers think? In 2016 ieee 23rd international conference on software analysis, evolution, and
reengineering (saner), volume 1, pages 552–562. IEEE, 2016.

Marc Novakouski, Grace Lewis, William Anderson, and Jeff Davenport. Best practices for artifact versioning
in service-oriented systems. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Note CMU/SEI-2011-TN-009, 2012.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2:13, 2023.
Ernesto Lang Oreamuno, Rohan Faiyaz Khan, Abdul Ali Bangash, Catherine Stinson, and Bram Adams.

The state of documentation practices of third-party machine learning models and datasets. IEEE Soft-
ware, 2024.

Cailean Osborne, Jennifer Ding, and Hannah Rose Kirk. The ai community building the future? a quanti-
tative analysis of development activity on hugging face hub. Journal of Computational Social Science, 7
(2):2067–2105, 2024.

Nicolás Paez. Versioning strategy for devops implementations. In 2018 Congreso Argentino de Ciencias de
La Informática y Desarrollos de Investigación (CACIDI), pages 1–6. IEEE, 2018.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Federica Pepe, Vittoria Nardone, Antonio Mastropaolo, Gabriele Bavota, Gerardo Canfora, and Massi-
miliano Di Penta. How do hugging face models document datasets, bias, and licenses? an empirical
study. In Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension,
pages 370–381, 2024.

Jorge Pérez, Jessica Dı́az, Javier Garcia-Martin, and Bernardo Tabuenca. Systematic literature reviews in
software engineering—enhancement of the study selection process using cohen’s kappa statistic. Journal
of Systems and Software, 168:110657, 2020.

Tom Preston-Werner. Semantic versioning 2.0.0, 2025. URL https://semver.org/. Accessed January 14,
2025.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning and impact of breaking
changes in the maven repository. Journal of Systems and Software, 129:140–158, 2017.

Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt Schneider. Versioning and evolution
requirements for model-based system development. 2014.

Johnny Saldana. The Coding Manual for Qualitative Researchers. Sage Publications, 2015.
Mark Santolucito, Ennan Zhai, and Ruzica Piskac. Probabilistic automated language learning for config-

uration files. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II 28, pages 80–87. Springer, 2016.

Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak,
Michal Jarkiewicz, and Lukasz Okruszek. Detecting formal thought disorder by deep contextualized word
representations. Psychiatry Research, 304:114135, 2021.

Robert C Seacord, Scott A Hissam, and Kurt C Wallnau. Agora: A search engine for software components.
IEEE Internet computing, 2(6):62, 1998.

Aliaksei Severyn and Alessandro Moschitti. Unitn: Training deep convolutional neural network for twit-
ter sentiment classification. In Proceedings of the 9th international workshop on semantic evaluation
(SemEval 2015), pages 464–469, 2015.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration, delivery and deployment:
a systematic review on approaches, tools, challenges and practices. IEEE access, 5:3909–3943, 2017.

Katharina Simbeck. Facct-check on ai regulation: Systematic evaluation of ai regulation on the example of
the legislation on the use of ai in the public sector in the german federal state of schleswig-holstein. In
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 89–96,

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face 45

2022.
Ajay S Singh and Micah B Masuku. Sampling techniques & determination of sample size in applied

statistics research: An overview. International Journal of economics, commerce and management, 2(11):
1–22, 2014.

Amandeep Singla. Machine learning operations (mlops): Challenges and strategies. Journal of Knowledge
Learning and Science Technology ISSN: 2959-6386 (online), 2(3):333–340, 2023.

Alexander Stuckenholz. Component evolution and versioning state of the art. ACM SIGSOFT Software
Engineering Notes, 30(1):7, 2005.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.
arXiv preprint arXiv:1908.09355, 2019.

Mina Taraghi, Gianolli Dorcelus, Armstrong Foundjem, Florian Tambon, and Foutse Khomh. Deep
learning model reuse in the huggingface community: Challenges, benefit and trends. arXiv preprint
arXiv:2401.13177, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Tajkia Rahman Toma and Cor-Paul Bezemer. An exploratory study of dataset and model management in
open source machine learning applications. 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Violet Turri, Katelyn Morrison, Katherine-Marie Robinson, Collin Abidi, Adam Perer, Jodi Forlizzi, and
Rachel Dzombak. Transparency in the wild: Navigating transparency in a deployed ai system to broaden
need-finding approaches. In The 2024 ACM Conference on Fairness, Accountability, and Transparency,
pages 1494–1514, 2024.

Susana M Vieira, Uzay Kaymak, and João MC Sousa. Cohen’s kappa coefficient as a performance measure
for feature selection. In International conference on fuzzy systems, pages 1–8. IEEE, 2010.

Abhishek Wadhwani and Priyank Jain. Machine learning model cards transparency review: Using model
card toolkit. In 2020 IEEE Pune Section International Conference (PuneCon), pages 133–137. IEEE,
2020.

Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. Pre-trained language models and their
applications. Engineering, 2022.

LL Williams and K Quave. Chapter 10–tests of proportions: chi-square, likelihood ratio, fisher’s exact test.
Quantitative anthropology, pages 123–41, 2019.

Jed R Wood and Larry E Wood. Card sorting: current practices and beyond. Journal of Usability Studies,
4(1):1–6, 2008.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust fine-
tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7959–7971, 2022.

Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming Zhu. An empirical study on software
bill of materials: Where we stand and the road ahead. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pages 2630–2642. IEEE, 2023.

Minke Xiu, Zhen Ming Jack Jiang, and Bram Adams. An exploratory study of machine learning model
stores. IEEE Software, 38(1):114–122, 2020.

Tianyin Xu and Yuanyuan Zhou. Systems approaches to tackling configuration errors: A survey. ACM
Computing Surveys (CSUR), 47(4):1–41, 2015.

Lanxin Yang, He Zhang, Haifeng Shen, Xin Huang, Xin Zhou, Guoping Rong, and Dong Shao. Quality
assessment in systematic literature reviews: A software engineering perspective. Information and Software
Technology, 130:106397, 2021.

Zhou Yang, Jieke Shi, and David Lo. Ecosystem of large language models for code. arXiv preprint
arXiv:2405.16746, 2024.

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram, and Shankar Pasupathy.
An empirical study on configuration errors in commercial and open source systems. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, pages 159–172, 2011.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

